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Abst rac t  

This paper presents a unification pro- 
cedure which eliminates the redundant 
copying of structures by using a lazy in- 
cremental copying appr0a~:h to achieve 
structure sharing. Copying of structures 
accounts for a considerable amount of 
the total processing time. Several meth- 
ods have been proposed to minimize the 
amount of necessary copying. Lazy In- 
cremental Copying (LIC) is presented as 
a new solution to the copying problem. 
It synthesizes ideas of lazy copying with 
the notion of chronological dereferencing 
for achieving a high amount of structure 
sharing. 

Introduction 

Many modern linguistic theories are using fea- 
ture structures (FS) to describe linguistic objects 
representing phonological, syntactic, and semantic 
properties. These feature structures are specified 
in terms of constraints which they must satisfy. 
It seems to be useful to maintain the distinction 
between the constraint language in which feature 
structure constraints are expressed, and the struc- 
tures that satisfy these constraints. Unification is 
the primary operation for determining the satisfia- 
bility of conjunctions of equality constraints. The 
efficiency of this operation is thus crucial for the 
overall efficiency of any system that uses feature 
structures. 

Typed Feature Structure Unification 

In unification-based grammar formalisms, unifica- 
tion is the meet operation on the meet semi-lattice 
formed by partially ordering the set of feature 
structures by a subsumption relation [Shieber 86]. 

Following ideas presented by [Ait-Kaci 84] and 
introduced, for example, in the unification-based 
formMism underlying HPSG [Pollard and Sag 87], 
first-order unification is extended to the sorted 
case using an order-sorted signature instead of a 
flat one. 

In most existing implementations, descriptions 
of feature structure constraints are not directly 
used as models that  satisfy these constraints; in- 
stead, they are represented by directed graphs 
(DG) serving as satisfying models. In particular, 
in the case where we are dealing only with con- 
junctions of equality constraints, efficient graph 
unification algorithms exist. The graph unifica- 
tion algorithm presented by Ait-Kaci is a node 
• merging process using the UNION/FIND method 
(originMly used for testing the equivalence of fi- 
nite automata  [Hopcroft/Karp 71]). It has its 
analogue in the unification algorithm for rational 
terms based on a fast procedure for congruence 
closure [Huet 76]. 

N o d e  m e r g i n g  is  a d e s t r u c t i v e  o p e r a t i o n  

Since actual merging of  nodes to build new 
node equivalence classes modifies the argument 
DGs, they must be copied before unification is in- 
voked if the argument DGs need to be preserved. 
For example, during parsing there are two kinds of 
representations that  must be preserved: first, lexi- 
cal entries and rules must be preserved. They need 
to be copied first before a destructive unification 
operation can be applied to combine categories to 
form new ones; and second, nondeterminism in 
parsing requires the preservation of intermediate 
representations that  might be used later when the 
parser comes back to a choice point to try some 
yet unexplored options. 

*Research reported in this paper is partly supported by the German Ministry of Research and Technology (BMFT, Bun- 
desmlnister filr Forschung und Technologie), under grant No. 08 B3116 3. The views and conclusions contained herein are 
those of the authors and should not be interpreted as representing official policies. 
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D G  copy ing  as a s o u r c e  o f  inef f ic iency  

Previous research on unification, in partic- 
ular on graph unification [Kart tunen/Kay 85, 
Pereira 85], and others, identified DG copying as 
the main source of inefficiency. The high cost in 
terms of time spent for copying and in terms of 
space required for the copies themselves accounts 
for a significant amount of the total processing 
time. Actually, more time is spent for copying 
than for unification itself. Hence, it is crucial to 
reduce the amount  of copying, both in terms of 
the number and of the size of copies, in order to 
improve the efficiency of unification. 

A naive implementation of unification would 
copy the arguments even before unification starts. 
Tha t  is what [Wroblewski 87] calls early copying. 
Early copying is wasted effort in cases of fail- 
ure. He also introduced the notion of over copy- 
ing, which results from copying both arguments in 
their entirety. Since unification produces its result 
by merging the two arguments, the result usually 
contains significantly fewer nodes than the sum of 
the nodes of the argument DGs. 

Incrementa l  Copy ing  

Wroblewski's nondestructive graph unification 
with incremental copying eliminates early copy- 
ing and avoids over copying. His method pro- 
duces the resulting DG by incrementally copying 
the argument DGs. An additional copy field in 
the DG structure is used to associate temporary 
forwarding relationships to copied nodes. Only 
those copies are destructively modified. Finally, 
the copy of the newly constructed root will be re- 
turned in case of success, and all the copy pointers 
will be invalidated in constant time by increment- 
ing a global generation counter without traversing 
the arguments again, leaving the arguments un- 
changed. 

R e d u n d a n t  C o p y i n g  

A problem arises with Wroblewski's account, 
because the resulting DG consists only of newly 
created structures even if parts of the input DGs 
that  are not changed could be shared with the re- 
sultant DG. A better method would avoid (elim- 
inate) such redundant copying as it is called by 
[Kogure 90]. 

Structure S h a r i n g  

The concept of structure sharing has been intro- 
duced to minimize the amount of copying by allow- 

ing DGs to share common parts of their structure. 

T h e  B o y e r  a n d  M o o r e  a p p r o a c h  uses a 
skeleton/environment representation for structure 
sharing. The basic idea of structure sharing pre- 
sented by [Pereira 85], namely that  an initial ob- 
ject together with a list of updates contains the 
same information as the object that  results from 
applying the updates destructively to the initial 
object, uses a variant of Boyer and Moore's ap- 
proach for structure sharing of term structures 
[Boyer/Moore 72]. The method uses a skeleton for 
representing the initial DG that  will never change 
and an environment for representing updates to 
the skeleton. There are two kinds of updates: 
reroutings that  forward one DG node to another; 
arc bindings that  add to a node a new arc. 

Lazy  C o p y i n g  as another method to achieve 
structure sharing is based on the idea of lazy 
evaluation. Copying is delayed until a destruc- 
tive change is about to happen. Lazy copy- 
ing to achieve structure sharing has been sug- 
gested by [Kart tunen/Kay 85], and lately again 
by [Godden 90] and [Uogure 90]. 

Neither of these methods fully avoids redun- 
dant copying in cases when we have to copy a 
node that  is not the root. In general, all nodes 
along the path leading from the root to the site 
of an update need to be copied as well, even if 
they are not affected by this particular unifica- 
tion step, and hence could be shared with the re- 
sultant DG. Such cases seem to be ubiquitous in 
unification-based parsing since the equality con- 
straints of phrase structure rules lead to the unifi- 
cation of substructures associated with the imme- 
diate daughter and mother categories. With re- 
spect to the overall structure that  serves as the re- 
sult of a parse, these unifications of substructures 
are even further embedded, yielding a considerable 
amount of copying that  should be avoided. 

All of these methods require the copying of arcs 
to a certain extent, either in the form of new arc 
bindings or by copying arcs for the resultant DG. 

L a z y  I n c r e m e n t a l  C o p y i n g  

We now present Lazy Incremental Copying (LIC) 
as a new approach to the copying problem. The 
method is based on Wroblewski's idea of incremen- 
tally producing the resultant DG while unification 
proceeds, making changes only to copies and leav- 
ing argument DGs untouched. Copies are associ- 
ated with nodes of the argument DGs by means 
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Figure 1: Chronological dereferencing. 

of an additional copy field for the data structures 
representing nodes. But instead of creating copies 
for all of the nodes of the resultant DG, copying 
is done lazily. Copying is required only in  cases 
where an update to an initial node leads to a de- 
structive change. 

The Lazy Incremental Copying method con- 
stitutes a synthesis of Pereira's structure sharing 
approach and Wroblewski's incremental copying 
procedure combining the advantages and avoid- 
ing disadvantages of both methods. The struc- 
ture sharing scheme is imported into Wroblewski's 
method eliminating redundant copying. Instead of 
using a global branch environment as in Pereira's 
approach, each node records it's own updates by 
means of the copy field and a generation counter. 
The advantages are a uniform unification proce- 
dure which makes complex merging of environ- 
ments obsolete and which can be furthermore eas- 
ily extended to handle disjunctive constraints. 

Data Structures 

CopyNode structure 
type: 
arcs: 
copy: 
generation: 

<symbol> 

<a list of ARCs> 

<a pointer to a CopyNode> 
<an integer> 

ARC structure 
label: <symbol> 

dest: <a CopyNode> 

Dereferencing 

T h e  main difference between standard unification 
algorithms and LIC is the treatment of dereference 
pointers for representing node equivalence classes. 
The usual dereferencing operation follows a possi- 
ble pointer chain until the class representative is 
found, whereas in LIC dereferencing is performed 

according to the current environment. Each copy- 
node carries a generation counter that  indicates 
to which generation it belongs. This means that 
every node is connected with its derivational con- 
text. A branch environment is represented as a se- 
quence of valid generation counters (which could 
be extended to trees of generations for represent- 
ing local disjunctions). The current generation is 
defined by the last element in this sequence. A 
copynode is said to be an active node if it was 
created within the current generation. 

Nondeterminism during parsing or during the 
processs of checking the satisfiability of constraints 
is handled through chronological backtracking, i.e. 
in case of failure the latest remaining choice is re- 
examined first. Whenever we encounter a choice 
point, the environment will be extended. The 
length of the environment corresponds to the num- 
ber of stacked choice points. For every choice point 
with n possible continuations, n -  1 new gener- 
ation counters are created. The last alternative 
pops the last element from the environment, con- 
tinues with the old environment and produces n 
DG representations, one for each alternative. By 
going back to previous generations, already exist- 
ing nodes become active nodes, and are thus mod- 
ified destructively. This technique resembles the 
last call optimization technique of some Prolog ira- 

• plementations, e.g. for the WAM [Warren83]. The 
history of making choices is reflected by the deref- 
erencing chain for each node which participated in 
different unifications. 

Figure 1 is an example which illustrates how 
dereferencing works with respect to the environ- 
ment: node b is the class representative for envi- 
ronment <0>, node c is the result of dereferenc- 
ing for environments <0 1> and <0 1 2>, and fi- 
nally node f corresponds to the representative for 
the environment <0 I 2 3> and all further exten- 
sions that did not add a new forwarding pointer 
to newly created copynodes. 
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Figure 2: Node merging. 

A d v a n t a g e s  
a l e :  

of this new dereferencing scheme 

• I t  is very easy to undo the effects of uni- 
fication upon backtracking. Instead of us- 
ing trail information which records the nodes 
tha t  must  be restored in case of returning to 
a previous choice point, the state of com- 
putat ion at tha t  choice point is recovered in 
constant t ime by activating the environment 
which is associated with that  choice point. 
Dereferencing with respect to the environ- 
ment  will assure that  the valid class repre- 
sentative will always be found. Pointers to 
nodes that  do not belong to the current en- 
vironment  are ignored. 

• I t  is no longer necessary to distinguish be- 
tween the forward and copy slot for repre- 
senting permanent  and temporary  relation- 
ships as it was needed in Wroblewski's algo- 
r i thm. One copy field for storing the copy 
pointer is sufficient, thus reducing the size 
of node structures. Whether  a unification 
leads to a destructive change by performing 
a rerouting that  can not be undone, or to 
a nondestructive update  by rerouting to a 
copynode that  belongs to a higher genera- 
tion, is reexpressed by means of the environ- 
ment.  

L a z y  N o n - r e d u n d a n t  C o p y i n g  

Unification itself proceeds roughly like a standard 
destructive graph unification algorithm that  has 

been adapted to the order-sorted case. The dis- 
tinction between active and non-active nodes al- 
lows us to perform copying lazily and to eliminate 
redundant copying completely. 

Recall tha t  a node is an active one if it belongs 
to the current generation. We distinguish between 
three cases when we merge two nodes by unifying 
them: (i) both are active nodes, (ii) either one of 
them is active, or (iii) they are both  non-active. 
In the first case, we yield a destructive merge ac- 
cording to the current generation. No copying has 
to be done. If either one of the two nodes is ac- 
tive, the non-active node is forwarded to the ac- 
tive one. Again, no copying is required. When we 
reset computat ion to a previous state where the 
non-active node is reactivated, this pointer is ig- 
nored. In the third case, if there is no active node 
yet, we know that  a destructive change to an en- 
vironment that  must  be preserved could occur by 
building the new equivalence class. Instead, a new 
copynode will be created under the current active 
generation and both nodes will be forwarded to the 
new copy. (For illustration cf. Figure 2.) Notice 
that  it is not necessary to copy arcs for the method 
presented here. Instead of collecting all arcs while 
dereferencing nodes, they are just  carried over to 
new copynodes without any modification. Tha t  is 
done as an optimization to speed up the compu- 
tat ion of arcs that  occur in both  argument  nodes 
to be unified (Sharedhrcs )  and the arcs that  are 
unique with respect to each other (Un±queArcs). 
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Figure 3: A unification example. 

The unification algorithm is shown in Fig- 
ure 4 and Figure 3 illustrates its application to 
a concrete example of two successive unifications. 
Copying the nodes that have been created by the 
first unification do not need to be copied again for 
the second unification that  is applied at the node 
appearing as the value of the path p r e d . v e r b ,  
saving five Copies in comparison to the other lazy 
copying methods. 

Another advantage of the new approach is 
based on the ability to switch easily between de- 
structive and non-destructive unification. During 
parsing or during the process of checking the satis- 
fiability of constraints via backtracking, there are 
in general several choice points. For every choice 
point with n possible continuations, n - 1 lazy 
incremental copies of the DG are made using non- 
destructive unification. The last alternative con- 
tinues destructively, resembling the last cMl op- 
timization technique of Prolog implemelitations, 
yielding n DG representations, one for each al- 
ternative. Since each node reflects its own up- 
date history for each continuation path, all un- 
changed parts of the DG are shared. To sum 
up, derived DG instances are shared with input 
DG representations and updates to certain nodes 
by means of copy nodes are shared by different 
branches of the search space. Each new update 
corresponds to a new choice point in chronological 

order. The proposed environment representation 
facilitates memory management for allocating and 
deallocating copy node structures which is very 
important  for the algorithm to be efficient. This 
holds, in particular, if it takes much more time to 
create new structures than to update old reclaimed 
structures. 

C o m p a r i s o n  w i t h  o t h e r  A p p r o a c h e s  

Karttunen's Reversible Unification [Karttunen 86] 
does not use structure sharing at M1. A new DG is 
copied from the modified arguments after success- 
ful unification, and the argument DGs are then 
restored to their original state by undoing all the 
changes made during unification hence requiring a 
second pass through the DG to assemble the result 
and adding a constant t ime for the save operation 
before each modification. 

As it has been noticed by [Godden 90] and 
[Kogure 90], the key idea of avoiding "redundant 
copying" is to do copying lazily. Copying of nodes 
will be delayed until a destructive change is about 
to take place. 

Godden uses active data  structures (Lisp clo- 
sures) to implement lazy evaluation of copying, 
and Kogure uses a revised copynode procedure 
which maintains copy dependency information in 
order to avoid immediate copying. 

3 2 7  ~. 



p r o c e d u r e  u n i f y ( n o d e l , n o d e 2  : CopyNode) 
node l  *-- d e r e f ( n o d e l )  
node2 ~- d e t e r ( n o d e 2 )  
I F  node1 = node2 T H E N  return(nodel) 

ELSE 

newtype ~- nodel.type A node2.type 

I F  newtype = I T H E N  r e t u r n ( l )  
ELSE 

<SharedArcsl, SharedArcs2> ~- SharedArcs(nodel,node2) 

<UniqueArcsl, UniqueArcs2> ~- UniqueArcs(nodel,node2) 

IF ActiveP(nodel) THEN 

node ~- nodel 

node.arcs ~- node.arcs U UniqueArcs2 

node2.copy ~- node 

ELSE 

I F  ActiveP(node2) T H E N  
node ~- node2 

node.arcs ~- node.arcs LJ UniqueArcsl 

nodel,copy *- node 

ELSE 

node ~- CreateCopyNode 

nodel.copy *- node 

node2.copy ~- node 

node.arcs ~- UniqueArcsl U SharedArcsl U UniqueArcs2 

E N D I F  
E N D I F  

node.type ~- newtype 

FOR EACH <SharedArcl, SharedArc2> 

I N  <SharedArcs l ,  SharedArcs2> 
D O  u n i f y ( S h a r e d A r c l . d e s t , S h a r e d A r c 2 . d e s t )  

r e t u r n ( n o d e )  
E N D I F  

E N D I F  
E N D  unify 

Figure 4: The unification procedure 
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approach 
early 

copying 
over 

copying 

methods 

yes 

lazy 
copying 

redundant incr. 
copying copying 

yes no 
no no 
yes no 
yes no 
yes yes 
yes no 
yes no 
no yes 

structure 
sharing 

yes 

naive yes yes no no 
Pereira 85 no no no yes 
Kar t tunen/Kay 85 no no yes yes 
Karttunen 86 no no no no 
Wroblewski 87 no yes no no 
Godden 90 no no yes yes 
Kogure 90 no yes yes yes 
LIC no 

Figure 5: Comparison of unification approaches 

yes 

Both of these approaches suffer from difficul- 
ties of their own. In Godden's case, part of the 
copying is substi tuted/traded for by the creation 
of active data structures (Lisp closures), a poten- 
tially very costly operation, even where it would 
turn out that  those closures remain unchanged in 
the final result; hence their creation is unneces- 
sary. In addition, the search for already existing 
instances of active data structures in the copy en- 
vironment and merging of environments for suc- 
cessive unifications causes an additional overhead. 

Similarly, in Kogure's approach, not all redun- 
dant copying is avoided in cases where there exists 
a feature path (a sequence of nodes connected by 
arcs) to a node that  needs to be copied. All the 
nodes along such a path must be copied, even if 
they are not affected by the unification procedure. 
Furthermore, special copy dependency informa- 
tion has to be maintained while copying nodes in 
order to trigger copying of such arc sequences lead- 
ing to a node where copying is needed later in the 
process of unification. In addition to the overhead 
of storing copy dependency information, a second 
traversal of the set of dependent nodes is required 
for actually performing the copying. This copying 
itself might eventually trigger further copying of 
new dependent nodes. 

The table of Figure 5 summarizes the different 
unification approaches that  have been discussed 
and compares them according to the concepts and 
methods they use. 

Conclusion 

The lazy-incremental copying (LIC) method used 
for the unification algorithm combines incremen- 
tal copying with lazy copying to achieve structure 
sharing. It eliminates redundant copying in all 
cases even where other methods still copy over. 

The price to be paid is counted in terms of the 
time spent for dereferencing but  is licensed for by 
the gain of speed we get through the reduction 
both in terms of the number of copies to be made 
and in terms of the space required for the copies 
themselves. 

The algorithm has been implemented in Com- 
mon Lisp and runs on various workstation ar- 
chitectures. It is used as the essential oper- 
ation in the implementation of the interpreter 
for the Typed Features Structure System (TFS 
[gmele/Zajac 90a, Emele/Zajac 90b]). The for- 
malism of TFS is based on the notion of inher- 
itance and sets of constraints that categories of 
the sort signature must satisfy. The formalism 
supports to express directly principles and gen- 
eralizations of linguistic theories as they are for- 
mulated for example in the framework of HPSG 
[Pollard and Sag 87]. The efficiency of the LIC ap- 
proach has been tested and compared with Wrob- 
lewski's method on a sample grammar of HPSG 
using a few test sentences for parsing and gener- 
ation. The overall processing time is reduced by 
60% - 70% of the original processing time. See 
[Emele 91] for further discussion of optimizations 
available for specialized applications of this gen- 
eral unification algorithm. This paper also pro- 
vides a detailed metering statistics for all of the 
other unification algorithms that  have been com- 
pared. 
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