
Parsing Algorithms and Metrics 

J o s h u a  G o o d m a n  
Harvard  Univers i ty  

33 Oxford St. 

Cambr idge ,  MA 02138 

goodman@das .ha rva rd . edu  

A b s t r a c t  

Many different metrics exist for evaluating 
parsing results, including Viterbi, Cross- 
ing Brackets Rate, Zero Crossing Brackets 
Rate, and several others. However, most 
parsing algorithms, including the Viterbi 
algorithm, attempt to optimize the same 
metric, namely the probability of getting 
the correct labelled tree. By choosing 
a parsing algorithm appropriate for the 
evaluation metric, better performance can 
be achieved. We present two new algo- 
rithms: the "Labelled Recall Algorithm," 
which maximizes the expected Labelled 
Recall Rate, and the "Bracketed Recall 
Algorithm," which maximizes the Brack- 
eted Recall Rate. Experimental results 
are given, showing that the two new al- 
gorithms have improved performance over 
the Viterbi algorithm on many criteria, es- 
pecially the ones that they optimize. 

1 I n t r o d u c t i o n  

In corpus-based approaches to parsing, one is given 
a treebank (a collection of text annotated with the 
"correct" parse tree) and attempts to find algo- 
rithms that, given unlabelled text from the treebank, 
produce as similar a parse as possible to the one in 
the treebank. 

Various methods can be used for finding these 
parses. Some of the most common involve induc- 
ing Probabilistic Context-Free Grammars (PCFGs), 
and then parsing with an algorithm such as the La- 
belled Tree (Viterbi) Algorithm, which maximizes 
the probability that the output of the parser (the 
"guessed" tree) is the one that the PCFG produced. 
This implicitly assumes that the induced PCFG does 
a good job modeling the corpus. 

There are many different ways to evaluate these 
parses. The most common include the Labelled 
Tree Rate (also called the Viterbi Criterion or Ex- 
act Match Rate), Consistent Brackets Recall Rate 

(also called the Crossing Brackets Rate), Consis- 
tent Brackets Tree Rate (also called the Zero Cross- 
ing Brackets Rate), and Precision and Recall. De- 
spite the variety of evaluation metrics, nearly all re- 
searchers use algorithms that maximize performance 
on the Labelled Tree Rate, even in domains where 
they are evaluating using other criteria. 

We propose that by creating algorithms that op- 
timize the evaluation criterion, rather than some 
related criterion, improved performance can be 
achieved. 

In Section 2, we define most of the evaluation 
metrics used in this paper and discuss previous ap- 
proaches. Then, in Section 3, we discuss the La- 
belled Recall Algorithm, a new algorithm that max- 
imizes performance on the Labelled Recall Rate. In 
Section 4, we discuss another new algorithm, the 
Bracketed Recall Algorithm, that maximizes perfor- 
mance on the Bracketed Recall Rate (closely related 
to the Consistent Brackets Recall Rate). Finally, we 
give experimental results in Section 5 using these 
two algorithms in appropriate domains, and com- 
pare them to the Labelled Tree (Viterbi) Algorithm, 
showing that each algorithm generally works best 
when evaluated on the criterion that it optimizes. 

2 E v a l u a t i o n  M e t r i c s  

In this section, we first define basic terms and sym- 
bols. Next, we define the different metrics used in 
evaluation. Finally, we discuss the relationship of 
these metrics to parsing algorithms. 

2.1 Basic Definitions 
Let Wa denote word a of the sentence under consid- 
eration. Let w b denote WaW~+l...Wb-lWb; in partic- 
ular let w~ denote the entire sequence of terminals 
(words) in the sentence under consideration. 

In this paper we assume all guessed parse trees are 
binary branching. Let a parse tree T be defined as a 
set of triples (s, t, X)--where s denotes the position 
of the first symbol in a constituent, t denotes the 
position of the last symbol, and X represents a ter- 
minal or nonterminal symbol--meeting the following 
three requirements: 
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• The sentence was generated by the start sym- 
bol, S. Formally, (1, n, S) E T. 

• Every word in the sentence is in the parse tree. 
Formally, for every s between 1 and n the triple 
(s,s, ws) E T. 

• The tree is binary branching and consistent. 
Formally, for every (s, t ,  X)  in T, s ¢ t, there is 
exactly one r, Y, and Z such that  s < r < t and 
(s ,r ,Y)  E T and ( r +  1,t ,Z) e T. 

Let Tc denote the "correct" parse (the one in the 
treebank) and let Ta denote the "guessed" parse 
(the one output  by the parsing algorithm). Let 
Na denote [Tal, the number of nonterminals in the 
guessed parse tree, and let Nc denote [Tel, the num- 
ber of nonterminals in the correct parse tree. 

2.2 Evaluation Metrics  

There are various levels of strictness for determin- 
ing whether a constituent (element of Ta)  is "cor- 
rect." The strictest of these is Labelled Match. A 
constituent (s,t, X)  E Te is correct according to La- 
belled Match if and only if (s, t, X)  E To. In other 
words, a constituent in the guessed parse tree is cor- 
rect if and only if it occurs in the correct parse tree. 

The next level of strictness is Bracketed Match. 
Bracketed match is like labelled match, except that  
the nonterminal label is ignored. Formally, a con- 
stituent (s, t, X)  E T a  is correct according to Brack- 
eted Match if and only if there exists a Y such that  
( s , t ,Y)  E To. 

The least strict level is Consistent Brackets (also 
called Crossing Brackets). Consistent Brackets is 
like Bracketed Match in that  the label is ignored. 
It is even less strict in that  the observed ( s , t , X )  
need not be in Tc- - i t  must simply not be ruled out 
by any (q, r, Y) e To. A particular triple (q, r, Y) 
rules out (s , t ,  X)  if there is no way that  ( s , t , X )  
and (q, r, Y) could both be in the same parse tree. 
In particular, if the interval (s, t) crosses the interval 
(q, r),  then (s, t, X)  is ruled out and counted as an 
error. Formally, we say that  (s, t) crosses (q, r) if 
and only i f s < q < t  < r o r q < s < r < t .  

If Tc is binary branching, then Consistent Brack- 
ets and Bracketed Match are identical. The follow- 
ing symbols denote the number of constituents that  
match according to each of these criteria. 

L = ITc n Tal : the number of constituents 
in Ta that  are correct according to Labelled 
Match. 
B = I{ (s , t ,X)  : ( s , t ,X)  E T a  and for some 
Y (s , t ,Y )  E Tc}]: the number of constituents 
in Ta that  are correct according to Bracketed 
Match. 

C = I{(s, t, X)  ETa : there is no (v, w, Y) E Tc 
crossing (s,t)}[ : the number of constituents in 
TG correct according to Consistent Brackets. 

Following are the definitions of the six metrics 
used in this paper for evaluating binary branching 
trees: 

The 
in the following table: 

(1) Labelled Recall Rate = L/Nc.  

(2) Labelled Tree Rate = 1 if L = ATe. It is also 
called the Viterbi Criterion. 

(3) Bracketed Recall Rate = B /Nc .  

(4) Bracketed Tree Rate = 1 if B = Nc. 

(5) Consistent Brackets Recall Rate = C/NG. It is 
often called the Crossing Brackets Rate. In the 
case where the parses are binary branching, this 
criterion is the same as the Bracketed Recall 
Rate. 

(6) Consistent Brackets Tree Rate = 1 if C = No. 
This metric is closely related to the Bracketed 
Tree Rate. In the case where the parses are 
binary branching, the two metrics are the same. 
This criterion is also called the Zero Crossing 
Brackets Rate. 

preceding six metrics each correspond to cells 

II Recall I Tree 
Consistent Brackets C/NG 1 if C = Nc  
Brackets B / N c  1 if B = Nc 
Labels L / N c  1 if L = Arc 

2.3 Maximiz ing  Metrics  

Despite this long list of possible metrics, there is 
only one metric most parsing algorithms a t tempt  to 
maximize, namely the Labelled Tree Rate. Tha t  is, 
most parsing algorithms assume that  the test corpus 
was generated by the model, and then a t tempt  to 
evaluate the following expression, where E denotes 
the expected value operator: 

Ta = argmTaXE ( 1 i f L  = g c )  (1) 

This is true of the Labelled Tree Algorithm and 
stochastic versions of Earley's Algorithm (Stolcke, 
1993), and variations such as those used in Picky 
parsing (Magerman and Weir, 1992). Even in prob- 
abilistic models not closely related to PCFGs, such 
as Spatter parsing (Magerman, 1994), expression (1) 
is still computed. One notable exception is Brill's 
Transformation-Based Error Driven system (Brill, 
1993), which induces a set of transformations de- 
signed to maximize the Consistent Brackets Recall 
Rate. However, Brill's system is not probabilistic. 
Intuitively, if one were to match the parsing algo- 
r i thm to the evaluation criterion, better  performance 
should be achieved. 

Ideally, one might try to directly maximize 
the most commonly used evaluation criteria, such 
as Consistent Brackets Recall (Crossing Brackets) 
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Rate. Unfortunately, this criterion is relatively diffi- 
cult to maximize, since it is time-consuming to com- 
pute the probability that  a particular constituent 
crosses some constituent in the correct parse. On 
the other hand, the Bracketed Recall and Bracketed 
Tree Rates are easier to handle, since computing the 
probability that  a bracket matches one in the correct 
parse is inexpensive. It is plausible that  algorithms 
which optimize these closely related criteria will do 
well on the analogous Consistent Brackets criteria. 

2.4 W h i c h  M e t r i c s  t o  Use  

When building an actual system, one should use the 
metric most appropriate for the problem. For in- 
stance, if one were creating a database query sys- 
tem, such as an ATIS system, then the Labelled Tree 
(Viterbi) metric would be most appropriate. A sin- 
gle error in the syntactic representation of a query 
will likely result in an error in the semantic represen- 
tation, and therefore in an incorrect database query, 
leading to an incorrect result. For instance, if the 
user request "Find me all flights on Tuesday" is mis- 
parsed with the prepositional phrase attached to the 
verb, then the system might wait until Tuesday be- 
fore responding: a single error leads to completely 
incorrect behavior. Thus, the Labelled Tree crite- 
rion is appropriate. 

On the other hand, consider a machine assisted 
translation system, in which the system provides 
translations, and then a fluent human manually ed- 
its them. Imagine that  the system is given the 
foreign language equivalent of "His credentials are 
nothing which should be laughed at," and makes 
the single mistake of attaching the relative clause 
at the sentential level, translating the sentence as 
"His credentials are nothing, which should make you 
laugh." While the human translator must make 
some changes, he certainly needs to do less editing 
than he would if the sentence were completely mis- 
parsed. The more errors there are, the more editing 
the human translator needs to do. Thus, a criterion 
such as the Labelled Recall criterion is appropriate 
for this task, where the number of incorrect con- 
stituents correlates to application performance. 

3 L a b e l l e d  R e c a l l  P a r s i n g  

Consider writing a parser for a domain such as ma- 
chine assisted translation. One could use the La- 
belled Tree Algorithm, which would maximize the 
expected number of exactly correct parses. How- 
ever, since the number of correct constituents is a 
better measure of application performance for this 
domain than the number of correct trees, perhaps 
one should use an algorithm which maximizes the 
Labelled Recall criterion, rather than the Labelled 
Tree criterion. 

The Labelled Recall Algorithm finds that tree TG 
which has the highest expected value for the La- 

belled Recall Rate, L/Nc (where L is the number of 
correct labelled constituents, and Nc is the number 
of nodes in the correct parse). This can be written 
as follows: 

Ta = arg n~xE(L/Nc) (2) 

It is not immediately obvious that  the maximiza- 
tion of expression (2) is in fact different from the 
maximization of expression (1), but a simple exam- 
ple illustrates the difference. The following grammar 
generates four trees with equal probability: 

S ~ A C 0.25 
S ~ A D 0.25 
S --* E B  0.25 
S --~ F B  0.25 

A, B, C, D, E, F ~ x x  1.0 

The four trees are 

S S 

X X X  X X X X  X 

(3) 

S S 

E B F B 

X X X  X X X X  X 

For the first tree, the probabilities of being correct 
are S: 100%; A:50%; and C: 25%. Similar counting 
holds for the other three. Thus, the expected value 
of L for any of these trees is 1.75. 

On the other hand, the optimal Labelled Recall 
parse is 

S 

X X X  X 

This tree has 0 probability according to the gram- 
mar, and thus is non-optimal according to the La- 
belled Tree Rate criterion. However, for this tree 
the probabilities of each node being correct are S: 
100%; A: 50%; and B: 50%. The expected value of 
L is 2.0, the highest of any tree. This tree therefore 
optimizes the Labelled Recall Rate. 

3.1 A l g o r i t h m  

We now derive an algorithm for finding the parse 
that  maximizes the expected Labelled Recall Rate. 
We do this by expanding expression (2) out into a 
probabilistic form, converting this into a recursive 
equation, and finally creating an equivalent dynamic 
programming algorithm. 

We begin by rewriting expression (2), expanding 
out the expected value operator,  and removing the 
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which is the same for all TG, and so plays no N C  ' 
role in the maximization. 

Ta = argmTaX~,P(Tc l w~) ITnTcl 
Tc 

This can be further expanded to 

(4) 

Ta = arg mTax E P(Tc I w~)E1  if ( s , t ,X)  6 Tc 
Tc (,,t,X)eT 

(5) 
Now, given a PCFG with start symbol S, the fol- 

lowing equality holds: 

P(s . 1,4)= 
E P(Tc I ~7)( 1 if (s, t, X) 6 Tc) (6) 
Tc 

By rearranging the summation in expression (5) 
and then substituting this equality, we get 

Ta =argm~x E P(S =~ s - t . . .  
(,,t,X)eT 

(7) 
At this point, it is useful to introduce the Inside 

and Outside probabilities, due to Baker (1979), and 
explained by Lari and Young (1990). The Inside 
probability is defined as e(s , t ,X)  = P ( X  =~ w~) 
and the Outside probability is f(s, t, X)  = P(S  =~ 

8 - I  n w 1 Xwt+l). Note that while Baker and others 
have used these probabilites for inducing grammars, 
here they are used only for parsing. 

Let us define a new function, g(s, t, X). 

g(s , t ,X)  P(S  =~ , -1 . .  n = w 1 Awt+ 1 [w'~) 

P(S :~ ,- t  n wl Xw,+I)P(X =~ w's) 
P(S wE) 

= f(s, t, X)  x e(s, t, X)/e(1, n, S) 

Now, the definition of a Labelled Recall Parse can 
be rewritten as 

T =arg%ax g(s,t,X) (8) 
(s,t,X)eT 

Given the matrix g(s, t, X)  it is a simple matter of 
dynamic programming to determine the parse that 
maximizes the Labelled Recall criterion. Define 

MAXC(s, t) = n~xg(s,  t, X)+ 

max (MAXC(s, r) + MAXC(r + 1,t)) 
r l s _ < r < t  

for length := 2 to n 

for s := 1 to n-length+l 

t := s + length - I; 

loop over nonterminals X 

let max_g:=maximum of g(s,t,X) 
loop over r such that s <= r < t 

let best_split:= 

max of maxc[s,r] + maxc[r+l,t] 

maxc[s, t] := max_g + best split; 

Figure h Labelled Recall Algorithm 

It is clear that MAXC(1, n) contains the score of 
the best parse according to the Labelled Recall cri- 
terion. This equation can be converted into the dy- 
namic programming algorithm shown in Figure 1. 

For a grammar with r rules and k nonterminals, 
the run time of this algorithm is O(n 3 + kn 2) since 
there are two layers of outer loops, each with run 
time at most n, and an inner loop, over nonterminals 
and n. However, this is dominated by the computa- 
tion of the Inside and Outside probabilities, which 
takes time O(rna). 

By modifying the algorithm slightly to record the 
actual split used at each node, we can recover the 
best parse. The entry maxc[1, n] contains the ex- 
pected number of correct constituents, given the 
model. 

4 Bracke ted  Reca l l  P a r s i n g  

The Labelled Recall Algorithm maximizes the ex- 
pected number of correct labelled constituents. 
However, many commonly used evaluation met- 
rics, such as the Consistent Brackets Recall 
Rate, ignore labels. Similarly, some gram- 
mar induction algorithms, such as those used by 
Pereira and Schabes (1992) do not produce mean- 
ingful labels. In particular, the Pereira and Schabes 
method induces a grammar from the brackets in the 
treebank, ignoring the labels. While the induced 
grammar has labels, they are not related to those 
in the treebank. Thus, although the Labelled Recall 
Algorithm could be used in these domains, perhaps 
maximizing a criterion that is more closely tied to 
the domain will produce better results. Ideally, we 
would maximize the Consistent Brackets Recall Rate 
directly. However, since it is time-consuming to deal 
with Consistent Brackets, we instead use the closely 
related Bracketed Recall Rate. 

For the Bracketed Recall Algorithm, we find the 
parse that maximizes the expected Bracketed Recall 
Rate, B/Nc .  (Remember that B is the number of 
brackets that are correct, and Nc is the number of 
constituents in the correct parse.) 
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Following a derivation similar to that  used for the 
Labelled Recall Algorithm, we can rewrite equation 
(9) as 

T a = a r g m ~ x  ~ ~ _ P ( S : ~  , -1 .~  ,~ wl 
(s,t)ET X 

(I0) 
The algorithm for Bracketed Recall parsing is ex- 

tremely similar to that  for Labelled Recall parsing. 
The only required change is that  we sum over the 
symbols X to calculate max_g, rather than maximize 
over them. 

5 E x p e r i m e n t a l  R e s u l t s  

We describe two experiments for testing these algo- 
rithms. The first uses a grammar without meaning- 
ful nonterminal symbols, and compares the Brack- 
eted Recall Algorithm to the traditional Labelled 
Tree (Viterbi) Algorithm. The second uses a gram- 
mar with meaningful nonterminal symbols and per- 
forms a three-way comparison between the Labelled 
Recall, Bracketed Recall, and Labelled Tree Algo- 
rithms. These experiments show that  use of an algo- 
r i thm matched appropriately to the evaluation cri- 
terion can lead to as much as a 10% reduction in 
error rate. 

In both experiments the grammars could not parse 
some sentences, 0.5% and 9%, respectively. The un- 
parsable data  were assigned a right branching struc- 
ture with their rightmost element attached high. 
Since all three algorithms fail on the same sentences, 
all algorithms were affected equally. 

5.1 E x p e r i m e n t  w i t h  G r a m m a r  I n d u c e d  b y  
P e r e i r a  a n d  S c h a b e s  M e t h o d  

The experiment of Pereira and Schabes (1992) was 
duplicated. In that  experiment, a grammar was 
trained from a bracketed form of the TI  section of the 
ATIS corpus 1 using a modified form of the Inside- 
Outside Algorithm. Pereira and Schabes then used 
the Labelled Tree Algorithm to select the best parse 
for sentences in held out test data. The experi- 
ment was repeated here, except that both the La- 
belled Tree and Labelled Recall Algorithm were run 
for each sentence. In contrast to previous research, 
we repeated the experiment ten times, with differ- 
ent training set, test set, and initial conditions each 
time. 

Table 1 shows the results of running this ex- 
periment, giving the minimum, maximum, mean, 
and standard deviation for three criteria, Consis- 
tent Brackets Recall, Consistent Brackets Tree, and 

1For our experiments the corpus was slightly 
cleaned up. A diff file for "ed" between the orig- 
inal ATIS data and the cleaned-up version is avail- 
able from ftp://ftp.das.harvard.edu/pub/goodman/atis- 
ed/ ti_tb.par-ed and ti_tb.pos-ed. The number of 
changes made was small, less than 0.2% 

Criteria I[ Min I Max I Mean I SDev I 
Labelled Tree Algorithm 

Cons Brack Rec 86.06 93.27 90.13 2.57 
Cons Brack Tree 51.14 77.27 63.98 7.96 
Brack Rec 71.38 81.88 75.87 3.18 

Bracketed Recall Algorithm 
Cons Brack Rec 88.02 94.34 91.14 2.22 
Cons Brack Tree 53.41 76.14 63.64 7.82 
Brack Rec 72.15 80.69 76.03 3.14 

Differences 
Cons Brack Rec -1.55 2.45 1.01 1.07 

] Cons Brack Tree -3.41 3.41 -0.34 2.34 
Brack Rec -1.34 2.02 0.17 1.20 

Table 1: Percentages Correct for Labelled Tree ver- 
sus Bracketed Recall for Pereira and Schabes 

Bracketed Recall. We also display these statistics 
for the paired differences between the algorithms. 
The only statistically significant difference is that 
for Consistent Brackets Recall Rate, which was sig- 
nificant to the 2% significance level (paired t-test). 
Thus, use of the Bracketed Recall Algorithm leads 
to a 10% reduction in error rate. 

In addition, the performance of the Bracketed Re- 
call Algorithm was also qualitatively more appeal- 
ing. Figure 2 shows typical results. Notice that  the 
Bracketed Recall Algorithm's Consistent Brackets 
Rate (versus iteration) is smoother and more nearly 
monotonic than the Labelled Tree Algorithm's. The 
Bracketed Recall Algorithm also gets off to a much 
faster start, and is generally (although not always) 
above the Labelled Tree level. For the Labelled Tree 
Rate, the two are usually very comparable. 

5.2 Experiment with Grammar I n d u c e d  b y  
Counting 

The replication of the Pereira and Schabes experi- 
ment was useful for testing the Bracketed Recall Al- 
gorithm. However, since that  experiment induces a 
grammar with nonterminals not comparable to those 
in the training, a different experiment is needed to 
evaluate the Labelled Recall Algorithm, one in which 
the nonterminals in the induced grammar are the 
same as the nonterminals in the test set. 

5.2.1 Grammar Induct ion by Counting 
For this experiment, a very simple grammar was 

induced by counting, using a portion of the Penn 
Tree Bank, version 0.5. In particular, the trees were 
first made binary branching by removing epsilon pro- 
ductions, collapsing singleton productions, and con- 
verting n-ary productions (n > 2) as in figure 3. The 
resulting trees were treated as the "Correct" trees in 
the evaluation. Only trees with forty or fewer sym- 
bols were used in this experiment. 
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Figure 2: Labelled Tree versus Bracketed Recall in Pereira and Schabes Grammar  

X 
becomes 

X 

A X_Cont 

B X_Cont 

C D 

Brackets 
Labels 

II Recall I Tree I 

Labelled Recall Labelled Tree 

Table 3: Metrics and Corresponding Algorithms 

Figure 3: Conversion of Productions to Binary 
Branching 6 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

A grammar was then induced in a straightforward 
way from these trees, simply by giving one count for 
each observed production. No smoothing was done. 
There were 1805 sentences and 38610 nonterminals 
in the test data. 

5.2.2 Results 
Table 2 shows the results of running all three algo- 

rithms, evaluating against five criteria. Notice that  
for each algorithm, for the criterion that  it optimizes 
it is the best algorithm. Tha t  is, the Labelled Tree 
Algorithm is the best for the Labelled Tree Rate, 
the Labelled Recall Algorithm is the best for the 
Labelled Recall Rate, and the Bracketed Recall Al- 
gorithm is the best for the Bracketed Recall Rate. 

Matching parsing algorithms to evaluation crite- 
ria is a powerful technique that  can be used to im- 
prove performance. In particular, the Labelled Re- 
call Algorithm can improve performance versus the 
Labelled Tree Algorithm on the Consistent Brack- 
ets, Labelled Recall, and Bracketed Recall criteria. 
Similarly, the Bracketed Recall Algorithm improves 
performance (versus Labelled Tree) on Consistent 
Brackets and Bracketed Recall criteria. Thus, these 
algorithms improve performance not only on the 
measures that  they were designed for, but  also on 
related criteria. 

Furthermore, in some cases these techniques can 
make parsing fast when it was previously imprac- 
tical. We have used the technique outlined in this 
paper in other work (Goodman, 1996) to efficiently 
parse the DOP model; in that  model, the only pre- 
viously known algorithm which summed over all the 
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Criterion 
Label I Label Brack Cons Brack Cons Brack 

Algorithm Tree ] Recall Recall Recall Tree 
Label Tree 4.54~ 48.60% 60.98% 66.35% 12.07% 
Label Recall 3.71% 49.66~ 61.34% 68.39% 11.63% 
Bracket Recall 0.11% 4.51% 61.63~ 68.17% 11.19% 

Table 2: Grammar Induced by Counting: Three Algorithms Evaluated on Five Criteria 

possible derivations was a slow Monte Carlo algo- 
rithm (Bod, 1993). However, by maximizing the 
Labelled Recall criterion, rather than the Labelled 
Tree criterion, it was possible to use a much sim- 
pler algorithm, a variation on the Labelled Recall 
Algorithm. Using this technique, along with other 
optimizations, we achieved a 500 times speedup. 

In future work we will show the surprising re- 
sult that the last element of Table 3, maximizing 
the Bracketed Tree criterion, equivalent to maximiz- 
ing performance on Consistent Brackets Tree (Zero 
Crossing Brackets) Rate in the binary branching 
case, is NP-complete. Furthermore, we will show 
that the two algorithms presented, the Labelled Re- 
call Algorithm and the Bracketed Recall Algorithm, 
are both special cases of a more general algorithm, 
the General Recall Algorithm. Finally, we hope to 
extend this work to the n-ary branching case. 
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