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ABSTRACT

In this paper we introduce a logic for describing
trees which allows us to reason about both the par-
ent and domination relationships. The use of dom-
ination has found a number of applications, such as
in deterministic parsers based on Description the-
ory (Marcus, Hindle & Fleck, 1983), in a com-
pact organization of the basic structures of Tree-
Adjoining Grammars (Vijay-Shanker & Schabes,
1992), and in a new characterization of the ad-
joining operation that allows a clean integration of
TAGs into the unification-based framework (Vijay-
Shanker, 1992) Our logic serves to formalize the
reasoning on which these applications are based.

1 Motivation

Marcus, Hindle, and Fleck (1983) have intro-
duced Description Theory (D-theory) which consid-
ers the structure of trees in terms of the domination
relation rather than the parent relation. This forms
the basis of a class of deterministic parsers which
build partial descriptions of trees rather than the
trees themselves. As noted in (Marcus, Hindle &
Fleck, 1983; Marcus, 1987), this approach is capa-
ble of maintaining Marcus’ deterministic hypothe-
sis (Marcus, 1980) in a number of cases where the
original deterministic parsers fail.

A motivating example is the sentence: I drove
my aunt from Peoria’s car. The difficulty is that a
deterministic parser must attach the NP “my aunt”
to the tree it is constructing before evaluating the
PP. If this can only be done in terms of the par-
ent relation, the NP will be attached to the VP as
its object. It is not until the genitive marker on
“Peoria’s” is detected that the correct attachment
is clear. The D-theory parser avoids the trap by
making only the judgment that the VP dominates
the NP by a path of length at least one. Subsequent
refinement can either add intervening components
or not. Thus in this case, when “my aunt” ends up
as part of the determiner of the object rather than
the object itself, it is not inconsistent with its origi-
nal placement. It is still dominated by the VP, just
not immediately. When the analysis is complete, a
tree, the standard referent, can be extracted from
the description by taking immediate domination as
the parent relation.
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In other examples given in (Marcus, Hindle &
Fleck, 1983) the left-of (linear precedence) rela-
tion is partially specified during parsing, with in-
dividuals related by “left-of or equals” or “left-of
or dominates”. The important point is that once
a relationship is asserted, it is never subsequently
rescinded. The D-theory parser builds structures
which are always a partial description of its final
product. These structures are made more specific,
as parsing proceeds, by adding additional relation-
ships.

Our understanding of the difficulty ordinary de-
terministic parsers have with these constructions is
that they are required to build a structure cover-
ing an initial segment of the input at a time when
there are multiple distinct trees that are consistent
with that segment. The D-theory parsers succeed
by building structures that contain only those re-
lationships that are common to all the consistent
trees. Thus the choice between alternatives for the
relationships on which the trees differ is deferred
until they are distinguished by the input, possibly
after semantic analysis.

A similar situation occurs when Tree-Adjoining
Grammars are integrated into the unification-based
framework. In TAGs, syntactic structures are built
up from sets of elementary trees by the adjunction
operation, where one tree is inserted into another
tree in place of one of its nodes. Here the difficulty
is that adjunction is non-monotonic in the sense
that there are relationships that hold in the trees
being combined that do not hold in the resulting
tree. In (Vijay-Shanker, 1992), building on some of
the ideas from D-theory, a version of TAG is intro-
duced which resolves this by manipulating partial
descriptions of trees, termed quasi-trees. Thus an
elementary structure for a transitive verb might be
the quasi-tree o’ rather than the tree o (Figure 1).
In o the separation represented by the dotted line.
between nodes referred to by vp; and vps denotes a
path of length greater than or equal to zero. Thus
o' captures just those relationships which are true
in @ and in all trees derived from « by adjunc-
tion at VP. In this setting trees are extracted from
quasi-trees by taking what is termed a ctrcumscrip-
tive reading, where each pair of nodes in which one
dominates the other by a path that is possibly zero
is identified.

This mechanism can be interpreted in a manner
similar to our interpretation of the use of partial



Figure 1. Quasi-trees

descriptions in D-theory parsers. We view a tree

in which adjunction is permitted as the set of all

trees which can be derived from it by adjunction.
That set is represented by the quasi-tree as the set
of all relationships that are common to all of its
members.

The connection between partial descriptions of
trees and the sets of trees they describe is made
explicit in (Vijay-Shanker & Schabes, 1992). Here
quasi-trees are used in developing a compact rep-
resentation of a Lexicalized TAG grammar. The
lexicon is organized hierarchically. Each class of
the hierarchy is associated with that set of relation-
ships between individuals which are common to all
trees associated with the lexical items in the class
but not (necessarily) common to all trees associated
with items in any super-class. Thus the set of trees
associated with items in a class is characterized by
the conjunction of the relationships associated with
the class and those inherited from its super-classes.
In the case of transitive verbs, figure 2, the rela-
tionships in «; can be inherited from the class of
all verbs, while the relationships in a9 are associ-
ated only with the class of transitive verbs and its
sub-classes.

The structure o' of figure 1 can be derived by
combining «g with a; along with the assertion that
vy and v; name the same object. In any tree
described by these relationships either the node
named vp; must dominate vpy or vice versa. Now
in ajq, the relationship “vp; dominates v1” does not
itself preclude vp; and v; from naming the same ob-
Jject. We can infer, however, from the fact that they
are labeled incompatibly that this is not the case.
Thus the path between them is at least one. From
oy we have that the path between vps and vy is
precisely one. Thus in all cases vp; must dominate
vpy by a path of length greater than or equal to
zero. Hence the dashed line in o/,

The common element in these three applications
is the need to manipulate structures that partially
describe trees. In each case, we can understand
this as a need to manipulate sets of trees. The
structures, which we can take to be quasi-trees in
each case, represent these sets of trees by capturing
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the set of relationships that are common to all trees
in the set. Thus we are interested in quasi-trees not
Just as partial descriptions of individual trees, but
as a mechanism for manipulating sets of trees.

Reasoning, as in the LTAG example, about the
structures described by combinations of quasi-trees
requires some mechanism for manipulating the
quasi-trees formally. Such a mechanism requires,
in turn, a definition of quasi-trees as formal struc-
tures. While quasi-trees were introduced in (Vijay-
Shanker, 1992), they have not been given a precise
definition. The focus of the work described here is
a formal definition of quasi-trees and the develop-
ment of a mechanism for manipulating them.

In the next section we develop an intuitive un-
derstanding of the structure of quasi-trees based
on the applications we have discussed. Following
that, we define the syntax of a language capable
of expressing descriptions of trees as formulae and
introduce quasi-trees as formal structures that de-
fine the semantics of that language. In section 4
we establish the correspondence between these for-
mal models and our intuitive idea of quasi-trees.
We then turn to a proof system, based on semantic
tableau, which serves not only as a mechanism for
reasoning about tree structures and checking the
consistency of their descriptions, but also serves to
produce models of a given consistent description.
Finally, in section 7 we consider mechanisms for de-
riving a representative tree from a quasi-tree. We
develop one such mechanism, for which we show
that the tree produced is the circumscriptive read-
ing in the context of TAG, and the standard refer-
ent in the context of D-theory. Due to space limi-
tations we can only sketch many of our proofs and
have omitted some details. The omitted material
can be found in (Rogers & Vijay-Shanker, 1992).

2 Quasi-Trees

In this section, we use the term relationship to in-
formally refer to any positive relationship between
individuals which can occur in a tree, “a is the par-
ent of b” for example. We will say that a tree satis-
fies a relationship if that relationship is true of the
individuals it names in that tree.



a,

S=(

NP

)

P,

VP =
P,

1%
I\bv

a, :
P,
Y np,
N v NP -

Figure 2. Structure Sharing in a Representation of Elementary Structures

It’s clear, from our discussion of their applica-
tions, that quasi-trees have a dual nature — as a
set of trees and as a set of relationships. In for-
malizing them, our fundamental idea is to identify
those natures. We will say that a tree is (partially)
described by a set of relationships if every relation-
ship in the set is true in the tree. A set of trees is
then described by a set of relationships if each tree
in the set is described by the set of relationships.
On the other hand, a set of trees is characterized by
a set of relationships if it is described by that set
and if every relationship that is common to all of
the trees is included in the set of relationships. This
is the identity we seek; the quasi-tree viewed as a
set of relationships characterizes the same quasi-
tree when viewed as a set of trees.

Clearly we cannot easily characterize arbitrary
sets of trees. As an example, our sets of trees will
be upward-closed in the sense that, it will contain
every tree that extends some tree in the set, ie: that
contains one of the trees as an initial sub-tree. Sim-
ilarly quasi-trees viewed as sets of relationships are
not arbitrary either. Since the sets they character-
ize consist of trees, some of the structural properties
of trees will be reflected in the quasi-trees. For in-
stance, if the quasi-tree contains both the relation-
ships “a dominates b” and “b dominates ¢” then
every tree it describes will satisfy “a dominates ¢”
and therefore it must contain that relationship as
well. Thus many inferences that can be made on
the basis of the structure of trees will carry over to
quasi-trees. On the other hand, we cannot make
all of these inferences and maintain any distinction
between quasi-trees and trees. Further, for some
inferences we will have the choice of making the
inference or not. The choices we make in defining
the structure of the quasi-trees as a set of relation-
ships will determine the structure of the sets of trees
we can characterize with a single quasi-tree. Thus
these choices will be driven by how much expressive
power the application needs in describing these sets.
Our guiding principle is to make the quasi-trees as
tree-like as possible consistent with the needs of our
applications. We discuss these considerations more
fully in (Rogers & Vijay-Shanker, 1992).

One inference we will not make is as follows: from
“a dominates b” infer either “a equals b” or, for

74

some a’ and ¥, “a dominates a’, a’ is the parent of
b’, and b’ dominates b”. In structures that enforce
this condition path lengths cannot be left partially
specified. As a result, the set of quasi-trees required
to characterize o’ viewed as a set of trees, for in-
stance, would be infinite.

Similarly, we will not make the inference: for all
a, b, either “a is left-of ”, “b is left-of a”, “a dom-
inates b”, or “b dominates a”. In these structures
the left-of relation is no longer partial, ie: for all
pairs a, b either every tree described by the quasi-
tree satisfies “a is left-of b” or none of them do. This
is not acceptable for D-theory, where both the anal-
yses of “pseudo-passives” and coordinate structures
require single structures describing sets including
both trees in which some a is left-of b and others
in which the same a is either equal to or properly
dominates that same b (Marcus, Hindle & Fleck,
1983).

Finally, we consider the issue of negation. If a
tree does not satisfy some relationship then it sat-
isfies the negation of that relationship, and vice
versa. For quasi-trees the situation is more subtle.
Viewing the quasi-tree as a set of trees, if every tree
in that set fails to satisfy some relationship, then
they all satisfy the negation of that relationship.
Hence the quasi-tree must satisfy the negated rela-
tionship as well. On the other hand, viewing the
quasi-tree as a set of relationships, if a particular
relationship is not included in the quasi-tree it does
not imply that none of the trees it describes satis-
fies that relationship, only that some of those trees
do not. Thus it may be the case that a quasi-tree
neither satisfies a relationship nor satisfies its nega-
tion.

Since trees are completed objects, when a tree
satisfies the negation of a relationship it will always
be the case that the tree satisfies some (positive) re-
lationship that is incompatible with the first. For
example, in a tree “a does not dominate b” iff “a
is left-of 4”7, “b is left-of a”, or “b properly dom-
inates @”. Thus there are inferences that can be
drawn from negated relationships in trees that may
be incorporated into the structure of quasi-trees. In
making these inferences, we dispense with the need
to include negative relationships explicitly in the
quasi-trees. They can be defined in terms of the



positive relationships. The price we pay is that to
characterize the set of all trees in which “a does
not dominate 5”, for instance, we will need three
quasi-trees, one characterizing each of the sets in
which “a is left-of §”, “b is left-of a”, and “b prop-
erly dominates a”.

3 Language
Our language is built up from the symbols:

K — non-empty countable set of names,’

r — a distinguished element of K, the root
q,at, 4%, <
— two place predicates, parent,
proper domination, domination,
and left-of respectively,
] — equality predicate,
A, V,— — usual logical connectives
(;),[,] — usual grouping symbols

Our atomic formulacaret qu,t < u, t <* u, t <
u, and t = u, where {, v € K are terms. Literals are
atomic formulae or their negations. Well-formed-
formulae are generated from atoms and the logical
connectives in the usual fashion.

We use t, u, v to denote terms and ¢, 9 to denote
wifs. R denotes any of the five predicates.

3.1 Models

Quasi-trees as formal structures are in a sense a
reduced form of the quasi-trees viewed as sets of
relationships. They incorporate a canonical sub-
set of those relationships from which the remaining
relationships can be deduced.

Definition 1 A model is a tuple (U,T,P,D, A, L),
where:

U 1s a non-emply universe,
Z s a partial function from K to U
(specifying the node referred to by each name),
P, A, D, end L are binary relations over U
(assigned to <, a*, <*, and < respectively).

Let R denote Z(r).

Definition 2 A quasi-tree is a model satisfying the
conditions C:

Forallw,z,y,z €U,

Ci1 (R,z) €D,

Cz2 (z,z)€D,

C3 (z,9),{y,2)eD=(z,2) €D,

Cq (z,2),{y,2) €D >
(z,9) €D or (y,z) €D,

Cs (z,9) € A= (z,y) €D,

C6 (z,y) € Aand (w,z),(y,2) €D =>
(w,2) € A,

C7 (g, y) eP=2>(z,y) €A

C8 (z,2)€eP =

1We use names rather than constants to clarify the link
to description theory.
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(z,y) €L or(y,z) €L
or{y,z) €D or (z,y) € D,
(z,y) € £ and (z,w),{y,z) €D =>
(w,2} € L,
Cio (z,y) € L and (w,z) €D =
(w,y) € L or (w,z), (w,y) € A,
Ci1 (z,y) € L and (w,y) €D =
(z,w) € L or {w,z),{w,y) € A,
Ci2 (z,y) € L and (y,z) € L = (z,2) € L,
And meeling the additional condition: for every
z,z € U the set B,, = {y | (z,9),{y,2) € D}
is fintle, te: the length of path from any node to
any other is finite. 2
A quasi-tree is consistent iff
CC1 (2,5) € A= (y,2) ¢ D,
CC2 (z,y)€e L=
(z,y) €D, (y,z) €D, and (y,z) ¢ L.

It is normal iff
RC1 forallz # y €U, either
(z,5) D or (y,2) & D.

At least one normal, consistent quasi-tree (that
consisting of only a root node) satisfies all of these
conditions simultaneously. Thus they are consis-
tent. It is not hard to exhibit a model for each
condition in which that condition fails while all of
the others hold. Thus the conditions are indepen-
dent of each other.

Trees are distinguished from (ordinary) quasi-
trees by the fact that D is the reflexive, transi-
tive closure of P, and the fact that the relations
P,D, A, L are maximal in the sense that they can-
not be consistently extended.

Co

Definition 3 A consistent, normal quasi-tree M
is a tree iff
TC1 DM = (PM)*,
TC2 for all pairs {z,y) € UM x UM,
ezactly one of the following is true:
(z,9), (y,z) € DM (2, y) € AM;
(y,2) € AM; (z,y) € LM; or (y,z) € LM.

Note that T'C1 implies that AM = (PM)t as well.
It is easy to verify that a quasi-tree meets these con-
ditions iff (UM, PM) is the graph of a tree as com-
monly defined (Aho, Hopcroft & Ullman, 1974).

3.2 Satisfaction

The semantics of the language in terms of the
models is defined by the satisfaction relation be-
tween models and formulae.

Definition 4 A model M satisfies a formula ¢
(M = ) as follows:

2The additional condition excludes “non-standard” mod-
els which include components not connected to the root by
a finite sequence of immediate domination links.



MEta u
ME-t<'u

iff (I (1), I (v)) € D¥;
ioff (IM(t),IM (u)) € LM,
(ZM(u), IM (1)) € LM
or (TM(w), TM(t)) € AM ;
iff (TM(t) M (v)) e DM ’
and (M (u), TM (1)) € DM ;
iff (TM(1),IM(u)) € AM,
(TM (), TM(2)) € AM
(IM (1), IM (v)) € LM
or (TM (u), T (1)) € LM
iff (TM(2), M (u)) € AM;
iff (ZM(u),IM(2)) € DM,
(ZM(t), IM (u)) € LM
or (TM(u), T (1)) € £M;
iff (TM(8), 2% (u)) € PM;
iff (TM(u),IM(t)) € DM,
(@M (1), IM (v)) € LM
(TM(u), TM(8)) € LM or
(IM(t), z), (:cf, IM(u)) € AZM
or some x € ;
iff TM@),IM(u)) €L;
iff (TM(u),IM(t)) € L,
(ZM(t), IM(u)) € D,
or (IM(u),IM(t)) € D;
ME-¢ iff M| é;
MESANY f Mo and M |=1);
ME~(oAD) iff M|E—d or M = —;
MEVY if M or M = 1;
ME~(éVY) if ME—¢and M 9.
in addition we :‘;:q«}ire tht;t IM (k) be defined for all
occurring in ¢ jormulia.
It is easy to verify that for all quasi-trees M

(3t,4,R)[M =t Ru,~t R u] = M inconsistent.

MEt=u

MEts#u

MEtatu
ME-tatu

MEtau
ME-tau

MEt<u
ME-t<u

If IM is surjective then the converse holds as well.
It is also not hard to see that if T is a tree

VM, u,R)[TEtRueTKEtRu].

4 Characterization

We now show that this formalization is complete
in the sense that a consistent quasi-tree as defined
characterizes the set of trees it describes. Recall
that the quasi-tree describes the set of all trees
which satisfy every literal formula which is satis-
fied by the quasi-tree. It characterizes that set if
every literal formula which is satisfied by every tree
in the set is also satisfied by the quasi-tree. The
property of satisfying every formula which is satis-
fied by the quasi-tree is captured formally by the
notion of subsumption, which we define initially as
a relationship between quasi-trees.

Definition 5 Subsumption.

Suppose M = (UM ,IM PM DM AM ;M\ 4nd
M = (UMI,IM’,'PM',DM',.AM',,CM') are consis-
tenl quasi-irees, then M subsumes M’ (M C M')
iff there is a function h : UM — UM' such that:
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IM(t) = h(IZM(1)),

(z,y) € PM = (h(z),h(y)) € PV,

(z,y) € DM = (h(z),h(y)) e DM,

(z,y) € AM = (h(z),h(y)) € AV,

(z,y) € LM = (h(z),h(y)) € LM

We now claim that any quasi-tree @ is subsumed
by a quasi-tree M iff it is described by M.
Lemma 1 If M and Q are normal, consistent
quasi-trees and IM is surjective, then M T Q iff
for all formulae ¢, M = ¢ = Q = ¢.
The proof in the forward direction is an easy in-
duction on the structure of ¢ and does not depend

either on normality or surjectiveness of ZM. The
opposite direction follows from the fact that, since
IM is surjective, there is a model M’ in which uM'
is the set of equivalence classes wrt = in the domain
of IM  such that M C M' C Q. '

The next lemma allows us, in many cases, to as-
sume that a given quasi-tree is normal.

Lemma 2 For every consistent quasi-iree M,
there is a normal, consistent quasi-tree M’ such
that M C M', and for all normal, consistent quasi-
tree M/, MCM'=> M CM".
The lemma is witnessed by the quotient of M with
respect to EM | where EM = {(z,9) | (z,9), (v, ) €
DMy,

We can now state the central claim of this sec-
tion, that every consistent quasi-tree characterizes
the set of trees which it subsumes.

Proposition 1 Suppose M is a consistent quasi-
tree. For all literals ¢

ME¢& (VT, tree)[MC T = T = ¢)

The proof follows from two lemmas. The first estab-
lishes that the set of quasi-trees subsumed by some
quasi-tree M is in fact characterized by it. The sec-
ond extends the result to trees: Their proofs are in
(Rogers & Vijay-Shanker, 1992).

Lemma 3 If M is a consistent quasti-lree and ¢ a
literal then

M
(3Q, consistent quasi-tree)[M C Q and Q E —¢]

Lemma 4 If M is a consisteni quasi-iree, then
there exists a tree T such that M T T.

Proof(of proposition 1)

(VI)MET =Tk ¢]
& —(FANMET and T | 4]

(= by consistency, <= by completeness of trees)
& —(3Q, consistent g-t)[M C Q and Q | 4]

(= by lemma 4, < since T is a quasi-tree)
o MES?$

(= by lemma 3, <= by lemma 1) 0



5 Semantic Tableau

Semantic tableau as introduced by Beth (Beth,
1959; Fitting, 1990) are used to prove validity by
means of refutation. We are interested in satisfi-
ability rather than validity. Given ¥ we wish to
build a model of ¥ if one exists. Thus we are in-
terested in the cases where the tableau succeeds in
constructing a model.

The distinction between these uses of semantic
tableau is important, since our mechanism is not
suitable for refutational proofs. In particular, it
cannot express “some model fails to satisfy ¢” ex-
cept as “some model satisfies —¢”. Since our logic is
non-classical the first is a strictly weaker condition
than the second.

Definition 6 Semantic Tableau:

A branch is a set, S, of formulae.

A configuration is a collection, {Si,...,S,}, of
branches.

A tableau is a sequence, (C1,...,C,), of configura-
tions where each C;4y is a result of the application
of an inference rule to C;.

If _5_{%5—1. is an inference rule, (C;\{S}) U
{51,-..,Sr} is the result of applying the rule to C;
iff S € C;.

A tableau for X, where X is a set of formulae, is a
tableau in which Cy = {X}.

A branch is closed iff (3¢)[{¢,~¢} C S]. A con-
figuration is closed iff each of its branches is closed,
and a tableau is closed iff it contains some closed
configuration. A branch, configuration, or tableau
that is not closed is open.

5.1 Inference Rules

Our inference rules fall into three groups. The
first two, figures 3 and 4, are standard rules
for propositional semantic tableau extended with
equality (Fitting, 1990). The third group, figure 5,
embody the properties of quasi-trees.

The =4 rule requires the introduction of a new
name into the tableau. To simplify this, tableau are
carried out in a language augmented with a count-
ably infinite set of new names from which these are
drawn in a systematic way.

The following two lemmas establish the correct-
ness of the inference rules in the sense that no rule
increases the set of models of any branch nor elim-
inates all of the models of a satisfiable branch.

Lemma 5 Suppose S’ is derived from S in some
tableau by some sequence of rule applications. Sup-
pose M ts a model, then:

MES=>MES.

This follows nearly directly from the fact that all of
our rules are non-strict, ie: the branch to which an
inference rule is applied is a subset of every branch
introduced by its application.

Lemma 6 If S is a branch of some configuration
of a tableau and 8’ is the set of branches resulting
from applying some rule to S, then if there is a
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consistent quasi-tree M such that M |= S, then for
some S! € S' there is a consislent quasi-tree M’
such that M' = S}.

We sketch the proof. Suppose M | S. For all
but —d it is straightforward to verify M also sat-
isfies at least one of the S!. For =4, suppose M
fails to satisfy either u <* ¢ or -t <* u. Then we
claim some quasi-tree satisfies the third branch of
the conclusion. This must map the new constant k
to the witness for the rule. M has no such require-
ment, but since ¥ does not occur in S, the value of
IM (k) does not affect satisfaction of S. Thus we
get an appropriate M’ by modifying ™ to map k
correctly.

Corollary 1 If there is a closed tableau for ¢ then
no conststent quasi-iree salisfies ¢.

No consistent quasi-tree satisfies a closed set of for-
mulae. The result then follows by induction on the
length of the tableau.

6 Constructing Models

We now turn to the conditions for a branch to be
sufficiently complete to fully specify a quasi-tree.
In essence these just require that all formulae have
been expanded to atoms, that all substitutions have
been made and that the conditions in the definition
of quasi-trees are met.

6.1 Saturated Branches

Definition 7 A set of sentences S is downward
saturated iff for all formulae ¢,1, and termst,u,v:

Hi —¢€eS=>¢€S
Hz2 ¢VypeS=>decSoryes
H3z —(¢vVy)eS=>-¢p€Sand-ypeS
Hy dNYVESS>dEeSandy €S
Hys —(¢AYp)eS=>¢p€Sorypes
H6 t=~teS forall termst occurring in S
Hp timu,tamus €S =
Lid*t, €S = u; <t uy €S,
t1att, €8 = uqatu €S,
1149t €S = uy<quz €85,
t1 <t €S = uy <uz €S,
thixts €S = u xu €8
H8 rateS forall termst occurring in S
Hg t~ueS=>ta*ucs
HiotgtueS=>-tw*ueSor~udtes
Hiir tQtuud*teS=>t~rues
Hiz it uyud*veES >t veES
Hig t<*v,ud*veSsS =
ta*ueSorua*tesS
Hig4 -ta*uesS=
t<u€Soru<teSoruqattes
His t<tueS=t< u,~ustes
Hi6 tat u,sa* tbuc*veS=>sqatveSs
Hiy ~t<tueS=>-tc*ueSoruactes
Hi8 taque S=>tatues



S, ¢

S;==6,¢6
S,oVi,é | S,eV e S, (¢ V ), =,
Senv_ 5,81 9) "
Sa¢A¢)¢)¢ S,—'((]S/\’l/)),—‘ﬁé | S)_'(¢A1/)))—‘1/)

Figure 3. Elementary Rules

HigtaveS=>u<veSorv<ues
orud*teS orva*ueSs

Hzo ~tqu€eS=uc*teSor-ta*uecs
ort <t w,wat u €S, for some term w

H2i t<ueS=>ta*u,~ua*t,~u<tes

H22 t<u,ta*s,uac*veS=>s<veS

Ha2z t<uva*teS=
v<u€Sorvattvatues

H24 t<u,v<*u€eS=>
t<veSorvattvatues

H25 t<u,u<vES=>t<XvES

H26 ~t<ueS=>
u<teSorta*ueSorudtes.

The next lemma (essentially Hintikka’s lemma)
establishes the correspondence between saturated
branches and quasi-trees.

Lemma 7 For every consistent downward satu-
rated set of formulae S there is a consistent quasi-
tree M such that M = S. For every finite consis-
tent downward saturaled set of formulae, there is a
such e quasi-tree which is finite.

Again, we sketch the proof. Consider the set 7(S)
of terms occurring in a downward saturated set S.
H6 and H7 assure that = is reflexive and substi-
tutive. Sincet ®x u,uxv € S=>t~v €S, and
uR u,uxv €S =>v=u€S by substitution of
v for (the first occurrence of) w, it is transitive and
symmetric as well. Thus = partitions 7(S) into
equivalence classes.

Define the model H as follows:

Ui = 1(5)/~,

TH(k) = [k]~,
PH = {{[t]=, [uls) [ tau € S},
D = {{[t]~, [ul) |t <" w € S},
AP = {{[t]x, [u]x) | t <t u € S},
LH = {{[tls) [ulx) [t < u € S}

Since each of the conditions C'1 through C12 corre-
sponds directly to one of the saturation conditions,
it is easy to verify that H satisfies C;. It is equally
easy to confirm that H is both consistent and nor-
mal.
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We claim that ¢ € S = H k& ¢. As is usual for
versions of Hintikka’s lemma, this is established by
an induction on the structure of ¢. Space prevents
us from giving the details here.

For the second part of the lemma, if the set of
formulae is finite, then the set of terms (and hence
the set of equivalence classes) is finite.

6.2 Saturated Tableau

Since all of our inference rules are non-strict, if a
rule once applies to a branch it will always apply to
a branch. Without some restriction on the applica-
tion of rules, tableau for satisfiable sets of formulae
will never terminate. What is required is a control
strategy that guarantees that no rule applies to any
tableau more than finitely often, but that will al-
ways find a rule to apply to any open branch that
is not downward saturated.

Definition 8 Let EQg be the reflezive, symmetric,
transitive closure of {{t,u) |t ~ u € S}.

An inference rule, I, applies o some branch S
of a configuration C iff

e S is open
o S ¢&{S:|S; results from application of I to S}
e if I iniroduces a new constant a occurring in
formulae ¢j(a) € S, there is no term t and
pairs (uy,v), {(uz, v2), ... € EQg such that for
each of the ¢;, ¢{t/a,ui/vi,us/vs,...} € S.
(Where ¢{t/a,u1/vi,uz/vs,...} denoles the re-
sult of uniformly substiluting t for a, uq for vy,
ele., in ¢.)
The last condition in effect requires all equality
rules to be applied before any new constant is in-
troduced. It prevents the introduction of a formula
involving a new constant if an equivalent formula
already exists or if it is possible to derive one using
only the equality rules.
We now argue that this definition of applies does
not terminate any branch too soon.

Lemma 8 If no inference rule applies to an open
branch S of a configuration, then S is downward
saturated.

This follows directly from the fact that for each of
H1 through H =26, if the implication is false there
is a corresponding inference rule which applies.
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Figure 5. Tree Rules
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Proposition 2 (Termination) All tableau for fi-
nite seis of formulae can be eztended to tableau in
whick no rule applies to the final configuration.

This follows from the fact that the size of any
tableau for finite sets of formulae has a finite upper
boun)d. The proof is in (Rogers & Vijay-Shanker,
1992).

Proposition 3 (Soundness and Completeness)
A saturated tableau for a finite set of formulae ¥
exists iff there is a consistent quasi-iree which sat-
isfies X.

Proof: The forward implication (soundness)
follows from lemma 7. Completeness follows from
the fact that if 3 is satisfiable there is no closed
tableau for T (corollary 1), and thus, by propo-
sition 2 and lemma 8, there must be a saturated
tableau for X. ]

7 Extracting Trees from Quasi-trees

Having derived some quasi-tree satisfying a set
of relationships, we would like to produce a “mini-
mal” representative of the trees it characterizes. In
section 3.1 we define the conditions under which a
quasi-tree is a tree. Working from those conditions
we can determine in which ways a quasi-tree M
may fail to be a tree, namely:

e (PM)* is a proper subset of DM,

e LM and/or DM may be partial, ie: for some
tbuy M £ (t <uV-t <u)or M I (<
uV -t q* u). :

The case of partial LM is problematic in that,
while it is possible to choose a unique representa-
tive, its choice must be arbitrary. For our applica-
tions this is not significant since currently in TAGs
left-of is fully specified and in parsing it is always
resolved by the input. Thus we make the assump-
tion that in every quasi-tree M from which we need
to extract a tree, left-of will be complete. That is,
for all terms t,u: M Et < uV -t < u. Thus
MEta*uVtctu=>MEudt.

Suppose M = u <* t and M £ (t <* uV -t < u),
and that ZM(u) = z and ZM(¢) = y. In D-theory,
this case never arises, since proper domination,
rather than domination, is primitive. It is clear that
the TAG applications require that z and y be iden-
tified, ie: (y, ) should be added to DM. Thus we

choose to complete PM by extending it. Under the
assumption that £ is complete this simply means:
if M} —t <* u, DM should be extended such that
M Et <* u. That M can be extended in this way
consistently follows from lemma 3. That the re-
sult of completing DM in this way is unique follows
from the fact that, under these conditions, extend-
ing DM does not extend either AM or £LM. The
details can be found in (Rogers & Vijay-Shanker,
1992).

In the resulting quasi-tree domination has been
resolved into equality or proper domination. To
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arrive at a tree we need only to expand PM such
that (PM)* = DM . In the proof of lemma 4 we
show that this will be the case in any quasi-tree T
closed under:

(z,2) € AT and (Vy)[(z,y) ¢ AT or (y,2) ¢ A7)
= (z,2) € PT

(z,y) ¢ LT and (y,z) ¢ LTUAT
= (z,y) € DT.

The second of these conditions is our mechanism
for completing PM. The first amounts to taking
immediate domination as the parent relation —
precisely the mechanism for finding the standard
referent. Thus the tree we extract is both the cir-
cumscriptive reading of (Vijay-Shanker, 1992) and
the s)tandard referent of (Marcus, Hindle & Fleck,
1983).
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