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ABSTRACT: Conceptual graphs are both a language for 
representing knowledge and patterns for constructing models. 
They form models in the AI sense of structures that approxi- 
mate some actual or possible system in the real world. They 
also form models in the logical sense of structures for which 
some set of axioms are true. When combined with recent 
developments in nonstandard logic and semantics, conceptual 
graphs can form a bridge between heuristic techniques of AI 
and formal techniques of model theory. 

I .  Surface Models 

Semantic networks are often used in AI for representing 
meaning. But as Woods (1975) and McDermott  (1976) ob- 
served, the semantic networks themselves have no well-defined 
semantics. Standard predicate calculus does have a precisely 
defined, model theoretic semantics; it is adequate for describ- 
ing mathematical theories with a closed set of axioms. But the 
real wor ld is messy, incompletely explored, and full of unex- 
pected surprises. Furthermore, the infinite sets commonly 
used in logic are intractable both for computers and for the 
human brain. 

To develop a more realistic semantics, Hint ikka (1973) 
proposed surface models as incomplete, but extendible, finite 
constructions: 

Usually, models are thought of as being given through a specifi- 
cation of a number of properties and relations defined on the 
domain. If the domain is infinite, this specification (as well as 
many operations with such entities) may require non-trivial set- 
theoretical assumptions. The process is thus often non-finitistic. 
It is doubtful whether we can realistically expect such structures 
to be somehow actually involved in our understanding of a sen- 
tence or in our contemplation of its meaning, notwithstanding the 
fact that this meaning is too often thought of as being determined 
by the class of possible worlds in which the sentence in question 
is true. It seems to me much likelier that what is involved in 
one's actual understanding of a sentence S is a mental anticipa- 
tion of what can happen in one's step-by-step investigation of a 
world in which S is true. (p. 129) 

The first stage of constructing a surface model begins with the 

entities occurring in a sentence or story. During the construc- 

tion, new facts may he asserted that block certain extensions 

or facilitate others. A standard model is the limit of a surface 

model that has been extended infinitely deep, but such infinite 
processes are not a normal part of understanding. 

This paper adapts Hintikka's surface models to the formal- 
ism of conceptual graphs (Sowa 1976, 1978). Conceptual 
graphs serve two purposes: like other forms of semantic net- 
works, they can be used as a canonical representation of mean- 
ing in natural language; but they can also be used as building 
blocks for constructing abstract structures that serve as models 
in the model-theoretic sense. 

• Understanding a sentence begins with a translation of that 
sentence into a conceptual graph. 

• During the translation, that graph may be joined to frame- 
like (Minsky 1975) or script-l ike (Schank & Ahelson 
1977) graphs that help resolve ambiguities and incorporate 
background information. 

• The resulting graph is a nucleus for constructing models of 
possible worlds in which the sentence is true. 

• Laws of the world behave like demons or triggers thai 
monitor the models and block illegal extensions. 

• If a surface model could be extended infinitely deep, the 
result would be a complete standard model. 

This approach leads to an infinite sequence of algorithms 
ranging from plausible inference to exact deduction; they are 
analogous to the varying levels of search in game playing pro- 
grams. Level 0 would simply translate a sentence into a con- 
ceptual graph, but do no inference. Level I would do frame- 
like plausible inferences in joining other background graphs. 
Level 2 would check constraints by testing the model against 
the laws. Level 3 would join more background graphs. Level 
4 would check further constraints, and so on. If the const- 
raints at level n + l  are violated, the system would have to 
backtrack and undo joins at level n. If at some level, all possi- 
ble extensions are blocked by violations of the laws, then that 
means the original sentence (or story) was inconsistent with 
the laws. If the surface model is inf initely extendible, then the 
original sentence or story was consistent. 

Exact inference techniques may let the surface models 
grow indefinitely; but for many applications, they are as im- 
practical as letting a chess playing program search the entire 
game tree. Plausible inferences with varying degrees of confi- 
dence are possible by stopping the surface models at different 
levels of extension. For story understanding, the initial surface 
model would be derived completely from the input story. For 
consistency checks in updating a data base, the initial model 
would be derived by joining new information to the pre- 
existing data base. For question-answering, a query graph 
would be joined to the data base; the depth of search permit- 
ted in extending the join would determine the limits of com- 
plexity of the questions that are answerable. As a result of 
this theory, algorithms for plausible and exact inference can be 
compared within the same framework; it is then possible to 
make informed trade-offs of speed vs. consistency in data base 
updates or speed vs. completeness in question answering. 

2. Conceptual Graphs 

The following conceptual graph shows the concepts and 
relationships in the sentence "Mary hit the piggy hank with a 
hammer." The boxes are concepts and the circles are concep- 
tual relations. Inside each box or circle is a type label that 
designates the type of concept or relation. The conceptual 
relations labeled AONI". INST. and PTNT represent the linguistic 
cases agent, instrument, and patient of case grammar. 

39 



PERSON: Mary 

Conceptual  graphs are a kind of semantic network. See 
Findler (1979)  for surveys of a variety of such networks that  
have been used in AI. The diagram above illustrates some 
features of the conceptual  graph notation: 

• Some concepts  are generic. They have only a type label 
inside the box, e.g. mT or HAMMEa 

• Othe r  concepts are individuaL They have a colon af ter  the 
type label, followed by a name (Mary) or a unique identifi- 
er called an individual marker ( i22103) .  

To keep the diagram from looking overly busy, the hierarchy 
of types and subtypes is not drawn explicitly, but is determined 
by a separate  partial ordering of type labels. The type labels 
are used by the format ion rules to enforce selection constraints  
and to support  the inheri tance of propert ies from a supertype 
to a subtype. 

For convenience,  the diagram could be l inearized by using 
square brackets  for concepts and parentheses  for conceptual  
relations: 

[ PERSON:Mary]-.~ AGNT)-~(  HIT:c I ]~--4 INST).~-(HAMMEI~.] 

[HIT:c I ]4--( PTNT).~---[P[ GO Y-B A NK:i22 I03] 

Linearizing the diagram requires a coreference index, e l ,  on the 
generic concept  HiT. The index shows that  the two occur- 
rences designate the same act of hitting. If mT had been an 
individual concept ,  its name or individual marke r  would be 
sufficient to indicate the same act. 

Besides the features  il lustrated in the diagram, the theory 
of conceptual  graphs includes the following: 

• For any part icular  domain of discourse, a specially desig- 
nated set of conceptual  graphs called the canon, 

• Four  canonical formation rules for  deriving new canonical 
graphs from any given canon,  

• A method for defining new concept  types: some canonical  
graph is specified as the differentia and a concept  in tha t  
graph is designated the genus of the new type, 

• A method for defining new types of Conceptual relations: 
some canonical  graph is specified as the relator and one or 
more concepts in that  graph are specified as parameters, 

• A method for defining composi te  entit ies as s t ructures  
having other  entities as parts, 

• Optional  quantifiers on generic concepts,  

• Scope of quantifiers specified ei ther  by embedding them 
inside type definitions or by l inking them with functional  
dependency arcs, 

• Procedural  a t t achments  associated with the funct ional  
dependency arcs, 

• Control  marks that  de termine when a t tached  procedures  
should be invoked. 

These features have been described in the earlier papers;  for 
completeness,  the appendix recapitulates the axioms and defi- 
nitions that  are explicitly used in this paper. 

Heidorn 's  (1972,  1975) Natural  Language Processor  
(NLP) is being used to implement the theory of conceptual  
graphs. The NLP system processes two kinds of Augmented 

Phrase Structure rules: decoding rules parse language inputs 
and create graphs that  represent  their meaning, and encoding 
ru/es scan the graphs to generate  language output.  Since the 
NLP structures are very similar to conceptual  graphs, much of 
the implementa t ion  amounts  to identifying some feature  or 
combinat ion of features in NLP for each construct  in concep-  
tual graphs. Constructs  that  would be difficult or inefficient to 
implement  directly in NLP rules can be suppor ted  by LISP 
functions. The inference algorithms in this paper,  however,  
have not yet been implemented.  

3. Log/caJ Connect/yes 

Canonical formation rules enforce the selection constraints 
in linguistics: they do not guarantee that all derived graphs 
are true, but they rule out semantic anomalies. In terms of 
graph grammars, the canonical formation rules are context- 
free. This section defines logical operations that are context- 
sensitive, They enforce tighter constraints on graph deriva- 
tions, but they require more complex pattern matching. For- 
marion rules and logical operations are complementary mecha- 
nisms for building models of possible worlds and checking their 
consistency, 

Sowa (1976) discussed two ways of handling logical oper- 
ators in conceptual  graphs: the abstract approach, which treats 
them as funct ions of t ru th  values, and the direct approach, 
which treats  implications, conjunct ions,  disjunctions,  and nega- 
tions as operat ions for  building, splitting, and discarding con- 
ceptual  graphs. Tha t  paper,  however,  merely ment ioned  the 
approach;  this paper  develops a nota t ion adap ted  f rom 
Oan tzen ' s  sequents  (1934) ,  but with an interpreta t ion based 
on Beinap 's  condit ional  assertions (1973)  and with computa-  
t ional techniques  similar to Hendrix 's  par t i t ioned semant ic  
networks (1975,  1979).  Deliyanni and Kowalski (1979)  used 
a similar notat ion for logic in semantic  networks,  but with the 
arrows reversed. 

Defini t ion:  A seq~nt is a collection of concep tua l  graphs  
divided into two sets, called the conditions ut ..... Un and the 
anergons vt,...,v,,, It is written Ul,...,Un "* vl,...,Vm. Sever- 
al special cases are distinguished: 

• A simple assertion has no condi t ions  and only one 
assertion: - . .  v. 

• A disjunction has no condi t ions  and  two or more 
a s s e r t i o n s :  ..m. PI , . . . ,Vm. 

• A simple denial has only one condi t ion and no 
assertions: u -.... 

• A compound denial has two or more condit ions and no 
assertions: ut,...,un -... 

• A conditianal assertion has one or more condit ions and 
one or more assertions: ut,...,un .... Vl... . ,v~ 

• An empty clause has no conditions or assertions: --.,. 

• A Horn clo,ue has at  most one assertion; i.e. it is el- 
ther  an empty clause, a denial,  a simple assertion, or a 
conditional assert ion of the form ut ..... ,% --4, v. 

For any concept  a in an assert ion vi, there may be a con- 
cept  b in a condit ion u/ that  is declared to be coreferent 
with a. 

Informally, a sequent  states that  if all of the condit ions are 
true, then at least one of the assertions must be true. A se. 
quent  with no conditions is an uncondit ional  assertion; if there 
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are two or more assertions, it states that one must be true, hut 
it doesn't say which. Mult iple asserth)ns are necessary for 
genera l i ty ,  but  in deduc t ions ,  they  may  cause  a model  to split 
into mode l s  of  mult iple  altei 'native worlds.  A sequen t  with no 
asse r t ions  denies  that  the combina t ion  of condi t ions  can ever  
occur .  The  emp ty  c lause  is an uncondi t iona l  denial ;  it is self- 
con t rad ic to ry .  Horn  c lauses  are  special  cases  for which deduc-  
t ions  are  s impli f ied:  they  have  no d i s junc t ions  tha t  c ause  
mode l s  of  the  world to split into mult iple  a l te rnat ives .  

Defini t ion:  Let C be a col lect ion of  canonica l  g raphs ,  and let s 
be the  s equen t  u t  . . . . .  Un - ' ,  vl . . . . .  vm. 

• If every  condi t ion graph  is covered by s o m e  graph  in 
C, then  the condi t ions  are said to be s a l i s f i e d .  

• If some  condi t ion g raph  is not  covered by any graph  in 
C, then  the  sequen t  s is said to be i n a p p l i c a b l e  to C. 

If n---0 ( there  are no condi t ions ) ,  then the  condi t ions  are 
trivially sat isf ied.  

A sequen t  is like a condi t ional  asser t ion  in Be lnap ' s  sense:  
W h e n  its condi t ions  are not  sat isf ied,  it asser t s  nothing.  But 
when  they are sat isf ied,  the  asser t ions  mus t  be added  to the 
cu r r en t  context .  The  next  ax iom s ta tes  how they are added.  

Axiom:  Let  C be a collection of canonica l  g raphs ,  and  let s be 
the  s equen t  ul ..... u ,  -,- v~ ..... v,,,. If the condi t ions  of  s are 
sat isf ied by C, then s may  be a p p l i e d  to C as follows: 

• If m,=l) (a denial  or  the e m p t y  c lause ) ,  the  collect ion 
C is said to be b l o c k e d .  

• If m = l  (a Horn c lause) ,  a copy of each  g raph  ui is 
joined to some  graph  in C by a cover ing join. T h e n  
the asser t ion v is added  to the  resul t ing collect ion C'. 

• If m > 2 ,  a copy of each  graph  ui is jo ined to some  
graph  in C by a cover ing  join. T h e n  all g r aphs  in the 
resul t ing collection C '  are copied to make  m disjoint  
c~)llections identical to C'. Finally, for each  j f rom I 
t o  rn, whe asser t ion  v I is added  to the j - th  copy of  C' .  

Af te r  an asser t ion  v is added  to one  of the  col lect ions C',  
each  concep t  in v tha t  was dec lared  to be core fe ren t  with 
some  concep t  b in one of the  condi t ions  ui is jo ined to that  
concep t  to which b was joined. 

When  a collect ion of g raphs  is incons is ten t  with a sequen t ,  
they  are blocked by it. If the  s equen t  r ep resen t s  a f u n d a m e n -  
tal law about  the  world,  then  the  col lect ion r ep re sen t s  an 
impossible  s i tuat ion.  W hen  there  is only one  asser t ion  in an 
appl icable  sequen t ,  the  collection is ex tended .  But when  there  
are two or more  asser t ions ,  the collection splits into as many  
successo r s  as there  are asser t ions ;  this spli t t ing is typical of  
a lgor i thms for deal ing with d is junct ions .  T he  rules for apply- 
ing sequen t s  are based on Beth ' s  s eman t i c  tab leaux f 1 9 5 5 ) ,  
but  the c o m p u t a t i o n a l  t e chn i ques  are s imilar  to typical  AI 
m e t h o d s  of product ion  rules,  demons ,  triggers,  and  moni tors .  

Deliyanni  and  Kowalski  ( 1979 )  relate their  a lgor i thms  for 
logic in seman t i c  ne tworks  to the resolut ion principle.  This  
re la t ionship  is natural  because  a s equen t  whose  condi t ions  and  
asser t ions  are all a toms  is equiva len t  to the s t andard  c lause  
form for resolut ion.  But since the  s equen t s  def ined  in this  
paper  may  be arbi t rary concep tua l  g raphs ,  they  can  package  a 
much  larger a m o u n t  of in format ion  in each graph  than  the  low 
level a t oms  of  ord inary  resolut ion.  As a result ,  m a n y  fewer  
s teps  may  be needed  to a n s w e r  a ques t ion  or do plausible  
inferences .  

4. Laws, Facts, and Possible Worlds 

Infini te famil ies  of  p~ssible  wor lds  are  c o m p u t a t i o n a l l y  
intractable, hut Dunn (1973) showed that they are not needed 
for the semantics of modal logic. He considered each possible 
world w to be characterized by two sets of propositions: laws 
L and facts F. Every law is also a fact, but some facts are 
merely contingently true and are not considered laws. A prop- 
osition p is necessarily true in w if it follows from the laws of 
w, and it is possible in w if it is consistent with the laws of w. 
Dunn proved that semantics in terms of laws and facts is 
equivalent to the possible worlds semantics. 

Dunn's approach to modal logic can be combined with 
Hint ikka's surface models and AI  methods for handling de- 
faults. Instead of dealing with an infinite set of possible 
worlds, the system can construct finite, but extendible surface 
models. The basis for the surface models is a canon that 
contains the blueprints for assembling models and a set of laws 
that must be true for each model. The laws impose obl igatory 
constraints on the models, and the canon contains common 
background information that serves as a heuristic for extending 
the models. 

An initial surface model would start as a canonical graph 
or collection of graphs that represent a given set of facts in a 
sentence or story. Consider the story, 

Mary hit the piggy bank with a hammer. She wanted to go to the 
movies with Janet. but she wouldn't get her allowance until 
Thursday. And today was only Tuesday. 

The  first s en tence  would be t rans la ted  to a concep tua l  g raph  
like the  one  in Sect ion 2. Each  of the  following s e n t e n c e s  

would be t rans la ted  into o ther  concep tua l  g raphs  and  jo ined to 
the original graph. But the story as stated is not understanda- 
ble without a lot of background information: piggy banks 
normally contain money; piggy banks are usually made of 
pottery that is easily broken; going to the movies requires 
money; an allowance is money; and Tuesday precedes Thurs- 
day. 

Charn i ak  ( 1 9 7 2 )  hand led  such  s tor ies  with d e m o n s  tha t  
e n c a p s u l a t e  knowledge :  d e m o n s  normal ly  lie d o r m a n t ,  bu t  
when their associated patterns occur in a story, they wake up 
and apply their piece of knowledge to the process of under- 
standing. Similar techniques are embodied in production sys- 
tems, l anguages  like P L A N N E R  (Hewi t t  1972 ) ,  and  knowl-  
edge  r ep re sen t a t i on  s y s t e m s  like KRL (Bobrow & Win o g rad  
1977) .  But the  t rouble  with d e m o n s  is that  they  are  uncon-  
s t ra ined:  any th ing  can happen  when  a d e m o n  wakes  up,  no 
t h e o r e m s  are possible  abou t  what  a collect ion of  d e m o n s  can  
or c anno t  do, and  there  is no way of  relat ing plausible  r eason-  
ing with d e m o n s  to any of  'the t echn iques  of  s t anda rd  or non-  
s t anda rd  logic. 

With concep tua l  g raphs ,  the  c o m p u t a t i o n a l  o v e r h e a d  is 
about the same as with related AI  techniques, but the advan- 
tage is that the methods can be analyzed by the vast body of 
techniques that have been developed in logic. The graph for 
"Mary  hit the piggy-bank with a hammer" is a nucleus around 
which an infinite number of possible worlds can be built. Two 
individuals, Mary and rlcc~Y-a^NK:iZzloL are f ixed, but the 
particular act of hitting, the hammer Mary used, and all other 
circumstances are undetermined. As the story continues, some 
other individuals may be named, graphs from the canon may 
be joined to add default information, and laws of the world in 
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the form of sequents may be triggered (like demons) to en- 
force constraints. The next definition introduces the notion of 
a world bas~ that provides the building material (a canon) and 
the laws (sequents) for such a family of possible worlds. 

Definition: A world basis has three components:  a canon C, a 
finite set of sequents L called laws, and one or more finite 
collections of canonical graphs {Ct ..... Co} called contexts. 
No context C~ may be blocked by any law in L. 

A world basis is a collection of nuclei from which complete 
possible worlds may evolve. The contexts are like Hintikka's 
surface models: they are finite, but extendible. The graphs in 
the canon provide default or plausible information that can be 
joined to extend the contexts,  and the laws are constraints on 
the kinds of extensions that are possible. 

When a law is violated, it blocks a context as a candidate 
for a possible world. A default, however,  is optional; if con- 
tradicted, a default  must be undone, and the context restored 
to the state before the default was applied. In the sample 
story, the next sentence might continue: "The piggy bank was 
made of bronze, and when Mary hit it, a genie appeared and 
gave her two tickets to Animal  House."  This continuation 
violates all the default  assumptions; it would be unreasonable 
to assume it in advance, but once given, it forces the system to 
back up to a context before the defaults were applied and join 
the new information to it. Several practical issues arise: how 
much backtracking is necessary, how is the world basis used to 
develop possible worlds, and what criteria are used to decide 
when to stop the (possibly infinite) extensions. The next sec- 
tion suggests an answer. 

5. Game T h ~  S e ~ m d ~  

The distinction between optional defaults and obligatory 
laws is reminiscent of the AND-OR trees that often arise in 
AI, especially in game playing programs. In fact, Hintikka 
(1973, 1974) proposed a game theoretic semantics for testing 
the truth of a formula in terms of a model and for elaborating 
a surface model in which that formula is true. Hintikka's 
approach can be adapted to elaborating a world basis in much 
the same way that a chess playing program explores the game 
tree: 

• Each context represents a position in the game. 

• The canon defines [Sossible moves by the current player, 

• Conditional assertions are moves by the opponent.  

• Denials are checkmating moves by the opponent.  

• A given context is consistent with the laws if there exists a 
strategy for avoiding checkmate.  

By following this suggestion, one can adapt  the techniques 
developed for game playing programs to other  kinds of reason- 
ing in AI. 

Definition: A game over a world basis W is defined by the 
following rules: 

• There are two participants named Player and Oppo- 
m~nt. 

• For each context in W, Player has the first move. 

• Player moves in context C either by joining two graphs 
in C or by selecting any graph in the canon of W that 
is joinable to some graph u in C and joining it maxi- 

really to u. If no joins are possible, Player passes. 
Then Opponent has the right to move in context C. 

• Opponent moves by checking whether any denials in 
W are satisfied by C. If so, context C is blocked and 
is deleted from W. If no denials are satisfied, Oppo- 
nent may apply any other sequent that is satisfied in C. 
If no sequent is satisfied, Opponent passes. Then 
Player has the right to move in context C. 

• If no contexts are left in W, Player loses. 

• If both Player and Opponent  pass in succession, Player 
wins. 

Player wins this game by building a complete model that is 
consistent with the laws and with the initial information in the 
problem. But like playing a perfect game of chess, the cost of 
elaborating a complete model is prohibitive. Yet a computer  
can play chess as well as most people do by using heuristics to 
choose moves and terminating the search after a few levels. 
To develop systematic heuristics for choosing which graphs to 
join, Sown (1976) stated rules similar to Wilks' preference  
semantics ( 1975). 

The amount of computat ion required to play this game 
might be compared to chess: a typical middle game in chess 
has about 30 or 40 moves on each side, and chess playing 
programs can consistently beat beginners by searching only 3 
levels deep; they can play good games by searching 5 levels. 
The number of moves in a world basis depends on the number 
of graphs in the canon, the number of laws in L, and the num- 
ber of ~ a p h s  in each context. But for many common applica- 
tions, 30 or 40 moves is a reasonable estimate at any given 
level, and useful inferences are possible with just a shallow 
search. The scripts applied by Schank and Abelson (1977),  
for example, correspond to a game with only one level of 
look-ahead; a game with two levels would provide the plausible 
information of scripts together  with a round of consistency 
checks to eliminate obvious blunders. 

By deciding how far to search the game tree, one can 
derive a lgor i thm for plausible inference with varying levels of 
confidence. Rigorous deduction similar to model elimination 
(Loveland 1972) can be performed by starting with laws and a 
context that correspond to the negation of what is to be proved 
and showing that Opponent  has a winning strategy. By similar 
transformations, methods of plausible and exact inference can 
be related as variations on a general method of reasoning. 

6. Appendix: Summary of the Formalism 

This section summarizes axioms, definitions, and theorems about 
conCeptual graphs that are used in this paper. For a more complete discus- 
sion and for other features of the theory that are not used here, see the 
eartier articles by Sown (1976, 1978). 

Definition 1: A comcepm~ gmmp& is a finite, connected, bipartite graph 
with nodes of the first kind called concepu and nodes of the second 
kind called conceptual relatWn$. 

Definition 2: Every conceptual relation has one or more arc~, each of 
which must be attached to a concept. If the relation has n arcs. it is 
said to be n-adic, and its arcs are labeled I, 2 ..... n. 

The most common conceptual relations are dyadic (2-adic), but the 
definition mechanisms can create ones with any number of arcs. Although 
the formal defin/tion says that the arcs are numbered, for dyadic relations. 
arc I is drawn as an arrow pointin8 towards the circle, and arc 2 as an 
arrow point/aS away from the circle. 
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Axiom I: There is a set T of type labeLv and a function type. which maps 

concepts and conceptual  relat ions into T. 

• If rypefa)=type(b), then a and b are said to be of the same tXpe. 

• Type labels are partially ordered: if (vpe(a)<_typefhL then a is 
said to be a subtype of b. 

• Type labels of concepts  and conceptual  relat ions arc disjoint ,  

noncomparable  subsets nf T: if a is a concept and • is a concep- 

tual relation, then a and r may never he of the same type, nor 

may one be a subtype of the other. 

Axiom 2: There is a set I = [ i l ,  i2, i3 . . . .  } whose elements are called 

individual markers. The function referent applies to concepts:  

If a is a concept,  then referentla) is ei ther an individual  marker in 

I or the symbol @, which may be read any. 

• When referentla) ~" l, then a is said to be an individual concept. 

• When referent(a)=@, then a is said to be a genertc concept. 

In diagrams, the referent is writ ten after the type label, ~ p a r a t e d  by a 

colon. A concept  of a particular cat could be written as ICAT:=41331. A 

genetic concept,  which would refer to any cat, could be writ ten ICA'r:tiiH or 

simply [CATI. In data base systems, individual  markers correspond to the 

surrogates  (Codd  1979). which serve as unique internal  ident i f iers  for 

external entities.  The symbol @ is Codd ' s  notat ion for null or unknown 

values in a data  base. Externally printable or speakable names are related 

to the internal surrogates by the next axiom. 

Axiom 3: There is a dyadic conceptual  relation with type label NAME. If 

a relation of type NAME occurs in a conceptual  graph, then the con- 

cept at tached to arc I must be a subtype of WORD, and the concept 

attached to arc 2 must be a subtype of  ENTITY. I f  the second concept 
is individual, then the first concept is called a name of that individual. 

The fol lowing graph states that the word "Mary "  is the name of  a 
particular person: ["Mary"]-.=.tNAME)-=.lPERSON:i30741. i f  there is only one 
person named Mary in the context, the graph could be abbreviated to just 
[PERSON:Mary], 

Axiom 4: The conformity •elation :: relates type labels in T to individual  

markers in I. If teT, tel. and t::i. then i is said to conform to t. 

• If t~gs and t::i. then s::i. 

• For any type t, t::@. 

• For any concept c. type(c)::referentfc). 

The conformity relation says that the individual  for which the marker 

i is a surrogate is of type t. In previous papers, the terms permissible or 

applicable were used instead of conforms to. but the present term and the 

symbol  :: have been adopted from A L G O L - 6 8 .  Suppose the individual  

marker i273 is a surrogate for a beagle named Snoopy. Then BEAGLE::i273 

is true. By extension, one may also write the name instead of  the marker, 
as BEAGLE=Snoopy. By axiom 4, Snoopy also conforms to at] supertypes of  
BEAGLE. such as DOG::Snoopy, ANIMAL=Snoopy. or ENTITY::Snoopy. 

Defini t ion 3: A star graph is a conceptual graph consisting of  a single 
conceptual relation and the concepts attached to each of  its arcs. 
(Two or more arcs of  the conceptual relation may be attached to the 
same concept. ) 

Defini t ion 4: Two concepts a and b are said to be joinable i f  both of the 
fo l lowing properties are true: 

• They are of  the same type: type(a)-typefb). 

• Either referent(a)=referent(b), referent(a)=.@, or referent(b)=.@. 

Two star  graphs with conceptual  relat ions r and s are said to be 

joinable if • and s have the same number of arcs, type(r),=rype(s), and 

for each i. the concept  at tached to arc i of r is joinable to the concept  
at tached to arc i of s. 

Not  all combinat ions  of concepts and conceptual  relations are mean- 

ingful. Yet to say that some graphs are meaningful and others are not is 

begging the question, because the purpose of conceptual graphs is to form 

the basis of a theory of meaning, To avoid prejudging the issue, the term 

canonical is used for  those graphs derivable from a designated set called 

the canon. For any given domain of discourse, a canon is dcl'incd that 
rules out anomalous combinations. 

Definit ion 5: A canon has thrcc components: 

• A partially ordered ~et T of  type labels. 

• A set I of  individual marker~, with a conformi ly relation ::. 

• A f inite set of  conceptual graphs with type or c~Jnccl)lS and 
conceptual relations in T and wi lh referents either let *~r markers 
in I. 

The number of  possible canonical graphs may be inf inite, but the 
canon contains a finite number from which all the others can be derived. 
With an appropriate canon, many undesirable graphs are ruled out as 
noncanonical, but the canonical graphs are not necessari!y true. T~) ensure 
that only truc graphs are derived from true graphs, the laws discussed in 
Section 4 eliminate incnnsistcnt combinations. 

Ax iom 5: A conceptual graph is called canontrol eithcr i f  it is in the c:tnq)n 

or i f  it is derivable from canonical graphs by ()ne of the fo l lowing 
canonic'a/formation •ules. I,et u and v be canonical graphs (u and v 
may be the same graph). 

• Copy: An exact copy of  u is canonical. 

• Restrict: Let a be a concept in u, and let t be a type label where 
t<_typela) and t::referenrfa). Then the graph obtained by changing 
the type label of  a to t and leaving •eferent(a) unchanged is can- 
onical. 

• Join on aconcept:  Let a be aconcept in u, and baconcep t  in v 
I f  a and b are joinable, then the graph derived by the fol lowin~ 

steps is canonical: First delete b from v; then attach to a all arcs 
of  conceptual relations that had been attached to b. If  re/'eremfa) 
e I, then referent(a) is unchanged;  otherwise ,  referent(a) is re- 

placed by referent(b). 

• Join on a star: Let r be a conceptual  relation in u. and x a con- 

ceptual relation in v. If the star graphs of r and s are joinable.  

then the graph derived by the fol lowing steps is canonical:  First 

delete s and its arcs from v; then for each i. join the concept  

at tached to arc i of • to the concept that had been at tached to 

arc i of s. 

Restrict ion replaces a type label in a graph by the label of a subtype:  

this rule lets subtypes inherit  the structures that  apply to more general 

types. Join on a concept  combines  graphs that have concepts of the same 

type: one graph is overlaid on the other  so that  two concepts  of the same 

type merge into a single concept;  as a result, all the arcs that had been 

connected to either concept arc connected to the single merged concept. 

Join on a star merges a conceptual  relation and all of its a t tached concepts 
in a single operat ion.  

Defini t ion 6: Let v be a conceptual  graph, let v, be a subgraph of v in 

which every conceptual  relation has exactly the same arcs as in v. and 

let u be a copy of  v, in which zero or more concepts  may be restricted 

to subtypes. Then u is called a projection of v. and ¢, is called a 

projective ortgin of u in v. 

The main purpose of project ions is to define the rule of  join on a 

common projection,  which is a general izat ion of  the rules for jo in ing on a 

concept or a star. 

Defini t ion 7: If a conceptual  graph u is a project ion of both v and w. it is 
called a common projection of v and w, 

Theorem l :  If u is a common project ion of canonical graphs t, and w, then 

v and w may be joined on the common projection u to form a canonical 

graph by the fol lowing steps: 

• Let  v' be a project ive origin of u in v. and let w, be a project ive 
origin of u in w. 

• Restrict each concept of  v, and ~ to the type label of  the corre- 
sponding concept in u. 

• Join each concept o f  v, to the corresponding concept of  w,. 

• Join each star graph of  ¢ to the corresponding star of  ~ 
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The concepts and conceptual relations in the resulting graph consist of 
those in v-t~, w - ~ ,  and a copy of u. 

Definition 8: If v and w are joined on a common projection u. then all 
concepts and conceptual relations in the projective origin of u in v and 
the projective origin of u in ~v are said to be covered by the join. in 
particular, if the projective origin of u in v includes all of v. then the 
entire graph v is covered by the join. and the join is called a covering 
join of v by w, 

Definition 9: Let v and w be joined on a common projection u. The join 
is called extendible if there exist some concepts a in v and b in w with 
the following properties: 

• The concepts a and b were joined to each other. 

• a is attached to a conceptual relation • that was not covered by 
the join. 

• b is attached to a conceptual relation s that was not covered by 
the join. 

• The star graphs of r and s are joinable. 

If a join is not extendible, it is called mn.ximal. 

The definition of maximal join given here is simpler than the one 
given in Sown (1976), but it has the same result. Maximal joins have the 
effect of Wilks' preference rules (1975) in forcing a maximum connectivity 
of the graphs. Covering joins are used in Section 3 in the rules for apply- 
ing sequeots. 

Theorem 2: Every covering join is maximal. 

Sown (1976) continued with further material on quantifiers and 
procedural attachments, and Sown (1978) continued with mechanisms for 
defining new types of concepts, conceptual relations, and composite 
entities that have other entities as parts. Note that the terms sort, aubaort, 
and well-formed in Sown (1976) have now been replaced by the terms type, 
subtype, and canonical. 
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