
Coping with Extragrarnmaticality
Jalme G. Carbonell and Phil ip J. Hayes

Computer Science Department, Carnegie-Mellon University
Pittsburgh, PA 15213. USA

A b s t r a c t 1

Practical natural language interfaces must exhibit robust
bei~aviour in the presence of extragrammaticat user input. This
paper classifies different types of grammatical deviations and
related phenomena at the lexical and sentential levels,
discussing recovery strategies tailored to specific phenomena
in the classification. Such strategies constitute a tool chest of
computationally tractable methods for coping with
extragrammaticality in restricted domain natural language.
Some of the strategies have been tested and proven viable in
existing parsers.

1. Introduction
Any robust natural language interface must be capable of

processing input utterances that deviate from its grammatical and
semantic expectations. Many researchers have made this
observation and have taken initial steps towards coverage of
certain classes of extragrammatical constructions. Since robust
parsers must deal primarily with input that does meet their
expectations, the various efforts at coping with
extragrammaticality have generally been structured as extensions
to existing parsing methods. Probably the most popular approach
has been to extend syntactically.oriented parsing techniques
employing Augmented Transition Networks (ATNs)
[21, 24, 25, 29]. Other researchers have attempted to deal with

ungrammatical input through network-based semantic grammar
techniques [19. 20j. through extensions to pattern matching
parsing in which partial pattern matching is allowed [16], through
conceptual case frame instantiafion [12, 22], and through
approaches involving multiple cooperating parsing strategies
[7, 9, 18].

Given the background of existing work, this paper focuses on
two major objectives:

1. to create a taxonomy of grammatical deviations covering a
broad range of extragrammaticalities,

2. to outline strategies for processing many of these deviations,

3. to assess how easily these strategies can be employed in
conjunction with existing parsing methods.

The overall result should be a synthesis of different parse.
recovery strategies organized by the grammatical phenomena
they address (or violate), an evaluation of how well the strategies

• integrate with existing approaches to parsing extragrammatical

1This research was sponsored in part by the Air Force Office of Scientific
Research under Contract AFOSR-82-0219 and in part by Digital Equipment
Corporation as part of the XCALIBUR project.

input, and a set of characteristics desirable in any parsing process
dealing with extragrammatical input. We hope this will aid
researchers designing robust natural language interfaces in two
ways:

t .by providing a tool chest of computationally effective
approaches to cope with extragrammaticality;

2. by assisting in the selection of a basic parsing methodology
in which to embed these recovery techniques.

In assessing the degree of compatibility between recovery
techniques and various approaches to parsing, we will avoid the
issue of whether a given recovery technique can be used with a
specific approach to parsing. The answer to such a question is
almost always affirmative. Instead, we will be concerned with how
natural ly the recovery strategies fit with the various parsing
approaches. In particular, we will consider the computational
tractability of the recovery strategies and how easily they can
obtain the information they need to operate in the context of
different parsing approaches.

Extragrammaticalities include patently ungrammatical
constructions, which may nevertheless be semantically
comprehensible, as well as lexical difficulties (e.g. misspellings),
violations of semantic constraints, utterances that may be
grammatically acceptable but are beyond the syntactic coverage
of the system, ellipsed fragments and other dialogue phenomena,
and any other difficulties that may arise in parsing individual
utterances• An extragrammaticality is thus defined with respect to
the capabilities of a particular system, rather than with respect to
an absolute external competence model of the ideal speaker.
Extragrammaticality may arise at various levels: lexical, sentential,
and dialogue. This paper addresses the first two categories; the
third is discussed in [8, 11]. Our discussions are based on direct
experience with various working parsers: FLEXP, CASPAR and
DYPAR [7, 8, 16].

2. Lexical Level Extragrammaticalit ies
One of the most frequent parsing problems is finding an

unrecognizable word in the input stream. The following sections
discuss the underlying reasons for the presence of
unrecognizable words and describe suitable recovery strategies.

2.1. The unknown word problem

The word is a legitimate lexeme but is not in the system's
dictionary. There are three reasons for this:

• The word is outside the intended coverage of the interface
(e.g. There is no reason why a natural language interface to
an electronic mail system should know words like "chair" or
"sky", which cannot be defined in terms of concepts in its
semantic domain).

437

o The word refers to a legitimate domain concept or
combination of domain concepts, but was not included in the
dictionary. (e.g. A word like "forward" [a message] can be
defined as a command verb, its action can be clearly
specified, and the objects upon which it o p e r a t e s - an old
message and a new recipient - - are already well-formed
domain concepts.)

• The word is a proper name or a unique identifier, such as a
catalogue part name/number, not heretofore encountered by
the system, but recognizable by a combination of contextual
expectations and morphological or orthographic features
(e.g., capitalization).

In the first situation, there is no meaningful recovery strategy
other than focused interaction[15] to inform the user of the
precise difficulty. In the third, little action is required beyond
recognizing the proper name and recording it appropriately for
future reference. The second situation is more complicated; three
basic recovery strategies are possible:

1. Follow the KLAUS[14] approach where the system
temporarily wrests initiative from the user and plays a well
designed "twenty questions" game, classifying the unknown
term syntactically, and relating it semantically to existing
concepts encoded in an inheritance hierarchy. This method
has proven successful for verbs, nouns and adjectives, but
only when they turn out to be instances of predefined general
classes of objects and actions in the domain model.

2. Apply the project and integrate method [6] to infer the
meaning and syntactic category o.f the word from context.
This method has proven useful for nouns and adjectives
whose meaning can be viewed as a recombination of features
present elsewhere in the input. Unlike the KLAUS method, it
operates in the background, placing no major run-time
burden on the user. However, it remains highly experimental
and may not prove practical without user confirmation.

3. Interact with the user in a focused manner to provide a
paraphrase of the segment of input containing the unknown
word. If this paraphrase results in the desired action, it is
stored and becomes the meaning of the new word in the
immediate context in which it appeared. The LIFER system
[20] had a rudimentary capacity for defining synonymous
phrases. A more general method would distinguish between
true synonymy and functional equivalence in order to classify
the new word or phrase in different semantic contexts.

2.2. Misspellings
Misspellings arise when an otherwise recognizable lexeme has

letters omitted, substituted, transposed, or spuriously inserted.
Misspellings are the most common form of extragrammaticality
encountered by natural language interfaces. Usually, a word is
misspell into an unrecognizable character string. But,
occasionally a word is misspelt into another word in the dictionary

that violates semantic or syntactic expectations. For instance:

Copy the flies from ~he accounts direc!ory to my airectory

Although "flies" may be a legitimate word in the domain of a
particular interface (e.g., the files coulcJ consist of statistics on
med-flv infestation in California). it is obvious to the human reader
that there is a misspelling in the sentence above.

There are well-known algorithms for matching a misspelt word
against a set of possible corrections [13]. and the simplest
recovery strategy is to match unknown words against the set of all
words in an interface's dictionary. However, this obviously
produces incorrect results when a word is misspell into a word
already in the dictionary, and can produce unnecessary
ambiguities in other cases.

Superior results are obtained by making the spelling correction
sensitive to the parser's syntactic and semantic expectations. In
the following example:

Add two fixed haed dual prot disks to the order

"haed" can be corrected to: "had", "head", "hand:', "heed", and
"hated". Syntactic expectations rule two of these out, and
domain semantics rule out two others, leaving "fixed [lead disk"
as the appropriate correction. Com[;utationally, there are two
ways to organize this. One can either match parser expectations
against all possible corrections in the parser:s current vocabulary,
and rule out spurious corrections, or one can use the parse
expectations to generate a set of possible words that can be
recognized at the present point and use this as input to the
spelling correction algorithm. The latter, when it can be done, is
clearly the preferable choice on efficiency criteria. Generating all
possible corrections with a 10,080 word dictionary, only to rule out
all but one or two, is a computationally-intensive process, whereas
exploiting fully-indexed parser expectations is far more
constrained and less likely to generate ambiguity. For the
example abcve, "pror ' has 16 possible corrections in a small on-
line dictionary. However, domain semantics allow only one word
in the same position as "pror ' , so correction is most effective if
the list of possible words is generated first.

2.3. Interact ion of morphology and misspel l ing

Troublesome side.effects of spelling correction can arise with
parsers that have an initial morphological analysis phase to
reduce words to their root form. For instance, a parser might just
store the root form of 'directory' and reduce 'directories' to
'directory' plus a plural marker as part of its initial morphological
phase. This process is triggered by failing to recognize the
inflected form as a wind that is present in the dictionary. It
operates by applying standard morphological rules
(e.g. - t e s => +,y) to derive a root from the inflected form. It a
simple matter to check first for inflected forms and then for
misspellings. However, if a word is both inflected and misspelt,
the expectation-based spelling correcter must be invoked from
within the morphological decomposition routines on potentially
misspelt roots or inflexions.

2.4. Incorrect segmentation
Input typed to a natural language interface is segmented into

words by spaces and punctuation marks. Both kinds of
segmenting markers, especially the second, can be omitted or
inserted speciously. Incorrect segmentation at the lexical level
results in two or more words being run together, as in
"runtogether", or a single word being split up into two or more
segments, as in "tog ether" or (inconveniently) "to get her", or
combinations of these effects as in "runto geth er". In all these
cases, it is possible to deal with such errors by extending the
spelling correction mechanism to be able to recognize target
words as initial segments of unknown words, and vice.versa.

Compound errors, however, present some difficulties. For
instance consider the following example where we have both a
missing and a spurious delimiter:

Add two du alport disks to the order

After failing in the standard recovery methods, one letter at a time
would be stripped off the beginning of the second unrecognizable
word ("alporr') and added at the end of the first unrecognizable
word ("du"). This process succeeds only if at some step both
words are recognizable and enable the parse to continue.
Migrating the delimiter (the space) backwards as well as forwards
should also be attempted between a pair of unknown words,

438

stopping if both words become recognizable. Of course,
additional compounding of multi.hie iexical deviations (e.g.,
misspellings, run-on words and split words in the same segment)
requires combinatorially inefficient recovery strategies. Strong
parser expectabons can reduce the impact of this problem, but at
some point tradeoffs must be made between resilience and
efficiency in compound error recovery.

3. Sentential Level Extragrammaticalities
We examine ungrammaticalities at the sentential level in five

basic categories: missing words, spurious words or phrases, out
of order constituents, agreement violations, and semantic
constraint violations.

3.1. Missing const i tuents

It is not uncommon for the use; of a natural language interface
to omit words from his input. The degree of recovery possible
from such ungrammaticalities is, of course, dependent on which
words were left out. In practice, words whose contribution to the
sentence is redundant are often omitted in an attempt to be cryptic
or "computer-like" (as in "Copy new files my directory"). This

suggests that techniques that fill in the structural gaps on
semantic grounds are more likely tobe successful than strategies
which do not facilitate the application of oor,~ain semantics.

A parsing process postulates a missing word error when its
eYpectations (syntactic or semantic) of what should go at a certain
place in the input utterance are violated. To discover that the
problem is in fact a missing word, and to find the parse structure
corresponding to the user's intention, the parsing process must
"step back" and examine the context of the parse as a whole. It
needs to ignore temporarily the unfulfilled expectations and their
contribution to the overall structure while it tries to fulfil some of its
other expectations through parsing other parts of the input and
integrating them with already parsed constituents. More
specifically, the parser needs to delimit the gap in the input
utterance, correlate it with a gap in the parse structure (filling in
that ga~ if it is uniquely determined), and realign the parsing
mechanism as though the gap did not exist. Such a realignment
can be done top-down by predicting the other constituents from
the parse structure already obtained and attempting to find them
in the input stream. Alternatively, realignment can be done
bottom-up by recognizing as yet unparsed elements of the input,
and either fitting them into an existing parse structure, or finding a
larger structure to subsume both them and the existing structure.
This latter approach is essential when the structuring words are
missing or garbled.

3.2 . Spur ious and u n r e c o g n i z a b l e c o n s t i t u e n t s

Words in an input utterance that are spurious to a parse can
arise from a variety of sources:

• leg i t imate phrases that the parser cannot deal with: It
is not uncommon for the user of a restricted domain interface
to say things that the interface cannot understand because of
either conceptual or grammatical limitations. Sometimes,
spurious verbosity or politeness is involved:

Add if you would be so kind two fixed head and if possible
dual ported disks to my order.

Or the user may offer irrelevant (to the system) explanations
or justifications, as observed in preparatory experiments for
the GUS system [4], e.g.

/ think / need more storage capacity, so add two fixed head
dual ported disks to my order.

Some common phrases of politeness can be recognized
explicitly, but in most cases, the only reasonable response is
to ignore the unknown phrases, realign the parse on the
recognizable input, and if a semantically and syntactically
complete structure results, postulate that the ignored
segment was indeed redundant. Isolating certifiable noise
phrases in the same way as truly spurious input provides the
advantage that they can then be recognized at any point in
the input without having to clutter the parser's normal
processing with expectations about where they might occur.

• broken-off and restarted utterances: These occur when
people start to say one thing, change their mind, and say
another:

Add I mean remove a disk from my order

Utterances in this form are more likely to occur in spoken
input but a similar effect can arise in typed input when a user
forgets to hit the erase line or erase character key:

Add remove a disk from my order
Add a single ported dual ported disk from my order

Again the best tactic is to discard the broken-off fragment,
but identifying and delineating the superseded fragment
requares strategies such as the one discussed below.

• u n k n o w n w o r d s fill ing a k n o w n g r a m m a t i c a l role:
Sometimes the user will generate an incomprehensible
phrase synonymous with a constituent the system is perfectly
capable of understanding:

Add a dual ported rotating mass storage device to my order

Here the system might not know that "rotating mass storage
device" is synonymous with "disk". This phenomenon will
result in missing words as well as spurious words. If the
system has a unique expectation for what should go in the
gap, it should (with appropriate confirmation from the user)
record the unknown words as synonymous with what it
expected. If the system has a limited set of expectations for
what might go in the gap, it could ask the user which one (if
any) he meant and again record the synonym for future
reference. In cases where there are no strong expectations,
tile system would ask for a paraphrase of the
incomprehensible fragment. If this proved comprehensible, it
would then postulate the synonymy relation, ask the user for
confirmation, and again store the results for future reference.

As for missing constituents, recovery from spurious interjections
generally requires "stepping back" and examining the context of
the parse as a whole. In this case however, violations of the
parser's expectations should result in skipping over the
troublesome segments, and attempting to fulfill the expectations
by parsing subsequent segments of tile input. If this results in a
complete parse, the skipped segment may well be spurious. On
the other hand, if a gap in the parse strdcture remains, it can be
correlated with the skipped segments to postulate possible
constituents an• synonomy relations as illustrated above.

In the case of broken-off utterances, there are some more
specific methods that allow the spurious part of the input to be
detected:

• If a sequence of two constituents of identical syntactic and
semantic type is found where only one is permissible, simply
ignore the first constituent. Two main command verbs in
sequence (e.g., in the "Add remove ..." example above),
instantiate the identical sentential case I~eader role in a case
frame parser, enabling the former to be ignored. Similarly,
two ,lstantiations of the same prencminal case for the "disk"
case frame would be recognized as mutually incompatible
and the former again ignored. Other parsing strategies can

439

be extended to recognize equivalent constituent repetition,
but case frame instantiation seems uniquely well suited to it.

• Recognize explicit corrective phrases and if the constituent
to the right is of equivalent syntactic and semantic type as the
constituent at the left, substitute the right constituent for the
left constituent and continue the parse. This strategy
recovers from utterances such as "Add I mean remove ...", if
"1 mean" is recognized as a corrective phrase.

• Select the minimal constituent for all substitutions. For
instance the most natural reading of:

Add a nigh speed tape drive, that's disk drive, to the order

is to substitute "disk drive" for "tape drive", and not for the
larger phrase "high speed tape drive", which also forms a
legitimate constituent of like semantic and syntactic type.

3.3. Out of order constituents and fragmentary input
Sometimes, a user will employ non-standard word order. There

are a variety of reasons why users violate expected constituent
ordering relations, including unwillingness to change what has
already been typed, especially when extensive retyping would be
required:

Two fixed head dual ported disk drives add to the order

or a belief that a computer will understand a clipped pseudo-
milita,~/style more easily than standard usage:

two disk drives fixed head du~/ ported to my order add

Similar myth~ about what computers understand best can lead to
a very fragmented and cryptic style in which all function words are
eliminated:

Add disk drive order

instead of "add a disk drive to my order".

These two phenomena, out of order constituents and
fragmentary input, are grouped together because they are similar
from the parsing point of view. The parser's problem in each case
is to put together a group of recognizable sentence fragments
without the normal syntactic glue of function words or position
cues to indicate how the fragments should be combined. Since
this syntactic information is not present, semantic considerations
have to shoulder the burden alone. Hence, parsers which make it
easy for semantic information to be brought to bear are at a
considerable advantage.

Both bottom-up and top.down recovery strategies are possible
for detecting and recovering from missing and spurious
constituents. In the bottom-up approach, all the fragments are

recognized independently, and purely semantic constraints are
used to assemble them into a single framework meaningful in
terms of the domain of discourse. When the domain is restricted
enough, the semantic constraints can be such that they always
produce a unique result. This characteristic was exploited to
good effect in the PLANES system [23] in which an input utterance
w~s recognized as a sequence of fragments which were then
assembled into a meaningful whole on the basis of semantic
considerations alone. A top-clown approach to fragment
recognition requires that the top-level or organizing concept in the
utterance ("add" in the above examples) be located, if it can be,
the predictions obtainable from it about what else might appear in
the utterance can be used to guide and constrain the recognition
of the other fragments.

As a final point, note that in the case of out of order constituents,
a parser relying on a strict left-to-right scan will have much greater
difficulty than one with more directional freedom. In out of order
input, there may be no meaningful set of left-to-right expectations,

even allowing for gaps or extra constituents, that will fit the input.
For instance, a case frame parser that scans for the head of a case
frame, and subsequently attempts to instantiate the individual
cases from surrounding input, is far more amenable to this type of
recovery than one whose expectations are expressed as word
order constraints.

3.4. Syntactic and semantic constraint violations
Input to a natural language system can violate both syntactic

and semantic constraints. The most.common form of syntactic
constraint violation is agreement failure between subject and verb
or determiner and head noun:

Do the order include a disk drives?

Semantic constraint violations can occur because the user has
conceptual problems:

Add a floating head tape drive to the order

or because he is imprecise in his language, using a related object
in place of the object he really means. For instance, if he is trying
to decide on the amount of memory to include in an order he
might say:

Can you connect a video disk drive to the two megabytes?

When what he-really means is "... to the computer with two
megabytes of memory?.".

These different kinds of constraint violation require quite
different kinds of treatment. In general, the syntactic agreement
violations can be ignored; cases in which agreement or lack of it
distinguishes between two otherwise valid readings of an input are
rare. However, one problem that sometimes arises is knowing
whether a noun phrase is singular or plural when the determiner
or quantifier disagrees with the head noun.

Semantic constraint violations due to a user's conceptual
problems are harder to deal with. Once detected, the only
solution is to inform the user of his misconcepLion and let him take
it from there. The actual detection of the problem, however, can
cause some difficulty for a parser re!ymg heavily on semantic
constraints to guide its parse. The constraint violation miOht
cause it to assume there was some oth~r problem such as out of
order or spurious constituents, and look for (and perhaps even
find) some alternative and unintended way of putting all the pieces
together. This is one case where syntactic considerations should
come to the fore.

Semantic constraint violations based on the mention of a related
object instead of the entity actually intended by the user will
manifest themselves in the same way as the semantic constraint
violations based on misconceptions, but their processing needs to
be quite different. The violation can be resolved if the system can
look at objects related to the one the user mentioned and find one
that satisfies the constraints. In the example above, this means
going from the memory size to the machine that has that amount
of memory. Clearly, the semantic distance and the type of
relationship over which this kind of substitution is allowed needs
to be controlled fairly carefully - - m a restricted domain everything
is eventually related to everything e!se. Preference rules are
needed to control the kind of substitutions that are allowed. In the
above example, it might be that a part ~s allowed to substitute for a
whole (metonymy), especially if, as we assumed, the part had been
used earlier in the dialogue to distinguish between different
instances of the whole.

440

4. Support for recovery strategies by
various parsing approaches

We now turn to the question of incorporating recovery strategies
into some of the approaches to parsing found in the literature. We
consider three basic classes: transition network approaches
(including syntactic ATNs and network-based semantic
grammars), pattern matching approaches, and approaches based
on case frame instantiation. These classes cover the majority of
current catsing systems for restricted domain languages.

All three approaches are able to cope with lexical level problems
satisfactorily. However, as we have seen, the application of
semantic constraints often makes the correction of lexical
problems more efficient and less prone to ambiguity. So parsers
that employ semantic constraints (e.g. semantic grammars [20, 5]
or case frame instantiation [12, 17]) are more effective in recovery
at the lexical level than parsers whose only expectations are
syntactic (e.g., purely syntactic ATNs [28]). At the sentential level,
however, differences in the abilities of the three approaches to
cope naturally with extragrammaticality are far more pronounced.

We will examine each approach in turn from this point of view.

4.1. Recovery strategies and transi t ion network parsers

Althou~jh attempts have been made to incorporate sentential
level recovery strategies into network-based parsers including
beth syntactically-based ATNs [21,24, 25, 29] and semantic
grammar networks [20], the network paradigm itself is not well
suited to the kinds of recovery strategaes discussed in the
preceding sections. These strategies generally require an
interpretive abdity to "step back" and take a broad view of the
situation when a parser's expectations are violated, and this is
very hard to do when using networks. The underlying problem is
that a significant amount of state information during the parse is
implicitly encoded by the position in the network; in the case of
AThls, other aspects of the state are contained in the settings of
scattered registers. As demonstrated by the recta-rule approach
to diagnosing parse failures described by Weischedel and
Sondheimer [24]. these and other difficulties elaborated below do
not make recovery from extragrammaticality impossible. However,
they do make it difficult and often impractical, since much of the
implicitly encoded state must be made declarative and explicit to
the recovery strategies.

Often an ATN parse will continue beyond the point where the
grammatical deviation, say an omitted word, occurred and reach a
node in the network fiom which it can make no further progreSS
(i.e., no arcs can be traversed). At this point, the parser cannot
ascertain the source of th.~. ' error by examining its internal state
even if the state is accessible - - the parser may have popped from
embedded subnets, or followed a totally spurious sequence of
arcs before blocking. If these problems can be overcome and the
source of the error determined precisely, a major problem still
remains: in order to recover, and parse input that does not accord
with the grammar, while remaining true to the network formalism,
the parser must modify the network dynamicall) and temporarily,
and use the modified network to proceed through the present
difficulties. Needless to say, this is at best a very complex process,
one whose computational tractability is open to question in the
most general case (though see [21]). It is perhaps not surprising
that in one of the most effective recovery mechanisms developed
for network-based parsing, the LIFER system's ellipsis handling
routine [20], the key step operates completely outside the network
formalism.

As we have seen, semantic constraints are very important in
recovering from many types of ungrammatical input, and these are
by definition unavailable in a purely syntactic ATN parser.
However, semantic information can be brought to bear on network
based parsing, either through the semantic grammar approach in
which joint semantic and syntactic categories are used directly in
the ATN, or by allowing the tests on ATN arcs to depend on

semantic criteria [2, 3]. In the former technique, the appropriate
semantic information for recovery can be applied only if the
correct network node can be located - - a sometimes difficult task
as we have seen. In the latter technique, sometimes known as
cascaded ATNs [27], the syntactic and semantic parts of the
grammar are kept separate, thus giving the potential for a higher
d~gree of interpretivem:ss in using the semantic information.
However, semantic information represented in this fashion is
generally only used to confirm or disconfirm parses arrived at on
syntactic grounds and does not participate directly in the parsing
process.

A further disadvantage of the network approach for
implementing flexible recovery strategies is that networks naturally
operate in a top-down left-to-right mode. As we have seen, a
bottom.up capability is essential for many recovery strategies, and
directional flexibility often enables easier and more efficient
operation of the strategies. Of course, the top.down left-to-right
mode of operation is a characteristic of the network interpreter,
not of the network formalism itself, and an attempt [29] has been
made to operate an ATN in an "island" mode, i.e. bottom-up,
center-out. This experiment was done in the context of a speech
parser where the low-level recognition of many of the input words
was uncertain, though the input as a whole was assumed to be
grammatical. In that situation, there were clear advantages to
starting with islands of relative lexicar certainty, and working out
from them. Problems, however, arise during leftward expansion
from an island when it is necessary to run the network backwards.
The admissibility of ATN transitions can depend on tests which
access the values of registers which would have been set earlier
when traversing the network forwards, but which cannot have
been set when traversing backwards. This leads at best to an
increase in non-determinism, and at worse to blocking the
traversal completely.

4.2. Recovery strategies and pattern matching parsers
A pattern matching approach to parsing provides a better

framework to recover from some sentential level deviations than a
network-based approach. In parttcular, the definition of what
constitutes a pattern match can be relaxed to allow for missing or
spurious constituents. For mis.~ing constituents, patterns which
match some, but not all, of their components can be counted
temporarily as complete matches, and spurious constituents can
be ignored so long as they are embedded in a pattern whose other
components do match. In these cases, the patterns taken as a
whole provide a basis on which to perforrn the kind of "stepping
back" discussed above as being vdal for flexible recovery. In
addition, when pattern elements are defined semantically instead
of lexically, as with Wilks' machine translation system[26],
semantic constraints can easily be brought to bear on the
recognition. However, dealing with out of order constituents is not

so easy for a pattern-based approach since constituent order is
built into a pattern in a rigid way, similarly to a network. It is
possible to accept any permutation of elements of a pattern as a
match, but this provides so much flex;bility that many spurious
recognitions are likely to be obtained as well as the correct ones
(see [16]).

441

An underlying problem here is that there is no natural way to
make the distinctions about the relative importance or difference
in role between one word and another. For instance, parsing
many of our examples might have involved use of a pattern like:

(~.determiner> ~disk-drive-attribute,~" ~disk-drive,~)

which specifies a determiner, followed by zero or more attributes
of a disk drive, followed by a phrase synonymous with "disk
drive". So this pattern would recognize phrases like "a dual
ported disk" or "the disk drive". Using the method of dealing with
missing constituents mentioned above, "the" would constitute just
as good a partial match for this pattern as "disk drive", a clearly
undesirable result. The problem is that there is no way to tell the
flexible matcher which components of the pattern are
discriminating from the point of view of recognition and which are
not. Another manifestation of the same problem is that different
words and constituents may be easier or harder to recognize
(e.g. prepositions are easier to recognize than the noun phrases
they introduce), and thus may be more or less worthwhile to look
for in an attempt to recover from a grammatical deviation.

The underlying problem is the uniformity of the grammar
representation and the method of applying it to the input. Any
uniformly represented grammar, whether based on patterns or
networks, will have trouble representing and using the kinds of
distinctions just outlined, and thus is poorly equipped to deal with
many grammatical deviations in an efficient and discriminating
manner. See [18] for a fuller discussion of this point.

4.3. Recovery strategies and case frame parsers

Recursive case frame instantiation appears to provide a better
framework for recovery from missing words than approaches
based on either network traversal or pattern matchil~g. There are
several reasons:

• Case frame instantiation is inherently a highly interpretive
process. Case frames provide a high-level set of syntactic
and semantic expectations that can be applied to the input in
a variety of ways. They also provide an overall framework
that can be used to realize the notion of "stepping back" to
obtain a broad view of a parser's expectations.

o Case frame instantiation is a good vehicle for bringing
semantic and pragmatic information to bear in order to help
determine the appropriate parse in the absence of expected
syntactic constituents. If a preposition is omitted (as
commonly happens when dealing with cryptic input from

hunt-and-peck typists), the resulting sentence is syntactically
anomalous. However, semantic case constraints can be
sufficiently strong to attach each noun phrase to the correct
structure. Suppose, for instance, the following sentence is
typed to an elec',ronic mail system interface:

Send message John Smith

The missing determiner presents few problems, but the
missing preposition can be more serious. Do we mean to
send a message "to John Smith", "about John Smith", "with
John Smith", "for John Smith", "from John Smith", "in John
Smith", "of John Smith", etc.? The domain semantics of the
case frame rule out the latter three possibilities and others
like them as nonsensical. However, pragmatic knowledge is
required to select "to John Smith" as the preferred reading
(possibly subject to user confirmation) - - the destination
case of the verb is required for the command to be effective,
whereas the other cases, if present, are optional. This
knowledge of the underlying action must be brought to bear
at parse time to disambiguate the cryptic command. In the
XCALIBUR system case frame encoding [10], pragmatic
knowledge of this kind is represented as oreference

constraints (cf. [26]) on case fi!lers. This allows XCALIBUR to
overcome problems created by the absence of expected case
markers through the application of the appropriate domain
knowledge.

• The propagation of semantic knowledge through a case
frame (via attached procedures such as those of KRL [1] or
SRL [30]), can fiil in parser defaults and allow the internal
completion of phrases such as "dual disks" to mean "dual
ported disks". This process is also responsible for noticing
when information is either missing or ambiguously
determined, thereby initiating a focused clarificational
dialogue [15].

• The representation of case frames is inherently non-uniform.
Case fillers, case markers, and case headers are all
represented separately, and thi$ distinction can be used by
the parser interpretively mstantiating the case frame. For
instance, if a case frame accounts for the non-spurious part
of an input containing spurious constituents, a recovery
strategy can skip over the unrecognizable words by scanning
for case markers as opposed to case fillers which typically
are much harder to find and parse. This ability to exploit
non-uniformity goes a long way to overcoming the problems
with uniform parsing methods outlined in the previous section
on pattern matching.

5. Dialogue Level Extragrammaticality
The underlying causes of many extragrammaticalities detected

at the sentential level are rooted in dialogue phenomena. For
instance, ellipses and other fragmentary inputs are patently
ungrammatical at the sentential level, but can be understood in
the context of a dialogue. Viewed at this more global level, ellipsis
is not ungrammatical. Nevertheless, the same computational
mechanisms required to recover from lexioal and (especially)
sentential problems are neces.~ary to detect ellipsis and parse the
fragments correctly for incorporation into a larger structure. In
general, many dialogue phenomena can be classified
pragmatically as extragrammaticalities.

In addition to addressing dialogue level extragrammaticalities,
any robust parsing system must engage the user in dialogue for
cooperative resolution of parsing problems too difficult for
automatic recovery. Interaction with the user is also necessary for
a cooperative parser to confirm any assumptions it makes in
interpreting extragrammatical input and to resolve any ambiguities
it cannot overcome on its own. We have referred several times in
our discussions to the principle of tocused interaction, and stated
that practical recovery dialogues should be focused as tightly as
possible on the specific problem at hand.

Because of space limitations, this paper does not discuss details
the automated resolution of dialogue level extragrarnmaticalities
or the use of dialogue to engage the user in cooperative
resolution. The interested reader is referred to [8].

6. Concluding Remarks
Any practical natural language interface must be capable of

dealing with a wide range of extragrammatical input. This paper
has proposed a partial taxonomy of extragrammatica!!ties that
arise in spontaneously generated input to a restricted-domain
natural language interface and has presented recovery strategies
for handhng many of the categories. We also discussed how well
three widely employed approaches to parsing - - network-based
parsing, pattern matching, and case frame instantation - - could
support the recovery strategies, and concluded that case frame
instantiation provided the best basis The reader is referred to [8]

442

for a more complete presentation, including a more complete
taxonomy and additional recovery strategies, particularly at the
dialogue level.

Based on the set of recovery strategies we have examined and
the problems that arise in trying to integrate them with techniques
for parsing grammatical input, we offer the fol lowing set of
desiderata for a parsing process that has to deal with
extragrammatical input:

= The parsing process should be as interpretive as possible.
We have seen several times the need for a parsing process to
"stand back" and look at the broad picture of the set of
expectat ions (or grammar) it is applying to the input when an
ungrammaticality arises. The more interpretive a parser is,
tbe better able it is to do this. A highly interpretive parser is
also better able to apply its expectat ions to the input in more
than one way, which may be crucial if the standard way does
not work in the face of an ungrammatical i ty.

• The parsing process should make it easy to apply semantic
information. As we have seen, semantic information is often
very important in resolving ungrammaticalit ies.

= The parsing process should be able to take advantage of
non-uniformity in language like that identif ied in Section 4.2.
As we have seen, recovery can be much more eff icient and
reliable if a parser is able to make use of variations in ease of
recognit ion or discriminating power between different
constituents. Th~s kind of "oppor tun ism" can be built into
recovery strategies.

= The parsing process should be capable of operating top.
down as well as bottom-up. We have seen examples where
both of these modes are essential.

We believe that case frame mstantiation provides a better basis
for parsing extragrammatical input than network-based parsing or
pat!ern matching precisely because it satisfies these desiderata
better than the other two approaches. We also believe that it is
possible do even better than case frame instantiation by using a
multi-strategy approach in which case frame instantiation is just
one member (albeit a very important one) of a whole array of
parsiag and recovery strategies. We argue this claim in detail in
[8,] and support it by discussion of three experimental parsers that
in varying degrees adopt the mult i-strategy approach.

7. References
1 Bobro~.,,. D.G. and Winogred, T., "An Overview of KRL, a Knowledge

Reprusentation Language," Cognitive Science, Vol. 1, No. 1, 1977, pp. 3-46,

2. Bobrow. R.J., "The RUS System," BBN Report 3878, Bolt, Beranek, and
Newman, 1978.

3. Bobrow, R.J. and Webber. B, "Knowledge Representation for
Syntactic/Semantic Processing," Prec. National Conference of the American
Association IorArtilicial Intelligence. Stanford University, August 1980.

4. Bobrow, D.G., Kaplan, R.M., Kay, M., Norman D.A., Thompson, H., and
Winograd, T., 'GUS: a Frame.Driven Dialogue System," Artificial Intelligence,
VOL 8, 1977, pp. 155-173.

5. Brown, J.S. and Burton. R.R.. "Multiple Representations o! Knowledge for
Tutorial Reasoning," in Representation and Understanding. Bobrow, D. G. and
Collins, A., ed., Academic Press, New York, 1975, pp. 311-349.

6. CarbonelL J. G., "Towards a Self-Extending Parser," Proceedings of the 171h
Meeting ot the Association for Computational Linguistics, 1979, pp. 3-7.

7. Carbonell, J. G. and Hayes, P. J., "Robust Parsing Us!ng Multiple Construction-
Specific Strategies," in Natural Language Parsing Systems, L. BOIc, ed.,
Springer-Verlag, 1984.

8. Carbonell, J.G. and Hayes, P.J., "Recovery Strategies for Parsing
Extragrammatical Language," Journal of Computational Linguistics, VOI. 10,
1984, (publication forthcoming).

9. Carbonell, J.G., Boggs, W.M., Mauldin, M.L. and Anick, P.G., "The
XCALIBUR Project, A Natural Language Interlace to Expert Systems,"
Proceedings of the Eighth International Joi,'~t Conlerence on Artificial
intelligence, 1983.

10, Carbonell, J.G.. Boggs, W. M., Mauldin, M L. and Anick, P.G., "XCALIBUR
Progress Report #1: First Steps Towards an Integrated Natural Language
Interface," Tech. report, Carneg~e-Mellon University, Computer Science
Department, 1983.

1! Carbonell, J G., "Discourse Pragmatics in Task-Oriented Natural Language
Interlaces," Proceedings of the 21st annual meeting of the Association tot
Computalional Linguistics, 1983.

12, Dejong, G.. Skimming Stories in Real-Time, PhD dissertation. Computer
Science Dept., Yale University. 1979.

13. Durham. I., Lamb, D.D.. and Saxe, J.B., "Spelling Correction in User
Interfaces," Comm. ACM, Vol. 26, 1983.

14. Haas. N. and Hendrix, G. G., "Learning by Being Told: Acquiring Knowledge
tot Infoll,~ahon Management," in Machine Learning, An Artificial Intelligence
4pproach, R. S. Michalski, J.G. C.arbonell and T.M. Mitchell, eds., Tioga
Press, Pale Alto, CA, 1983.

15. Hayes P.J., "A Construction Specific Approach to Focused Interaction in
Flexible Parsing," Prec. el 191h Annual Meeting of the Assoc. for Comput.
Ling., June 1981, pp. 149.152.

16. Hayes, P.J. and Mouradian, G.V., "Flexible Parsing," American Journal of
Computational Linguistics. VoL 7, No. 4, 1981, pp. 232-241.

17. Hayes, P. J. and Carbonell, J. G., "Multi Strategy Construction-Specific Parsing
for Flexible Data Base Query and Update," Prec. Seventh Int. Jt. Conf. on
Artificia//nte//igence, Vancouver, August 1981, pp. 432.439.

18 Hayes, P. J. and Carbonell, J. G., "Multi-Strategy Parsing and its Role in Robust
Man-Machine Communication," Tech. report CMU-CS-81-118, Carnegie.
Mellon Umversity, Computer Science Department, May 1981.

19. Hendrix, G.G., Sacerdoti, E.D. and Slocum, J., "Developing a Natural
Language Interface m Complex Data," Tech. report Artificial Intelligence
Canter., SRI International, 1976.

20. Hendrix, G.G, "Human Engineering for Applied Natural Language
Processing," Prec. Fillh Int. Jt. Conf. on Artiliciel Intelligence. 1977, pp.
183-191.

21. Kwasny. S.C. and Sondheimer, N K., "Relaxalion Techniques for Parsing
Grammatically IlI-Folmed Ioput in Natural Language Understanding Systems,"
American Journal o1 Computational Lmguistics. Vol. 7, No. 2, 1981, pp. 99-108.

22. S~.hank, R C., Lebowitz, M, Bimbaum, E., "An Integrated Undemtander,"
American Journal of Computational Linguistics. Vol. 6, NO. 1, 1980, pp, 13-30.

23. Waltz, D.L., "An English Language Question Answering System for a Large
Relational Data Base," Comm. ACM, Vol. 21 ,'No. 7, 1978, pp. 526-539.

24. Weischedel, R.M. and Sondheimer, N K., "Me;a-Rules as a Basis for
Processing Ill-formed Input," Computational Linguistics, VoL 10, 1984.

25. Wemchedel, R.M. and Black, J., "Responding to Potentially Unparseable
Sentences," American Journal of Computational Linguistics, Vol, 6, 1980, pp.
97-109.

26. Wilks, Y.A., "Preference Semantics," in Formal Semantics of Natural
Language, Keenan, ed., Cambridge University Press, 1975.

27. Woods, W.A., "Cascaded ATN Grammars," American Journal of
Ccmput=tional Linguistics. Vol. 6, No. 1, August 1980, pp. 1-12.

28. Woods, W.A., Kaplan, R.M., and Nash-Webber, B., "The Lunar Sciences
Language System; Final Report," lech. report 2378, Bolt, Beranek, and
Newman, inc., Canlbridge, Mass., 1972.

29. Woods, W. A., Bates, M., Brown, G., Bruce, B,, Cook, C., Klovatad, J., Makhoul,
J., Nash-Webber, B., Schwartz., R., Wolf, J., and Zue, V., "Speech
UndeL'~tandmg Systems • Final Technical Report," Tech. report 3438, Bolt,
Beranek, and Newman, Inc.. Cambridge, Mass., 1976.

30. Wright, K. and Fox, M, "The SRL User3 Manual," Tech. report, Robotic,=
institute, Carnegie-Mellon University, 1983.

443

