
THE C O M P U T A T I O N A L D I F F I C U L T Y OF I D / L P
P A R S I N G

G. Edward Barton, Jr.
M.I.T. Artificial Intelligence Laboratory

545 Technology Square
Caanbridge, MA 02139

A B S T R A C T
.\lodern linguistic theory at t r ibutes surface complexity

to interacting snbsystems of constraints. ["or instance, the
I D LP gr,'unmar formalism separates constraints
on immediate dominance from those on linear order.
5hieber's (t983) ID/I .P parsing algorithm shows how to
use ID and LP constraints directly in language process-
ing, without expandiqg them into an intcrmrdiate "object
g a m m a r . " However, Shieber's purported O(:,Gi 2 .n ~) run-
time bound underestimates the tlillicnlty of ID /LP parsing.
ID/LP parsing is actually NP-complete, anti the worst-case
runtime of Shieber's algorithm is actually exponential in
grammar size. The growth of parser data structures causes
the difficulty. So)tie ct)mputational and linguistic implica-
tions follow: in particular, it is impor tant to note that
despite its poteutial for combinatorial explosion, Shieber's
algorithm remains better thau the alternative of parsing
an expanded object gr~anmar.

I N T R O D U C T I O N
Recent linguistic theories derive surface complexity

fr~ml modular subsystems of constraints; Chotusky (1981:5)
proposes separate theories of bounding, government,
O-marking, and so forth, while G,'xzdar and ['ul lum's GPSG
fi)rmalism (Shieber. 1983:2ff) use- immediate-donfinance
¢[D) rules, linear-precedence (l,P) constraints, and
,netarules. When modular ctmstraints ,xre involved, rule
systems that multiply out their surface effects are large
and clumsy (see Barton. 1984a). "['he expanded context-
free %bjeet grammar" that nmltiplies out tile constraints
in a typical (,PSG system would contain trillions of rules
(Silieber, 1983:1).

5bicher (198:1) thus leads it: a welconte direction by
,.hw.ving how (D,[.P grammars can be parsed "directly,"
wit hour the combinatorially explosive step of nmltiplying
mtt the effects of the [D and LP constraints. Shieber's
• dqorithm applies ID and LP constraints one step at a
;ime. ;,s needed, ttowever, some doubts about computa-
tion;d complexity remain. ~hieber (198.3:15) argates that
his algorithm is identical to Earley's in time complexity,
but this result seems almost too much to hope for. An
l l) /f . I) grammar G can be much smalhr th;m an equiva-

lent context-free gr,'umnar G'; for example, if Gt contains
only the rule ,5 ~ t o abcde, the corresponding G~t contains

5! ~- 120 rules. If Shieber's algorithm has the same time
complexity ~ Earley's. this brevity of exprd~slon comes
free (up to a constant). 5hieber ~ays little to ;dlay possible
doubts:

W,, will t.,r proq,nt a rigor..s (h.lllOtlstr'~..li¢)t) o f I'llnP
c'(,mpt,'xlty. I.,t ~t . I . , . id b~, ch..tr fr.m tiw oh,.',, rc.lation
h,.t w,',.n) he l,rt,,,vtlt(',l ;tl~,nt hm ;rod E.rt<.y'~ t hat the
('+ , t .ph 'x i ty Is)h;d o f Earh .y '> ;tig,)rltl~tlt [II t.l.+ w o r s t
,'.:+,,. wh,,re tl.. I.I" rnh'. ;dw:ty:. +p,'('ffy ;t tllli(llll" ordor-
t;,~ l '-r t!+(. ri~i~t-imlld :~+'(' ,,l'<,v<."y ID rtih., the l)i'('r~'tlte~l
;d. , ; ,wi th; ' . r,,,In."v., t.+ E , t r h ' y , ; t l~ t) r l lh l l l ~qin,.+, ~ ivon
)h, ' . . : ramm.tr . vh t . r km~ : I . . L I) rnh.:.; t;Lk(..., Cl)ll+'r+liillt t ime .
rh,,. th in . c,)IJHd,,'.":it y , , I i t . . p re>ented : d ~ . , r l t h t . i..., i deo-
tw ;d t() E.ri(.y'+ . T h a t i:.. it ts (i t (,' '2 .'t:;). wh t . ro :(';:
t>)1., qzt' ,,f thv gramt,~ar im,ml,vr ,,f [D ruh'.~) and n
i. ~ tilt' h'ngth <)f the input. (:i,If)

Among other questions, it is nnclear why a +ituation of
maximal constraint shouhl represent the worst case. Mtrd-
real constraint may mean that there are more possibilities
to consider.

.q.h;eber's algorithm does have a time advantage over
the nse of garley's algorithm on the expanded CF'G. but
it blows up in tile worst case; tile el;din of (9 (G " . r(~)
time complexity is nustaken. A reduction of the vertex-
cover l>rt)blenl shows that ID/LP parsing is actually NI)-
comph.te: hence ti,is bh)wup arises from the inherent diffi-
culty of ID,'LP parsing ratlter than a defect in $hieber's al-
gorithm (unless g' = A2) . Tile following ~ections explain
aud discuss this result. LP constraints are neglected be-
cause it is the ID r. les that make parsing dilficult
Atte)~tion focuses on unordered contest-free 9rammar~
(I ~('F(;s; essentially, l l) / l ,P gram,oars aans LIt). A UCFG
rule ;s like a standard C[:G rule except that when use(t m a
derivati,,n, it may have the symbols ,)f its ex [~ans io l t writ-
ten in any order.

SHIEBER'S ALG OIIITHM
Shiel)er generalizes Earley's algorithm by generalizing

the dotted-rule representation that Earley uses to track
progress thro ,gh rule expansions. A UCIrG rule differs
from a CFG rule only in that its right-hand side is un-
ordered; hence successive accumulation of set elements re-
places linear ad- .mcement through a sequence. Obvious
interpretations follow for the operations that the Earley
par.,er performs on dotted rules: X - . {}.{A, B , C } is a

78

typical initial state for a dotted U C F G rule;
X - - { A , B , C } . { } is a t~'pical completed state;
Z ---. { W } . { a , X , Y } predicts terminal a and nontermi-
nail X , Y ; and X -- { A } . { B , C , C } should be advanced
to X - . { A , C } . { B , C } after the predicted C is located, t
Except for these changes, Shieber 's algorithm is identical
to Earley's.

As Shieber hoped, direct parsing is bet ter than using
Earley's algorithm on an expanded gr,-mlmar. If Shieber 's
parser is used to parse abcde according to Ct, the state
sets of the parser remain small. The first state set con-
tains only iS - - {} .{a ,b ,c ,d ,e} ,O I, the second state set
contains only [S - - {a}.{b,c ,d,e} ,O i, ,'rod so forth. The
state sets grow lnuch larger if the Earley parser is used to
parse the string according to G' t with its 120 rules. After
the first terminal a has been processed, the second state set
of the Earley parser contain, .1! - 2.t stales spelling out all
possible orders in which the renmiaing symbols {b,e ,d,e}
may appear: ;S ~ a.bcde,O!, ;S - , ,,.ccdb. Oi and so on.
Shieber's parser should be faster, since both parsers work
by successively processing all of tile states in tile state sets.
Similar examples show that tile 5hieber parser can have
,-m arbitrarily large advantage over the tlse of the Earley
parser on tile object gr,'unmar.

Shieber's parser does not always enjoy such a large ad-
vantage; in fact it can blow tip in the presence of ambiguity.
Derive G~. by modifying Gt in two ways. First, introduce
dummy categories A. tl, C , D , E so that A ~ a and so
forth, with S -+ A B C D E . Second, !et z be ambiguously
in any of the categories A, B , C , D , E so that the rule for
A becomes A ~ a ~, z and so on. What happens when
the string z z z z a is parsed according to G~.? After the first
three occurrences of z, the state set of the parser will reflect
the possibility that any three of the phrases A,/3, C, D, E
might have been seen ,'rod any two of then| might remain to

be parsed. There will be (~) = t0 states reflecting progress

through the rule expanding S; iS ~ {A, B , C } . { D , E } , 0]
will be in the state set, a.s w i l l ' S ~ { A , C , E } . { B , D } , O I ,
etc. There will also be 15 states reflecting the completion
and prediction of phrases. In cases like this, $hieber 's al-
gorithm enumerates all of the combinations of k elements
taken i at a tin|e, where k is the rule length and i is the
number of elements already processed. Thus it can be
combinatorially explosive. Note, however, that Shieber's
algorithm is still better than parsing the object grammar.
With the Earley parser, the state set would reflect the same
possibilities, but encoded in a less concise representation.
In place ot the state involving S ~ {A, 13, C } . { D , E } ,
for instance, there would be 3!. 2! = 12 states involving
S ~ A B C . D E , S ~ 13CA.ED, and so forth. 2 his |end

IFor mor~. dl.rail~ ~-e B a r t o n (198,1bi ~ l d Shi , .hPr (1983}. Shieber ' .~
rel,re~,ent;tt ion ,lilfers in .~mle ways f rom tilt. reprr . '~ ,nla t iol l de..
.a'ribt.,[lit.re, wit |ell W~.~ ,h.veh}ped illth'pt, n d e u t l y by tilt, a u t h o r .
T h e dilft ,r , .nces tuft. i~ellPrldly iut.~.'~eutiid, b u t .~ee | to te 2.

l l n eontrP....t¢ tit t | l t . rr |)rrr4.ntztl.ion .ilht..4tr;tled here . :¢,}:ieber'.., rt.|v.
£P.~Wl'llt+l+liOll Hl'¢ll;Idl|y .~ulfl.r.~ to POIlI(" eXtt'tlt flOlll Tilt + Y.;tllle |lf[lil-

of a total of 25 states, the Earley state set would contain
135 = 12 • 10 -+- 15 states.

With G~., the parser could not be sure of the categorial
identities of the phrases parsed, but at least it was certain
of the number ,'tad eztent of the phrases. The si tuation gets
worse if there is uncertainty in those areas ~ well. Derive
G3 by replacing every z in G,. with the empty string e so
that ,an A, for instance, can be either a or nothing. Before
any input has been read, state set S, in $hieber 's parser
must reflect the possibility that the correct parse may in-
clude any of the 2 ~ = 32 possible subsets of A, B, C, D, ~'

empty initial constituents. For example, So must in-
clude [..q - - {A,]3,C, D, E}.{},0i because the input might
turn out to be the null string. Similarly, S. must include
:S ~ {A ,C , El.{~3, Dt,O~ because the input might be bd
or db. Counting all possible subsets in addition to other
states having to do with predictions, con|pie | ions, and the
parser start symbol that some it | |p[ententatioas introduce,
there will be .14 states in £,. (There are 3:~8 states ill the
corresponding state when the object gra, atuar G~ is used.)

| low call :Shieber's algorithm be exponeatial in grant-
Inar size despite its similarity to Earh:y's algorithm,
which is polynontiM in gratnln~tr size7 The answer is that
Shieber 's algorithm involves a leech larger bouad on the
number of states in a state set. Since the Eariey parser
successively processes all of the states in each state set
(Earley, 1970:97), an explosion in the size of the state sets
kills any small runtime bound.

Consider the Earley parser. Resulting from each rule
X ~ At 4~ in a gram|oar G,, there are only k - t pos-
sible dotted rules. The number of possible dot ted rules
is thus bounded by the au~'uber of synibois that it takes
to write G, down, i.e. by :G,, t. Since an Eariey state
just pairs a dotted rule with an interword position ranging
front 0 to the length n of the input string, there are only
O('~C~; • n) possible states: hence no state set may contain
more than O (G a i ' n) (distinct) states. By an argument
due to Eartey, this limit allows an O(:G~: . n z) bound to
be placed on Earley-parser runti,ne. In contrast, the state
sets of Shieber's parser may grow t|tuch larger relative to
g r~nmar size. A rule X ~ A t . . . A~ in a UCFG G~ yields
not k + I ordinary dotted rules, but but 2 ~ possible dot-
ted UCFC rules tracking accumulation of set elements. [n
the worst ca.,e the gr,'uutttar contains only one rule and k
is on the order of G,,:: hence a bound on the mt,nber of
possible dotted UCFG rules is not given by O(G,, .) , but
by 0(2 el,). (Recall tile exponential blowup illustrated for
granmmr /5:.) The parser someti,,tes blows up because
there are exponentially more possible ways to to progress
through an :reordered rule expansion than an through an
ordered one. in ID /LP parsing, the emi t s | case occurs

l e m . . q h i v h e r {1083:10} um.~ ,~t o r d e r e d s e q t . , n r e in.~tead of a mld-
tim.t hvfore tilt. dot : ¢ou.~equently. in plltco of the ..,tate i nvo |v ing
S ~ {A.B.(:}.{D.E}, Sltiei,er wouhJ have t i l t , :E = 6 ~t;ttt..~ itl-
vtdving S -- ~t. {D. E}, where o~ range* over l|te six pernlutlxtion8 of
ABC.

77

a e e b

I ["'d el I ,, e2
. /

e 3

Figure 1: This graph illustrates a trivial inst,ance of the
vertex cover problem. The set {c,d} is a vertex cover of
size 2.

when the LP constraints force a unique ordering for ev-
ery rule expansion. Given sufficiently strong constraints,
Shieber 's parser reduces to Earley's as Shieber thought,
but strong constraint represents the best case computa-
tionally rather than the worst caze.

N P - C O M P L E T E N E S S
The worst-case time complexity of Shieber 's algori thm

is exponential in grammar size rather than quadratic ,'m
Shieber (1983:15} believed, l)id Shieber choose a poor al-
gorithm, or is I D / L P parsing inherently difficult? In fact,
the simpler problem of recoyn~zzn 9 sentences according to a
UCFG is NP-complete. Thus, unless P = 3/P, no I D / L P
parsing algorithm can always run in trine polynomial in
the combined size of grammar and input. The proof is a
reduction of the vertex cover problem (Garey and John-
son, 1979:,16), which involves finding a small set of vertices
in a graph such that every edge of the graph has an end-
point in the set. Figure 1 gives a trivial example.

To make the parser decide whether the graph in Fig-
ure I has a vertex cover of size 2, take the vertex names a,
b, c, and d as the alphabet. Take Ht through H4 as special
symbols, one per edge; also take U and D as dummy sym-
bols. Next, encode the edges of the graph: for instance,
edge el runs from a to c, so include the rules itll ---, a and
Ht ~ c. Rules for the dummy symbols are also needed.
Dummy symbol D will be used to soak up excess input
symbols, so D ~ a through D ~ d should be rules.
Dummy symbol U will also soak up excess input symbols,
but U will be allowed to match only when there are four
occurrences in a row of the same symbol {one occurrence
for each edge). Take U ~ aaaa, U --. bbbb, and U --. cccc,

and U ---, dddd as the rules expanding U.

Now, what does it take for the graph to have a vertex

cover of size k = 2? One way to get a vertex cover is to go
through the list of edges and underline one endpoint of each
edge. If the vertex cover is to be of size 2, the nmlerlining
must be done in such a way that only two distinct vertices
axe ever touched in the process. Alternatively, since there
axe 4 vertices in all, the vertex cover will be of size 2 if there
are 4 - 2 = 2 vertices left untouched in the underlining.
This method of finding a vertex cover can be translated

S T A R T -~ Hi t I2H3H4UU D D D D

Hl -.-.aI c
H2--*ble
H3 --. c l ,~
H,..-.bl~

U ---, aaaa ! bbbb t cccc I dddd
D ~ a l b l c l d

Figure 2: For k = 2, the construction described in the text
transforms the vertex-cover problem of Figure 1 into this
UCFG. A parse exists for the string aaaabbbbecccdddd iff
the graph in the previous figure has a vertex cover of size
< 2 .

into an initial rule for the UCFG, ,as follows:

S T A R T - . Hi I I 2 H ~ I I 4 U U D D D D

Each / / - symbol will match one of the endpoints of the
corresponding edge, each /.r-symbol will correspond to a
vertex that was left untouclted by the H-matching, and
the D-symbols are just for bookkeeping. (Note that this is
the only ~ule in the construction that makes essential use
of the unordered na t , r e of rule right-hand sides.} Figure 2
shows the complete gr,'unmar that encodes the vertex-cover
problem ,,f Figure I.

To make all of this work properly, take

a = aaaabbbbccccdddd

as the input string to be parsed. (For every vertex name z,
include in a a contiguous run of occurrences of z, one for
each edge in the graph.) The gramnlar encodes the under-
lining procedure by requiring each / / - symbol to match one
of its endpoints in a. Since the expansion of the S T A R T
rx, le is unordered, ,an H-symbol can match anywhere in a,
hence can match any vertex name (subject to interference
from previously matched rules). Furthermore, since there
is one occurrence of each vertex name for every edge, it 's
impossible to run out of ver tex-name occurrences. The
grammar will allow either endpoint of an edge to be "un-
derlined" - - that is, included in the vertex cover - - so the
parser must figure out which vertex cover to select. How-
ever, the gr,-mtmar also requires two occurrences of U to
match. U can only match four contiguous identical input
symbols that have not been matched in any other way;
thus if the parser chooses too iarge a vertex cover, the U-
symbols will not match and the parse will fail. The proper
number of D-symbols equals the length of the input string,
minus t|,e number of edges in the graph (to ~ c o u n t for the
/ / , -matches) , minus k times the number of edges (to ac-
count for the U-matches): in this case, 16 - 4 - (2 • 4) = 4,
as illustrated in the S T A R T rule.

The result of this construction is that in order to decide
whether a is in the language generated by the UCFG, the

78

S T A R T

U U Ht //2 H3 D //4 D D D

A/ IIIIIIII
a a a a b b b b c c c c d d d d

Figure 3: The grammar of Figure 2, which encodes the
vertex-cover problem of Figure I, generates the string
a = aaaabbbbccccddddaccording to this parse tree. The
vertex cover {c,d} can be read off from the parse tree a~
the set of elements domi,~ated by //-symbols.

parser nmst search for a vertex cover of size 2 or less. 3 If
a parse exists, an appropriate vertex cover can be read off
from beneath the / /-symbols in the parse tree; conversely,
if an appropriate vertex cover exists, it shows how to con-
struct a parse. Figure 3 shows the parse tree that encodes a
solution to the vertex-cover problem of Figure 1. The con-
struction thus reduces Vertex Cover to UCFG recognition,
and since the c,~nstruction can be carried out in polyno-
mial time, it follows that UCFG recognition and the more
general ta.sk of ID/LP parsing nmst be computationally
difficult. For a more detailed t reatment of the reduction,
see Barton (1984b).

I M P L I C A T I O N S

The reduction of Vertex Cover shows that the [D/LP
parsing problem is YP-complete; unless P = ~/P, its time
complexity is not bounded by ,'my polynomial in the size'of
the grammar and input. Ilence complexity analysis must
be done carefully: despite sintilarity to Earley's algorithm,
Shieber's algorithm does not have complexity O(IG[2. n3),
but can sometimes undergo exponential growth of its in-
ternal structures. Other computat ional ,and linguistic con-
sequences alzo follow.

Although Shieber's parser sometimes blows up, it re-
mains better than the alternative of ,~arsing an expanded
"object ~arnmar ." The NP-completeness result shows that
the general c~e of ID/LP parsing is inherently difficult;
hence it is not surprising that Shieber's ID/LP parser some-
times suffers from co,nbinatorial explosion. It is more im-
portant to note that parsing with the expanded CFG blows
up in ea~v c~es . It should not be h ~ d to parse the lan-

~lf the v#rtex er, ver i.~ t, m a l l e r tllall expected, the D-.~y,nbo~ will
up the extra eonti~mun ntrm that could have been matrhed I~'

more (f-symbols.

guage that consists of aH permutat ions of the string abode,
but in so doing, the Earley parser can use 24 states or more
to encode what the Shieber parser encodes in only one (re-
call Gl). Tile significant fact is not that the Shieber parser
can blow up; it is that the use of the object grammar blows
up unnecessarily.

The construction that reduces the Vertex Cover prob-
lem to ID/LP P,xrsing involves a grammar and input string
that both depend on the problem instance; hence it leaves
it open that a clever programmer ,night concentrate most
of the contputational dilliculty of ID/LF' parsing into an
ofll_ine grammar-precompilation stage independent of the
input - - under optimistic hopes, perhaps reducing the time
required for parsing ;m input (after precompilation) to a
polynomial function of grammar size and inpt,t length.
Shieber's algorithm has no precompilation step, ~ so the
present complexity results apply with full force; ,'my pos-
sible precompilation phase remains hyl~othetical. More-
over, it is not clear that a clever preco,npilation step is
even possible. For example, i f n enters into the true com-
plexity of ID/LI ~ parsing ,~ a factor multiplying an expo-
nential, ,an inpnt-indepemtent precompilation phase can-
not help enough to make the parsing phase always run in
polynomial time. On a related note,.~uppo,e the precom-
pilation step is conversiol, to CF(.; farm ¢md the runt ime
algorithm is the Earley parser. Ahhough the precompila-
tion step does a potentially exponenti;d amount of work in
producing G' from G, another expoaential factor shows up
at runtime because G' in the complexity bound G'2n~
is exponentially larger than the original G'.

The NP-completeness result would be strengthened if
the reduction used the same grammar for all vertex-cover
problems, for it woold follow that precompilation could
not bring runtime down to polynomial time. However,
unless ,~ = & P, there can be no such reduction. Since
gr.'Jannlar size would not count as a parameter of a fixed-
gramm~tr [D/LP parsing problem, the l,se of the Earley
parser on the object gr,-ulzmar would already constitute a
polynomial-time algorithm for solving it. (See the next
section for discussion.)

The Vertex Cover reduction also helps pin down the
computat ional power of UCFGs. As G, ,'tad G' t illus-
trated, a UCFG (or an ID/LP gr,'uumar) is sometimes
tnttch smaller than an equivalent CFG. The NP-complete-
ness result illuminat,_'s this property in three ways. First,
th'e reduction shows that enough brevity is gained so that
an instance of any problem in .~ .~ can be stated in a UCFG
that is only polyno,nially larger than the original problem
instance. In contrast, the current polynomial-time reduc-
tion could not be carried out with a CFG instead of a
UCFG, since the necessity of spelling out all the orders in
which symbols lltight appear couhl make the CFG expo-
nentially larger than the instance. Second, the reduction
shows that this brevity of expression is not free. CFG

'Shieber {1983:15 n. 6) mentmn.~ a possible precompilation step. but
it i~ concerned ~,,,itlt the, [,P r~'hLrum rather tha.'* tlt~r ID rtth.-~.

79

recognition can be solved in cubic time or less, bu t unless
P = .~'P, general UCFG recognition cannot be solved in
polynomial time. Third, the reduction shows that only
one essential use of the power to permute rule expansions
is necessary to make the parsing problem NP-comphte ,
though the rule in question may need to be arbitrari ly

long.
Finally, the ID/LP parsing problem illustrates how

weakness of constraint c,-m make a problem computat ion-
ally difficult. One might perhaps think that weak
constraints would make a problem emier since weak con-
straints sound easy to verify, but it often takes ~trong con-
straints to reduce the number of possibilities that an algo-
r i thm nmst consider. In the present case, the removal of
constraints on consti tuent order causes the dependence of
the runt |me bound on gr, 'unmar size to grow from IGI ~ to
TG',.

The key factors that cause difficuhy in ID/LP parsing
are familiar to linguistic theory. GB-theory amt GPSG
both permit the existence of consti tuents that are empty
on the surface, and thus in principle they both allow the
kind of pathology illustrated by G~, subject to ,-uueliora-
tion by additional constraints. Similarly, every current
theory acknowledges lexical ambiguity, a key ingredient of
the vertex-cover reduction. Though the reduction illumi-
nates the power of certain u,echanisms and formal devices,
the direct intplications of the NP-completeness result for
grammatical theory are few.

The reduction does expose the weakness of a t tempts
to link context-free generative power directly to efficient
parsability. Consider, for inst,'mce, Gazdar 's (1981:155)
claim that the use of a formalism with only context-free
power can help explain the rapidity of human sentence

processing:
Suppose . . . that the permit ted class of genera-
live gl'anllllal'S consti tuted ,t s,b~ct - f t.h~Jsc phrase
structure gramni;trs c;qmblc only of generating con-

text-free lung||ages. Such ;t move w, mld have two
iz,lportant tuetathcoretical conseqoences, one hav-
ing to do with lear,mbility, the other with process-
ability . . . We wen|hi have the beginnings of an ex-
plan:tti~:u for the obvious, but larg~.ly ignored, fact
thltI hll:llD.ns process the ~ttterance~ they hear very
rapidly. ."~cnll+llCe+ c+f ;t co;O.exl-frec I;tngu;tge are
I+r,val>ly l;ar~;tl~h: in ;t l.illn'~ that i>~ i>r,,l>ot'tionitl to
the ct,bc ,,f the lezlgl h of the ~entenee or less.

As previously remarked, the use of Earley's algorithm on
the expanded object grantmar constitutes a parsing method
for the ILxed-grammar (D/LP parsing problem that is in-
deed no worse than cubic in sentence length. However, the
most important, aspect of this possibility is that it is devoid
of practical significance. The object ~, 'mmtar could con-
tain trillions of rules in practical cases (Shieber, 1983:4).
If IG'~, z. n ~ complexity is too slow, then it rentains too slow
when !G'I: is regarded as a constant. Thus it is impossi-
ble to sustain this particular argument for the advantages

of such formalisms ,as GPSG over other linguistic theo-
ries; instead, GPSG and other modern theories seem to
be (very roughly) in the same boat with respect to com-
plexity. In such a situation, the linguistic merits of various
theories are more important than complexity results. (See
Berwick (1982), Berwick and Weinberg (1984), aJad Ris-
tad (1985) for further discussion.)

The reduction does not rule out the use of formalisms
that decouple ID and LP constraints; note that Shieber's
direct parsing algorithm wins out over the use of the object
grammar. However, if we assume that natural languages
,xre efficiently parsable (EP), then computat ional difFicul-
ties in parsing a formalism do indicate that the formalism
itself fl~ils to capture whatever constraints are responsible
for making natural languages EP. If the linquistically rel.
evant ID/LP grammars are EP but the general ID/LP
gramu,ars ~ e not, there must be additional factors that
guarantee, say, a certain amount of constraint from the LP
retat ionJ (Constraints beyond the bare ID, LP formalism
are reqt, ired on linguistic grounds ,as well.) The subset
prtnciple ,ff language acqoisition (cf. [h, rwick and We|n-
berg, 198.1:233) wouht lead the language learner to initially
hypothesize strong order constraints, to be weakened only
in response to positive evidence.

llowever, there are other potential ways to guarantee
that languages will be EP. It is possible that the principles
of grammatical theory permit lunge,ages that are not EP
in the worst c,'tse, just as ~, 'uumatical theory allows sen-
tences that are deeply center-embedded (Miller and Chom-
sky, 1963}. Difficuh languages or sentences still wouhl not
turn up in general use, precisely because they wot, ht be dif-
ficult to process. ~ The factors making languages EP would
not be part of grammatical theory because they would
represent extragrammatical factors, i.e. the resource lim-
itations of the language-processing mechanisms. In the
same way, the limitations of language-acquisition mech-
anisms might make hard-to-parse lunge, ages maccesstble
to the langamge le,'u'ner in spite of satisfying ~ a m m a t i c a l
constraints. However, these "easy explanations" are not
tenable without a detailed account of processing mecha-
nisms; correct oredictions are necessary about which con-
structions will be easy to parse.

A C K N O W L E D G E M E N T S

This report describes research done at the Artificial
Intelligence Laboratory of the Ma.ssachusetts Insti tute of

~|a the (;B-fr~unework of Chom.-ky (1981). for in~tance, the ,~yn-
tactic expre~..,ion of unnrdered 0-grids at tire X level i'~ constrained
by tile principlv.~ of C.'~e th~ry, gndocentrieity is anotlmr .~ignifi-
cant constraint. See aL~o Berwick's (1982} discu.-,,-,ion of constraints
that could be pl;wed ml another gr;unmatie',d form,'dism -- lexic,'d-
fimetional grammar - to avoid a smfil.'u" intr,'u'tability result.

nit is often anordotally remarked that lain|rouges that allow relatively
fre~ word order '.end to m',tke heavy u.-.e of infh~'tions. A rich iattec-
timln.l system can .-upply parsing constraints that make up for the
hack of ordering e.,strai,*s: thu~ tile situation we do not find is the
computationa/ly dill|cult cnse ~ff weak cmmcraint.

8 0

Technology. Support for the Laboratory's artificial intel-
ligence research has been provided in part by the Ad-
vanced Research Projects Agency of the Department of
Defense under Office of Naval Research contract N00014-
80-C-0505. During a portion of this research the author's
graduate studies were supported by the Fannie and John
Hertz Foundation. Useful guidance and commentary dur-
ing this research were provided by Bob Berwick, Michael
Sipser, and Joyce Friedman.

R E F E R E N C E S

Barton, E. (1984a). "Towed a Principle-Based Parser,"
A.I. Menlo No. 788, M.I.T. Artificial Intelligence Lab-
oratory, Cambridge, Mass.

Barton, E. (198,1b). "On the Complexity of ID/LP Pars-
ing," A.I. Menlo No. 812, M.I.T. Artificial Intelligence
Laboratory, Cambridge, Mass.

Berwick, R. (1982). "Computational Comphxity and
Lexical-Functional Grammar," American Journal of
Compu:ational Linguistica 8.3-4:97-109.

Berwick, R., and A. Wcinberg (1984). The Grammatical
Basi~ of Linguistic Performance. Cambridge, Mass.:
M.I.T. Press.

Chomsky, N. (1981). Lecture8 on Government and Bind.
ing. Dordrecht, ttolland: Foris Publications.

Earley, J. (1970). "An EfFicient Context-Free Parsing Al-
gorithm," Comm. ACM 13.2:94-102.

Gaxey, M., and D. Johnson (1979). Computer~ and In-
tractability. San Francisco: W. H. Freeman and Co.

Gazdar, Gerald (1981). "Unbounded Dependencies and
Coordinate Structure," Linguistic Inquiry 12.2:155-184.

Miller, G., and N. Chomsky (1963). "Finitary Models of
Language Users." in R. D. Luce, R. R. Bush, and E.
Galanter, eds., Handbook of Mathematical Psychology,
vol. II, 419-492. New York: John Wiley and Sons, Inc.

Ristad, E. (1985). "GPSG-Recognition is NP-Ilard," A.I.
Memo No. 837, M.I.T. Artificial Intelligence Labora-
tory, Cambridge, M,xss., forthcoming.

Shieber, S. (1983). "Direct Parsing of !D/LP Grammars."
Technical Report 291R, SRI International, Menlo Park,
California. Also appears in Lingui~tic~ and Philosophy
7:2.

81

