
Incrementa l Parser Generat ion for Tree Adjo in ing Grammars*

A n o o p S a r k a r

U n i v e r s i t y of P e n n s y l v a n i a

D e p a r t m e n t of C o m p u t e r a n d I n f o r m a t i o n S c i e n c e

200 S. 33 rd St . , P h i l a d e l p h i a P A 19104-6389, U S A

anoop©linc, cis. upenn, edu

A b s t r a c t

This paper describes the incremental
generation of parse tables for the LR-
type parsing of Tree Adjoining Languages
(TALs). The algorithm presented han-
dles modifications to the input grammar
by updating the parser generated so far.
In this paper, a lazy generation of LR-
type parsers for TALs is defined in which
parse tables are created by need while
parsing. We then describe an incremental
parser generator for TALs which responds
to modification of the input grammar by
updating parse tables built so far.

1 L R P a r s e r G e n e r a t i o n

Tree Adjoining Grammars (TAGs) are tree rewrit-
ing systems which combine trees with the sin-
gle operation of adjoining. (Schabes and Vijay-
Shanker, 1990) describes the construction of an LR
parsing algorithm for TAGs 1. Parser generation
here is taken to be the construction of LR(0) ta-
bles (i.e., without any lookahead) for a particular
TAG z. The moves made by the parser can be ex-
plained by an automaton which is weakly equivalent
to TAGs called Bottom-Up Embedded Pushdown
Automata (BEPDA) (Schabes and Vijay-Shanker,
1990) 3. Storage in a BEPDA is a sequence of stacks,

*This work is partially supported by NSF grant NSF-
STC SBR 8920230 ARPA grant N00014-94 and ARO
grant DAAH04-94-G0426. Thanks to Breck Baldwin,
Dania Egedi, Jason Eisner, B. Srinivas and the three
anonymous reviewers for their valuable comments.

1 Familiarity with TAGs and their parsing techniques
is assumed throughout the paper, see (Schabes and
Joshi, 1991) for an introduction. We assume that our
definition of TAG does not have the substitution opera-
tion. See (Aho et al., 1986) for details on LR parsing.

2The algorithm described here can be extended to use
SLR(1) tables (Schabes and Vijay-Shanker, 1990).

SNote that the LR(0) tables considered here are deter-
ministic and hence correspond to a subset of the TALs.
Techniques developed in (Tomita, 1986) can be used to
resolve nondeterminism in the parser.

where new stacks can be introduced above and be-
low the top stack in the automaton. Recognition of
adjunction is equivalent to the u n w r a p move shown
in Fig. 1.

of

Figure 1: Recognition of adjunction in a BEPDA.

The LR parser (of (Schabes and Vijay-Shanker,
1990)) uses a parsing table and a sequence of stacks
(Fig. 1) to parse the input. The parsing table en-
codes the actions taken by the parser as follows (us-
ing two GOTO functions):

• Sh i f t to a new state, pushed onto a new stack
which appears on top of the current sequence
of stacks. The current input token is removed.

• R e s u m e R i g h t when the parser has reached
right and below a node (in a dotted tree, ex-
plained below) on which an auxiliary tree has
been adjoined. The GOTOIoo, function en-
codes the proper state such that the string to
the right of the footnode can be recognized.

• R e d u c e R o o t , the parser executes an unwrap
move to recognize adjunction (Fig. 1). The
proper state for the parser after adjunction is
given by the GOTOr@h, function.

• A c c e p t and E r r o r functions as in conventional
LR parsing.

There are four positions for a dot associated with
a symbol in a dotted tree: left above, left below,
right below and right above. A dotted tree has one
such dotted symbol. The tree traversal in Fig. 2
scans the frontier of the tree from left to right while
trying to recognize possible adjunctions between the

375

above and below positions of the dot. Adjunction on
a node is recorded by marking it with an asterisk 4.

IB$. ~C . $

Figure 2: Left to right dotted tree traversal.

The parse table is built as a finite state automaton
(FSA) with each state defined to be a set of dotted
trees. The closure operations on states in the parse
table are defined in Fig. 3. All the states in the parse
table must be closed under these operations 5.

The FSA is built as follows: in state 0 put all the
initiM trees with the dot left and above the root.
The state is then closed. New states are built by
three transitions: s,{*a} - a sj {a '}, a is a terminal

symbol; s ,{A,} #"g~' s j {A ' } , fl can adjoin at node

A; s ,{ .A} #.?oo, s j {A ,} , A is a footnode. Entries in
the parse table are determined as follows:

• a sh i f t for each transition in the FSA.

• r e s u m e r i g h t iff there is a node B . with the
dot right and below it.

• r e d u c e r o o t iff there is a rootnode in an aux-
iliary tree with the dot right and above it.

• a c c e p t and e r r o r with the usual interpreta-
tion.

The items created in each state before closure applies
are called the k e r n e l s of each state in the FSA. The
initial trees with the dot left and above the root form
the kernel for state 0.

2 L a z y P a r s e r G e n e r a t i o n

The algorithm described so far assumes that the
parse table is precompiled before the parser is used.
Lazy parser generation generates only those parts of
the parser that become necessary during actual pars-
ing. The approach is an extension of the algorithm
for CFGs given in (Heering et al., 1990; I-Ieering et
M., 1989). To modify the LR parsing strategy given
earlier we move the closure and computation of tran-
sitions from the table generation stage to the LR
parser. The lazy technique expands a kernel state
only when the parser, looking at the current input,
indicates so. For example, a TAG and correspond-
ing FSA is shown in Fig. 4 (ha rules out adjunction
at a node) 6, Computat ion of closure and transitions
in the state occurs while parsing as in Fig. 5 which

4For example, B*. This differs from the usual nota-
tion for marking a footnode with an asterisk.

5Fig. 5 is a partial FSA for the grammar in Fig. 4.
6Unexpanded kernel states are marked with a bold-

fa~=ed outline, acceptance states with double-lines.

is the result of the LR parser expanding the FSA in
Fig. 4 while parsing the string aec.

The modified parse function checks the type of the
state and may expand the kernel states while pars-
ing a sentence. Memory use in the lazy technique
is greater as the FSA is needed during parsing and
parser generation.

TAG G: a: Se] I~"~Snaa S ~ FSA: 0

Sna e

Figure 4: TAG G where L(G) = {anec n) and corre-
sponding FSA after lazy parse table generation.

/I "1 I a s l
Sna •

• a I
t, s= s=)

¢~na ~na
a s a " S

h e r'- c
Sno Sno

a a s
S~a

a S* a S*
"~c - ' c Sna Sna

S" S*
"1 I
e "e

s~ a s c
~)~na Sna.

a S
h e

.Sna

a S*
h e

.Spa

¢

a S a s
Sr~ S,=

~c ~c Sna Sna .

~c

Figure 5: The FSA after parsing the string aec.

y. s

s d / L
b Sna

Figure 6: New tree added to G with L(G) =
{ anbm ecn d m}

3 I n c r e m e n t a l P a r s e r G e n e r a t i o n

An incremental parser generator responds to gram-
mar updates by throwing away only that information
from the FSA of the old grammar that is inconsistent
in the updated grammar. Incremental behaviour is
obtained by selecting the states in the parse table af-
fected by the change in the grammar and returning
them to their kernel form (i.e. remove items added
by the closure operations). The parse table FSA will
now become a disconnected graph. The lazy parser
will expand the states using the new grammar. All
states in the disconnected graph are kept as the lazy
parser will reconnect with those states (when the
transitions between states are computed) that are
unaffected by the change in the grammar. Consider

3 7 6

A A
A A

Preen I Move Dot Up
A A Skip Node X ~ ~

Figure 3: Closure Operations.

the addition of a tree to the grammar (deletion will
be similar).

• for an initial tree a return state 0 to kernel form
adding a with the dot left and above the root
node. Also return all states where a possible
Left Completion on a can occur to their kernel
form.

• for an auxiliary tree fl return all states where a
possible Adjunction Prediction on/3 can occur
and all states with a fl, ight transition to their
kernel form.

For example, the addition of the tree in Fig. 6
causes the FSA to fragment into the disconnected
graph in Fig. 7. It is crucial to keep the discon-
nected states around; consider the re-expansion of a
single state in Fig. 8. All states compatible with the
modified grammar are eventually reused•

4 ~

Figure 7: The parse table after the addition of 7.

The approach presented above causes certain
states to become unreachable from the start state 7.
Frequent modifications of a grammar can cause
many unreachable states. A garbage collection
scheme defined in (Heering et al., 1990) can be used
here which avoids overregeneration by retaining un-
reachable states•

4 C o n c l u s i o n

What we have described above is work in progress in
implementing an LR-type parser for a wide-coverage
lexiealized grammar of English using TAGs (XTAG
Group, 1995)• Incremental parser generation allows
the addition and deletion of elementary trees from a

rQuantitative results on the performance of the algo-
rithm presented are forthcoming.

f •S S S ~ 1 ~ 2ff ,~.. 3

• t . t , , s~ s~ s,, 8 7
.~o

s~ bs,- bs.° I

6 5
.s "b ~

~'¢" c S~ S~

4." 4

as

Figure 8: The parse table after expansion of state 0
with the modified grammar.

TAG without recompilation of the parse table for the
updated grammar• This allows precompilation of
top-down dependencies such as the prediction of ad-
junction while having the flexibility given by Earley-
style parsers•

R e f e r e n c e s
Aho, Alfred V., Ravi Sethi and Jeffrey D. Ullman, Com-

pilers: Principles, Techniques and Tools, Addison
Wesley, Reading, MA, 1986.

Heering, Jan, Paul Klint and Jan Rekers, Incremental
Generation of Parsers, In IEEE Transactions on Soft-
ware Engineering, vol. 16, no. 12, pp. 1344-1350, 1990.

Heering, Jan, Paul Klint and Jan Rekers, Incremental
Generation of Parsers, In ACM SIGPLAN Notices
(SIGPLAN '89 Conference on Programming Lan-
guage Design and Implementation), vol. 24, no. 7, pp.
179-191, 1989.

Schabes, Yves and K. Vijay-Shanker, Deterministic Left
to Right Parsing of Tree Adjoining Languages, In P8th
Meeting of the Association for Computational Lin-
guistics (ACL '90), Pittsburgh, PA, 1990.

Schabes, Yves and Aravind K. Joshi, Parsing with Lexi-
calized Tree Adjoining Grammars, In Tomita, Masaru
(ed.) Current Issues in Parsing Technologies, Kluwer
Academic, Dordrecht, The Netherlands, 1991.

Tomita, Masaru, Efficient Parsing/or Natural Language:
A Fast Algorithm for Practical Systems, Kluwer Aca-
demic, Dordrecht, The Netherlands, 1986.

XTAG Research Group, A Lexicalized Tree Adjoining
Grammar for English, IRCS Technical Report 95-03,
University of Pennsylvania, Philadelphia, PA. 1995.

377

