THE COMPUTATIONAL DIFFICULTY OF ID/LP
PARSING

G. Edward Barton, Jr.

M.LT. Artificial Intelligence Laboratory
545 Technology Square
Cambridge, MA 02139

ABSTRACT

Modern linguistic theory attributes surface complexity
to interacting subsystems of constraints. For instance, the
ID.LP grammar formalism separates constraints
on unniediate dominance from those on linear order.
Shieber’s (1983} ID/L.P parsing algorithiu shows how to
use ID and LP constraints directly in language process-
ing, without expanding them into an intermedinte “object
grammar.” However, Shicber’s purported O(:Gi* - n3) run-
time bound underestimates the dilliculiy of ID/LP parsing.
ID; LP parsing is actually NP-complete, and the worst-case
runtime of Shieber's algorithm is actually exponential in
arammar size. The growth of parser data structures causes
the difficulty. Some computational and linguistic implica-
tions follow; in particular, it is important to note that
despite its potential for combinatorial explosion, Shieber’s
algorithm remains better than the alternative of parsing
an expanded object grammar.

INTRODUCTION

Recent linguistic theories derive surface complexity
frem modular subsystems of constraints; Chomsky (1981:3)
proposes separate theories of bounding, governimnent,
A-marking, and =o forth. whiie Gazdar and Pullum’s GPSG
formalism {Shieber. 1983:2{f) user immediate-dominance
{iD} rules, linear-precedence (L.P) constraints, and
metarules. When modular censtraints are involved, rule
svstems that multiply out their surface cffects are large
and ciumsy (see Barton, 1984a). The expanded context-
free “object gramumar” that multiplies out the constraints
in a typical GPSG system would coatain trillions of rules
{Shicber, 1983:1).

Shicher (1083) thus leads iz a welcome direction by
showing how {D/LP grammars can be parsed “directly,”
without the combinatorially explosive step of multiplying
aut the effects of the [D and LP constraints. Shieber’s
Agorithm applies ID and LP constraints one step at a
time. os needed. However, some doubts about computa-
ttonal complexity remain. Shicher (1983:15) argues that
his algorithm is identical to Earley’s in time complexity,
but this result seems almost 100 nuch to hope for. An
I/LP grammar G can be much smaller than an equiva-
lent context-free gramunar G'; for example, if Gy contains
only the rule S —ip abede, the corresponding G contains

5! = 120 rules. If Shicber's algorithin has the same time
complexity as Earley’s, this brevity of expression comes
free (up to a constant}. Shieber says little to allay possible
doubts:

We will not present a rigorons demonstraiion of tiune
complexity. but it shonid be cleae from the close relation
hetween the presented algontha and Earley’s that the
compiexity s that of Farley's algonthue [o the worst
cise. where the LD miles adways speafy a noique order-
e Tor the right-hand size of every (D mde. the presented
abearithem rednees 1o Barley's algoritiun Sinee given
the eramumar. checkimg the L rudes takes constant time,
the time complexity of the presented alzornthm is iden-
teal to Barley's o0 That soits O0 G *n®). where (G5
1= the size of the erammar {number of [D enles) and n
15 the length of the inpue. ((14f)

Among other questions, it is unclear why a situation of
maximal constraint should represent the worst case. Mint-
mal constraint may mean that there are more possibilities
Lo consider.

Shicher’s algorithm does have a time advantage over
the nse of Earley's algorithim on the expanded CFG, but
it blows up in the worst case; the claim of ()(;G'2 -n?)
time complexity is nustaken. A reduction of the vertex-
cover problemt shows that ID/LP parsing is actually NP-
complete: hence this blowup arises from the inherent dith-
culty of ID/LP parsing rather than a defect in Shieber’s al-
gorithm {unless P = W 7). The following sections explain
and discuss this result. LP constraints are neglected be-
cause it is the ID rules that make parsing difficult.
Atrention focuses on unordered contezt-free grammars
(1'CFCs; essentiadly, ID/LP grammars sans LP). A UCFG
rule 's like a standard CFG rule except that when used in a
derivation. it may have the symbols of its expansion writ-
ten in any order.

SHIEBER'’S ALGORITHM

Shicher generalizes Earley's algorithm by generalizing
the dotted-rule representation that Earley uses to track
progress through rnie expansions. A UCFG rule differs
from » CFG rule only in that its right-hand side is un-
ordered; hence successive accumulation of set elements re-
places linear advancement through a sequence. Obvious
interpretations follow for the operations that the Earley
parser performs on dotted ruless X — {}.{A,B,C} is a

typical initial state for a dotted UCFG rule;
X — {A/B,C}{} is a typical completed state;
Z — {W}.{a,X,Y} predicts terminal a and nontermi-
nals X.Y; and X — {A}.{B,C,C} should be advanced
to X — {A,C}.{B,C} alter the predicted C is located.!
Except for these changes, Shieber’s algorithm is identical
to Earley’s.

As Shieber hoped, direct parsing is better than using
Earley's algorithm on an expanded grammar. If Shieber’s
parser is used to parse ubcde according to G, the state
sets of the parser remain small. The first state set con-
tains only (S — {}.{a,b,c,d,¢},0!, the second state set
contains only !S — {a}.{b,c,d.¢},0], and so forth. The
state sets grow much larger if the Earley parser is used to
parse the string according to G| with its 120 rules. After
the first terminal a has been processed. the second state set
of the Earley parser contains 4! -- 24 states spelling out all
possible orders in which the remaining symbols {b,¢, d,e}
may appear: (S — a.bede,0i, 'S ~+ a.cedb, 0!, and so on.
Shieber’s parser shouid be faster, since both parsers work
by successively processing all of the states in the state sets.
Simiiar examples show that the Shieber parser can have
an arbitrarily large advantage over the use of the Earley
parser on the object grammar.

Shieber’s parser does not always enjoy such a large ad-
vantage; in fact it can biow up in the presence of ambiguity.
Derive G» by modifying G, in two ways. First, introduce
dummy categories A, B, C,D,E so that A — a and so
forth, with § -~ ABCDE. Second, let z be ambiguously
in any of the categories A, B,C, D, E so that the rule for
A becomes A — a | z and so on. What happens when
the string zzzza is parsed according to G,? After the first
three occurrences of z, the state set of the parser will reflect
the possibility that any three of the phrases A4, B,C, D, E
might have been seen and any two of them might remain to
be parsed. There will be (;) = 10 states reflecting progress
through the rule expanding S; .S — {4, B,C}.{D, E},0|
will be in the state set, as will 'S — {A,C, E}.{B, D},0],
ete. There will also be 15 states reflecting the completion
and prediction of phrases. In cases like this, Shieber’s al-
gorithm enumerates all of the combinations of k elements
taken ¢ at a time, where k is the rule length and 1 is the
numnber of elements aiready processed. Thus it can be
combinatorially explosive. Note, however, that Shicher’s
algorithm is still better than parsing the object grammar.
With the Earley parser, the state set would reflect the same
possibilities, but encoded in a less concise representation.
In place of the state invelving § — {A,B,C}.{D,E},
for instance, there would he 3! - 2! = 12 states involving
S — ABC.DE, S — BCA.ED, and so forth.? Instead

'For more details see Barton (1984b) and Shieher (1983). Shichee's
representation differs in some ways from the representation des
scribed here, which was developed independently by the aathor.
The ditferences ace generadly inessential, but see note 2.

}In conteast to the representation -illustraced here, Shieber’s fepe
resentation actuadly suffers to some extent from the siaue prob-

of a total of 25 states, the Earley state set would contain
135 = 12 - 10 + 15 states.

With G, the parser could not be sure of the categorial
tdentities of the phrases parsed, but at least it was certain
of the number and eztent of the phrases. The situation gets
worse if there is uncertainty in those areas as well. Derive
G; by replacing every z in Ga with the empty string € so
that an A, for instance, can be either a or nothing. Before
any input has been read, state set S, in Shieber’s parser
must reflect the possibility that the correct parse may in-
clude any of the 2° = 32 possible subsets of A, B,C,D, E
as empty initial constituents. For example, S, must in-
clude {S — {4, B,C, D, E}.{},0i because the input might
turn out to be the null string. Stmilarly, S, must include
S = {A,C,E}{B,D},0 because the input might be bd
or db. Counting all possible subsets in addition to other
states having to do with predictions, completions, and the
parser start symbol that some implementations introduce,
there will be 4 states in 5. (There are 338 states in the
corresponding state when the object grammar Gy is used.)

[low can Shieber’s algorithm be exponential in gram-
mar size despite its similarity to [Sarley's algorithm,
which is polynomial in grammar size? The answer is that
Shieber’s algorithm involves a much larger bound on the
numnber of states in a state set. Jince the Earley parser
successively processes all of the states in each state set
(Earley, 1970:97), an explosion in the size of the state sets
kills any small runtime bhound.

Consider the Earley parser. Resulting from each rule
X — A,...A¢ in a grammar G, there are only k& — 1 pos-
sible dotted rules. The number of possible dotted rules
is thus bounded by the number of symbols that it takes
te write G, down, t.e. by ‘G,. Since an Earley state
just pairs a dotted rule with an interword position ranging
from 0 to the length n of the input string, there are only
O(,G,! - n) possible states; hence no state set may contain
more than O(G, - n) (distinct) states. By an argument
due to Earley, this limit allows an O(:G,? - n*) bound to
be placed on Earley-parser runtime. In contrast, the state
sets of Shieber’s parser may grow much larger relative to
grammar size. A rule X — A, ... Ay in a UCFG G, yields
not k ~ | ordinary dotted rules, but but 2 possible dot-
ted UCFG rules tracking accumulation of set elements. [n
the worst case the graunmar contains only one rule and &
is on the order of (7,:: hence a bound on the number of
possible dotted UCFG rules is not given by O(G4}, but
by O(2“). (Recall the exponential blowup illustrated for
grammar G3.) The parser sometimes blows up because
there are exponentially more possible ways to to progress
through an unordered rule expansion than an through an
ordered one. In [D)/LP parsing, the easiest case occurs

lein. Shicber (1983:10) uses an ordered sequence instead of a mul-
tiset hefore the dot: consequently, in place of the state involving
§ = {A.B.C}.{D.E}, Shichber would have the 3! = 6 states in-
volving & — a.{ D, E}, where a ranges over the six permutations of

ADC.

Figure 1: This graph illustrates a trivial instance of the
vertex cover problem. The set {c,d} is a vertex cover of
size 2.

when the LP constraints [orce a unique ordering for ev-
ery rule expansion. Given sufficiently strong constraints,
Shieber’s parser reduces to Earley's as Shieber thought,
but strong constraint represents the best case computa-
tionally rather than the worst case.

NP-COMPLETENESS

The worst-case time complexity of Shieber’s algorithm
is exponential in grammar size rather than quadratic as
Shieber {1983:15) believed. Did Shicber choose a poor al-
gorithm, or is ID/LP parsing inherently difficult? In fact,
the simpler problem of recognizing sentences according to a
UCFG is NP-complete. Thus, unless 7 = NP, no ID/LP
parsing algorithm can always run in time polynomial in
the combined size of grammar and input. The proof is a
reduction of the vertez cover problem (Garey and John-
son, 1979:46), which involves finding a small set of vertices
in a graph such that every edge of the graph has an end-
point in the set. Figure 1 gives a trivial example.

To make the parser decide whether the graph in Fig-
ure 1 has a vertex cover of size 2, take the vertex names a,
b. ¢, and d as the alphabet. Take #[| through H, as special
symbals, one per edge; also take U and D as dumniy sym-
bols. Next, encode the edges of the graph: for instance,
edge ¢, runs from a to ¢, so include the rules H, — a and
H, — c. Rules for the dummy symbols are also needed.
Dummy symbol D will be used to soak up excess input
symbols, so D — a through D — d should be rules.
Dumniy symbol U will also soak up excess input symbols,
but I’ will be allowed to match only when there are four
occurrences in a row of the same symbol {one occurrence
for each edge). Take U — aaaa, U — bbbb, and U — ccce,
and U — dddd as the rules expanding U.

Now, what does it take for the graph to have a vertex
cover of size k = 2?7 One way to get a vertex cover i3 to go
. through the list of edges and underline one endpoint of each
edge. If the vertex cover is to be of size 2, the underlining
must be done in such a way that only two distinct vertices
are ever wouched in the process. Alternatively, since there
are 4 vertices in all, the vertex cover will be of size 2 if there
are 4 — 2 = 2 vertices left untouched in the underlining.
This method of finding a vertex cover can be translated

START — H\H;II; HUUDDDD

H —alc U — aaaa | bbbb | ccec | dddd
Hy—b|c D—alblc|d

Hy—c|d

H4"’bld

Figure 2: For k = 2, the construction described in the text
transforms the vertex-cover problem of Figure 1 into this
UCFG. A parse exists for the string aaaabbbbccecdddd iff
the graph in the previous figure has a vertex cover of size
<2

into an initial rule for the UCFG, as follows:
START — I\ I, H;H,UUDDDD

Each [{-symbol will match one of the endpoints of the
corresponding edge, each [7-symbol will correspond to a
vertex that was left untouched by the ff-matching, and
the D-symbols are just for bookkeeping. (Note that this is
the only rule in the construction that makes essential use
of the unordered nature of rule right-hand sides.) Figure 2
shows the complete grammar that encodes the vertex-cover
problem of Figure 1.

To make all of this work properly, take

o = aaaabbbbecccdddd

as the input string to be parsed. (For every vertex name z,
include in ¢ a contiguous run of occurrences of z, one for
cach edze in the graph.) The grammar encodes the under-
iining procedure by requiring each /{-symbol to match one
of its endpoints in ¢. Since the expansion of the START
rule is unordered, an H-symbol can match anywhere in o,
hence can match any vertex name (subject to interference
from previously matched rules). Furthermore, since there
is one cccurrence of each vertex name for every edge, it's
impossible to run out of vertex-name occurrences. The
grammar will allow either endpoint of an edge to be “un-
derlined™ -— that is, included in the vertex cover — so the
parser must figure out which vertex cover to select. How-
ever, the grammar also requires two occurrences of U to
match. {/ can oniy match four contiguous identical input
symbois that have not been matched in any other way;
thus if the parser chooses too iarge a vertex cover, the U-
symbols will not match and the parse will [ail. The proper
number of D-symbols equals the length of the input string,
minus the numnber of edges in the graph (to account for the
{I,-matches), minus & times the number of edges (to ac-
count for the U-matches): in this case, 16 —4—(2-4) = 4,
as illustrated in the START rule.

The result of this construction is that in order to decide
whether ¢ is in the language generated by the UCFG, the

START

H H, H{y D H A, D D D
aaaabbdbbdbbdb ¢ ¢ c d d d d

Figure 3: The grammar of Figure 2, which encodes the
vertex-cover problem of Figure 1, generates the string
o = aaaabbbbeccedddd according to this parse tree. The
vertex cover {c,d} can be read off fromn the parse tree as
the set of elements dominated by #H-symbols.

parser must search for a vertex cover of size 2 or less.® If
a parse exists, an appropriate vertex cover can be read off
from beneath the fl-symbols in the parse tree; conversely,
if an appropriate vertex cover exists, it shows how to con-
struct a parse. Figure 3 shows the parse tree that encodes a
solution to the vertex-cover problem of Figure 1. The con-
struction thus reduces Vertex Cover to UCFG recognition,
and since the construction can be carried out in polyno-
mial time, it follows that UCFG recognition and the more
general task of ID/LP parsing must he computationally
difficult. For a more detailed treatment of the reduction,
see Barton {1984b).

IMPLICATIONS

The reduction of Vertex Cover shows that the iD/LP
parsing problem is NP-complete; unless P = N P, its time
complexity is not bounded by any polynomial in the size of
the grammar and input. I{ence complexity analysis mnust
be done carefully: despite similarity to Earley’s algorithm,
Shieber's algofithm does not have complexity O(IG|* - n?),
but can sometimes undergo exponential growth of its in-
ternal structures. Other computational and linguistic con-
sequences also follow.

Although Shieber's parser sometimes blows up, it re-
mains better than the alternative of parsing an expanded
“object grammar.” The NP-completeness result shows that
the general case of ID/LP parsing is inherently difficult;
hence it is not surprising that Shieber's ID/LP parser some-
times suifers from combinatorial explosion. It is more im-
portant to note that parsing with the expanded CFG blows
up in easy cases. [t should not be hard to parse the lan-

SIf the vertex cover is amailer than expected, the D-symbols will
soak up the extra contignous mns that conld have been inatched by
more {/-symbols.

guage that consists of all permutations of the string abede,
but in so doing, the Earley parser can use 24 states or more
to encode what the Shieber parser encodes in only one (re-
call G1). The significant fact is not that the Shieber parser
can blow up; it is that the use of the object grammar blows
up unnecessarily.

The construction that reduces the Vertex Cover prob-
lem to [D/LP Parsing involves a grammar and input string
that both depend on the problem instance; hence it leaves
it open that a clever programmer might concentrate most
of the computational difficulty of ID/LP parsing into an
offline grammar-precompilation stage independent of the
input — under optimistic hopes, perhaps reducing the time
required for parsing an input (after precompilation) to a
polynomial function of grammar size and input length.
Shieber's algorithmi has no precompilation step, so the
present complexity results apply with full force; any pos-
sible precompilation phase remains hypothetical. More-
over, it is not clear that a clever precompilation step is
even possible. For example, if n enters into the true com-
plexity of ID/LP parsing as a factor multiplying an expo-
nential, an input-independent precompilation phase can-
not help enough to make the parsing phase always run in
polynomial time. On a related note, suppo<e the precom-
pilation step is conversion to CFG form and the runtimne
algorithmm is the Earley parser. Although the precompila-
tion step does a potcutinlly exponential amount of work in
producing ' from G, another exponential factor shows up
at runtime because G' in the complexity bound G'n
is exponentially larger than the original G'.

The NP-completeness resuit would be strengthened if
the reduction used the same grammar for all vertex-cover
problems, for it would follow that precompilation could
not bring runtime down to polynomial time. However,
unless » = N P, there can be no such reduction. Since
grammar size would not count as a parameter of a fixed-
grammar [D/LP parsing problem. the use of the Earley
parser on the object grammar would already constitute a
polynomial-time algorithm for solving it. (See the next
section for discussion.)

The Vertex Cover reduction also heips pin down the
computational power of UCFGs. As G, and G illus-
trated, a UCFG (or an ID/LP grammar) is sometimes
much smaller than an equivalent CFG. The NP-complete-
ness result illuminates this property in three ways. First,
the reduction shows that enough brevity is gained so that
an instance of any problem in ¥ £ can be stated in a UCFG
that is only polynomially larger than the original problem
instance. In contrast, the current polynomial-time reduc-
tion could not be carried out with a CFG instead of a
UCFG, since the necessity of spelling out all the orders in
which symbols ntight appear could make the CFG expo-
nentially larger than the instance. Second, the reduction
shows that this brevity of expression is not free. CFG

“Shicber (1983:15 n. 6) mentions a possible precompilation step, but
it is concerned with the LI relation rather than the ID rules.

recognition can be solved in cubic time or less, but unless
P = NP, general UCFG recognition cannot be solved in
polynomial time. Third. the reduction shows that only
one essential use of the power to permute rule expansions
is necessary to make the parsing problem NP-complete,
though the rule in question may need to be arbitrarily
long.

Finally, the ID/LP parsing problem illustrates how
weakness of constraint can make a problem computation-
ally difficult. One might perhaps think that weak
constraints would make a problem easier since weak con-
straints sound easy to verify, but it often takes strong con-
straints to reduce the number of possibilities that an algo-
rithm must consider. In the present case, the removal of
constraints on constituent order causes the dependence of
the runtime bound on grammar size to grow [rom IGI? to
26,

The key factors that cause difficulty in [D/LP parsing
are familiar to linguistic theory. GB-theory and GPSG
both permit the existence of constituents that are empty
on the surface, and thus in principle they both allow the
kind of pathology illustrated by Gj, subject to ameliora-
tion by additional constraints. Similarly, every current
theory acknowledges lexical ambignity, a key ingredient of
the vertex-cover reduction. Though the reduction illumi-
nates the power of certain mechanisms and formal devices,
the direct implications of the NP-completeness result for
grammatical theory are few.

The reduction does expose the weakness of attempts
to link context-free generative power directly to efficient
parsability. Consider, for instance, Gazdar's (1981:155)
claim that the use of a formalism with only context-free
power can help explain the rapidity of human sentence
processing:

Suppose that the permitted cliss of genera-
tive grammars constitnted a subsct of those phrase
structure grammars capable only of generating con-
text-free languages. Such a move would have two
important metatheoretical consequences, one hav-
ing to do with learnability, the other with process-
ability ... We would have the heginnings of an ex-
planaticn for the obvious, but largely ignored, fact
that hians process the ntterances they hear very
rapidly. mentences of o coatext-free language are
provably parsable in a time that is proportional to

the cube of the length of the sentence or less.

As previously remarked, the use of Earley's algorithm on
the expanded object grammar constitutes a parsing method
for the fixed-grammar {D/LP parsing problem that is in-
deed no worse than cubic in sentence length. However, the
niost impeortant aspect of this possibility is that it is devoid
of practical significance. The object grammar could con-
tain trillions of rules in practical cases (Shieber, 1383:4).
If {G"'? - n® complexity is too slow, then it remains too siow
when !G')? is regarded as a constant. Thus it is impossi-
ble to sustain this particular argument for the advantages

80

of such formalisms as GPSG over other linguistic theo-
ries; instead, GPSG and other modern theories seem to
be (very roughly) in the same boat with respect to com-
plexity. In such a situation, the linguistic merits of various
theories are more important than complexity results. {See
Berwick (1982), Berwick and Weinberg (1984), and Ris-
tad (1985) for further discussion.)

The reduction does not rule out the use of formalisms
that decouple ID and LP constraints; note that Shieber’s
direct parsing algorithmn wins out over the use of the object
grammar. However, if we assume that natural languages
are efficiently parsable (EP), then computational difficul-
ties in parsing a formalism do indicate that the formalism
itselfl fails to capture whatever constraints are responsible
for making natural languages EP. If the linguistically rel-
evant 1D/LP grammars are EP but the general [D/LP
grammars are not, there must be additional factors that
guarantee, say, a certain amount of constraint from the LP
relation.” (Constraints beyond the bare D, LP formalism
are required on linguistic grounds as well.) The subset
principle of language acquisition (¢f. Berwick and Wein-
berg, 1984:233) would lead the langnage learnef to initially
hypothesize strong order constraints, to be weakened only
in response to positive evidence.

However, there are other potential ways to guarantee
that languages will be EP. It is possible that the principles
of grammatical theory permit languages that are not EP
in the worst case, just as grammatical theory allows sen-
tences that are deeply center-cmbedded (Miller and Chom-
sky, 1963). Difficult languages or sentences still would not
turn up in general use, precisely because they would be dif-
ficult to process.® The factors making languages EP would
not be part of grammatical theory hecause they would
represent extragrammatical factors, 1.e. the resource lim-
itations of the language-processing mechanisins. In the
same way, the limitations of language-acquisition mech-
anisms might make hard-to-parse languages inaccessible
to the language learner in spite of satisfying grammatical
constraints. However, these “ecasy explanations” are not
tenable without a detailed account of processing mecha-
nisms; correct vredictions are necessary about which con-
structions will be easy to parse.

ACKNOWLEDGEMENTS

This report describes research done at the Artificial
Intelligence Laboratory of the Massachusetts Institute of

*In the (iB-friunework of Chowmsky {1981). for instance. the wyn-
tactic expression of nnordered 0-yrids at the X level is constrained
by the principies of Case theory. Endocentricity is another signifi-
cant constraint. See also Berwick's (1982) discussion of constraints
that conid be placed on another grammatical formalism — lexical-
functional grammar - to avoid a similar intractability resuit.

81t is often anerdotally remarked that languages that allow relatively
free word order tend to make heavy use of inflections. A rich inflec-
tional systemn ran supply parsing constraints that make up for the
lack of ordering constraiuts: thus the situation we do not find is the
computationally dilticult case of weak constraint.

Technology. Support for the Laboratory’s artificial intel-
ligence research has been provided in part by the Ad-
vanced Research Projects Agency of the Department of
Defense under Office of Naval Research contract N00014-
80-C-0505. During a portion of this research the author’s
graduate studies were supported by the Fannie and John
Hertz Foundation. Useful guidance and commentary dur-
ing this research were provided by Bob Berwick, Michael
Sipser, and Joyce Friedman.

REFERENCES

Barton, E. (1984a). “Toward a Principle-Based Parser,”
A.l. Memo No. 788, M.L.T. Artificial Intelligence Lab-
oratory, Cambridge, Mass.

Barton, E. (1984b). “On the Complexity of ID/LP Pars-
ing,” A.I. Memo No. 812, M.L.T. Artificial Intelligence
Laboratory, Cambridge, Mass.

Berwick, R. (1982). “Computational Complexity and
Lexical-Functional Grammar,” Amertcan Journal of
Computational Lingutstics 8.3-4:97-109.

Berwick, R., and A. Weinberg (1984). The Grammatical
Basis of Linguistic Performance. Cambridge, Mass.:
M.LT. Press.

Chomsky, N. (1081). Lectures on Government and Bind-
ing. Dordrecht, Holland: Foris Publications.

Earley, J. (1970). “An Efficient Context-Free Parsing Al-
gorithm,” Comm. ACM 13.2:94-102.

Garey, M., and D. Johnson (1979). Computers and In-
tractability. San Francisco: W. H. Freeman and Co.

Gazdar, Gerald (19081). “Unbounded Dependencies and

Coordinate Structure,” Linguistic Inquiry 12.2:155-184.

Miller, G., and N. Chomsky (1963). “Finitary Models of
Language Users.” in R. D. Luce, R. R. Bush, and E.
Galanter, eds., Handbook of Mathematical Psychology,
vol. II, 419-492. New York: John Wiley and Sons, Inc.

Ristad, E. (1985). “GPSG-Recognition is NP-Hard,” A.L
Memo No. 837, M.L.T. Artificial Intelligence Labora-
tory, Cambridge, Mass., forthcoming.

Shieber, S. (1983). “Direct Parsing of ID/LP Grammars.”
Technical Report 291R, SRI International, Menlo Park,
California. Also appears in Linguistics and Philosophy
7:2.

81

