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A b s t r a c t  

Recent work has seen the emergence of a 
common framework for parsing categorial 
grammar (CG) formalisms that  fall within 
the 'type-logical' tradition (such as the 
Lambek calculus and related systems), 
whereby some method of linear logic the- 
orem proving is used in combination with 
a system of labelling that ensures only de- 
ductions appropriate to the relevant gram- 
matical logic are allowed. The approaches 
realising this framework, however, have not 
so far addressed the task of incremental 
parsing - -  a key issue in earlier work with 
'flexible' categorial grammars. In this pa- 
per, the approach of (Hepple, 1996) is mod- 
ified to yield a linear deduction system that 
does allow flexible deduction and hence in- 
cremental processing, but that hence also 
suffers the problem of 'spurious ambiguity'. 
This problem is avoided via normalisation. 

1 I n t r o d u c t i o n  

A key attraction of the class of formalisms known as 
'flexible' categorial grammars is their compatibility 
with an incremental style of processing, in allow- 
ing sentences to be assigned analyses that are fully 
or primarily left-branching. Such analyses designate 
many initial substrings of a sentence as interpretable 
constituents, allowing its interpretation to be gener- 
ated 'on-line' as it is presented. Incremental inter- 
pretation has been argued to provide for efficient 
language processing, by allowing early filtering of 
implausible readings. 1 

This paper is concerned with the parsing of cat- 
egorial formalisms that fall within the 'type-logical' 

1Within the categorial field, the significance of incre- 
mentality has been emphasised most notably in the work 
of Steedman, e.g. (Steedman, 1989). 

tradition, whose most familiar representative is the 
associative Lambek calculus (Lambek, 1958). Re- 
cent work has seen proposals for a range of such 
systems, differing in their resource sensitivity (and 
hence, implicitly, their underlying notion of 'lin- 
guistic structure'), in some cases combining differ- 
ing resource sensitivities in one system. 2 Many of 
these proposals employ a 'labelled deductive sys- 
tem' methodology (Gabbay, 1996), whereby types in 
proofs are associated with labels which record proof 
information for use in ensuring correct inferencing. 

A common framework is emerging for parsing 
type-logical formalisms, which exploits the labelled 
deduction idea. Approaches within this framework 
employ a theorem proving method that is appropri- 
ate for use with linear logic, and combine it with a 
labelling system that restricts admitted deductions 
to be those of a weaker system. Crucially, linear logic 
stands above all of the type-logical formalisms pro- 
posed in the hierarchy of substructural logics, and 
hence linear logic deduction methods can provide a 
common basis for parsing all of these systems. For 
example, Moortgat (1992) combines a linear proof 
net method with labelling to provide deduction for 
several categorial systems. Morrill (1995) shows 
how types of the associative Lambek calculus may 
be translated to labelled implicational linear types, 
with deduction implemented via a version of SLD 
resolution. Hepple (1996) introduces a linear deduc- 
tion method, involving compilation to first order for- 
mulae, which can be combined with various labelling 
disciplines. These approaches, however, are not dir- 
ected toward incremental processing. 

In what follows, we show how the method of 
(Hepple, 1996) can be modified to allow processing 
which has a high degree of incrementality. These 
modifications, however, give a system which suffers 

2See, for example, the formalisms developed in 
(Moortgat & Morrill, 1991), (Moortgat & Oehrle, 1994), 
(Morrill, 1994), (Hepple, 1995). 
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the problem of 'derivational equivalence', also called 
'spurious ambiguity',  i.e. allowing multiple proofs 
which assign the same reading for some combina- 
tion, a fact which threatens processing efficiency. We 
show how this problem is solved via normalisation. 

2 I m p l i c a t i o n a l  L i n e a r  L o g i c  

Linear logic is an example of a "resource-sensitive" 
logic, requiring that  each assumption ('resource') is 
used precisely once in any deduction. For the implic- 
ational fragment, the set of formulae ~ are defined 
by 5 r ::= A [ ~ 'o-~-  (with A a nonempty set of 
atomic types). A natural deduction formulation re- 
quires the el iminat ion and introduction rules in (1), 
which correspond semantically to steps of functional 
application and abstraction, respectively. 

(1) Ao-B : a B: b IS: v] 
o-E A:a  

A: (ab) o - I  
Ao-B : Av.a 

The proof (2) (which omits lambda terms) illustrates 
that  'hypothetical reasoning' in proofs (i.e. the use 
of additional assumptions that  are later discharged 
or cancelled, such as Z here) is driven by the presence 
of higher-order formulae (such as X o - ( y c - z )  here). 

(2) Xo-(Yo--Z) Yo-W Wo--Z [Z] 

W 

Y 

Yo-Z 

X 

Various type-logical categorial formalisms (or 
strictly their implicational fragments) differ from 
the above system only in imposing further restric- 
tions on resource usage. For example, the associ- 
ative Lambek calculus imposes a linear order over 
formulae, in which context, implication divides into 
two cases, (usually written \ and /) depending on 
whether the argument type appears to the left or 
right of the functor. Then, formulae may combine 
only if they are adjacent and in the appropriate 
left-right order. The non-associative Lambek cal- 
culus (Lambek, 1961) sets the further requirement 
that types combine under some fixed initial brack- 
etting. Such weaker systems can be implemented 
by combining implicational linear logic with a la- 
belling system whose labels are structured objects 
that record relevant resource information, i.e. of se- 
quencing and/or  bracketting, and then using this in- 
formation in restricting permitted inferences to only 
those that  satisfy the resource requirements of the 
weaker logic. 

3 F i r s t - o r d e r  C o m p i l a t i o n  

The first-order formulae are those with only atomic 
argument types (i.e. ~" ::= A I .~o-A).  
Hepple (1996) shows how deductions in implica- 
tional linear logic can be recast as deductions in- 
volving only f irst-order formulae. 3 The method in- 
volves compiling the original formulae to indexed 
first-order formulae, where a higher-order initial for- 
mula yields multiple compiled formulae, e.g. (omit- 
ting indices) Xo-(yo--Z)  would yield X o - Y  and Z, 
i.e. with the subformula relevant to hypothetical 
reasoning (Z) effectively excised from the initial for- 
mulae, to be treated as a separate assumption, leav- 
ing a first-order residue. Indexing is used in ensuring 
general linear use of resources, but also notably to 
ensure proper use of excised subformulae, i.e. so that  
Z, in our example, must be used in deriving the argu- 
ment of Xo-Y,  and not elsewhere (otherwise invalid 
deductions would be derivable). 

The approach is best explained by example. In 
proving Xo-(Yo--Z), Yo-W,  Wo--Z =~ X, compila- 
tion of the premise formulae yields the indexed for- 
mulae that  form the assumptions of (3), where for- 
mulae (i) and (iv) both derive from Xo--(Yo-Z). 
(Note in (3) that  the lambda terms of assumptions 
are written below their indexed types, simply to help 
the proof fit in the column.) Combination is allowed 
by the single inference rule (4). 

(3) (i) (ii) (iii) (iv) 

{i}:Xo-(Y:{j}) {k}:Yo-(W:0) {l}:Wo--(Z:0) {j}:Z 
)~t.x( )tz.t ) )~u.yu Av.wv z 

{ j , l}  : W : w z  

{j, k, l}: Y: y(wz)  

{i, j, k, l}: X: x() tz .y(wz))  

(4) ¢: Ao--(B:~) : Av.a ¢ : B : b lr = ¢t~¢ 

r :  A: a[b//vl 

Each assumption in (3) is associated with a set con- 
taining a single index, which serves as the unique 

3The point of this manoeuvre (i.e. compiling to first- 
order formulae) is to create a deduction method which, 
like chart parsing for phrase-structure grammar, avoids 
the need to recompute intermediate results when search- 
ing exhaustively for all possible analyses, i.e. where any 
combination of types contributes to more than one over- 
all analysis, it need only be computed once. The incre- 
mental system to be developed in this paper is similarly 
compatible with a 'chart-like' processing approach, al- 
though this issue will not be further addressed within 
this paper. For earlier work on chart-parsing type-logical 
formalisms, specifically the associative Lambek calculus, 
see KSnig (1990), Hepple (1992), K5nig (1994). 
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identifier for that assumption. The index sets of a 
derived formula identify precisely those assumptions 
from which it is derived. The rule (4) ensures appro- 
priate indexation, i.e. via the condition rr = ¢~¢,  
where t~ stands for disjoint union (ensuring linear 
usage). The common origin of assumptions (i) and 
(iv) (i.e. from Xo--(Yo-Z)) is recorded by the fact 
that (i)'s argument is marked with (iv)'s index (j). 
The condition a C ~b of (4) ensures that (iv) must 
contribute to the derivation of (i)'s argument (which 
is needed to ensure correct inferencing). Finally, ob- 
serve that the semantics of (4) is handled not by 
simple application, but rather by direct substitution 
for the variable of a lambda expression, employing a 
special variant of substitution, notated _[_//_] (e.g. 
t[s//v] to indicate substitution of s for v in t), which 
specifically does not act to avoid accidental binding. 
In the final inference of (3), this method allows the 
variable z to fall within the scope of an abstraction 
over z, and so become bound. Recall that introduc- 
tion inferences of the original formulation are associ- 
ated with abstraction steps. In this approach, these 
inferences are no longer required, their effects hav- 
ing been compiled into the semantics. See (Hepple, 
1996) for more details, including a precise statement 
of the compilation procedure. 

4 F l e x i b l e  D e d u c t i o n  

The approach just outlined is unsuited to incre- 
mental processing. Its single inference rule allows 
only a rigid style of combining formulae, where or- 
der of combination is completely determined by the 
argument order of functors. The formulae of (3), for 
example, must combine precisely as shown. It is not 
possible, say, to combine assumptions (i) and (if) to- 
gether first as part of a derivation. To overcome this 
limitation, we might generalise the combination rule 
to allow composition of functions, i.e. combinations 
akin to e.g. Xo-Y, Yo--W ==> Xo-W. However, the 
treatment of indexation in the above system is one 
that does not readily adapt to flexible combination. 

We will transform these indexed formulae to an- 
other form which better suits our needs, using the 
compilation procedure (5). This procedure returns 
a modified formula plus a set of equations that spe- 
cify constraints on its indexation. For example, the 
assumptions (i-iv) of (3) yield the results (6) (ignor- 
ing semantic terms, which remain unchanged). Each 
atomic formula is partnered with an index set (or 
typically a variable over such), which corresponds 
to  the full set of indices to be associated with the 
complete object of that category, e.g. in (i) we have 
(X+¢), plus the equation ¢ = {i}Wrr which tells us 
that X's index set ¢ includes the argument formula 

Y's index set rr plus its own index i. The further 
constraint equation ¢ = {i}t~rr indicates that the 
argument's index set should include j (c.f. the con- 
ditions for using the original indexed formula). 

(5) 0.(¢: x :  t) = ( ( x + ¢ )  : t,0) 
where X atomic 

0.(¢: X o - Y :  t) = (Z:  t ,C) 
where 0.1(¢, Xo--Y) = (Z, C) 

0.1(¢,x) = ( ( x + 7 ) ,  {7 = ¢}) 
where X atomic, 7 a fresh variable 

0.1 (¢, X l ° - (  Y :  7r)) = (X2o--(Y+7), C') 
where 6, 7 fresh variables, 6 := ¢~7 

0"1(6, X 1) = (X2, C) 
C' = C u {~r c 7} 
(unless ~r = 0, when C = C') 

(6) i. old formula: {i}: Xo--(Y:{j}) 
new formula: (X+C)o-(Y+Tr) 
constraints: {¢ = {i}~rr, {j} C 7r} 

if. old formula: {k}:Yo-(W:O) 
new formula: (V+a)o- (W%3)  
constraints: {a = {k}~/~} 

iii. old formula: {l} :Wo-(Z:O) 
new formula: (W+7)o-(Z+~)  
constraints: {7 = {l}t~} 

iv. old formula: {j} :Z 
new formula: (Z+{j}) 
constraints: 0 

(7) Ac--B : Av.a B : b 

A: a[bllv] 

The previous inference rule (4) modifies to (7), 
which is simpler since indexation constraints are now 
handled by the separate constraint equations. We 
leave implicit the fact that use of the rule involves 
unification of the index variables associated with the 
two occurrences of "B" (in the standard manner). 
The constraint equations for the result of the com- 
bination are simply the sum of those for the formulae 
combined (as affected by the unification step). For 
example, combination of the formulae from (iii) and 
(iv) of (6) requires unification of the index set expres- 
sions 6 and {j}, yielding the result formula (W+7) 
plus the single constraint equation V = {l}tg{j}, 
which is obviously satisfiable (with 3' = {j,l}). A 
combination is not allowed if it results in an unsat- 
isfiable set of constraints. The modified approach 
so neatly moves indexation requirements off into the 
constraint equation domain that we shall henceforth 
drop all consideration of them, assuming them to be 
appropriately managed in the background. 

346 



We can now state a generalised composition rule 
as in (8). The inference is marked as [m, n], where 
m is the argument position of the 'functor'  (always 
the  lefthand premise) that  is involved in the com- 
bination, and n indicates the number of arguments 
inherited from the 'argument '  (righthand premise). 
The notation "o--Zn...o--Zl" indicates a sequence of 
n arguments, where n may be zero, e.g. the case [1,0] 
corresponds precisely to the rule (7). Rule (8) allows 
the non-applicative derivation (9) over the formulae 
from (6) (c.f. the earlier derivation (3)). 

(8) Xo-Y . . . .  o--Y1 Ymo-Z . . . .  o'-Zl 
Ayl ...y,, .a Azl ...z~ .b 

[m, n] 
Xo- Z .... o- Zl o-Y,,_ 1-.o-Y1 

Ayl ...ym- 1 Zl ...z,.a[b // ym ] 

(9) (i) (ii) (iii) (iv) 
Xc-Y Yo-W Wo-Z Z 

At.x(Az.t) Au.yu Av.wv z 

Xo-W: Au.x(kz.yu) [1,11 
[1,1] 

xo-z: ~v.x(~z.y(wv)) 

x :  x(,~z.y(wz) ) 
[1 21 

5 I n c r e m e n t a l  D e r i v a t i o n  

As noted earlier, the relevance of flexible CGs to 
incremental processing relates to their ability to 
assign highly left-branching analyses to sentences, 
so that  many initial substrings are treated as in- 
terpretable constituents. Although we have adap- 
ted the (Hepple, 1996) approach to allow flexibility 
in deduction, the applicability of the notion 'left- 
branching' is not clear since it describes the form 
of structures built in proof systems where formu- 
lae are placed in a linear order, with combination 
dependent on adjacency. Linear deduction meth- 
ods, on the other hand, work with unordered collec- 
tions of formulae. Of course, the system of labelling 
that is in use - -  where the constraints of the 'real'  
grammatical logic reside - -  may well import word 
order information that limits combination possibil- 
ities, but in designing a general parsing method for 
linear categorial formalisms, these constraints must 
remain with the labelling system. 

This is not to say that there is no order informa- 
tion available to be considered in distinguishing in- 
cremental and non-incremental analyses. In an in- 
cremental processing context, the words of a sen- 
tence are delivered to the parser one-by-one, in 'left- 
to-right' order. Given lexical look-up, there will then 
be an 'order of delivery' of lexical formulae to the 
parser. Consequently, we can characterise an incre- 

mental analysis as being one that  at any stage in- 
cludes the maximal amount of 'contentful' combin- 
ation of the formulae (and hence also lexical mean- 
ings) so far delivered, within the limits of possible 
combination that  the proof system allows. Note 
that  we have not in these comments reintroduced 
an ordered proof system of the familiar kind by the 
back door. In particular, we do not require formu- 
lae to combine under any notion of 'adjacency',  but 
simply 'as soon as possible'. 

For example, if the order of arrival of the formulae 
in (9) were (i,iv)-<(ii)-<(iii) (recall that  (i,iv) origin- 
ate from the same initial formula, and so must ar- 
rive together), then the proof (9) would be an incre- 
mental analysis. However, if the order instead was 
(ii)-<(iii)-<(i,iv), then (9) would not be incremental, 
since at the stage when only (ii) and (iii) had ar- 
rived, they could combine (as part  of an equivalent 
alternative analysis), but are not so combined in (9). 

6 D e r i v a t i o n a l  E q u i v a l e n c e ,  
D e p e n d e n c y  &: N o r m a l i s a t i o n  

It  seems we have achieved our aim of a linear deduc- 
tion method that  allows incremental analysis quite 
easily, i.e. simply by generalising the combina- 
tion rule as in (8), having modified indexed formu- 
lae using (5). However, without further work, this 
'achievement'  is of little value, because the result- 
ing system will be very computationally expensive 
due to the problem of 'derivational equivalence' or 
'spurious ambiguity' ,  i.e. the existence of multiple 
distinct proofs which assign the same reading. For 
example, in addition to the proof (9), we have also 
the equivalent proof (10). 

(10) (i) (ii) (iii) (iv) 

Xo--Y Yo-W Wo-Z Z 
At.x(Az.t) Au.yu Av.wv z 

Yo--Z : )~v.y(wv) [1,1] 

Y: y(wz) 

x :  z( az y( wz ) ) 

[1,0] 

[1,0] 

The solution to this problem involves specifying a 
normal form for deductions, and allowing that  only 
normal form proofs are constructed) Our route to 
specifying a normal form for proofs exploits a corres- 
pondence between proofs and dependency structures. 
Dependency grammar (DG) takes as fundamental 

~This approach of 'normal form parsing' has been 
applied to the associative Lambek calculus in (K6nig, 
1989), (Hepple, 1990), (Hendriks, 1992), and to Combin- 
atory Categorial Grammar in (Hepple & Morrill, 1989), 
(Eisner, 1996). 
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the notions of head and dependent. An analogy is 
often drawn between CG and DG based on equating 
categorial functors with heads, whereby the argu- 
ments sought by a functor are seen as its dependents. 
The two approaches have some obvious differences. 
Firstly, the argument requirements of a categorial 
functor are ordered. Secondly, arguments in CG are 
phrasal, whereas in DG dependencies are between 
words. However, to identify the dependency rela- 
tions entailed by a proof, we may simply ignore argu- 
ment ordering, and we can trace through the proof to 
identify those initial assumptions ('words') that  are 
related as head and dependent by each combination 
of the proof. This simple idea unfortunately runs 
into complications, due to the presence of higher or- 
der functions. For example, in the proof (2), since 
the higher order functor's argument category (i.e. 
Yo--Z) has subformuiae corresponding to compon- 
ents of both of the other two assumptions, Y o - W  
and Wo--Z, it is not clear whether we should view 
the higher order functor as having a dependency re- 
lation only to the 'functionally dominant '  assump- 
tion Yo-W,  i.e. with dependencies as in ( l la ) ,  or to 
both the assumptions Y o - W  and Wo-Z,  i.e. with 
dependencies as perhaps in either ( l lb )  or ( l lc) .  
The compilation approach, however, lacks this prob- 
lem, since we have only first order formulae, amongst 
which the dependencies are clear, e.g. as in (12). 

(11) (a) ~ f ~  
Xo-(Yo-Z) Yo-W Wo-Z 

• Xo- (Yo-Z) Yo-W Wo-Z 

Xo-(Yo-Z) Yo-W Wo-Z 

(12) # - 5  
Xo--Y Yo-W Wo-Z Z 

Some preliminaries. We assume that  proof as- 
sumptions explicitly record 'order of delivery' in- 
formation, marked by a natural number, and so take 
the form: n 

x N 
Further, we require the ordering to go beyond simple 
'order of delivery' in relatively ordering first order as- 
sumptions that  derive from the same original higher- 
order formula. (This move simply introduces some 
extra arbitrary bias as a basis for distinguishing 
proofs.) It is convenient to have a 'linear' nota- 

tion for writing proofs. We will write ( n / X  [a]) 
for an assumption (such as that  just shown), and 
(X Y / Z [m, n]) for a combination of subproofs X 
and Y to give result formula Z by inference [m, n]. 

(13) dep((X Y / Z [m,n])) = { ( i , j , k ) }  
where gov(m, X) = (i, k), fun(Y) = j 

(14) dep*((n/X [a])) -- 0 

dep*((X Y / Z [re, n])) 
= {~} U dep*(X) U dep*(Y) 

where 5 = dep((X Y / Z [m, n])) 

The procedure dep, defined in (13), identifies the 
dependency relation established by any combina- 
tion, i.e. for any subproof P = (X Y / Z [m,n]), 
dep(P) returns a triple ( i , j ,k ) ,  where i , j  identify 
the head and dependent assumptions for the com- 
bination, and k indicates the argument position of 
the head assumption that  is involved (which has 
now been inherited to be argument m of the functor 
of the combination). The procedure dep*, defined 
in (14), returns the set of dependencies established 
within a subproof. Note that  dep employs the pro- 
cedures gov (which traces the relevant argument 
back to its source assumption - -  the head) and fun 
(which finds the functionally dominant assumption 
within the argument s u b p r o o f - -  the dependent). 

(15) gov(i, (n/x [a])) = (n, i) 

gov(i, ( x  Y / z [m, n])) = gov((i - m + 1), Y) 
w h e r e t o < i <  ( m + n )  

gov(i, (X Y / Z [m, n])) = gov(i, X) 
where i < m 

gov(i, (X Y / Z [m, n])) = gov((i - n + 1), X) 
where (m + n) < i 

(16) fun((n /X [a])) = n 

fun((X Y / Z [re, n])) = fun(X) 

From earlier discussion, it should be clear that  an 
'incremental analysis' is one in which any depend- 
ency to be established is established as soon as pos- 
sible in terms of the order of delivery of assumptions. 
The relation << of (17) orders dependencies in terms 
of which can be established earlier on, i.e. 6 << 7 if 
the later-arriving assumption of 6 arrives before the 
later-arriving assumption of 7- Note however that  
6,7 may have the same later arriving assumption 
(i.e. if this assumption is involved in more than one 
dependency). In this case, << arbitrarily gives pre- 
cedence to the dependency whose two assumptions 
occur closer together in delivery order. 
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(17) 5 < < 7  ( w h e r e h = ( i , j , k ) , 7 = ( x , y , z ) )  

if] (max(/,j) < max(x,y) V 
(max(/,j) = max(x, y) A 
min(i, ]1 > rain(x, y))) 

We can use << to define an incremental normal 
form for proofs, i.e. an incremental proof is one 
that  is well-ordered with respect to << in the sense 
that every combination (X Y / Z [m, n]) within it 
establishes a dependency 5 which follows under << 
every dependency 5' established within the sub- 
proofs X and Y it combines, i.e. 5' << 5 for each 
5' 6 dep*(X) tJ dep*(Y). This normal form is useful 
only if we can show that  every proof has an equi- 
valent normal form. For present purposes, we can 
take two proofs to be equivalent if] they establish 
identical sets of dependency relations. 5 

(18) trace(/,j ,  ( i / X  [a])) = j 

trace(/,j ,  (X Y / Z [m,n])) = (m + k -  1) 
where i 6 assure(Y) 

trace(i, j,  Y) = k 

trace(i,j ,  (X Y / Z [m,n])) = k 
where i 6 assure(X) 

trace( i , j ,X)  = k, k < m 

trace(i, j,  (X Y / Z [m, hi)) = (k + n - 1) 
where i 6 assure(X) 

trace(i, j, X) = k, k > m 

(19) assum(( i /x  [a])) = {i} 

assum((X Y / Z fro, n])) 
= assum(X) U assum(Y) 

We can specify a method such that  given a set 
of dependency relations :D we can construct a cor- 
responding proof. The process works with a set of 
subproofs 7 ), which are initially just the set of as- 
sumptions (i.e. each of the form ( n / F  [a])), and 
proceeds by combining pairs of subproofs together, 
until finally just a single proof remains. Each step 
involves selecting a dependency 5 (5 = (i, j,  k)) from 
/) (setting D := D - {5} for subsequent purposes), 
removing the subproofs P, Q from 7) which contain 
the assumptions i , j  (respectively), combining P, Q 
(with P as functor) to give a new subproof R which 

5This criterion turns out to be equivalent to one 
stated in terms of the lambda terms that proofs generate, 
i.e. two proofs will yield identical sets of dependency re- 
lations iff they yield proof terms that are fly-equivalent. 
This observation should not be surprising, since the set 
of 'dependency relations' returned for a proof is in es- 
sence just a rather unstructured summary of its func- 
tional relations. 

is added to 7) (i.e. P := (7) - {P, Q}) u {R}). It  is 
important to get the right value for m in the combin- 
ation fro, n] used to combine P, Q, so that  the correct 
argument of the assumption i (as now inherited to 
the end-type of P)  is involved. This value is given 
by m = trace(i, k, P)  (with trace as defined in (18)). 
The process of proof construction is nondetermin- 
istic, in the order of selection of dependencies for in- 
corporation, and so a single set of dependences can 
yield multiple distinct, but equivalent, proofs (as we 
would expect). 

To build normal form proofs, we only need to limit 
the order of selection of dependencies using <<, i.e. 
requiring that  the minimal element under << is se- 
lected at each stage. Note that  this ordering restric- 
tion makes the selection process deterministic, from 
which it follows that  normal forms are unique. Put- 
ting the above methods together, we have a complete 
normal form method for proofs of the first-order lin- 
ear deduction system, i.e. for any proof P,  we can 
extract its dependency relations and use these to 
construct a unique, maximally incremental, altern- 
ative proof - -  the normal form of P.  

7 P r o o f  R e d u c t i o n  and  
N o r m a l i s a t i o n  

The above normalisation approach is somewhat non- 
standard. We shall next briefly sketch how normal- 
isation could instead be handled via the standard 
method of proof reduction. This method involves 
defining a contraction relation (t>l) between proofs, 
which is typically stated as a number of contraction 
rules of the form X t>l Y, where X is termed a redex 
and Y its contractum. Each rule allows that  a proof 
containing a redex be transformed into one where 
that  occurrence is replaced by its contractum. A 
proof is in normal form if] it contains no redexes. 
The contraction relation generates a reduction rela- 
tion (t>) such that  X reduces to Y (X [> Y) if] Y is 
obtained from X by a finite series (possibly zero) of 
contractions. A term Y is a normal form of X iff ¥ 
is a normal form and X [> Y. 

We again require the ordering relation << defined 
in (17). A redex is any subproof whose final step 
is a combination of two well-ordered subproofs, 
which establishes a dependency that  undermines 
well-orderedness. A contraction step modifies the 
proof to swap this final combination with the final 
one of an immediate subproof, so that  the depend- 
encies the two combinations establish are now ap- 
propriately ordered with respect to each other. The 
possibilities for reordering combination steps divide 
into four cases, which are shown in Figure 1. This re- 
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Figure  1: Local  Reorder ing  of Combina t ion  Steps:  the  four cases 

duct ion sys tem can be shown to exhibi t  the  p rope r ty  
(called strong normalisation) t ha t  every reduct ion is 
finite, from which it follows t ha t  every proof  has a 
normal  form. 6 

8 N o r m a l  f o r m  p a r s i n g  

The  technique of normal  form pars ing  involves en- 
suring t ha t  only normal  form proofs are construc-  
ted  by the  parser ,  avoiding the  unnecessary  work 
of bui lding all the  non-normal  form proofs. At  any 
stage, all subproofs  so far cons t ruc ted  are  in normal  
form, and the  resul t  of any combina t ion  is a d m i t t e d  
only provided it is in normal  form, otherwise i t  is 
discarded.  The  resul t  of a combina t ion  is recognised 
as non-normal  form if it  establ ishes a dependency  
tha t  is out  of order  wi th  respect  to tha t  of the  fi- 
nal combina t ion  of a t  least  one of the  two subproofs  
combined (which is an adequa te  cr i ter ion since the  
subproofs are well-ordered).  The  procedures  defined 
above can be used to identify these dependencies.  

9 T h e  D e g r e e  o f  I n c r e m e n t a l i t y  

Let  us next  consider the  degree of incrementa l i ty  
tha t  the  above sys tem allows, and the  sense in which 

6To prove strong normalisation, it is sufficient to give 
a metric which assigns to each proof a finite non-negative 
integer score, and under which every contraction reduces 
a proof's score by a non-zero amount. The following 
metric tt can be shown to suffice: (a) for P = (nIX [a]), 
# (P)  = 0, (b) for P = ( X Y  / Z [m,n]), whose final 
step establishes a dependency a, #(P)  = it(X) + ~u(Y) + 
D, where D is the number of dependencies 5' such that  

<< a', which are established in X and Y, i.e. D = [A] 
w h e r e A = { 5 '  ] 5 ' e d e p , ( X )  Udep,(Y)  A 5 < < 5 ' } .  

it  might  be considered maximal .  Clearly, the  sys tem 
does not  allow full 'word-by-word '  incremental i ty ,  
i.e. where the  words t ha t  have been del ivered at  any 
s tage in incrementa l  processing are  combined to give 
a single resul t  formula,  with combina t ions  to  incor- 
po ra t e  each new lexical formula  as it  a r r i v e s /  For 
example ,  in incrementa l  processing of Today John 
sang, the  first two words might  yield (after  compil-  
at ion)  the  f i rs t -order  formulae so - s  and np, which 
will not  combine under  the  rule (8). s 

Ins tead,  the  above sys tem will allow precisely 
those combina t ions  t ha t  es tabl ish  funct ional  rela- 
t ions t ha t  are marked  out  in lexical t ype  s t ruc ture  
(i.e. subca tegor isa t ion) ,  which, given the parMlel-  
ism of syn tax  and semantics ,  corresponds  to allow- 
ing those combinat ions  t ha t  es tabl ish  semant ica l ly  
relevant funct ional  re la t ions  amongs t  lexical mean-  
ings. Thus,  we believe the  above sys tem to exhibi t  
max imal  incrementa l i ty  in re la t ion to allowing 'se- 
mant ica l ly  contentful '  combinat ions .  In  dependency  
terms,  the  sys tem allows any set of ini t ia l  formulae 
to combine to  a single resul t  iff they  form a con- 
nected graph  under  the  dependency  re la t ions  t ha t  
ob ta in  amongs t  them.  

Note t ha t  the  extent  of inc rementa l i ty  allowed by 
using 'general ised composi t ion '  in the  compi led  first- 
order  sys tem should not  be equa ted  with  t ha t  which 

7For an example of a system allowing word-by-word 
incrementality, see (Milward, 1995). 

SNote that  this is not to say that  the system is un- 
able to combine these two types, e.g. a combination 
so--s, np =~ so- ( so -np)  is derivable, with appropriate 
compilation. The point rather is that  such a combina- 
tion will typically not happen as a component in a proof 
of some other overall deduction. 
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would be allowed by such a rule in the original (non- 
compiled) system. We can illustrate this point using 
the following type combination, which is not an in- 
stance of even 'generalised' composition. 

Xo-(Yo-Z) ,  Yo--W =~ Xo- (Wo-Z)  

Compilation of the higher-order assumption would 
yield Xo--Y plus Z, of which the first formula can 
compose with the second assumption Yo-W to give 
Xo-W, thereby achieving some semantically con- 
tentful combination of their associated meanings, 
which would not be allowed by composition over the 
original formulae. 9 

10  C o n c l u s i o n  

We have shown how the linear categorial deduction 
method of (Hepple, 1996) can be modified to allow 
incremental derivation, and specified an incremental 
normal form for proofs of the system. These results 
provide for an efficient incremental linear deduction 
method that can be used with various labelling dis- 
ciplines as a basis for parsing a range of type-logical 
formalisms. 
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