
L e x i c a l i z e d C o n t e x t - F r e e G r a m m a r s

Y v e s S c h a b e s a n d R i c h a r d C . W a t e r s

M i t s u b i s h i E l ec t r i c Re s e a r c h L a b o r a t o r i e s

201 B r o a d w a y , C a m b r i d g e , M A 02139

e-mai l : s (; habes@mer l . com a n d dick((~merl .coin

Lexicalized context-free grammar (LCFG) is
an attractive compromise between the parsing ef-
ficiency of context-free grammar (CFC) and the
elegance and lexical sensitivity of lexicalized tree-
adjoining grammar (LTAG). LCFC is a restricted
form of LTAG that can only generate context-
free languages and can be parsed in cubic time.
However, LCF(I supports much of the elegance of
LTAG's analysis of English and shares with LTAG
the ability to lexicalize CF(I;s without changing
the trees generated.

Motivation

Context-free grammar (CFG) has been a well ac-
cepted framework for computational linguistics for
a long time. While it has drawbacks, including the
inability to express some linguistic constructions,
it has the virtue of being computationally efficient,
O(n3)-time in the worst case.

Recently there has been a gain in interest in
the so-called 'mildly' context-sensitive formalisms
(Vijay-Shanker, 1987; Weir, 1988; Joshi, Vijay-
Shanker, and Weir, 1991; Vijay-Shanker and Weir,
1993a) that generate only a small superset of
context-free languages. One such formalism is lex-
icalized tree-adjoining grammar (LTAG) (Schabes,
Abeill~, and Joshi, 1988; Abeillfi et al., 1990; Joshi
and Schabes, 1992), which provides a number
of attractive properties at the cost of decreased
efficiency, O(n6)-time in the worst case (Vijay-
Shanker, 1987; Schabes, 1991; Lang, 1990; Vijay-
Shanker and Weir, 1993b).

An LTAG lexicon consists of a set of trees each
of which contains one or more lexical items. These
elementary trees can be viewed as the elementary
clauses (including their transformational variants)
in which the lexical items participate. The trees
are combined by substitution and adjunction.

LTAC supports context-sensitive features that
can capture some language constructs not cap-
tured by CFG. However, the greatest virtue of
LTAG is that it is lexicalized and supports ex-

tended domains of locality. The lexical nature of
LTAC is of linguistic interest, since it is believed
that the descriptions of many linguistic phenom-
ena are dependent upon lexical data. The ex-
tended domains allow for the localization of most
syntactic and semantic dependencies (e.g., filler-
gap and predicate-argument relationships).

A fllrther interesting aspect of LTAG is its
ability to lexicalize CFCs. One can convert a CFC
into an LTAG that preserves the original trees
(Joshi and Schabes, 1992).

Lexicalized context-free grammar (LCFG) is
an attractive compromise between LTAG and
CFG, that combines many of the virtues of LTAG
with the efficiency of CFG. LCFC is a restricted
form of LTAG that places further limits on the el-
ementary trees that are possible and on the way
adjunction can be performed. These restrictions
limit LCFG to producing only context-free lan-
guages and allow LCFC to be parsed in O(n3) -
time in the worst ease. However, LCFC retains
most of the key features of LTAG enumerated
above.

In particular, most of the current LTAG gram-
mar for English (Abeilld et al., 1990) follows the
restrictions of LCFG. This is of significant practi-
cal interest because it means that the processing
of these analyses does not require more computa-
tional resources than CFGs.

In addition, any CFG can be transformed
into an equivalent LCFC that generates the same
trees (and therefore the same strings). This re-
sult breaks new ground, because heretofore ev-
ery method of lexicalizing CFCs required context-
sensitive operations (Joshi and Schabes, 1992).

The following sections briefly, define LCFG,
discuss its relationship to the current LTAG gram-
mar for English, prove that LC, FC can be used to
lexicalize CFC, and present a simple cubic-time
parser for LCFC. These topics are discussed in
greater detail in Schabes and Waters (1993).

121

L e x i c a l i z e d C o n t e x t - F r e e G r a m m a r s

Like an LTAG, an LC'FG consists of two sets of
trees: initial trees, which are combined by substi-
tution and auxiliary trees, which are combined by
adjunction. An LCFG is lexicalized in the sense
that every initial and auxiliary tree is required to
contain at least one terminal symbol on its fron-
tier.

More precisely, an LCFG is a five-tuple
(Z, NT, I, A, ,5'), where ~ is a set of terminal sym-
bols, NT is a set of non-terminal symbols, I and
A are sets of trees labeled by terminal and non-
terminal symbols, and ,5' is a distinguished non-
terminal s tar t symbol.

Each initial tree in the set I satisfies the fol-
lowing requirements.

(i) Interior nodes are labeled by non-
terminal symbols.

(ii) The nodes on the frontier of the tree
consist of zero or more non-terminal
symbols and one or more terminal sym-
bols.

(iii) The non-terminal symbols on the
frontier are marked for substi tution. By
convention, this is annota ted in dia-
grams using a down arrow (l) .

Each auxiliary tree in the set A satisfies the
following requirements.

(i) Interior nodes are labeled by non-
terminal symbols.

(ii) The nodes on the frontier consist of
zero or more non-terminal symbols and
one or more terminal symbols.

(iii) All but one of the non-terminal sym-
bols on the frontier are marked for sub-
stitution.

(iv) The remaining non-terminal on the
frontier of the tree is called the foot. The
label on the foot must be identical to
the label on the root node of the tree.
By convention, the foot is indicated in
diagrams using an asterisk (.) .

(v) the foot must be in either the leftmost
or the r ightmost position on the frontier.

Figure 1, shows seven elementary trees that
might appear in an LCFG for English. The trees
containing 'boy ' , 'saw', and ' left ' are initial trees.
The remainder are attxiliary trees.

Auxiliary trees whose feet are leftrnost are
called left recursive. Similarly, auxiliary trees
whose feet are rightrnost are called righl recursive
auxiliary trees. The path from the root of an aux-
iliary tree to the foot is called the spine.

NP VP N VP

A /k A /X
D$ N V VP* A N* VP* Adv

I I I i
boy seems pretty smoothly

S

S NPi,~(+wh) S S

NPo$ VP NP o VP NPo$ VP

A I [
V SI*NA £i V V NPI$

I I I
think left saw

Figure 1: Sample trees.

In LCF(I, trees can be combined with substi-
tution and adjunction. As illustrated in Figure 2,
substi tution replaces a node marked for substi tu-
tion with a copy of an initial tree.

Adjunction inserts a copy of an auxiliary tree
into another tree in place of an interior node that
has the same label as the foot of the auxiliary tree.
The subtree that was previously connected to the
interior node is reconnected to the foot of the copy
of the auxiliary tree. If the auxiliary tree is left re-
cursive, this is referred to as left recursive adjunc-
tion (see Figure 3). If the auxiliary tree is right
recursive, this is referred to as right recursive ad-
junction (see Figure 4).

Crucially, adjunction is constrained by requir-
ing that a left recursive auxiliary tree cannot be
adjoined on any node that is on the spine of a
right recursive auxiliary tree and a right recursive
auxiliary tree cannot be adjoined on the spine of
a left recursive auxiliary tree.

An LCFG derivation must s tar t with an initial
tree rooted in S. After that , this tree can be re-
peatedly extended using substi tut ion and adjunc-
tion. A derivation is complete when every frontier
node is labeled with a terminal symbol.

The difference between LCFG and LTAG is

Figure 2: Substitution.

1 2 2

/ AA
A

Figure 3: Left recursive adjunction.

~ A * = "A
%

Figure 4: Right recursive adjunction.

that LTAG allows the foot of an auxiliary tree
to appear anywhere on the frontier and places no
limitations on the interaction of auxiliary trees.
In this unlimited situation, adjunction encodes
string wrapping and is therefore more power-
ful than concatenation (see Figure 5). However,
the restrictions imposed by LCFG guarantee that
no context-sensitive operations can be achieved.
They limit the languages that can be generated by
LCFGs to those that can be generated by CFGs.

Coverage of LCFG and LTAG

The power of LCFG is significantly less than
LTAG. Surprisingly, it turns out that there are
only two situations where the current LTAG gram-
mar for English (Abeilld et al., 1990) fails to satisfy
the restrictions imposed by LCFG.

The first situation, concerns certain verbs that
take more than one sentential complement. An ex-
ample of such a verb is deduce, which is associated
with the following auxiliary tree.

S

NPo$ VP

V Sl* PP
I A

deduce P Sz,I,
I

from
Since this tree contains a foot node in the cen-

ter of its frontier, it is not part of an LCFG. Hav-
ing the foot on the first sentential complement is
convenient, because it allows one to use the stan-
dard LTAG wh-analyses, which depends on the

w2 ~ W4

%

Figure 5: Adjunction in LTAG.

existence of an initial tree where the filler and gap
are local. This accounts nicely for the pair of sen-
tences below. However, other analyses of wh ques-
tions may not require the use of the auxiliary tree
above.

(1) John deduced that Mary watered the
grass from seeing the hose.

(2) Wha t did John deduce that Mary wa-
tered from seeing the hose.

The second situation, concerns the way the
current LTAG explains the ambiguous at tach-
ments of adverbial modifiers. For example, in the
sentence:

(3) John said Bill left yesterday.

the a t tachment of yesterday is ambiguous. The
two different LTAG derivations indicated in Fig-
ure 6 represent this conveniently.

Unfortunately, in LCFG the high a t tachment
of yesterday is forbidden since a right auxiliary
tree (corresponding to yesterday) is adjoined on
the spines of a left auxiliary tree (corresponding to
John said). However, one could avoid this prob-
lem by designing a mechanism to recover the high
a t tachment reading from the low one.

Besides the two cases presented above, the
current LTAG for English uses only left and right
recursive auxiliary trees and does not allow any

S

NP . . ~ ",~
I

John V S* VP "-::.
A

said S ." "'° / \
,~t o- VP* ADV

NP VP I
I I yesterday

Bill V
I

left

Figure 6: Two LTAG derivations for John said Bill
left yesterday.

123

interaction along the spine of these two kinds of
trees. This agrees with the intuition that most
English analyses do not require a context-sensitive
operation.

LCFG. However, as shown below, combining ex-
tended substi tution with restricted adjunction al-
lows strong lexicalization of CFG, without intro-
ducing greater parsing complexity than CFG.

L e x i c a l i z a t i o n o f C F G s

The lexicalization of g r am m ar formalisms is of in-
terest from a number of perspectives. It is of in-
terest from a linguistic perspective, because most
current linguistic theories give lexical accounts of a
number of phenomena that used to be considered
purely syntactic. It is of interest f rom a computa-
tional perspective, because lexicalized g rammars
can be parsed significantly more efficiently than
non-lexicalized ones (Schabes and Joshi, 1990).

Formally, a g r am m ar is said 'lexicalized' (Sch-
abes, Abeill~., and Joshi, 1988) if it consists of:

,, a finite set of elementary s t ructures of finite size,
each of which c, ontains an overt (i.e., non-empty)
lexical item.

• a finite set of operations for creating derived
structures.

The overt lexical i tem in an elementary struc-
ture is referred to as its anchor. A lexicalized
g r ammar can be organized as a lexicon where each
lexical i tem is associated with a finite number of
structures for which that i tem is the anchor.

In general, CFGs are not lexicalized since rules
such as ,5' --* N P V P that do not locally introduce
lexical items are allowed. In contrast, the well-
known Creibach Normal Form (CNF) for CFCs
is lexicalized, because every production rule is re-
quired to be of the form A --+ ac~ (where a is a
terminal symbol, A a non-terminal symbol and a
a possibly empty string of non-terminal symbols)
and therefore locally introduces a lexical i tem a.

It can be shown that for any CFG (.7 (that does
not derive the empty string), there is a CNF gram-
mar (.7 ~ that derives the same language. However,
it may be impossible for the set of trees produced
by (7 ~ to be the same as the set of trees produced
by G.

Therefore, CNF achieves a kind of lexicaliza-
tion of CFGs. However, it is only a weak lexical-
ization, because the set of trees is not necessarily
preserved. As discussed in the motivat ion section,
strong lexicalization that preserves tree sets is pos-
sible using LTAG. However, this is achieved at the
cost of significant additional parsing complexity.

Heretofore, several a t t empts have been made
to lexicalize CFC with formalisms weaker than
LTAG, but without success. In particular, it is
not sufficient to merely extend substi tution so that
it applies to trees. Neither is it sutficient to rely
solely on the kind restricted adjunction used by

T h e o r e m I f G = (~ , N T , P ,S) is a finitely
ambiguous CFG which does not generate the
empty .string (¢), then there is an LCFG (7 ~ =
(~, NT , I, A, S) generating the same language and
tree set as (7. Furthermore (7' can be chosen .so
that it utilizes only lefl-recursive auxiliary trees.

As usual in the above, a CFG (.7 is a four-
tuple, (E, NT, P, S), where N is a set of terminal
symbols, N T is a set of non-terminal symbols, P is
a set of production rules that rewrite non-terminal
symbols to strings of terminal and non-terminal
symbols, and S is a distinguished non-terminal
symbol that is the s tar t symbol of any derivation.

To prove the theorem we first prove a some-
what weaker theorem and then extend the proof
to the flfll theorem. In particular, we assume for
the moment that the set of rules for (.7 does not
contain any empty rules of the form A ~ e.

S t e p 1 We begin the construction of (7 ~ by con-
structing a directed graph L CG that we call the
left corner derivation graph. Paths in L C G cor-
respond to leftmost paths from root to frontier in
(partial) derivation trees rooted at non-terminal
symbols in (1.

L(TG contains a node for every symbol in E U
N T and an arc for every rule in P as follows.
For each terminal and non-terminal symbol
X in G create a node in L C G labeled with
X. For each rule X --+ Y a in G create a
directed arc labeled with X ~ Y a from the
node labeled with X to the node labeled Y.

As an example, consider the example CFG in
Figure 7 and the corresponding L(TG shown in
Figure 8.

The significance of L(;G is that there is a one-
to-one correspondence between paths in L C G end-
ing on a non-terminal and left corner derivations in
G. A left corner derivation in a CFG is a partial
derivation star t ing from any non-terminal where
every expanded node (other than the root) is the
leftmost child of its parent and the left corner is a
non-terminal. A left corner derivation is uniquely
identified by the list of rules applied. Since G does
not have any empty rules, every rule in (7 is rep-
resented in L(;'G. Therefore, every path in L C G
ending on a terminal corresponds to a left corner
derivation in (7 and vice versa.

124

S-- -+A A
,5' --+ B A
A - - + B B
B--+ A S
B ----+ b

Figure 7: An example grammar .

S ---~ B A

S -~.A A
S ~- A B

B--+ A S

B--+b
b

Figure 8: The LC(; created by Step 1.

S t e p 2 The set of initial trees I for G' is con-
structed with reference to L(TG. In particular, an
initial tree is created corresponding to each non-
cyclic path in L(/G that starts at a non-terminal
symbol X and ends on a terminal symbol y. (A
non-cyclic path is a path that does not touch any
node twice.)

For each non-cyclic path in L C G from X to
y, construct an initial tree T as follows. Start
with a root labeled X. Apply the rules in the
path one after another, always expanding the
left corner node of T. While doing this, leave
all the non-left corner non-terminal symbols
in T unexpanded, and label them as substi-
tution nodes.

Given the previous example grammar , this
step produces the initial trees shown in Figure 9.

Each initial tree created is lexicalized, because
each one has a non-terminal symbol as the left
corner element of its frontier. There are a finite
number of initial trees, because the number of non-
cyclic paths in L C G must be finite. Each initial
tree is finite in size, because each non-cyclic path
in L C G is finite in length.

Most importantly, The set of initial trees is
the set of non-recursive left corner derivations in
(,'.

S

A AS

B B$ B AS B B$

I I I
b b b

Figure 9: Initial trees created by Step 2.

S t e p 3 This step constructs a set of left-
recursive auxiliary trees corresponding to the
cyclic path segments in L(TG that were ignored in
the previous step. In particular, an attxiliary tree
is created corresponding to each minimM cyclic
path in L C G that starts at a non-terminM sym-
bol.

For each minimal cycle in L C G from X to it-
self, construct an auxiliary tree T by star t ing
with a root labeled X and repeatedly expand-
ing left, corner frontier nodes using the rules
in the path as in Step 2. When all the rules in
the path have been used, the left corner fron-
tier node in T will be labeled X. Mark this
as the foot node of T. While doing the above,
leave all the other non-terminal symbols in T
unexpanded, and label them all substitution
nodes.

The L C (; in Figure 8 has two minimal cyclic
paths (one from A to A via B and one from B to
B via A). This leads to the the two auxiliary trees
shown in Figure 10, one for A and one for B.

The attxiliary trees generated in this step are
not, necessarily lexicalized. There are a finite num-
ber of auxiliary trees, since the number of minimal
cyclic paths in G must be finite. Each auxiliary
tree is finite in size, because each minimal-cycle in
L C G is finite in length.

The set of trees that can he created by corn-
biding the initial trees from Step 2 with the auxil-
iary trees from Step 3 by adjoining auxiliary trees
along the left edge is the set of every left corner
derivation in (,'. To see this, consider that ev-
ery path in L(;G can be represented as an initial
non-cyclic path with zero or more minimal cycles
inserted into it.

The set of trees that can be created by corn-
biding the initial trees from Step 2 with the auxil-
iary trees from Step 3 using both substi tution and
adjunction is the set of every derivation in G. To
see this, consider that every derivation in G can
be decomposed into a set of left corner derivations
in G that are combined with substitution. In par-
ticular, whenever a non-terminal node is not the
leftmost child of its parent, it is the head of a sep-

A B

B B$ A S$

A* S$ B* B$

Figure 10: Auxiliary trees created by Step 3.

125

arate left corner derivation.

S t e p 4 This step lexicalizes the set of auxiliary
trees built in step 3, without altering the trees that
can be derived.

For each auxiliary tree T built in step 3, con-
sider the frontier node A just to the right of
the foot. If this node is a terminal do nothing.
Otherwise, remove T from the set of auxiliary
trees replace it with every tree that can be
constructed by substi tut ing one of the initial
trees created in Step 2 for the node A in T.

In the case of our continuing example, Step 4
results in the set of auxiliary trees in Figure 11.

Note that since G is finitely ambiguous, there
must be a frontier node to the right of the foot of
an attxiliary tree T. If not, then T would corre-
spond to a derivation X:~X in G and 6' would be
infinitely ambiguous.

After Step 4, every auxiliary tree is lexicalized,
since every tree tha t does not have a terminal to
the right of its foot is replaced by one or more trees
that do. Since there were only a finite number of
finite initial and auxiliary trees to s tar t with, there
are still only a finite number of finite attxiliary
trees.

The change in the auxiliary trees caused by
Step 4 does not alter the set of trees that can be
produced in any way, because the only change that
was made was to make substi tutions that could be
made anyway, and when a subst i tutable node was
eliminated, this was only done after every possible
substi tution at that node was performed.

Note that the initial trees are left anchored
and the auxiliary trees are ahnost left anchored
in the sense that the leftmost frontier node other
than the foot is a terminal. This facilitates effi-
cient left to right parsing.

A

A
B B$

A* S B B$

A AS A* S A S$

B B$ B AS B* B

I I I
b b b

Figure 1 l: Auxiliary trees created by Step 4.

The procedure above creates a lexicalized
g rammar that generates exactly the same trees as
G and therefore the same strings. The only re-
maining issue is the additional assumption that G
does not contain any empty rules.

If (; contains an empty rule A ~ e one first
uses s tandard methods to transform (; into an
equivalent g r ammar H that does not have any
such rule. When doing this, create a table showing
how each new rule added is related to the empty
rules removed. Lexicalize H producing H ' using
the procedure above. Derivations in H ' result in
elements of the tree set of H. By means of the ta-
ble recording the relationship between (; and H,
these trees can be converted to derivations in G.

[]

A d d i t i o n a l i s s u e s

There are several places in the algori thm where
greater freedom of choice is possible. For instance,
when lexicalizing the auxiliary trees created in
Step 3, you need not do anything if there is any
frontier node that is a terminal and you can choose
to expand any frontier node you want. For in-
stance you might want to choose the node that
corresponds to the smallest number of initial trees.

Alternatively, everywhere in the procedure,
the word ' left ' can be replaced by ' r ight ' and vice
versa. This results in the creation of a set of right
anchored initial trees and right recursive auxiliary
trees. This can be of interest when the right cor-
ner derivation graph has less cycles than the left
corner one.

The number of trees in G' is related to the
number of non-cyclic and minimal cycle paths in
LCG. In the worst case, this number rises very
fast as a function of the number of arcs in LCG,
(i.e., in the number of rules in G). (A fully con-
nected graph of n 2 a r c s between n nodes has n!
acyclic paths and n! minimal cycles.) However, in
the typical case, this kind of an explosion of trees
is unlikely.

Just as there can be many ways for a CF(~
to derive a given string, there can be many ways
for an LCFG to derive a given tree. For maximal
efficiency, it would be desirable for the g r ammar
G' produced by the procedure above to have no
ambiguity in they way trees are derived. Unfortu-
nately, the longer the minimal cycles in LCG, the
greater the tree-generating ambiguity the proce-
dure will introduce in G' . However, by modifying
the procedure to make use of constraints on what
attxiliary trees are allowed to adjoin on what nodes
in which initial trees, it should be possible to re-
duce or even eliminate this ambiguity.

All these issues are discussed at greater length

126

in Schabes and Waters (1993).

P a r s i n g L C F G

Since LCFG is a restricted case of tree-adjoining
grammar (TAG), standard O(nG)-time TAG
parsers (Vijay-Shanker, 1987; Schabes, 1991;
Lang, 1990) can be used for parsing LCFG. Fur-
ther, they can be straightforwardly modified to re-
quire at most O(n4)-tirne when applied to LCFG.
However, this still does not take fifll advantage of
the context-freeness of LCFC.

This section describes a simple I)ottom-up
recognizer for LCFG that is in the style of the
CKY parser for (IT(I;. The virtue of this algo-
ri thm is that it shows in a simple manner how the
O(n3)-time worst case complexity can be achieved
for LCFG. Schabes and Waters (1993) describes a
more practical and more elaborate (Earley-style)
recognizer for LCFC, which achieves the same
bounds.

Suppose that G = (E, NT, I , A , S) is an
LCFG and that a l ' " a , ~ is an input string. We
can assume without loss of generality 1 that every
node in I U A has at most two children.

Let 71 be a node in an elementary tree (identi-
fied by the name of the tree and the position of the
node in the tree). The central concept of the al-
gorithrn is the concepts of spanning and covering.
71 spans a string ai+l . . . a j if and only if there is
some tree derived by ('; for which it is the case that
the fringe of the subtree rooted at 71 is ai+l "" "aj.
In particular, a non-terminal node spans aj if and
only if the label on the node is aj. A non-terrninal
node spans ai+ 1 . . . a j if and only if ai+l . . . a j is
the concatenation in left, to right order of strings
spanned by the children of the node.

• If 7 / does not subsume the foot node of an aux-
iliary tree then: 71 covers the string ai+ 1 . . . a j if
and only if it spans a i + l " . a j .

• If 7 / is on the spine of a right recursive auxiliary
tree T then: 71 covers ai+l." .aj if and only if
7 / spans some strin~ that is the concatenation
of ai+l - . . a j and a string spanned by the foot
of T. (This situation is illustrated by the right
drawing in Figure 12, in which 7 / is labeled with
B.)

• If 71 is on the spine of a left recursive auxiliary
tree T then: 71 covers ai+] " .aj if and only if 71
spans some string that is the concatenation of a
string spanned by the foot of T and ai+l . . . a j .
(This situation is illustrated by the left drawing
in Figure 12, in which 71 is labeled with B.)

lit can be easily shown that by adding new nodes
('4 "~ any L ,F(., can be transformed into an equivalent

LC, FG satisfying this condition.

A , ai+l- . - aj ai+l. . , aj A*

Figure 12: Coverage of nodes on the spine.

The algorithm stores pairs of the form (71, pos)
in an n by n array C. In a pair, pos is either t (for
top) or b (for bottom). For every node 7l in every
elementary tree in (;, the algorithm guarantees the
following.

• ('l,b) e C[i,j] if and only if,I covers ai+l . . . a j .

• ('l,t) E C[i,j] if and only if ('l,b} E C,[i,j] or
ai+l . . . a j is the concatenation (in either order)
of a string covered by 7 / and a string covered by
an auxiliary tree that can be adjoined on 71 .

The algorithm fills the upper diagonal portion
of the array C[i, j] (0 < i < j _< n) for increasing
values of j - i. The process starts by placing each
foot node in every cell C'[i,i] and each terminal
node 71 in every cell C[i, i + 1] where 71 is labeled
a i + l •

The algorithm then considers all possible ways
of combining covers into longer covers. In particu-
lar, it fills the cells C[i, i + k] for increasing values
of k by combining elements from the cells C[i, j]
and C[j , i + k] for all j such that i < j < i + k.
There are three situations where combination is
possible: sibling concatenation, left recursive con-
catenation, and right recursive concatenation.

Sibling concatenation is illustrated in Fig-
ure 13. Suppose that there is a node 7/0 (labeled B)
with two children 711 (labeled A) and 712 (labeled
A'). If (711 , t) E C[i, j] and ('12, t} E (7[j, i + k] then
('1o, b) E C[i, i + k].

Left recursive concatenation is illustrated in
Figure 14. Here, the cover of a node is combined
with the cover of a left auxiliary tree that can be
adjoined at the node. Right recursive concatena-
tion, which is shown in Figure 15 is analogous.

For simplicity, the recognizer is written in
two parts. A main procedure and a subpro-
cedure Add(node, pos, i , j) , which adds the pair
(node, pos) into C[i, j].

a. . . .a . ai+ 1 t + l J a j + l ' " a k "'" ak

Figure 13: Sibling concatenation.

127

Procedure r e c o g n i z e r
begin

;; foot node initialization (,[z, i])
for i = 0 to n

for all foot node 71 in A call
Add0/ , b, i, i)

;; terminal node init ialization ((;[i, i + 1])
f o r i = 0 t o n - l

for all node 71 in A U I labeled by ai+l
call Add0/ , t, i, i + 1)

;; induct ion (G'[i, i + k] = (;[i, j] + (:[j, i + k])
for k = 2 to n

for i = 0 to n - k
f o r j = i + 1 t o i + k - 1

;; sibling concatenat ion
if (711 , l) 6 C,[i, j]
and (712, t) e C[j , i + k]
and r/1 is the left sibling of 7/2

with common parent 71o
then Add(710 , b, i, i + k)

;; left recursive concatena t ion
if {71, b) E C[i, j]
and (p, t} e (,'[/, i + k]
and p is the root node of a left recursive

auxil iary tree tha t can adjoin on rl
then Add0j , t, i, i + k)

;; right recursive concatenat ion
if {'l, b) e (;[j, i + k]
and (p, t) E C[i, j]
and p is the root node of a right recursive

auxil iary tree tha t can adjoin on 7 I
then Add(r/, t, i, i + k)

if (7/, z) e c[0, 7q
and 71 is labeled by ,5'
and 71 is the root node of an initial tree in I

then return acceptance
otherwise return rejection

end

Note tha t the sole purl)ose of the codes t and b
is to insure tha t only one auxil iary tree can adjoin
on a node. The procedure could easily be mod-
ified to account for o ther constraints on the way
derivat ion should proceed such as those suggested
for LTAGs (Schabes and Shieber, 1992).

The procedure A d d puts a pair into the array
C. If the pair is already present, nothing is (lone.
However, if it is new, it is added to (7 and other
pairs may be added as well. These correspond to
cases where the coverage is not increased: when
a node is the only child of its parent , when the

A

/2.,+ /2...
ai+l... ~ A * aa k J + l ai+l'"ak

Figure 14: Left recursive concatenat ion.
A

/2.,
. . . . A* ... ak aj+i . , a k ai+ 1 aj ai+ 1

Figure 15: Right recursive concatenat ion.

node is recognized wi thout adjunct ion, and when
subs t i tu t ion occurs.

Procedure Add(r / , pos, i, j)
begin

Put (rl, pos) in C,[i, j]

if pos = t and r I is the only child of a parent It
call Add(# , b, i, j)

if pos = t and rÂ is the root node of an
initial tree, for each subs t i tu t ion node p
at which 71 can subs t i tu te call Add(p, t, i, j)

;; no adjunct ion
if pos = b

if the node 7/does not have an OA constraint
call Add(r/, t, i, j)

end

T he O(n 3) complexi ty of the recognizer fol-
lows f rom the three nested induct ion loops on k, i
and j . (Al though the procedure A d d is defined
recursively, the number of pairs added to (7 is
bounded by a constant tha t is independent of sen-
tence length.)

By recording how each pair was in t roduced in
each cell of the array C, one can easily extend the
recognizer to produce all derivations of the input.

Conclusion

LCFG combines much of the power of LTAG with
tile computa t iona l efficiency of CFG. It suppor ts
most of the same linguistic analysis suppor ted by
LTAC. In part icular , most of the current LTAG
for English falls into LCFG. In addit ion, LCFC
can lexicalize CFG wi thout al ter ing the trees pro-
duced. Finally, LCFG can be parsed in O(n3)-
time.

There are many directions in which the work
on LCFG described here could be extended. In

128

particular, one could consider stochastic exten-
sions, LP~ parsing, and non-deterministic LR pars-
ing.

Acknowledgments
We thank John Coleman who, by question-
ing whether the context-sensitivity of stochastic
LTAG was actually being used for English, trig-
gered this work. We thank Aravind Joshi, Fer-
nando Pereira, Stuart Shieber and B. Srinivas for
valuable discussions.

REFERENCES
Abeilld, Anne, Kathleen M. Bishop, Sharon Cote,

and Yves Schabes. 1990. A lexicalized tree
adjoining grammar for English. Technical Re-
port MS-CIS-90-24, Department of Computer
and Information Science, University of Penn-
sylvania.

Joshi, Aravind K. and Yves Schabes. 1992. Tree-
adjoining grammars and lexicalized gram-
mars. In Maurice Nivat and Andreas Podel-
ski, editors, Tree Automata and Languages.
Elsevier Science.

Joshi, Aravind K., K. Vijay-Shanker, and David
Weir. 1991. The convergence of mildly
context-sensitive grammatical formalisms. In
Peter Sells, Stuart Shieber, and Tom Wasow,
editors, Foundational Issues in Nalural Lan-
guage Processing. MIT Press, Cambridge MA.

Lang, Bernard. 1990. The systematic construc-
tions of Earley parsers: Application to the
production of O(n 6) Earley parsers for Tree
Adjoining Grammars. In Proceedings of the
Ist International Workshop on Tree Adjoining
Grammars, Dagstuhl C, astle, FRG, August.

Schabes, Yves, Anne Abeill6, and Aravind K.
Joshi. 1988. Parsing strategies with 'lexical-
ized' grammars: Application to tree adjoining
grammars. In Proceedings of the 12 th Interna-
tional Conference on Computational Linguis-
tics (COLING'88), Budapest, Hungary, An-
gust.

Schabes, Yves and Aravind K. Joshi. 1990. Pars-
ing with lexicalized tree adjoining grammar.
In Masaru Tomita, editor, C, urrent Issues
in Parsing Technologies. Kluwer Accademic
Publishers.

Schabes, Yves and Stuart Shieber. 1992. An al-
ternative conception of tree-adjoining deriva-
tion. In 20 th Meeting of the Association for
(,'omputational Linguistics (A CL '92).

Schabes, Yves and Richard C. Waters. 1993. Lex-
icalized context-free grammar: A cubic-time
parsable formalism that strongly lexicalizes

context-free grammar. Technical Report 93-
04, Mitsubishi Electric Research Laboratories,
201 Broadway. Cambridge MA 02139.

Schabes, Yves. 1991. The valid prefix prop-
erty and left to right parsing of tree-adjoining
grammar. In Proceedings of the second Inter-
national Workshop on Parsing Technologies,
Cancan, Mexico, February.

Vijay-Shanker, K. and David Weir. 1993a. The
equivalence of four extensions of context-free
grammars. To appear in Mathematical Sys-
tems Theory.

Vijay-Shanker, K. and [)avid Weir. 1993b. Pars-
ing some constrained grammar formalisms.
To appear in Computational Linguistics.

Vijay-Shanker, K. 1987. A Study of Tree Adjoin-
ing Grammars. Ph.D. thesis, Department of
Computer and Information Science, Univer-
sity of Pennsylvania.

Weir, David J. 1988. Character-
izing Mildly Context-,5¥nsitive Grammar For-
malisms. Ph.D. thesis, Department of Com-
puter and Information Science, University of
Pennsylvania.

129

