
COMPOSE-REWUCE PARSING

H e n r y S. T h o m p s o n 1
M i k e Dixon2

J o h n L a m p i n g 2

1: H u m a n C o m m u n i c a t i o n R e s e a r c h C e n t r e
U n i v e r s i t y of E d i n b u r g h

2 B u c c l e u c h P lace
E d i n b u r g h EH8 9LW

SCOTLAND

2: Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

ABSTRACT
Two new pars ing a lgor i thms for

context-free phrase s t ruc ture gram-
mars are presented which perform a
bounded amount of processing per
word per analysis path, independently
of sentence length. They are thus ca-
pable of parsing in real-time in a par-
allel implementat ion which forks pro-
cessors in response to non-determinis-
tic choice points.

0. INTRODUCTION
The work reported here grew out of

our a t tempt to improve on the o (n 2)
performance of the SIMD para l le l
parser described in (Thompson 1991).
Rather than s tar t with a commitment
to a specific SIMD architecture, as tha t
work had, we agreed tha t the best
place to s tar t was with a more abstract
a rch i t ec tu re - independen t considera-
tion of the CF-PSG pars ing problem--
given a rb i t ra ry resources, what algo-
r i thms could one envisage which
could recognise and/or parse atomic
category phrase-s t ruc ture g rammars
in o (n) ? In the end, two quite differ-
ent approaches emerged. One took as
its s t a r t ing point non-determinis t ic
shift-reduce parsing, and sought to

achieve l inear (indeed real-time) com-
plexity by performing a constant-time
step per word of the input. The other
took as its s tar t ing point tabular pars-
ing (Earley, C KY), and sought to
achieve l inear complexity by perform-
ing a constant-time step for the identi-
fication/construction of constituents of
each length from 0 to n. The la t te r
route has been widely canvassed,
although to our knowledge has not yet
been implemented--see (Nijholt 1989,
90) for extensive references. The
former route, whereby real-t ime pars-
ing is achieved by processor forking at
non-deterministic choice points in an
extended shill-reduce parser, is to our
knowledge new. In this paper we pre-
sent outlines of two such parsers,
which we call compose-reduce
parsers.

L COMPOSE-Rk~nUCE PARSING
Why couldn' t a s imple breadth-

first char t parser achieve l inear per-
formance on an appropr ia te parallel
system? If you provided enough pro-
cessors to immedia t e ly process all
agenda entries as they were created,
would not this give the desired result?
No, because the processing of a single
word might require m a n y serialised

87

steps. Consider processing the word
"park" in the sentence "The people
who ran in the park got wet." Given a
s imple t rad i t iona l sort of g rammar ,
tha t word completes an sP, which in
tu rn completes a P P, which in tu rn
completes a vP, which in tu rn com-
pletes an s, which in t u r n completes a
REL, which in tu rn completes an NP.
The construction/recognition of these
consti tuents is necessar i ly serialised,
so regardless of the number of proces-
sors avai lable a constant-t ime step is
impossible. (Note tha t this only pre-
cludes a real-t ime parse by this route,
but not necessari ly a l inear one.) In
the shift-reduce approach to parsing,
all this means is tha t for non-l inear
grammars , a single shift step may be
followed by many reduce steps. This
in turn suggested the beginnings of a
way out, based on categorial gram-
mar, n a m e l y t ha t mul t ip le reduces
can be avoided i f composition is al-
lowed. To r e t u r n to our example
above, in a simple shift-reduce parser
we would have had all the words pre-
ceding the word "park" in the stack.
When it was shifted in, there would
follow six reduce steps. If a l terna-
tively following a shift step one was al-
lowed (non-determinist ical ly) a com-
pose step, this could be reduced (!) to a
single reduce step. Restr ic t ing our-
selves to a s impler example, consider
jus t "run in the park" as a vv, given
rules

VP --) v PP

NP --) d n

PP --) p NP.

With a composition step allowed,
the parse would then proceed as fol-
lows:

Shift run as a v
Shift in as a p

Compose v and p to give
[vP v [PP p • NP]]

where I use a combination of brack-
eted strings and the 'dotted rule' nota-
tion to indicate the resul t of composi-
tion. The categorial equivalent would
have been to notate v as vP /P P, P as
PP/NP, and the resul t of the composi-
tion as therefore vP/NP.

Shift the as d
Compose the dotted vp with d

to give
[VP v [PP p [NP d • n]]]

Shift park as n

Reduce the dotted vp with n to
give the complete result.

Although a number of detai ls re-
mained to be worked out, this simple
move of allowing composition was the
enabling step to achieving o(n) pars-
ing. Para l le l i sm would arise by fork-
ing processors at each non-determin-
istic choice point, following the gen-
eral model of Dixon's earl ier work on
para l l e l i s ing the ATMS (Dixon & de
Kleer 1988).

Simply allowing composition is not
in i tself sufficient to achieve o (n) per-
formance. Some means of guarantee-
ing tha t each step is constant t ime
mus t still be provided. Here we found
two different ways forward.

II. TEn~. FIRST COMPOSE-REDUCE
PARSER---CR4

In this parser there is no stack.
We have s imply a current structure,
which corresponds to the top node of
the stack in a normal shif t-reduce
parser. This is achieved by extending
the appeal to composition to include a
form of left-embedded raising, which
wil l be d i scussed f u r t h e r below.
Special a t tent ion is also required to
handle left-recursive rules.

88

II.1 The Basic Pars ing Algorithm
The constant- t ime pars ing step is

given below (s l ight ly simplif ied, in
that empty productions and some unit
productions are not handled). In this
algorithm schema, and in subsequent
discussion, the annotation "ND" will be
used in situations where a number of
alternatives are (or may be) described.
The meaning is that these alternatives
are to be pursued non-determinis t i -
cally.

Algorithm CR-I

1 Shift the next word;
2 ND look it up in the lexicon;
3 ND close the resulting cate-

gory wrt the unit produc-
t ions;

4a ND reduce the resulting
category with the current
s t r uc tu re
or

4b N D raise* the resulting cat-
egory wrt the non-unary
rules in the grammar for
which it is a left corner, and
compose the result with the
current structure.

If reduction ever completes a
category which is marked as
the left corner of one or
more left-recursive rules or
rule sequences, ND raise* in
place wrt those rules
(sequences), and propagate
the marking.

Some of these ND steps may at var-
ious points produce complete struc-
tures. If .the input is exhausted, then
those s t ructures are parses, or not,
depending on whether or not they have
reached the dis t inguished symbol. If
the input is not exhausted, it is of

course the incomplete structures, the
results of composition or raising,
which are carried forward to the next
step.

The operation referred to above as
"raise*" is more than simple raising,
as was involved in the simple example
in section IV. In order to allow for all
possible compositions to take place all
possible left-embedded raising must be
pursued . Cons ider the following
grammar fragment:

S ~NP VP

VP -~ v NP CMP

CMP --)that S

NP -~ propn

NP -+ dn

and the utterance "Kim told Robin that
the child likes Kim".

If we ignore all the ND incorrect
paths, the current structure after the
"that" has been processed is

[S [NP [propn Kim]]

[VP [v told]

[NP [propn Robin]]
[CMP that • S]]]

In order for the next word, "the", to
be correctly processed, i t mus t be
raised all the way to s , name ly we
must have

[S [NP [d the] • n] VP]]
to compose with the current structure.
What this means is tha t for every en-
try in the normal bottom-up reachabil-
i ty table pairing a left corner with a top
category, we need a set of dotted struc-
tures, corresponding to all the ways
the g r a m m a r can get from tha t left
corner to that top category. It is these
structures which are ND made avail-
able in step 4b of the parsing step algo-
r i thm CR-I above.

89

II.2 Handling Left Recursion
Now this in itself is not sufficient to

handle left recursive structures, since
by definition there could be an arbi-
t rary number of left-embeddings of a
left-recursive structure. The final
note in the description of algorithm
CR-I above is designed to handle this.
Glossing over some subtleties, left-re-
cursion is handled by marking some
of the structures introduced in step 3b,
and ND raising in place if the marked
structure is ever completed by reduc-
tion in the course of a parse. Consider
the sentence ~Robin likes the chi ld ' s
dog." We add the following two rules
to the grammar:

D -9 art

D -9 NP 's

thereby t ransforming D from a pre-
terminal to a non-terminal. When we
shift "the", we will raise to inter alia

[NP [D [a r t t h e]] • n] r
with the NP marked for potential re-
raising. This structure will be com-
posed with the then current structure
to produce

IS [NP [propn Robin]]
[VP Iv l i k e s]

[NP (as above)]r]]
After reduction with ~child", we

will have
[S [NP [propn Robin]]

[VP [v l i k e s]
[NP [D [a r t t h e]]

[n ch i ld] jr]]
The last reduction will have com-

pleted the marked N P in t roduced

above, so we ND left-recursively raise
in place, giving

[S [NP [propn Robin]]
[VP Iv l i k e s]

[NP [D [NP the ch i ld]
• 'S]

n]r]]

which will then take us through the
rest of the sentence.

One final detail needs to be cleared
up. Although directly left-recursive
rules, such as e.g. NP -9 NP PP, are
correctly dealt with by the above
mechanism, indirectly left-recursive
sets of rules, such as the one exempli-
fied above, require one additional sub-
tlety. Care must be taken not to intro-
duce the potential for spurious ambi-
guity. We will introduce the full de-
tails in the next section.

II.3 Nature of the required tables
Steps 3 and 4b of CR-I require tables

of partial structures: Closures of unit
productions up from pre-terminals,
for step 3; left-reachable raisings up
from (unit production closures of) pre-
terminals, for step 4b. In this section
we discuss the creation of the neces-
sary tables, in par t icular R a i s e * ,
against the background of a simple
exemplary grammar, given below as
Table 1.

We have grouped the rules accord-
ing to type--two kinds of unit produc-
tions (from pre-terminals or non-ter-
minals), two kinds of left recursive
rules (direct and indirect) and the re-
mainder .

vanilla

S --) NP VP

VP -9 v NP

CMP --) cmp S

PP -9 prep NP

Table 1.

unitl unit2 ird iri

NP -9 propn NP -9 CMP NP -9 NP PP NP -9 D n

D -9 art VP -9 VP PP D --) NP 's

Exemplary grammar in groups by rule type

90

Cl*

LRdir

LRindir 2

RS*

I:

2:

[NP pr°pn]l'2 [D art]4

[NP NP PP] 3: [VP VP PP]

[NP [D NP 's] n]

[CMP cmp S],

[pp prep NP]

[VP v NP] 3
[NP D n]l, 2,
[D NpI 's]4,

[NP CMP] 1,2

4: [D [NP D n] 1 's]

[NP [CMP cmp s]]l, 2,

[D [NP [CMP cmp S]] 1,2 's],
[S [NP [CMP cmp S]]I, 2 VP]

[S [NP D n]l, 2 VP]
[S NpI'2 VP]

Table 2. Partial structures for CR-I

Ras* [NP -[NP propn] • pp]l,2, [NP [D -[NP propn] • 's] n] 1,2
[D [NP i ~ ° n] 1 's] 4

[CMP cmp • S], [NP [CMP cmp • S]]I, 2,

[D [NP [CMP cmp • S]]I, 2 's],
[S [NP [CMP cmp ° S]]I, 2 VP]

[pp prep • NP]

[VP v • NP] 3

[NP [D ~ " r i l l ' 2 • [S [NF J-D art] " n]l'2 VP]
[D [Np pr°pn]l " 's]4, [S [NP P r°pn]l'2 " VP]

Table 3. Projecting non-terminal left daughters

As a first step towards computing
the table which step 4b above would
use, we can pre-compute the partial
structures given above in Table 2.

c l* contains all backbone frag-
ments constructable from the unit
productions, and is already essentially
what we require for step 3 of the algo-
rithm. LRdir contains all directly left-
recursive structures. L R i n d i r 2 con-
tains all indirectly left-recursive struc-
tures involving exactly two rules, and
there might be LRindir3, 4,... as
well. R s* contains all non-recursive
tree fragments constructable from left-
embedding of binary or greater rules
and non-terminal uni t productions.
The superscripts denote loci where

left-recursion may be appropriate, and
identify the relevant structures.

In order to get the full Raise* table
needed for step 4b, first we need to pro-
ject the non-terminal left daughters of
rules such as [s NpI' 2 VP] down to
terminal left daughters. We achieve
this by substituting terminal entries
from Cl* wherever we can in LRdir,
LRindir2 and Rs* to give us Table 3
from Table 2 (new embeddings are
underlined).

Left recursion has one remaining
problem for us. Algorithm CR-I only
checks for annotations and ND raises
in place after a reduction completes a
constituent. But in the last line of
Ras* above there are unit constituents

91

[NP [NP propn] •

[D [NP [D art] •
[CMP cmp • S],

pp]l,2, [NP [D [NP propn] • 's]
n] 1 ,s] 4

[NP [CMP cmp • S]]1,2,

[D [NP [CMP cmp ° S]]I, 2 's],

[S [NP [CMP cmp • S]]I, 2 VP]
[pp prep • NP]

[VP v • NP] 3

[NP [D art] • n]l, 2, [S [NP [D art] ° n]l, 2 VP]

[D [NP propn] ° 's]4, [D [NP [NP propn] ° pp]l ,s]4

[S [NP propn] ° VP], [S [NP [NP propn] ° pp]l,2 VP],

[S [NP [D [NP propn] • 's] n] 1,2 VP]

Table 4. Final form of the structure table Ra i S e *

n]l, 2

with annotations. Being already com-
plete, they will not ever be completed,
and consequently the annotations will
never be checked. So we pre-compute
the desired resul t , augmen t ing the
above l is t with expansions of those
units via the indicated left recursions.
This gives us the f inal vers ion of
Raise * , n o w shown with dots in-
cluded, in Table 4.

This table is now suited to its role
in the algorithm. Every entry has a
lexical left daughter , all annota ted
const i tuents are incomplete, and all
unit productions are factored in. It is
interest ing to note tha t with these tree
f ragments , t aken together with the
terminal entries in Cl*, as the ini t ial
trees and L R d i r , L R i n d i r 2 , etc. as the
a u x i l i a r y t rees we have a Tree
Adjo in ing G r a m m a r (Joshi 1985)
which is strongly equivalent to the CF-
PSG we started with. We might call it
the left-lexical TAG for tha t CF-PSG,
after Schabes et al. (1988). Note fur-
ther that i f a TAG parser respected the
annotations as restr ict ing adjunction,
no s p u r i o u s l y a m b i g u o u s p a r s e s
would be produced.

Indeed it was via this relat ionship
wi th TAGs t h a t the de ta i l s were

worked out of how the annotations are
distributed, not presented here to con-
serve space.

II.4 Implementat ion and Efficiency
Only a serial pseudo-paral lel im-

p l e m e n t a t i o n h a s b e e n wr i t t en .
Because of the h igh degree of pre-
computation of structure, this version
even though serialised runs quite effi-
ciently. There is very lit t le computa-
tion at each step, as it is straight-for-
ward to double index the mai s e* table
so tha t only s t ruc tures which will
compose with the current s t ructure
are retrieved.

The price one pays for this effi-
ciency, whether in serial or paral le l
versions, is t ha t only lef t-common
s t ructure is shared. Right-common
structure, as for ins tance in P P at-
tachment ambiguity, is not shared be-
tween analysis paths. This causes no
difficulties for the parallel approach in
one sense, in tha t i t does not compro-
mise the real-t ime performance of the
parser. Indeed, it is precisely because
no recombination is attempted that the
basic pars ing step is constant time.
But it does mean that i f the CF-PSG be-
ing parsed is the first ha l f of a two step
process, in which add i t iona l con-

92

straints are solved in the second pass,
then the duplication of s t ructure will
give rise to duplication of effort. Any
para l le l p a r s e r which adopts the
s trategy of forking at non-determinis-
tic choice points will suffer from this
weakness, including CR-II below.

III. THE SECOND COMPOSE-R~nUCE
PARSER CR-II

Our second approach to compose-
reduce parsing differs from the first in
retaining a stack, having a more com-
plex basic parsing step, while requir-
ing far less pre-process ing of the
grammar . In par t icular , no special
t rea tment is required for left-recursive
rules. Nevertheless, the basic step is
still constant time, and despite the
stack there is no potential processing
'balloon' at the end of the input.

III. 1 The Basic Parsing Algorithm

Algorithm CR-II

1 Shift the next word;
2 ND look it up in the lexicon;
3 ND close the resulting cate-

gory wrt the unit produc-
t ions;

4 N D reduce the resulting cat-
egory with the top of the
stack-- i f results are com-
plete and there is input re-
maining, pop the stack;

5a N D raise the results of (2),
(3) and, where complete, (4)
and

5b N D either push the result
onto the stack
or

5c N D compose the result with
the top of the stack, replac-
ing it.

This is not an easy algori thm to
unders tand. In the next section we
present a number of different ways of
motivat ing it, together with an illus-
trat ive example.

III.2 CR-II Explained
Let us first consider how CR-II will

operate on purely left-branching and
purely r ight-branching structures. In
each case we will consider the se-
quence of a lgori thm steps along the
non-de te rmin i s t i ca l ly correct pa th ,
ignoring the others. We will also re-
strict ourselves to considering binary
branching rules, as pre- terminal unit
productions are handled ent i re ly by
step 3 of the algorithm, and non-ter-
minal uni t productions mus t be fac-
tored into the grammar. On the other
hand, in ter ior daugh te r s of non-bi-
na ry nodes are all handled by step 4
wi thout changing the depth of the
stack.

III.2.1 Left-branching analysis
For a purely left-branching struc-

ture, the first word will be processed
by steps 1, 2, 5a and 5b, producing a
stack with one en t ry which we can
schemat ise as in Figure 1, where
filled circles are processed nodes and
unfilled ones are waiting.

Figure 1.
All subsequent words except the

last will be processed by steps 4, 5a and
5b (here and subsequently we will not
mention steps 1 and 2, which occur for
all words), effectively replacing the
previous sole en t ry in the stack with
the one given in Figure 2.

93

Figure 2.
It should be evident that the cycle of

steps 4, 5a and 5b constructs a left-
branching s t ruc ture of increasing
depth as the sole stack entry, with one
right daughter, of the top node, wait-
ing to be filled. The last input word of
course is simply processed by step 4
and, as there is no further input, left
on the stack as the final result. The
complete sequence of steps for any left-
branching analysis is thus r a i s e J r e -
duce&raise*--reduce. An ordinary
shif t-reduce or left-corner pa rse r
would go through the same sequence
of steps.

III.2.2 Right-branching analysis
The first word of a purely right-

branching structure is analysed ex-
actly as for a left-branching one, that
is, with 5a and 5b, with results as in
Figure 1 (repeated here as Figure 3):

z%
Figure 3.

Subsequent words, except the last,
are processed via steps 5a and 5c, with
the result remaining as the sole stack
entry, as in Figure 4.

Figure 4.
Again it should be evident that cy-

cling steps 5a and 5c will construct a
right-branching structure of increas-
ing depth as the sole stack entry, with
one right daughter, of the most em-
bedded node, wait ing to be filled.
Again, the last input word will be pro-
cessed by step 4. The complete se-
quence of steps for any right-branch-
ing a n a l y s i s is t h u s r a i s e m
raise&compose*--reduce. A catego-
rial grammar parser with a compose-
first s t ra tegy would go through an
isomorphic sequence of steps.

III.2.3 Mixed Left- and Right-branch-
ing Analysis

All the steps in algorithm CR-II
have now been illustrated, but we have
yet to see the stack grow beyond one
entry. This will occur in where an in-
dividual word, as opposed to a com-
pleted complex consti tuent, is pro-
cessed by steps 5a and 5b, tha t is,
where steps 5a and 5b apply other than
to the results of step 4.

Consider for instance the sentence
"the child believes tha t the dog likes
biscuits. ~ With a grammar which I
t rust will be obvious, we would arrive
at the structure shown in Figure 5
after processing "the child believes
t ha t ~, having done ra ise- - reduce&
ra i se J ra i se&compose - -
raise&compose, tha t is, a bit of left-
branching analysis, followed by a bit of
right-branching analysis.

94

S S

VP
VP

S'

thai Flr~hle~ir~ili~[::~: be dorieS the child believes t~ v~p
with "the" which will allow immediate
integration with this. The ND correct
pa th appl ies s teps 5a and 5b,
raise&push, giving a stack as shown
in Figure 6:

S

NP

the N

VP

S

the child believes that

Figure 6.
We can then apply steps 4, 5a and

5c, reduce&raise&compose, to "dog",
with the result shown in Figure 7.
This puts uss back on the standard
right-branching path for the rest of the
sentence.

the dog

Figure 7.

III.3 An Alternative View of CR-II

Returning to a question raised ear-
lier, we can now see how a chart
parser could be modified in order to
run in real-time given enough proces-
sors to empty the agenda as fast as it is
filled. We can reproduce the process-
ing of CR-II within the active chart
parsing framework by two modifica-
tions to the fundamental rule (see e.g.
Gazdar and Mellish 1989 or Thompson
and Ritchie 1984 for a tutorial intro-
duction to active chart parsing). First
we restrict its normal operation, in
which an active and an inactive edge
are combined, to apply only in the case
of pre-terminal inactive edges. This
corresponds to the fact that in CR-II
step 4, the reduction step, applies only
to pre-terminal categories (continuing
to ignore unit productions). Secondly
we allow the fundamenta l rule to
combine two active edges, provided the
category to be produced by one is what
is required by the other. This effects
composition. If we now run our chart
parser left-to-right, left-corner and
breadth-first, it will duplicate CR-II.

95

The maximum number of edges along
a given analysis path which can be in-
troduced by the processing of a single
word is now at most four, correspond-
ing to steps 2, 4, 5a and 5c of CR-IIDthe
pre-terminal itself, a constituent com-
pleted by it, an active edge containing
that constituent as left daughter, cre-
ated by left-corner rule invocation, and
a further active edge combining that
one with one to its left. This in turn
means that there is a fixed limit to the
amount of processing required for
each word.

III.4 Implementation and Efficiency
Although clearly not benefit ing

from as much pre-computat ion of
structure as CR-I, CR-II is also quite ef-
ficient. Two modifications can be
added to improve efficiencyDa reach-
ability filter on step 5b, and a shaper
test (Kuno 1965), also on 5b. For the
latter, we need simply keep a count of
the number of open nodes on the stack
(equal to the number of stack entries if
all rules are binary), and ensure that
this number never exceeds the num-
ber of words remaining in the input,
as each entry will require a number of
words equal to the number of its open
nodes to pop it off the stack. This test
actually cuts down the number of non-
determinist ic paths quite dramati-
cally, as the ND optionality of step 5b
means tha t quite deep stacks would
otherwise be pursued along some
search paths. Again this reduction in
search space is of limited significance
in a true parallel implementation, but
in the serial simulation it makes a big
difference.

Note also that no attention has been
paid to uni t productions, which we
pre-compute as in CR-I. Furthermore,
neither CR-I nor CR-II address empty

productions, whose effect would also
need to be pre-computed.

IV. CONCLUSIONS
Aside from the intrinsic interest in

the abstract of real-time parsablility, is
there any practical significance to
these results. Two drawbacks, one al-
ready referred to, certainly restrict
their significance. One is that the re-
striction to atomic category CF-PSGs is
crucial the fact that the comparison
between a rule element and a node la-
bel is atomic and constant time is fun-
damental. Any move to features or
other annotations would put an end to
real-time processing. This fact gives
added weight to the problem men-
tioned above in section II,4, that only
left-common analys is resul t s are
shared between alternatives. Thus if
one finesses the atomic category prob-
lem by using a parser such as those
described here only as the first pass of
a two pass system, one is only putting
off the payment of the complexity price
to the second pass, in the absence to
date of any linear time solution to the
constraint satisfaction problem. On
this basis, one would clearly prefer a
parallel CKY/Earley algorithm, which
does share all common substructure,
to the parsers presented here.

Nevertheless, there is one class of
applications where the left-to-right
real-t ime behaviour of these algo-
r i thms may be of practical benefit,
n a m e l y in speech recogni t ion .
Present day systems require on-line
availability of syntactic and domain-
semant ic cons t ra in t to l imit the
search space at lower levels of the sys-
tem. Hitherto this has meant these
constraints must be brought to bear
during recognition as some form of
regular grammar , ei ther explicitly

96

constructed as such or compiled into.
The parsers presented here offer the
alternative of parallel application of
genuinely context-free grammars di-
rectly, with the potential added benefit
that, with sufficient processor width,
quite high degrees of local ambiguity
can be tolerated, such as would arise if
(a finite subset of) a feature-based
grammar were expanded out into
atomic category form.

ACKNOWLEDGEMENTS
The work reported here was car-

ried out while the first author was a
visitor to the Embedded Computation
and Natural Language Theory and
Technology groups of the Systems
Science Laboratory at the Xerox Palo
Alto Research Center. These groups
provided both the intellectual and ma-
terial resources required to support
our work, for which our thanks.

REFERENCES
Dixon, Mike and de Kleer, Johan.

1988. "Massively Pa ra l l e l
A s s u m p t i o n - b a s e d T r u t h
Maintenance". In Proceedings of
the AAAI-88 National Conference
on Artificial Intelligence, also
reprinted in Proceedings of the
Second International Workshop on
Non-Monotonic Reasoning.

Gazdar, Gerald and Mellish, Chris.
1989. Natural Language
Processing in LISP. Addison-
Wesley, Wokingham, England
(sic).

Joshi, Aravind K. 1985. "How Much
Context-Sensitivity is Necessary for
Characterizing Structural
Descriptions--Tree Adjoining
Grammars". In Dowty, D.,
Karttunen, L., and Zwicky, A. eds,
Natural Language Processing--
Theoretical Computational and
Psychological Perspectives.

Cambridge University Press, New
York.

Kuno, Susumo. 1965. "The predictive
analyzer and a path elimination
technique", Communications of the
ACM, 8, 687-698.

Nijholt, Anton. 1989. "Parallel
parsing strategies in natural
language processing ~. In Tomita,
M. ed, Proceedings of the
International Workshop on
Parsing Technologies, 240-253,
Carnegie-Mellon University,
Pittsburgh.

Nijholt, Anton. 1990. The CYK-
Approach to Serial and Parallel
Parsing. Memoranda Informatica
90-13, faculteit der informatica,
Universiteit Twente, Netherlands.

Shabes, Yves, Abeill6, Anne and
Joshi, Aravind K. 1988. "Parsing
Strategies with 'Lexicalized'
Grammars: Application to Tree
Adjoining Grammars". In
Proceedings of the 12th
International Conference on
Computational Linguistics, 82-93.

Thompson, Henry S. 1991. "Parallel
Parsers for Context-Free
Grammars--Two Actual
Implementations Compared". To
appear in Adriaens, G. and Hahn,
U. eds, Parallel Models of Natural
Language Computation, Ablex,
Norword NJ.

Thompson, Henry S. and Ritchie,
Graeme D. 1984. "Techniques for
Parsing Natural Language: Two
Examples". In Eisenstadt, M., and
O'Shea, T., editors, Artificial
Intelligence: Tools, Techniques,
and Applications. Harper and
Row, London. Also DAI Research
Paper 183, Dept. of Artificial
Intelligence, Univ. of Edinburgh.

97

