
Compi la t i on  of  H P S G  to TAG* 

Robert  Kasper 
Dept .  of Linguis t ics  

Ohio S ta t e  Univers i ty  

222 Oxley Hall  

Columbus ,  OH 43210 

U.S.A. 

ka spe r~ l i ng .oh io - s t a t e . edu  

B e r n d  K i e f e r  Klaus Net ter  
Deutsches  Fo r schungszen t rum 

ffir Ki ins t l iche  Intel l igenz,  G m b H  

S t u h l s a t z e n h a u s w e g  3 

66123 Saarbrf icken 

G e r m a n y  

(k ie fe r lne t t e r}Qdfk i .un i - sb .de  

K. Vijay-Shanker 
CIS Dept. 

University of Delaware 
Newark, DE 19716 

U.S.A 
vijay@cis.udel.edu 

Abstract  

We present an implemented compilation 
algorithm that translates HPSG into lex- 
icalized feature-based TAG, relating con- 
cepts of the two theories. While HPSG has 
a more elaborated principle-based theory 
of possible phrase structures, TAG pro- 
vides the means to represent lexicalized 
structures more explicitly. Our objectives 
are met by giving clear definitions that de- 
termine the projection of structures from 
the lexicon, and identify "maximal" pro- 
jections, auxiliary trees and foot nodes. 

1 I n t r o d u c t i o n  

Head Driven Phrase Structure Grammar (HPSG) 
and Tree Adjoining Grammar (TAG) are two frame- 
works which so far have been largely pursued in par- 
allel, taking little or no account of each other. In this 
paper we will describe an algorithm which will com- 
pile HPSG grammars, obeying certain constraints, 
into TAGs. However, we are not only interested in 
mapping one formalism into another, but also in ex- 
ploring the relationship between concepts employed 
in the two frameworks. 

HPSG is a feature-based grammatical framework 
which is characterized by a modular specification 
of linguistic generalizations through extensive use of 
principles and lexicalization of grammatical informa- 
tion. Traditional grammar rules are generalized to 
schemata providing an abstract definition of gram- 
matical relations, such as head-of, complement-of, 
subject-of, adjunct-of, etc. Principles, such as the 
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FKZ ITW 9403 and the VERBMOB1L project, FKZ 01 
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Head-Feature-, Valence-, Non-Local- or Semantics- 
Principle, determine the projection of information 
from the lexicon and recursively define the flow of 
information in a global structure. Through this 
modular design, grammatical descriptions are bro- 
ken down into minimal structural units referring to 
local trees of depth one, jointly constraining the set 
of well-formed sentences. 

In HPSG, based on the concept of "head- 
domains", local relations (such as complement-of, 
adjunct-of) are defined as those that are realized 
within the domain defined by the syntactic head. 
This domain is usually the maximal projection of the 
head, but it may be further extended in some cas- 
es, such as raising constructions. In contrast, filler- 
gap relations are considered non-local. This local 
vs. non-local distinction in HPSG cuts across the 
relations that are localized in TAG via the domains 
defined by elementary trees. Each elementary tree 
typically represents all of the arguments that are 
dependent on a lexical functor. For example, the 
complement-of and filler-gap relations are localized 
in TAG, whereas the adjunct-of relation is not. 

Thus, there is a fundamental distinction between 
the different notions of localization that have been 
assumed in the two frameworks. If, at first sight, 
these frameworks seem to involve a radically differ- 
ent organization of grammatical relations, it is nat- 
ural to question whether it is possible to compile 
one into the other in a manner faithful to both, and 
more importantly, why this compilation is being ex- 
plored at all. We believe that by combining the two 
approaches both frameworks will profit. 

From the HPSG perspective, this compilation of- 
fers the potential to improve processing efficiency. 
HPSG is a "lexicalist" framework, in the sense that 
the lexicon contains the information that determines 
which specific categories can be combined. Howev- 
er, most HPSG grammars are not lexicalized in the 
stronger sense defined by Schabes et.al. (SAJ88), 
where lexicaiization means that each elementary 
structure in the grammar is anchored by some lex- 
ical item. For example, HPSG typically assumes a 
rule schema which combines a subject phrase (e.g. 
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NP) with a head phrase (e.g. VP),  neither of which 
is a lexical item. Consider a sentence involving a 
transitive verb which is derived by applying two rule 
schemata,  reducing first the object and then the sub- 
ject. In a s tandard HPSG derivation, once the head 
verb has been retrieved, it must  be computed that  
these two rules (and no other rules) are applicable, 
and then information about  the complement and 
subject constituents is projected from the lexicon 
according to the constraints on each rule schema. 
On the other hand, in a lexicalized TAG derivation, 
a tree structure corresponding to the combined in- 
stantiat ion of these two rule schemata  is directly 
retrieved along with the lexical i tem for the verb. 
Therefore, a procedure tha t  compiles HPSG to TAG 
can be seen as performing significant portions of an 
HPSG derivation at compile-time, so tha t  the struc- 
tures projected from lexical items do not need to 
be derived at run-time. The compilation to TAG 
provides a way of producing a strongly lexicalized 
g rammar  which is equivalent to the original HPSG, 
and we expect this lexicalization to yield a compu- 
tat ional benefit in parsing (cf. (S J90)). 

This compilation s t rategy also raises several is- 
sues of theoretical interest. While TAG belongs to a 
class of mildly context-sensitive g rammar  formalisms 
(JVW91), the generative capacity of the formal- 
ism underlying HPSG (viz., recursive constraints 
over typed feature structures) is unconstrained, al- 
lowing any recursively enumerable language to be 
described. In HPSG the constraints necessary to 
characterize the class of natural  languages are stat-  
ed within a very expressive formalism, rather  than 
built into the definition of a more restrictive for- 
malism, such as TAG. Given the greater  expressive 
power of the HPSG formalism, it will not be pos- 
sible to compile an aribi trary HPSG grammar  into 
a TAG grammar .  However, our compilation algo- 
r i thm shows that  part icular  HPSG grammars  may 
contain constraints which have the effect of limiting 
the generative capacity to tha t  of a mildly context- 
sensitive language.1 Additionally, our work provides 
a new perspective on the different types of con- 
stituent combination in HPSG,  enabling a classifi- 
cation of schemata  and principles in terms of more 
abst ract  functor-argument relations. 

From a TAG perspective, using concepts em- 
ployed in the HPSG framework, we provide an ex- 
plicit method of determining the content of the el- 
ementary trees (e.g., what to project  from lexical 
items and when to stop the projection) from an 
HPSG source specification. This also provides a 
method for deriving the distinctions between initial 
and auxiliary trees, including the identification of 

1We are only considering a syntactic fragment of 
HPSG here. It is not clear whether the semantic com- 
ponents of HPSG can also be compiled into a more con- 
strained formalism. 

foot nodes in auxiliary trees. Our answers, while 
consistent with basic tenets of tradit ional  TAG anal- 
yses, are general enough to allow an al ternate  lin- 
guistic theory, such as HPSG, to be used as a basis 
for deriving a TAG. In this manner,  our work also 
serves to investigate the utility of the TAG frame- 
work itself as a means of expressing different linguis- 
tic theories and intuitions. 

In the following we will first briefly describe the 
basic constraints we assume for the HPSG input 
g rammar  and the resulting form of TAG. Next we 
describe the essential algorithm tha t  determines the 
projection of trees from the lexicon, and give formal 
definitions of auxiliary tree and foot node. We then 
show how the computat ion of "sub-maximal" projec- 
tions can be triggered and carried out in a two-phase 
compilation. 

2 B a c k g r o u n d  

As the target  of our translation we assume a Lexi- 
calized Tree-Adjoining G r a m m a r  (LTAG), in which 
every elementary tree is anchored by a lexical 
i tem (SAJ88). 

We do not assume atomic labelling of nodes, un- 
like traditional TAG, where the root and foot nodes 
of an auxiliary tree are assumed to be labelled iden- 
tically. Such trees are said to factor out recursion. 
However, this identity itself isn' t  sufficient to identi- 
fy foot nodes, as more than one frontier node may be 
labelled the same as the root. Without  such atomic 
labels in HPSG, we are forced to address this issue, 
and present a solution tha t  is still consistent with 
the notion of factoring recursion. 

Our translation process yields a lexicalized 
feature-based TAG (VSJ88) in which feature struc- 
tures are associated with nodes in the frontier of 
trees and two feature structures (top and bot tom) 
with nodes in the interior. Following (VS92), the 
relationships between such top and bot tom fea- 
ture structures represent underspecified domination 
links. Two nodes standing in this domination rela- 
tion could become the same, but  they are necessarily 
distinct if adjoining takes place. Adjoining separates 
them by introducing the pa th  from the root to the 
foot node of an auxiliary tree as a further specifica- 
tion of the underspecified domination link. 

For illustration of our compilation, we consid- 
er an extended HPSG following the specifications 
in (PS94)[404ff]. The rule schemata  include rules for 
complementat ion (including head-subject  and head- 
complement relations), head-adjunct,  and filler-head 
relations. 

The following rule schemata  cover the combina- 
tion of heads with subjects and other complements 
respectively as well as the adjunct constructions. 2 

2We abstract from quite a number of properites 
and use the following abbreviations for feature names: 
S-----SYI"/SEM, L~LOChL, C~ChT, N-L----NON-LOChL, D-----DTRS, 

93  



Head-Sub j-Schema 

s L lCiS~ () 
L eo~ms I-;-] ( > 

I I EAD-DTR SILIC/SUBJ > 
D LCOMPS 
Leo~-DTR[-~ []] 

Head- Comps-Schema 

L I c |SUBJ 
LCOm, s 

~AD-D~ slT.le | s ~ J  [ ]  
D LCa~S union([], E]) 

c0.~-D=[.~ []] 

Head-Adjunct-Schema 

Leo~s 

~AD-DTRIS [ ]  I C |S~J 
D LCOm, S 

ADJ-DTRIS [LIm~ADa.OD [ ] ]  

We assume a slightly modified and constrained 
t rea tment  of non-local dependencies (SLASH), in 
which empty  nodes are eliminated and a lexical rule 
is used instead. While SLASH introduction is based on 
the s tandard filler-head schema, SLASH percolation is 
essentially constrained to the HEAD spine. 

Head-Filler-Schema 

LIC/s~J []< 
Lco"Ps ~< 

N-L[SLASH < >] 

Lie SUBJ [ ]  

| L L.-L[~L.S. <~>]JJ| 
L~,.~.~.H-D~R[s []] J 

SLASH terminat ion is accounted for by a lexical 
rule, which removes an element from one of the va- 
lence lists (e0MPS or s t s J )  and adds it to the SLASH 
list. 

Lexical Slash- Termination-Rule 

IL l ( : /S t~J  
~/ ke0.P., 

L.-L[sLAs. ] 

/'-Ic/~B~ [] 
LEX-DTR S / Lcom's unionqEl,~) 

L.-L[sL's" < >] 
The percolation of SLASH across head domains is 

lexically determined. Most lexical i tems will be spec- 
ified as having an empty  SLASH list. Bridge verbs 
(e.g., equi verbs such as want) or other heads al- 
lowing extract ion out of a complement  share their 
own SLASH value with the SLASH of the respective 
complement.  3 

Equi and Bridge Verb 
"N-L [SL,SH E]] 

-~ r ~ ,  <[]>111 

\vpk L,-,-[s,-As,~-l] J]} 
Finally, we assume tha t  rule schemata  and prin- 

ciples have been compiled together  (automatical ly 
or manually) to yield more specific subtypes of the 
schemata.  This does not involve a loss of general- 
ization but  simply means a further refinement of the 
type hierarchy. LP constraints could be compiled 
out beforehand or during the compilation of TAG 
structures,  since the algorithm is lexicon driven. 

3 A l g o r i t h m  

3.1 Basic Idea 
While in TAG all arguments  related to a particu- 
lar functor are represented in one elementary tree 
structure,  the 'functional application'  in HPSG is 
distr ibuted over the phrasal  schemata,  each of which 
can be viewed as a part ial  description of a local tree. 
Therefore we have to identify which consti tuents in 

aWe choose such a lexicalized approach, because it 
will allow us to maintain a restriction that every TAG 
tree resulting from the compilation must be rooted in 
a non-emtpy lexical item. The approach will account 
for extraction of complements out of complements, i.e., 
along paths corresponding to chains of government rela- 
tions. 

As far as we can see, the only limitation arising from 
the percolation of SLASH only along head-projections is 
on extraction out of adjuncts, which may be desirable 
for some languages like English. On the other hand, 
these constructions would have to be treated by multi- 
component TAGs, which axe not covered by the intended 
interpretation of the compilation algorithm anyway. 
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a phrasal schema count as functors and arguments.  
In TAG different functor argument  relations, such 
as head-complement,  head-modifier etc., are repre- 
sented in the same format  as branches of a t runk 
projected from a lexical anchor. As mentioned, this 
anchor is not always equivalent to the HPSG notion 
of a head; in a tree projected from a modifier, for ex- 
ample, a non-head (ADJUNCT-DTR) counts as a func- 
tor. We therefore have to generalize over different 
types of daughters in HPSG and define a general no- 
tion of a functor. We compute the functor-argument  
structure on the basis of a general selection relation. 
Following (Kas92) 4, we adopt  the notion of a se- 
lector daughter (SD), which contains a selector fea- 
ture (SF) whose value constrains the argument  (or 
non-selector) daughter  (non-SD))  For example, in a 
head-complement structure, the SD is the HEAD-DTR, 
as it contains the list-valued feature coMPs (the SF) 
each of whose elements selects a C0m~-DTR, i.e., an el- 
ement of the CoMPs list is identified with the SYNSE~4 
value of a COMP-DTR. 

We assume tha t  a reduction takes place along with 
selection. Informally, this means that  if F is the se- 
lector feature for some schema, then the value (or the 
element(s) in the list-value) of 1: tha t  selects the non- 
SD(s) is not contained in the F value of the mother  
node. In case F is list-valued, we-assume that  the 
rest of the elements in the list (those tha t  did not 
select any daughter) are also contained in the F at 
the mother  node. Thus we say tha t  F has been re- 
duced by the schema in question. 

The compilation algorithm assumes tha t  all 
HPSG schemata  will satisfy the condition of si- 
multaneous selection and reduction, and tha t  each 
schema reduces at least one SF. For the head- 
complement- and head-subject-schema, these con- 
ditions follow from the Valence Principle, and the 
SFs are coMPs and SUBJ, respectively. For the head- 
adjunct-schema, the ADJUNCT-DTR is the SD, because 
it selects the HEAD-DTR by its NOD feature. The NOD 
feature is reduced, because it is a head feature, 
whose value is inherited only from the HEAD-DTR and 
not from the ADJUNCT-DTR. Finally, for the filler-head- 
schema, the HEAD-DTR is the SD, a s  it selects the 
FILLER-DTR by its SLASH value, which is bound off, 
not inherited by the mother,  and therefore reduced. 

We now give a general description of the compila- 
tion process. Essentially, we begin with a lexical de- 

4The algorithm presented here extends and refines the 
approach described by (Kas92) by stating more precise 
criteria for the projection of features, for the termina- 
tion of the algorithm, and for the determination of those 
structures which should actually be used as elementary 
trees. 

5Note that there might be mutual selection (as 
in the case of the specifier-head-relations proposed 
in (PS94)[44ff]). If there is mutual selection, we have 
to stipulate one of the daughters as the SD. The choice 
made would not effect the correctness of the compilation. 

scription and project  phrases by using the schemata  
to reduce the selection information specified by the 
lexical type. 

Basic A l g o r i t h m  Take a lexical type L and initial- 
ize by creating a node with this type. Add a 
node n dominating this node. 

For any schema S in which specified SFs of n 
are reduced, t ry  to instantiate S with n corre- 
sponding to the SD of S. Add another  node m 
dominating the root node of the instantiated 
schema. (The domination links are introduced 
to allow for the possibility of adjoining.) Re- 
peat  this step (each t ime with n as the root 
node of the tree) until no further reduction is 
possible. 

We will fill in the details below in the following 
order: what  information to raise across domination 
links (where adjoining may take place), how to de- 
termine auxiliary trees (and foot nodes), and when 
to terminate  the projection. 

We note tha t  the trees produced have a trunk 
leading from the lexical anchor (node for the given 
lexical type) to the root. The nodes that  are sib- 
lings of nodes on the trunk, the selected daughters, 
are not elaborated further and serve either as foot 
nodes or substi tution nodes. 

3.2 Raising Features Across Dominat ion  
Links 

Quite obviously, we must raise the SFs across dom- 
ination links, since they determine the applicability 
of a schema and licence the instantiat ion of an SD. 
If  no SF were raised, we would lose all information 
about  the saturat ion status of a functor, and the 
algorithm would terminate  after the first iteration. 

There is a danger in raising more than the SFs. 
For example, the head-subject-schema in German 
would typically constrain a verbal head to be finite. 
Raising HEAD features would block its application to 
non-finite verbs and we would not produce the trees 
required for raising-verb adjunction. This is again 
because heads in HPSG are not equivalent to lexi- 
cal anchors in TAG, and tha t  other local properties 
of the top and bo t tom of a domination link could 
differ. Therefore HEAD features and other LOCAL fea- 
tures cannot, in general, be raised across domination 
links, and we assume for now that  only the SFs are 
raised. 

Raising all SFs produces only fully sa turated el- 
ementary  trees and would require the root and foot 
of any auxiliary tree to share all SFs, in order to be 
compatible with the SF values across any domina- 
tion links where adjoining can take place. This is too 
strong a condition and will not allow the resulting 
TAG to generate all the trees derivable with the giv- 
en HPSG (e.g., it would not allow unsatura ted  VP 
complements).  In § 3.5 we address this concern by 
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using a multi-phase compilation. In the first phase, 
we raise all the SFs. 

3.3 D e t e c t i n g  A u x i l i a r y  T r e e s  and  F o o t  
N o d e s  

Traditionally, in TAG, auxiliary trees are said to be 
minimal recursive structures that  have a foot node 
(at the frontier) labelled identical to the root. As 
such category labels (S, NP etc.) determine where 
an auxiliary tree can be adjoined, we can informally 
think of these labels as providing selection informa- 
tion corresponding to the SFs of HPSG. Factoring of 
recursion can then be viewed as saying that  auxiliary 
trees define a path (called the spine) from the root 
to the foot where the nodes at extremities have the 
same selection information. However, a closer look 
at TAG shows that  this is an oversimplification. If 
we take into account the adjoining constraints (or 
the top and bot tom feature structures), then it ap- 
pears that  the root and foot share only some selec- 
tion information. 

Although the encoding of selection information by 
SFs in HPSG is somewhat different than that  tradi- 
tionally employed in TAG, we also adopt the notion 
that  the extremities of the spine in an auxiliary tree 
share some part  (but not necessarily all) of the se- 
lection information. Thus, once we have produced a 
tree, we examine the root and the nodes in its fron- 
tier. A tree is an auxiliary tree if the root and some 
frontier node (which becomes the foot node) have 
some non-empty SF value in common. Initial trees 
are those that  have no such frontier nodes. 

[ S U B S < > ]  
T1 COMPS < > 

SLASH [] 

[ ]  , 
D', 

J 

COMPS < > 
SLASH [] 

D', [ ]  coMPs <> 

SLASH [ ]  I 

COMPS > 
SLASH 

want 
(equi verb) 

In the trees shown, nodes detected as foot nodes 
are marked with *. Because of the SUBJ and SLASH 
values, the HEAD-DTR is the foot of T2 below (an- 
chored by an adverb) and COMP-DTR is the foot of 

T3 (anchored by a raising verb). Note that  in the 
tree T1 anchored by an equi-verb, the foot node 
is detected because the SLASH value is shared, al- 
though the SUBJ is not. As mentioned, we assume 
that  bridge verbs, i.e., verbs which allow extraction 
out of their complements, share their SLASH value 
with their clausal complement. 

3.4 Terminat ion  

Returning to the basic algorithm, we will now con- 
sider the issue of termination, i.e., how much do we 
need to reduce as we project  a tree from a lexical 
item. 

Normally, we expect a SF with a specified value 
to be reduced fully to an empty list by a series of ap- 
plications of rule schemata. However, note that  the 
SLASH value is unspecified at the root of the trees 
T2 and T3. Of course, such nodes would still uni- 
fy with the SD of the filler-head-schema (which re- 
duces SLASH), but  applying this schema could lead 
to an infinite recursion. Applying a reduction to an 
unspecified SF is also linguistically unmotivated as 
it would imply that  a functor could be applied to an 
argument tha t  it never explicitly selected. 

However, simply blocking the reduction of a SF 
whenever its value is unspecified isn't sufficient. For 
example, the root of T2 specifies the subs to be a 
non-empty list. Intuitively, it would not be appro- 
priate to reduce it further, because the lexical anchor 
(adverb) doesn't  semantically license the SUBJ argu- 
ment itself. It merely constrains the modified head 
to have an unsaturated SUBS. 

[ suBs [] ] 
T2 COMPS < > 

SLASH [] 

, [suBJ []<[1> 
I 
, D [] COMPS < > L ' SLASH [] 
J 

SUBJ < > ] , 
COMPS < > 

J SLASH < > 
M0D [] 

VP-adverb 

Raising Verb (and Infinitive Marker to)  

-N-L [SLASH [~] 

COMPS / s LCOMPS[<> J ? \vp [H-L[SLASH [ ] ]  
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I 

D: 

COMPS 

SLASH 

raising verb 

[] ] 
T3 COMPS < > 

SLASH [ ]  

•[ COMPS 

SLASH 

D] 
< >  
[] 

To motivate our terminat ion criterion, consider 
the adverb tree and the asterisked node (whose SLASH 
value is shared with SLASH at the root). Being a 
non-trunk node, it will either be a foot or a sub- 
stitution node. In either case, it will eventually be 
unified with some node in another  tree. If  tha t  oth- 
er node has a reducible SLASH value, then we know 
tha t  the reduction takes place in the other tree, be- 
cause the SLASH value must  have been raised across 
the domination link where adjoining takes place. As 
the same SLASH (and likewise suB J) value should not 
be reduced in both  trees, we state our terminat ion 
criteria as follows: 

Termination C r i t e r i o n  The value of an SF F at 
the root node of a tree is not reduced further 
if it is an empty  list, or if it is shared with 
the value of F at  some non-trunk node in the 
frontier. 

Note tha t  because of this termination criterion, 
the adverb tree projection will stop at this point. As 
the root shares some selector feature values (SLASH 
and SUB J) with a frontier node, this node becomes 
the foot node. As observed above, adjoining this 
tree will preserve these values across any domination 
links where it might be adjoined; and if the values 
stated there are reducible then they will be reduced 
in the other tree. While auxiliary trees allow argu- 
ments selected at the root to be realized elsewhere, 
it is never the case for initial trees tha t  an argu- 
ment selected at the root can be realized elsewhere, 
because by our definition of initial trees the selec- 
tion of arguments  is not passed on to a node in the 
frontier. 

We also obtain from this criterion a notion of local 
completeness. A tree is locally complete as soon as 
all arguments  which it licenses and which are not 
licensed elsewhere are realized. Global completeness 
is guaranteed because the notion of "elsewhere" is 
only and always defined for auxiliary trees, which 
have to adjoin into an initial tree. 

3.5 A d d i t i o n a l  P h a s e s  

Above, we noted tha t  the preservation of some SFs 
along a pa th  (realized as a pa th  from the root to 
the foot of an auxiliary tree) does not imply tha t  all 

SFs need to be preserved along tha t  path.  Tree T1 
provides such an example,  where a lexical item, an 
equi-verb, triggers the reduction of an SF by taking 
a complement tha t  is unsatura ted  for SUBJ but never 
shares this value with one of its own SF values. 

To allow for adjoining of auxiliary trees whose 
root and foot differ in their SFs, we could produce 
a number  of different trees representing partial  pro- 
jections from each lexical anchor. Each partial  pro- 
jection could be produced by raising some subset of 
SFs across each domination link, instead of raising 
all SFs. However, instead of systematical ly raising 
all possible subsets of SFs across domination links, 
we can avoid producing a vast number  of these par- 
tial projections by using auxiliary trees to provide 
guidance in determining when we need to raise only 
a particular subset of the SFs. 

Consider T1 whose root and foot differ in their 
SFs. From this we can infer tha t  a SUBJ SF should 
not always be raised across domination links in the 
trees compiled from this grammar .  However, it is 
only useful to produce a tree in which the susJ value 
is not raised when the bo t tom of a domination link 
has both a one element list as value for SUBJ and 
an empty  COMPS list. Having an empty  SUBJ list at 
the top of the domination link would then allow for 
adjunction by trees such as T1. 

This leads to the following multi-phase compila- 
tion algorithm. In the first phase, all SFs are raised. 
I t  is determined which trees are auxiliary trees, and 
then the relationships between the SFs associated 
with the root and foot in these auxiliary trees are 
recorded. The second phase begins with lexical types 
and considers the application of sequences of rule 
schemata  as before. However, immediately after ap- 
plying a rule schema, the features at the bo t tom of 
a domination link are compared with the foot nodes 
of auxiliary trees tha t  have differing SFs at foot and 
root. Whenever the features are compatible with 
such a foot node, the SFs are raised according to the 
relationship between the root and foot of the auxil- 
iary tree in question. This process may need to be 
i terated based on any new auxiliary trees produced 
in the last phase. 

3.6 Example Derivation 

In the following we provide a sample derivation for 
the sentence 

(I know) what Kim wants to give to Sandy. 
Most of the relevant HPSG rule schemata  and lex- 

ical entries necessary to derive this sentence were 
already given above. For the noun phrases what, 
Kim and Sandy, and the preposition to no special 
assumptions are made. We therefore only add the 
entry for the ditransitive verb give, which we take 
to subcategorize for a subject  and two object  com- 
plements. 
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Ditransitive Verb 

L c°MPS imp[ ]pp[ 1) 
From this lexical entry, we can derive in the 

first phase a fully saturated initial tree by apply- 
ing first the lexical slash-termination rule, and then 
the head-complement-, head-subject and filler-head- 
rule. Substitution at the nodes on the frontier would 
yield the string what K im  gives to Sandy. 

T4 COMPS < > 
SLASH < > 

[] 
NP 

what 

I v: 
I 

COMPS < > 
SLASH < [] > 

[ ]  , 
NP D', ' [susJ '<[]>] 
Kim COMPS < > 

SLASH < [] > 

, [ ]  
V', p p  

I 

COMPS < > to Sandy 
SLASH < > 

COMPS < , > 
SLASH < > 

gives 

The derivations for the trees for the matrix verb 
want  and for the infinitival marker to (equivalent to 
a raising verb) were given above in the examples T1 
and T3. Note that  the suBJ feature is only reduced 
in the former, but not in the latter structure. 

In the second phase we derive from the entry for 
give another initial tree (Ts) into which the auxiliary 
tree T1 for want can be adjoined at the topmost 
domination link. We also produce a second tree with 
similar properties for the infinitive marker to (T6). 

SUBJ <> ] 
T5 COMPS < > 

SLASH < > 

NP COMPS < > 
SLASH < [] > 

what 

D: 
I 

COMPS < > 
SLASH < [] > 

, [ ]  
D', p p  

I 

COMPS < to Sandy 

SLASH < 

COMPS < , [] > 

SLASH < > 
give 

T6 COMPS < > 
SLASH < [] > 

.: 

SLASH [ ]  J 

D' , [] COMPS < > 
SLASH [] 

COMPS > * 

SLASH 

to 

By first adjoining the tree T6 at the topmost dom- 
ination link of T5 we obtain a structure T7 corre- 
sponding to the substring what ... to give to Sandy. 
Adjunction involves the identification of the foot 
node with the bot tom of the domination link and 
identification of the root with top of the domina- 
tion link. Since the domination link at the root of 
the adjoined tree mirrors the properties of the ad- 
junction site in the initial tree, the properties of the 
domination link are preserved. 
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SUBJ < >  ] 
T7 COMPS < 

SLASH < > 

NP COMPS < > 
SLASH < [ ]  > 

what ' 

D: 
I 

COMPS < > 
SLASH < [] > 

[ [ COMPS < > [] COMPS < > 
SLASH < > SLASH < [] > 

, [ ]  
D: p p  

I 

COMPS < > to Sandy 

SLASH < > 

"°1 
COMPS < , > 

SLASH < > 
give 

The final derivation step then involves the adjunc- 
tion of the tree for the equi verb into this tree, again 
at the topmost domination link. This has the effect 
of inserting the substring K i m  wants into what ... to 
give to Sandy.  

4 C o n c l u s i o n  

We have described how HPSG specifications can be 
compiled into TAG, in a manner that  is faithful to 
both frameworks. This algorithm has been imple- 
mented in Lisp and used to compile a significant 
fragment of a German HPSG. Work is in progress on 
compiling an English grammar developed at CSLI. 

This compilation strategy illustrates how linguis- 
tic theories other than those previously explored 
within the TAG formalism can be instantiated in 
TAG, allowing the association of structures with an 
enlarged domain of locality with lexical items. We 
have generalized the notion of factoring recursion in 
TAG, by defining auxiliary trees in a way that  is not 
only adequate for our purposes, but  also provides a 
uniform treatment of extraction from both clausal 

and non-clausal complements (e.g., VPs) tha t  is not 
possible in traditional TAG. 

It should be noted that  the results of our compila- 
tion will not always conform to conventional linguis- 
tic assumptions often adopted in TAGs, as exempli- 
fied by the auxiliary trees produced for equi verbs. 
Also, as the algorithm does not currently include any 
downward expansion from complement nodes on the 
frontier, the resulting trees will sometimes be more 
fractioned than if they had been specified directly in 
a TAG. 

We are currently exploring the possiblity of com- 
piling HPSG into an extension of the TAG formal- 
ism, such as D-tree grammars (RVW95) or the UVG- 
DL formalism (Ram94). These somewhat more pow- 
erful formalisms appear to be adequate for some 
phenomena, such as extraction out of adjuncts (re- 
call §2) and certain kinds of scrambling, which our 
current method does not handle. More flexible 
methods of combining trees with dominance links 
may also lead to a reduction in the number of trees 
that  must be produced in the second phase of our 
compilation. 

There are also several techniques that  we expect 
to lead to improved parsing efficiency of the resulting 
TAG. For instance, it is possible to declare specific 
non-SFs which can be raised, thereby reducing the 
number of useless trees produced during the multi- 
phase compilation. We have also developed a scheme 
to effectively organize the trees associated with lex- 
ical items. 
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