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A B S T R A C T  

In this paper we introduce a logic for describing 
trees which allows us to reason about both the par- 
ent and domination relationships. The use of dom- 
ination has found a number of applications, such as 
in deterministic parsers based on Description the- 
ory (Marcus, Hindle & Fleck, 1983), in a com- 
pact organization of the basic structures of Tree- 
Adjoining Grammars  (Vijay-Shanker & Schabes, 
1992), and in a new characterization of the ad- 
joining operation that  allows a clean integration of 
TAGs into the unification-based framework (Vijay- 
Shanker, 1992) Our logic serves to formalize the 
reasoning on which these applications are based. 

1 M o t i v a t i o n  
Marcus, Hindle, and Fleck (1983) have intro- 

duced Description Theory (D-theory) which consid- 
ers the structure of trees in terms of the domination 
relation rather than the parent relation. This forms 
the basis of a class of deterministic parsers which 
build partial descriptions of trees rather than the 
trees themselves. As noted in (Marcus, Hindle & 
Fleck, 1983; Marcus, 1987), this approach is capa- 
ble of maintaining Marcus' deterministic hypothe- 
sis (Marcus, 1980) in a number of cases where the 
original deterministic parsers fail. 

A motivating example is the sentence: I drove 
my aunt from Peoria's car. The difficulty is that  a 
deterministic parser must attach the NP "my aunt" 
to the tree it is constructing before evaluating the 
PP. If this can only be done in terms of the par- 
ent relation, the NP will be attached to the VP as 
its object. It is not until the genitive marker on 
"Peoria's" is detected that  the correct a t tachment  
is clear. The D-theory parser avoids the trap by 
making only the judgment that  the VP dominates 
the NP by a path of length at least one. Subsequent 
refinement can either add intervening components 
or not. Thus in this case, when "my aunt" ends up 
as part  of the determiner of the object rather than 
the object itself, it is not inconsistent with its origi- 
nal placement. It is still dominated by the VP, just 
not immediately. When the analysis is complete, a 
tree, the standard referent, can be extracted from 
the description by taking immediate domination as 
the parent relation. 
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In other examples given in (Marcus, Hindle &; 
Fleck, 1983) the left-of (linear precedence) rela- 
tion is partially specified during parsing, with in- 
dividuals related by "left-of or equals" or "left-of 
or dominates". The important  point is that  once 
a relationship is asserted, it is never subsequently 
rescinded. The D-theory parser builds structures 
which are always a partial description of its final 
product. These structures are made more specific, 
as parsing proceeds, by adding additional relation- 
ships. 

Our understanding of the difficulty ordinary de- 
terministic parsers have with these constructions is 
that  they are required to build a structure cover- 
ing an initial segment of the input at a time when 
there are multiple distinct trees that  are consistent 
with that  segment. The D-theory parsers succeed 
by building structures that contain only those re- 
lationships that  are common to all the consistent 
trees. Thus the choice between alternatives for the 
relationships on which the trees differ is deferred 
until they are distinguished by the input, possibly 
after semantic analysis. 

A similar situation occurs when Tree-Adjoining 
Grammars  are integrated into the unification-based 
framework. In TAGs, syntactic structures are built 
up from sets of elementary trees by the adjunction 
operation, where one tree is inserted into another 
tree in place of one of its nodes. Here the difficulty 
is that  adjunction is non-monotonic in the sense 
that  there are relationships that hold in the trees 
being combined that do not hold in the resulting 
tree. In (Vijay-Shanker, i992), building on some of 
the ideas from D-theory, a version of TAG is intro- 
duced which resolves this by manipulating partial 
descriptions of trees, termed quasi-trees. Thus an 
elementary structure for a transitive verb might be 
the quasi-tree a '  rather than the tree a (Figure I). 
In a ~ the separation represented by the dotted l ine  
between nodes referred to by vpl and vp2 denotes a 
path of length greater than or equal to zero. Thus 
a '  captures just those relationships which are true 
in a and in all trees derived from a by adjunc- 
tion at VP. In this setting trees are extracted from 
quasi-trees by taking what is termed a circumscrip- 
live reading, where each pair of nodes in which one 
dominates the other by a path that  is possibly zero 
is identified. 

This mechanism can be interpreted in a manner 
similar to our interpretation of the use of partial 
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descriptions in D-theory parsers. We view a tree 
in which adjunction is permit ted  as the set of all 
trees which can be derived from it by adjunction. 
Tha t  set is represented by the quasi-tree as the set 
of all relationships that  are common to all of its 
members.  

The connection between partial  descriptions of 
trees and the sets of trees they describe is made 
explicit in (Vijay-Shanker & Schabes, 1992). Here 
quasi-trees are used in developing a compact  rep- 
resentation of a Lexicalized TAG grammar .  The 
lexicon is organized hierarchically. Each class of 
the hierarchy is associated with that  set of relation- 
ships between individuals which are common to all 
trees associated with the lexical i tems in the class 
but not (necessarily) common to all trees associated 
with items in any super-class. Thus the set of trees 
associated with i tems in a class is characterized by 
the conjunction of the relationships associated with 
the class and those inherited from its super-classes. 
In the case of transitive verbs, figure 2, the rela- 
tionships in a l  can be inherited from the class of 
all verbs, while the relationships in a2 are associ- 
ated only with the class of transitive verbs and its 
sub-classes. 

The structure a '  of figure 1 can be derived by 
combining a2 with a l  along with the assertion that  
v2 and Vl name the same object. In any tree 
described by these relationships either the node 
named vpl must  dominate  vp~ or vice versa. Now 
in a l ,  the relationship "vpl dominates  vl" does not 
itself preclude vpx and vl from naming the same ob- 
ject. We can infer, however, f rom the fact that  they 
are labeled incompat ibly that  this is not the case. 
Thus the path  between them is at least one. From 
a2 we have that  the pa th  between vp2 and v2 is 
precisely one. Thus in all cases vpl must  dominate  
vp2 by a pa th  of length greater than or equal to 
zero. Hence the dashed line in a '. 

The common element in these three applications 
is the need to manipula te  structures that  partially 
describe trees. In each case, we can understand 
this as a need to manipula te  sets of trees. The 
structures, which we can take to be quasi-trees in 
each case, represent these sets of trees by capturing 
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the set of relationships tha t  are common to all trees 
in the set. Thus we are interested in quasi-trees not 
just  as part ial  descriptions of individual trees, but  
as a mechanism for manipula t ing  sets of trees. 

Reasoning, as in the LTAG example,  about  the 
structures described by combinat ions of quasi-trees 
requires some mechanism for manipula t ing  the 
quasi-trees formally. Such a mechanism requires, 
in turn, a definition of quasi-trees as formal  struc- 
tures. While quasi-trees were introduced in (Vijay- 
Shanker, 1992), they have not been given a precise 
definition. The  focus of the work described here is 
a formal  definition of quasi-trees and the develop- 
ment  of a mechanism for manipula t ing  them. 

In the next section we develop an intuitive un- 
derstanding of the s tructure of quasi-trees based 
on the applications we have discussed. Following 
that ,  we define the syntax  of a language capable 
of expressing descriptions of trees as formulae and 
introduce quasi-trees as formal  structures tha t  de- 
fine the semantics of that  language. In section 4 
we establish the correspondence between these for- 
mal  models and our intuitive idea of quasi-trees. 
We then turn to a proof  system, based on semantic  
tableau, which serves not only as a mechanism for 
reasoning about  tree structures and checking the 
consistency of their descriptions, but  also serves to 
produce models of a given consistent description. 
Finally, in section 7 we consider mechanisms for de- 
riving a representative tree f rom a quasi-tree. We 
develop one such mechanism,  for which we show 
that  the tree produced is the circumscriptive read- 
ing in the context of TAG, and the s tandard  refer- 
ent in the context of D-theory. Due to space limi- 
tations we can only sketch many  of our proofs and 
have omit ted  some details. The omi t ted  mater ia l  
can be found in (Rogers & Vijay-Shanker,  1992). 

2 Q u a s i - T r e e s  
In this section, we use the te rm relationship to in- 

formally refer to any positive relationship between 
individuals which can occur in a tree, "a is the par-  
ent of b" for example.  We will say tha t  a tree satis- 
fies a relationship if that  relationship is true of the 
individuals it names in tha t  tree. 
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Figure 2. Structure Sharing in a Representat ion of Elementary Structures 

I t ' s  clear, f rom our discussion of their applica- 
tions, tha t  quasi-trees have a dual nature  - -  as a 
set of trees and as a set of relationships. In for- 
malizing them,  our fundamenta l  idea is to identify 
those natures.  We will say tha t  a tree is (partially) 
described by a set of relationships if every relation- 
ship in the set is true in the tree. A set of trees is 
then described by a set of relationships if each tree 
in the set is described by the set of relationships. 
On the other hand, a set of trees is characterized by 
a set of relationships if it is described by tha t  set 
and if every relationship tha t  is common to all of 
the trees is included in the set of relationships. This  
is the identity we seek; the quasi-tree viewed as a 
set of relationships characterizes the same quasi- 
tree when viewed as a set of trees. 

Clearly we cannot easily characterize arbi t rary  
sets of trees. As an example,  our sets of trees will 
be upward-closed in the sense that ,  it will contain 
every tree tha t  extends some tree in the set, ie: that  
contains one of the trees as an initial sub-tree. Sim- 
ilarly quasi-trees viewed as sets of relationships are 
not arbi t rary  either. Since the sets they character- 
ize consist of trees, some of the structural  propert ies 
of trees will be reflected in the quasi-trees. For in- 
stance, if the quasi-tree contains bo th  the relation- 
ships '% dominates  b" and "b dominates  c" then 
every tree it describes will satisfy "a dominates  c" 
and therefore it must  contain that  relationship as 
well. Thus many  inferences tha t  can be made  on 
the basis of the s tructure of trees will carry over to 
quasi-trees. On the other hand, we cannot make 
all of these inferences and mainta in  any distinction 
between quasi-trees and trees. Further, for some 
inferences we will have the choice of making the 
inference or not. The  choices we make in defining 
the s tructure of the quasi-trees as a set of relation- 
ships will determine the s tructure of the sets of trees 
we can characterize with a single quasi-tree. Thus 
these choices will be driven by how much expressive 
power the applicat ion needs in describing these sets. 
Our guiding principle is to make the quasi-trees as 
tree-like as possible consistent with the needs of our 
applications. We discuss these considerations more 
fully in (Rogers &5 Vijay-Shanker,  1992). 

One inference we will not make is as follows: from 
"a dominates  b" infer either "a equals b" or, for 
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some a '  and b', "a dominates  a', a' is the parent  of 
b', and b' dominates  b". In structures that  enforce 
this condition pa th  lengths cannot be left part ial ly 
specified. As a result, the set of quasi-trees required 
to characterize s '  viewed as a set of trees, for in- 
stance, would be infinite. 

Similarly, we will not make the inference: for all 
a, b, either "a is left-of b", "b is left-of a",  "a dom- 
inates b", or "b dominates  a".  In these structures 
the left-of relation is no longer partial ,  ie: for all 
pairs a, b either every tree described by the quasi- 
tree satisfies "a is left-of b" or none of them do. This 
is not acceptable for D-theory, where both  the anal- 
yses of "pseudo-passives" and coordinate structures 
require single structures describing sets including 
both  trees in which some a is left-of b and others 
in which the same a is either equal to or properly 
dominates  that  same b (Marcus, Hindle & Fleck, 
1983). 

Finally, we consider the issue of negation. If a 
tree does not satisfy some relationship then it sat- 
isfies the negation of tha t  relationship, and vice 
versa. For quasi-trees the si tuat ion is more subtle. 
Viewing the quasi-tree as a set of trees, if every tree 
in tha t  set fails to satisfy some relationship, then 
they all satisfy the negation of that  relationship. 
Hence the quasi-tree must  satisfy the negated rela- 
tionship as well. On the other hand, viewing the 
quasi-tree as a set of relationships, if a part icular  
relationship is not included in the quasi-tree it does 
not imply that  none of the trees it describes satis- 
fies that  relationship, only tha t  some of those trees 
do not. Thus it may  be the case that  a quasi-tree 
neither satisfies a relationship nor satisfies its nega- 
tion. 

Since trees are completed objects, when a tree 
satisfies the negation of a relationship it will always 
be the case tha t  the tree satisfies some (positive) re- 
lationship tha t  is incompatible  with the first. For 
example,  in a tree "a does not dominate  b" iff "a 
is left-of b", "b is left-of a", or "b properly dom- 
inates a". Thus there are inferences that  can be 
drawn from negated relationships in trees that  may 
be incorporated into the structure of quasi-trees. In 
making these inferences, we dispense with the need 
to include negative relationships explicitly in the 
quasi-trees. They can be defined in terms of the 



positive relationships. The price we pay is that  to 
characterize the set of all trees in which "a does 
not dominate b", for instance, we will need three 
quasi-trees, one characterizing each of the sets in 
which "a is left-of b", "b is left-of a", and % prop- 
erly dominates a". 

3 L a n g u a g e  
Our language is built up from the symbols: 

K - -  non-empty countable set of names, 1 
r - -  a distinguished element of K,  the root 
<1, ~ + ,  ,~*, --< 

- -  two place predicates, parent, 
proper domination, domination, 
and left-of respectively, 

- -  equality predicate, 
A ,  V,  -~ - -  usual logical connectives 
(,) ,  [, ] - -  usual grouping symbols 

Our atomic formulae are t ,~ u, t ¢+ u, t <* u, t -< 
u, and t ~ u, where t, u • K are terms. Literals are 
atomic formulae or their negations. Well-formed- 
formulae are generated from atoms and the logical 
connectives in the usual fashion. 

We use t, u, v to denote terms and ¢, ¢ to denote 
wffs. R denotes any of the five predicates. 

3 . 1  M o d e l s  
Quasi-trees as formal structures are in a sense a 

reduced form of the quasi-trees viewed as sets of 
relationships. They incorporate a canonical sub- 
set of those relationships from which the remaining 
relationships can be deduced. 

D e f i n i t i o n  1 A model is a tuple (H , I ,  7),79,.A,£), 
where: 

H is a non-empty universe, 
iT. is a partial function from K to Lt 

(specifying the node referred to by each name), 
7 9, .4, 79, and £ are binary relations over It 

(assigned to % ,a +, ,a*, and -4 respectively). 

Let T( denote 27(r). 

D e f i n i t i o n  2 A quasi-tree is a model satisfying the 
conditions Cq : 

For all w, x, y, z • 11, 
c~  (~,~)  •79, 
c =  (z, =) • 79, 
c a  (=, y), (y, ~) • 79 ~ (=, ~) • 79, 
c 4  (~, ~), (y, ~) • 79 

(=, y) • 79 or (y, =) • 79, 
c 5  (=, y) • ,4 ~ (=, y) • 79, 
c a  (x,y)  • . 4  and (w,x ) ,  (y, z) • 79 ::~ 

(w, ~) • A, 
c ~  (=, y) • 19 ~ (z, y) • A 
c8  (z, z) • 79 

1 We use  names r a t h e r  t h a n  constants to clarify t he  l ink 
to desc r ip t ion  theory .  
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(z, y) • z: or (y, z) • z: 
or (y, =) • v or (z, y) • 79, 

v 0  (=, y) • z and (=, w), (y, z) • 79 
(w, z) • £, 

C l o  (x,y) • z and (w,x) •79  
(w, y) • z or (~, ~), (~, y) • A, 

C~1 (~, y) • Z and (~o, y) • 79 
(~, w) • C or (w, =), (w, y) • .4, 

c ~ 2  (~, y) • z and (y, z) • C ~ (~, z) • C, 
And meeting the additional condition: for  every 
x , z  • U the set B=z = {Y I (x ,Y) , (Y ,Z)  • 79} 
is finite, ie: the length of path from any node to 
any other is finite. 2 
A quasi-tree is consistent iff  

CC~ (x,y) • A ~ (y,x) ¢ 79, 
C C 2  (z, y) • £ =:, 

(=, y) ¢ 79, (y, =) ¢ 79, and (y, =) ¢ z:. 
It is normal iff 

R C x  for  all x # y • H, either 
(~, y) ¢ 79) or (y, ~) ¢ 7). 

At least one normal, consistent quasi-tree ( that  
consisting of only a root node) satisfies all of these 
conditions simultaneously. Thus they are consis- 
tent. It is not hard to exhibit a model for each 
condition in which that  condition fails while all of 
the others hold. Thus the conditions are indepen- 
dent of each other. 

Trees are distinguished from (ordinary) quasi- 
trees by the fact that  79 is the reflexive, transi- 
tive closure of P ,  and the fact that  the relations 
79, 79, ,4, £ are maximal  in the sense that  they can- 
not be consistently extended. 

D e f i n i t i o n  3 A consistent, normal quasi-tree M 
is a tree iff 
T e l  79M = (7~M)*, 
T C 2  for  all pairs (x, y) • U M X l~ M, 

exactly one of the following is true: 
(=, y), (y,z) • 79M; (z,y) • .AM; 
(y, =) • A M; (=, y) • z:M; or (y, =) • 1: M. 

Note that  T C 1  implies that  .A M -- (79M)+ as well. 
It is easy to verify that  a quasi-tree meets these con- 
ditions iff (H M, 79M) is the graph of a tree as com- 
monly defined (Aho, Hopcroft & Ullman, 1974). 

3 . 2  S a t i s f a c t i o n  
The semantics of the language in terms of the 

models is defined by the satisfaction relation be- 
tween models and formulae. 

D e f i n i t i o n  4 A model M satisfies a formula ¢ 
(M ~ ¢) as follows: 

2 T h e  add i t i ona l  cond i t i on  exc ludes  " n o n - s t a n d a r d "  m o d -  
els which  inc lude  c o m p o n e n t s  n o t  c o n n e c t e d  to t h e  ro o t  b y  
a f ini te  s equence  of  i m m e d i a t e  d o m i n a t i o n  l inks .  



M ~ t,~* u i f f  
M ~ t < *  u iff 

M ~ t ,~ u i f f  

M ~ t C~ u i ff 

M ~ t ,~+ u iff 
M ~ t , ~ + u  iff 

M ~ t < u  iff 

M ~ t -.< u i f f  
M ~ ~t ~ u iff 

M ~" ,~ f f  iff 
M ~ ¢ A ¢  iff 

M ~ - ~ ( ¢ A ¢ )  i f f  
M k t V ¢  iff 

(zM(t),Z~(~)) e VM; 
(ZM(t), Z~(U)) ~ L ' ,  
(ZM(~),ZM(t)) • C ~ ,  
or (z~(~),zM(t)) • .4"; 
( z ' ( t ) , z ' ( ~ ) )  • v "  
a.d (ZM(u),Z~(t)) • VM; 
(ZM(t), ZM(,,)) • .4 M, 
(ZM(u),ZM(t)) • ,4 M, 
(Z'(t),  Z'(,.,)) • c ' ,  
or (z ' (~) ,zM(t))  • c M 
(zu(t),ZM(u)) • AM; 
(ZM(,,),Z~(t)) • V M, 
(ZM(t),ZM(~)) • z~ ~, 
or (ZM(~),ZM(t)) • CM; 
(ZM(t),ZM(~)) • vM; 
(zM(u),z~(t)) • v ~,  
(z~(t),Z~(u)) • z: ~, 
(ZM(u), :z:M(t)) • z: ~ ,  or 
(z~(t), =), (=,z~(u)) • A ~, 

for some x • l~M ; 
( z ' ( t ) , z ~ ( ~ ) )  • c;  
(z~(~),z~(t))  • ~, 
(IM(t),:~M(u)) • V, 

or (z~(~) , z~( t ) )  • v ;  
U ~ ¢ ;  
M ~ ¢  a n d M  ~ ¢ ;  
M ~ ¢  o r M ~ - - l ¢ ;  
M ~ ¢ o r M ~ ¢ ;  

M ~ - ~ ( ¢ V ¢ )  i f f M ~ - ~ ¢  a n d M ~ ' ~ ¢ .  

In addition we require that ZM(k)  be defined for all 
k occurring in the formula. 

It is easy to verify that for all quasi-trees M 

(3t, u, R)[M ~ t R u,-~t R u] ==~ M inconsistent. 

If 2: M is surjective then the converse holds as well. 
It is also not hard to see that if T is a tree 

4 C h a r a c t e r i z a t i o n  
We now show that this formalization is complete 

in the sense that a consistent quasi-tree as defined 
characterizes the set of trees it describes. Recall 
tha t  the quasi-tree describes the set of all trees 
which satisfy every literal formula which is satis- 
fied by the quasi-tree. It characterizes that set if 
every literal formula which is satisfied by every tree 
in the set is also satisfied by the quasi-tree. The 
property of satisfying every formula which is satis- 
fied by the quasi-tree is captured formally by the 
notion of subsumption, which we define initially as 
a relationship between quasi-trees. 
Def in i t ion  5 Subsumption. 
Suppose M = (l~M,~ M 7)M,'DM,.AM,f-.M) and 

t M ~ M j M ~ M ~ M I M ~ M = (14 ,Z ,7 ) ,7) ,,4 ,£  ) are consis- 
tent quasi-trees, then M subsumes M z (M ~ M I) 
iff there is a function h : lA M ~ 14 M' such that: 
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zM'( t )  = h(7:M(t)), 
(x, y) e 7)M =V (h(x), h(y)) e 7)M' 
(x, y) e V M ~ (h(z), h(y)) E 7 )M', 
(x, y) E .A M =v (h(x), h(y)) e .A M', 
(x, y) e £M ~ (h(x),h(y)) e £M'. 

We now claim that any quasi-tree Q is subsumed 
by a quasi-tree M iff it is described by M. 

L e m m a  1 If  M and Q are normal, consistent 
quasi-trees and 3 M is surjective, then M E Q iff 
for all formulae ¢, M ~ ¢ ~ Q ~ ¢. 

The proof in the forward direction is an easy in- 
duction on the structure of ¢ and does not depend 
either on normality or surjectiveness of I M. The 
opposite direction follows from the fact that, since 
Z M is surjective, there is a model M'  in which/~M' 
is the set of equivalence classes wrt ~ in the domain 
of Z M, such that M E M~ E Q- 

The next lemma allows us, in many cases, to as- 
sume that a given quasi-tree is normal. 

L e m m a  2 For every consistent quasi-tree M, 
there is a normal, consistent quasi-tree M ~ such 
that M E M~, and for all normal, consistent quasi- 
tree M ' ,  M E M "  ::¢. M ~ E M ' .  
The lemma is witnessed by the quotient of M with 
respect to S M, where sM = { (x, y) I (x, y), (y, x) e 
vM}. 

We can now state the central claim of this sec- 
tion, that every consistent quasi-tree characterizes 
the set of trees which it subsumes. 

Proposition 1 Suppose M is a consistent quasi- 
tree. For all literals ¢ 

M ~ ¢ ¢~ (VT, tree)[M E T ::~ T ~ ¢] 

The proof follows from two lemmas. The first estab- 
lishes that the set of quasi-trees subsumed by some 
quasi-tree M is in fact characterized by it. The sec- 
ond extends the result to trees. Their proofs are in 
(Rogers & Vijay-Shanker, 1992). 

L e m m a  3 If  M is a consistent quasi-tree and ¢ a 
literal then 

(3Q, consistent quasi-tree)[M E_ Q and Q ~ -~¢] 

L e m m a  4 I f  M is a consistent quasi-tree, then 
there exists a tree T such that M E T. 

Proof (of  proposition 1) 

(VT) [M _ T :=~ T b ¢] 
¢=~ -~(3T)[M _ T and T ~ -~¢] 

(:=~ by consistency, ¢== by completeness of trees) 
¢V -~(3Q, consistent q-t)[M E Q and Q ~ -~¢] 

(==~ by lemma 4, ¢= since T is a quasi-tree) 

(::~ by lemma 3, ¢=: by lemma 1) O 



5 S e m a n t i c  T a b l e a u  
Semantic tableau as introduced by Beth (Beth, 

1959; Fitting, 1990) are used to prove validity by 
means of refutation. We are interested in satisfi- 
ability rather than validity. Given E we wish to 
build a model of E if one exists. Thus we are in- 
terested in the cases where the tableau succeeds in 
constructing a model. 

The distinction between these uses of semantic 
tableau is important ,  since our mechanism is not 
suitable for refutational proofs. In particular, it 
cannot express "some model fails to satisfy ¢" ex- 
cept as "some model satisfies - ¢ " .  Since our logic is 
non-classical the first is a strictly weaker condition 
than the second. 

D e f i n i t i o n  6 Semantic Tableau: 
A branch is a set, S, of formulae. 
A configuration is a collection, {S1 , . . . , S~} ,  of 
branches. 
A tableau is a sequence, (C1 , . . . ,  Cnl, of configura- 
tions where each Ci+~ is a result of the application 
of an inference rule to Ci. 
I f  s is an inference rule, ( C i \ { S } )  U 

{sl , . . . ,  s',} is the result of applying the rule to G 
iff z e G .  
A tableau for ~, where E is a set of formulae, is a 
tableau in which C1 = {E}. 

A branch is closed iff (9¢)[{¢,--,¢} C 5']. A con- 
figuration is closed iff each of its branches is closed, 
and a tableau is closed iff it contains some closed 
configuration. A branch~ configuration, or tableau 
that  is not closed is open. 

5.1 Inference Rules 
Our inference rules fall into three groups. The 

first two, figures 3 and 4, are s tandard rules 
for propositional semantic tableau extended with 
equality (Fitting, 1990). The third group, figure 5, 
embody the properties of quasi-trees. 

The --,,~ rule requires the introduction of a new 
name into the tableau. To simplify this, tableau are 
carried out in a language augmented with a count- 
ably infinite set of new names from which these are 
drawn in a systematic way. 

The following two lemmas establish the correct- 
ness of the inference rules in the sense that  no rule 
increases the set of models of any branch nor elim- 
inates all of the models of a satisfiable branch. 

L e m m a  5 Suppose S'  is derived from S in some 
tableau by some sequence of rule applications. Sup- 
pose M is a model, then: 

M ~ S ' : : ~ M ~ S .  

This follows nearly directly from the fact that  all of 
our rules are non-strict, ie: the branch to which an 
inference rule is applied is a subset of every branch 
introduced by its application. 

L e m m a  6 I f  S is a branch of some configuration 
of a tableau and ,S' is the set of branches resulting 
from applying some rule to S, then i f  there is a 
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consistent quasi-tree M such that M ~ S, then for  
some 5;~ E S '  there is a consistent quasi-tree M '  
such that M '  ~ S~. 

We sketch the proof. Suppose M ~ S. For all 
but --,,a it is straightforward to verify M also sat- 
isfies at least one of the S~. For ~,~, suppose M 
fails to satisfy either u ,~* t or -,t ,~* u. Then we 
claim some quasi-tree satisfies the third branch of 
the conclusion. This  must  map  the new constant k 
to the witness for the rule. M has no such require- 
ment,  but since k does not occur in S, the value of 
2: M(k) does not affect satisfaction of S. Thus we 
get an appropriate  M '  by modifying z M' to map  k 
correctly. 

C o r o l l a r y  1 I f  there is a closed tableau for  ¢ then 
no consistent quasi-tree satisfies ¢. 

No consistent quasi-tree satisfies a closed set of for- 
mulae. The result then follows by induction on the 
length of the tableau. 

6 Construct ing Models  
We now turn to the conditions for a branch to be 

sufficiently complete to fully specify a quasi-tree. 
In essence these just  require tha t  all formulae have 
been expanded to atoms,  that  all substi tutions have 
been made and that  the conditions in the definition 
of quasi-trees are met .  

6 . 1  S a t u r a t e d  B r a n c h e s  
D e f i n i t i o n  7 A set of sentences S is downward 
saturated iff for  all formulae ¢, ¢, and terms t, u, v: 

1-Is C V C E S = v . ¢ E S  o r C E S  
1-13 -',(¢ V ¢) E S =¢, ",¢ E S and ",¢ E S 
I-I 4 C A C E S =~ ff E S and C E S 

1-I6 t ,~ t E S for  all terms t occurring in S 
117 tl ~ u l , t2  ~, uz E S =~ 

tl ,~* t2 E S ~ ul ,~* u2 E S, 
tl ,~+ t2 E S =¢, ul ,~+ u2 E S, 

t l  ~ t2 E S ==~ u 1 <l u 2 ~ S,  

t l  -< t2 E S =¢. Ul -.4 u2 E S,  
tl ~ t2 E S ~ ua ,~ u2 E S. 

t118 r ,~* t E S for  all terms t occurring in S 
H 9  t ~ u E S ~ t , ~ *  u E S  
111,o t ~ u E S =C, -,t ,~* u E S or ~u ,~* t E S 
11,, t,~* u ,u~*  t E S ~ t ~ u E S  
I - I , z  t ,~" u, u ,~* v E S ~ t ,~* v E S 
H * 3  t ,~* v, u ,~* v E S ~ 

t ,~* u E S or u ,~* t E S 
H ,  4 - . t  ,~* u E S 

t-< u E S  o r u - < t  G S  o r u , ¢  t E S  
H ,  5 t ,~+ u E S ~ t ,~* u, ~u  ,~* t E S 
H , 6  t ,~+ u,s,~* t,u,~* v E S  ~ s,~+ v ~ S  
H * 7  ~t  ,~+ u E S ~ --t ,~* u E S or  u .~* t E S 
H , 8  t ,~ u E S ::C, t ,~+ u E S 



S,.¢ v ¢  
s , ¢ v ¢ , ¢  I s , ¢ v ¢ , ¢  

S , ¢ A ¢  
A 

S ,¢  A ¢ , ¢ , ¢  

S,  "m "~ ~ 

S,-~-~¢, ¢ 

V 
s,-X¢ v ¢) 

s,-X¢ v ¢),-~¢,-~¢ 
~V 

S,-~(¢ A ¢)  

S,-~(¢ A ¢),  "-~¢ I s , - 4 ¢  A ¢),-'~¢ 
-~A 

Figure 3. Elementary Rules 

1-1, 9 t ,a v E S :----~ u -4 v E S or v -4 u E S 
or u ,~* t E S or v ,~* u E S 

H 2 o  ",t ,~ u E S ::~ u ,~* t E S or-~t  ,~* u E S 
or t ,~+ w,  w ,~+ u E S,  f o r  some t e rm w 

H 2 x  t -4 u E S ~ -~t ,~* u, -~u ,~* t ,  --,u -4 t E S 
I-I2~* t -4 u, t ,~* s , u  ,~* v E S ~ s -4 v E S 

H 2 3  t -4 u, v ,~* t E S 

v -4 u E S or v ,~ + t, v ,~ + u E S 
1-124 t -4 u, v ,l* u E S =~ 

t -4 v E S or v ,~ + t, v ,~ + u E S 

H 2 5  t - 4 u ,  u - 4 v E S ~ t - 4 v E S  
H 2 6  ~ t - 4  u E  S=¢, 

u -4 t E S or t ,~* u E S or u ,~* t E S .  

The next lemma (essentially Hintikka's lemma) 
establishes the correspondence between saturated 
branches and quasi-trees. 

L e m m a  7 For every  consis tent  downward satu- 
rated set  o f  f o rmulae  S there is a consis tent  quasi- 
tree M such that M ~ S .  For every f in i te  consis- 
tent  downward saturated set o f  formulae ,  there is a 
such a quasi-tree which is f ini te .  

Again, we sketch the proof. Consider the set T ( S )  
of terms occurring in a downward saturated set S. 
I-I6 and I-/7 assure that  ~ is reflexive and substi- 
tutive. S ince t  ~ u , u ~ v  E S = ~ t  ~ v  E S, and 
u ~ u , u , ~ v E  S ~ v ~  u E S b y  substitution of 
v for (the first occurrence of) u, it is transitive and 
symmetric as well. Thus ~ partitions T ( S )  into 
equivalence classes. 

Define the model H as follows: 
u n = 7 " ( s ) / ~ ,  

z ~ ( k )  = [k]~, 
:pH = {([t]~., [u]~) I t  '~ u ~ S}, 
: p .  = {([t]~., [u]~.) I t  "~* u E S}, 
.A H = {([t]~,[u]~) I t,~+ u E  S}, 
c "  = {([t]~, [u]~) I t -4 ~ ~ s } .  

Since each of the conditions C1  through C x 2  corre- 
sponds directly to one of the saturation conditions, 
it is easy to verify that  H satisfies Cq. It is equally 
easy to confirm that  H is both consistent and nor- 
mal. 
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We claim that  ¢ E S =¢- H ~ ¢. As is usual for 
versions of Hintikka's lemma, this is established by 
an induction on the structure of ¢. Space prevents 
us from giving the details here. 

For the second part  of the lemma, if the set of 
formulae is finite, then the set of terms (and hence 
the set of equivalence classes) is finite. 

6 . 2  S a t u r a t e d  T a b l e a u  
Since all of our inference rules are non-strict, if a 

rule once applies to a branch it will always apply to 
a branch. Without  some restriction on the applica- 
tion of rules, tableau for satisfiable sets of formulae 
will never terminate. What  is required is a control 
strategy that  guarantees that  no rule applies to any 
tableau more than finitely often, but  that  will al- 
ways find a rule to apply to any open branch that  
is not downward saturated. 

D e f i n i t i o n  8 Let EQs be the reflexive, s y m m e t r i c ,  
transi t ive closure o f  { (t, u) l t ~ u e S } .  

A n  in ference  rule, I ,  applies to some branch S 
o f  a configuration C i f f  

• S is open 

• S • {Si  I Si results f rom  application o f  I to S }  
• i f  I introduces a new constant  a occurring in 

fo rmulae  Cj(a) E Si, there is no t erm t and 
pairs (u l ,  va), (u2, v2), . . . E EQs such that f o r  
each of the Cj, ¢{t/a, ul/Vl,~2/v2,...} E S. 
(Where  ¢ { t / a ,  Ul/Vl, U2/V2,...} denotes the re- 
sult o f  un i formly  subst i tut ing t f o r  a, u l  f o r  v l ,  
etc., in ¢ . )  

The last condition in effect requires all equality 
rules to be applied before any new constant is in- 
troduced. It prevents the introduction of a formula 
involving a new constant if an equivalent formula 
already exists or if it is possible to derive one using 
only the equality rules. 

We now argue that  this definition of applies does 
not terminate any branch too soon. 

L e m m a  8 I f  no inference rule applies to an open 
branch S o f  a configuration, then S is downward 
saturated. 

This follows directly from the fact that  for each of 
H 1  through H 2 6 ,  if the implication is false there 
is a corresponding inference rule which applies. 



5: 
,5', t ,~ t 

any te rm t 
occurr ing in 5: 

~ (reflexivity of ,~) 
5:, t u, ¢ ( t )  

s,t  u, +(t), ¢(?) 
~ s  (subs t i tu t ion)  

¢ ( i )  denotes the result of subs t i tu t ing  u for any or all occurrences o f t  in ¢. 

Figure 4. Equal i ty  Rules 

5: 
5:, r <1" t 

t any te rm occurr ing in S 
o r t = r  

<1" ( r  m i n i m u m  wrt  <1") 

5:, t ~ u (reflexivity of <1") 
S ,  t ~ u,  t .~* u ,  u ,~* t <1r 

5: , t  <1" U, u <1" t 

5:,t<1" u,  u ,~* t,  t ~, u 
* (an t i - symmet ry)  <1 a 

S , t  ~ U <1" 

5:, t  ~ u , - . t  <1* u [ 5: , t  # u , - ~ u  <1* t r'. 

S, t <1" u, u <1" v * ( t rans i t iv i ty)  
5:~ t <1" U~ U <1" V~ t <1" V <it 

5:, t .~* V~ U <1" V 
5:, t <1" v, u .~* v, t ,~* u [ 5:, t ,~* v, u .~* v, u <1" t <1~ (branches l inearly ordered)  

5:~ --,t <1" u 
---1<1" 

5:, -~t <1* u, t -4 u [ 5:,-~t<1" u , u - 4 t  [ S, "-,t <1* u, u <1 + t  

5:, t <1 + u 5:, t ,~+ u,  s <1" t ,  u <1" v 

5:,t<1 + u,  t <1* u,  --,u <1* t <1+1 5:,t<1 + u ,  s <1* t ,  u <1* v ,  s <1 + v ~1+ 2 

5:, - , t  <1 + u 5:t t <1 u 
-1<1 + <11 

5:, -~t <1 + u,  -~t 4* u I 5:,-.t<1 + u ,  u <1* t 5:, t <1u, t <1 + u 

5:, t <1v 
<12 

5: , t<1v ,  u - 4 v  [ 5 : , t<1v ,  v - 4 u  I 5 : , t<1v ,  u < 1 * t  [ 5 : , t<1v ,  v<1* u 
any te rm u occurr ing in 5:. 

S~ ~ t  <J u "n<1 
S , - . t  <1u, u <1* t [ S , - . t  ~ u , - ~ t  <1* u [ 5:, " . t  <1 u ,  t <1 + k ,  k <1 + u 

k new name  

5:, t -4 U S ,  t -4 U, t <1* 8, U <1" V 
-<a "42 

5: , t  -4 u ,  ~ t  <1" u ,  ~ u  <1" t ,  ~ U  -4 t 5:~t -4 u , t  <1" s ~ u  <1" V , s  -4 V 

5:, t -4 u ,  v <1* t 
-<a 

5:, t -4 u ,  v ,~* t ,  v -4 u [ 5:, t -4 u,  v ,~* t ,  v <1+ t ,  v <1+ u 

5:, t -4 u ,  v <1* u 

5:~ t -4 U, v '~*  u ,  t -4 v [ 

5: , t -4 U , U -4 V 
-<t 

5:~ t -4 U~ V "~* U~ V <1 + t~ V <1+ U 

5:, "~t -4 u 

S , t .-4 u , u -4 v , t -4 v 

"44 

, 5 ' , - - t - ~ u , u - ~ t  [ S , - - , t - 4u ,  t<1*u [ S , - - , t - 4u ,  u<1*t 

Figure 5. Tree Rules 

-,-< 
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Proposition 2 (Termination) All tableau for fi- 
nite sets of formulae can be extended to tableau in 
which no rule applies to the final configuration. 
This follows from the fact that the size of any 
tableau for finite sets of formulae has a finite upper 
bound. The proof is in (Rogers & Vijay-Shanker, 
1992). 

Proposition 3 (Soundness and Completeness) 
A saturated tableau for a finite set of formulae 
exists iff there is a consistent quasi-tree which sat- 
isfies E. 
Proof :  The forward implication (soundness) 
follows from lemma 7. Completeness follows from 
the fact that if E is satisfiable there is no closed 
tableau for E (corollary 1), and thus, by propo- 
sition 2 and lemma 8, there must be a saturated 
tableau for E. [] 

7 E x t r a c t i n g  T r e e s  f r o m  Q u a s i - t r e e s  
Having derived some quasi-tree satisfying a set 

of relationships, we would like to produce a "mini- 
mal" representative of the trees it characterizes. In 
section 3.1 we define the conditions under which a 
quasi-tree is a tree. Working from those conditions 
we can determine in which ways a quasi-tree M 
may fail to be a tree, namely: 

, (~oM)* is a proper subset of:D M, 

• L M and/or 7) M may be partial, ie: for some 
t ,u,  U ~: (t -~ uV-~t -~ u) or U ~ (t ,~* 
u V -~t ,~* u). 

The case of partial L: M is problematic in that, 
while it is possible to choose a unique representa- 
tive, its choice must be arbitrary. For our applica- 
tions this is not significant since currently in TAGs 
left-of is fully specified and in parsing it is always 
resolved by the input. Thus we make the assump- 
tion that in every quasi-tree M from which we need 
to extract a tree, left-of will be complete. That is, 
for all terms t ,u: M ~ t -~ uV-~t -~ u. Thus 
M ~ t ~* u V-~t ~* u ::v M ~ u ~* t. 

Suppose M ~ u ,~* t and M ~: (t 4" u V-~t ,~* u), 
and that zM(u) = x and zM(t)  = y. In D-theory, 
this case never arises, since proper domination, 
rather than domination, is primitive. It is clear that 
the TAG applications require that x and y be iden- 
tified, ie: (y, x) should be added t o / ) m .  Thus we 
choose to complete 7) M by extending it. Under the 
assumption that /: is complete this simply means: 
if M ~ -~t ,~* u, 7) M should be extended such that 
M ~ t ,~* u. That M can be extended in this way 
consistently follows from lemma 3. That the re- 
sult of completing ~)M in this way is unique follows 
from the fact that, under these conditions, extend- 
ing "D M does not extend either ,A M or  ~ M .  The 
details can be found in (Rogers & Vijay-Shanker, 
1992). 

In the resulting quasi-tree domination has been 
resolved into equality or proper domination. To 

arrive at a tree we need only to expand pM such 
that (,pM)* .: ~)M. In the proof of lemma 4 we 
show that this will be the case in any quasi-tree T 
closed under: 

(x, z) E A T and (Yy)[(z, y) fL A T or (y, z) ft A T] 
(z, z) • pT 

(x, y) • £w and (y, x) ~ £T U .A T 
u) • v r.  

The second of these conditions is our mechanism 
for completing/)M. The first amounts to taking 
immediate domination as the parent relation - -  
precisely the mechanism for finding the standard 
referent. Thus the tree we extract is both the cir- 
cumscriptive reading of (Vijay-Shanker, 1992) and 
the standard referent of (Marcus, Hindle & Fleck, 
1983). 
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