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Introduction

Welcome to the ACL 2019 Student Research Workshop! The ACL 2019 Student Research Workshop
(SRW) is a forum for student researchers in computational linguistics and natural language processing.
The workshop provides a unique opportunity for student participants to present their work and receive
valuable feedback from the international research community as well as from faculty mentors.

Following the tradition of the previous years’ student research workshops, we have two tracks: research
papers and research proposals. The research paper track is a venue for Ph.D. students, Masters students,
and advanced undergraduates to describe completed work or work-in-progress along with preliminary
results. The research proposal track is offered for advanced Masters and Ph.D. students who have decided
on a thesis topic and are interested in feedback on their proposal and ideas about future directions for
their work.

This year, the student research workshop has received a great attention, reflecting the growth of the field.
We received 214 submissions in total: 27 research proposals and 147 research papers. Among these, 7
research proposals and 22 research papers were non-archival. We accepted 71 papers, for an acceptance
rate of 33%. After withdrawals and excluding non-archival papers, 61 papers are appearing in these
proceedings, including 14 research proposals and 47 research papers. All of the accepted papers will be
presented as posters in late morning sessions as a part of the main conference, split across three days
(July 29th-31th).

Mentoring is at the heart of the SRW. In keeping with previous years, students had the opportunity
for pre-submission mentoring prior to the submission deadline. Total of 64 papers participated in pre-
submission mentoring program. This program offered students a chance to receive comments from an
experienced researcher, in order to improve the quality of the writing and presentation before making
their submission. In addition, authors of accepted SRW papers are matched with mentors who will meet
with the students in person during the poster presentations. Each mentor prepares in-depth comments and
questions prior to the student’s presentation, and provides discussion and feedback during the workshop.

We are deeply grateful to our sponsors whose support will enable a number of students to attend the
conference. We would also like to thank our program committee members for their careful reviews of
each paper, and all of our mentors for donating their time to provide feedback to our student authors.
Thank you to our faculty advisors Hannaneh Hajishirzi, Aurelie Herbelot, Scott Yih, Yue Zhang for their
essential advice and guidance, and to the members of the ACL 2018 organizing committee, in particular
David Traum, Anna Korhonen and Lluís Màrquez for their helpful support. Finally, kudos to our student
participants!
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Abstract
Codification of free-text clinical narratives
have long been recognised to be beneficial
for secondary uses such as funding, insurance
claim processing and research. In recent years,
many researchers have studied the use of Nat-
ural Language Processing (NLP), related Ma-
chine Learning (ML) methods and techniques
to resolve the problem of manual coding of
clinical narratives. Most of the studies are fo-
cused on classification systems relevant to the
U.S and there is a scarcity of studies relevant to
Australian classification systems such as ICD-
10-AM and ACHI. Therefore, we aim to de-
velop a knowledge-based clinical auto-coding
system, that utilise appropriate NLP and ML
techniques to assign ICD-10-AM and ACHI
codes to clinical records, while adhering to
both local coding standards (Australian Cod-
ing Standard) and international guidelines that
get updated and validated continuously.

1 Introduction

Documentation related to an episode of care of
a patient, commonly referred to as a medical
record, contains clinical findings, diagnoses, inter-
ventions, and medication details which are invalu-
able information for clinical decisions making.
To carry out meaningful statistical analysis, these
medical records are converted into a special set of
codes which are called Clinical codes as per the
clinical coding standards set by the World Health
Organisation (WHO). The International Classifi-
cation of Diseases (ICD) codes are a special set
of alphanumeric codes, assigned to an episode of
care of a patient, based on which reimbursement is
done in some countries (Kaur and Ginige, 2018).
Clinical codes are assigned by trained profession-
als, known as clinical coders, who have a sound
knowledge of medical terminologies, clinical clas-
sification systems, and coding rules and guide-
lines. The current scenario of assigning clinical

codes is a manual process which is very expensive,
time-consuming, and error-prone (Xie and Xing,
2018). The wrong assignment of codes leads to
issues such as reviewing of whole process, finan-
cial losses, increased labour costs as well as delays
in reimbursement process. The coded data is not
only used by insurance companies for reimburse-
ment purposes, but also by government agencies
and policy makers to analyse healthcare systems,
justify investments done in the healthcare industry
and plan future investments based on these statis-
tics (Kaur and Ginige, 2018).

With the transition from ICD-9 to ICD-10 in
1992, the number of codes increased from 3,882
codes to approximately 70,000, which further
makes manual coding a non-trivial task (Subotin
and Davis, 2014). On an average, a clinical coder
codes 3 to 4 clinical records per hour, resulting
in 15-42 records per day depending on the expe-
rience and efficiency of the human coder (Santos
et al., 2008; Kaur and Ginige, 2018). The cost
incurred in assigning clinical codes and their fol-
low up corrections are estimated to be 25 billion
dollars per year in the United States (Farkas and
Szarvas, 2008; Xie and Xing, 2018). There are
several reasons behind the wrong assignment of
codes. First, assignment of ICD codes to patient’s
records is highly erroneous due to subjective na-
ture of human perception (Arifoğlu et al., 2014).
Second, manual process of assigning codes is a te-
dious task which leads to inability to locate crit-
ical and subtle findings due to fatigue. Third, in
many cases, physicians or doctors often use ab-
breviations or synonyms, which causes ambiguity
(Xie and Xing, 2018).

A study by (McKenzie and Walker, 2003), de-
scribes changes that have occurred in the coder
workforce over the last eight years in terms of em-
ployment conditions, duties, resources, and access
to and need for continuous education. Similarly,
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Figure 1: A distributed knowledge-based clinical auto-coding system

another study (Butler-Henderson, 2017), high-
lights major future challenges that health informa-
tion management practitioners and academics will
face with an ageing workforce, where more than
50% of the workforce is aged 45 years or older.

To reduce coding errors and cost, research is be-
ing conducted to develop methods for automated
coding. Most of the research in auto-coding is fo-
cused on ICD-9-CM (Clinical Modification), ICD-
10-CM, ICD-10-PCS (Procedure Coding System)
which are US modifications. Very limited studies
are focused on ICD-10-AM (Australian Modifica-
tion) and Australian Classification of Health Inter-
vention (ACHI).Hence, our research aims to de-
velop a distributed knowledge-based clinical auto-
coding system that would leverage on NLP and
ML techniques, where a human coders will give
their queries to the coding system and in revert the
system will suggest a set of clinical codes. Fig-
ure 1 shows a possible scenario, how a distributed
knowledge-based coding system will be used in
practice.

2 Related Work

In early 19th century, a French statistician Jacques
Bertillon, developed a classification system to
record causes of death. Later in 1948, the WHO
started maintaining the Bertillon classification and
named it as International Statistical Classification
of Disease, Injuries and Causes of Death (Cumer-
lato et al., 2010). Since then, roughly every ten
years, this classification had been revised and in
1992, ICD-10 was approved. Twenty-six (26)

years after the introduction of ICD-10, the next
generation of classification ICD-11 is released in
May 2019 but not yet implemented (Kaur and
Ginige, 2018). ICD-11 increases the complexity
by introducing a new code structure, a new chap-
ter on X-Extension Codes, dimensions of exter-
nal causes (histopathology, consciousness, tem-
porality, and etiology), and a new chapters on
sleep-awake disorder, conditions related to sexual
health, and traditional medicine conditions (Or-
ganisation, 2016; Hargreaves and Njeru, 2014;
Reed et al., 2016).

In previous research related to clinical narra-
tive analysis, different methods and techniques
ranging from pattern matching to deep learn-
ing approaches are applied to categorise clini-
cal narratives into different categories (Mujtaba
et al., 2019). Several researchers across the
globe have employed text classification to cate-
gorise clinical narratives into various categories
using machine learning approaches including su-
pervised (Hastie et al., 2009), unsupervised (Ko
and Seo, 2000), semi-supervised (Zhu and Gold-
berg, 2009), ontology-based (Hotho et al., 2002),
rule-based (Deng et al., 2015), transfer (Pan and
Yang, 2010), and multi-view learning (Amini
et al., 2009).

(Cai et al., 2016) reviewed the fundamentals
of NLP and describe various techniques such as
pattern matching, linguistic approach, statistical
and machine learning approaches that constitute
NLP in radiology, along with some key applica-
tions. (Larkey and Croft, 1995) studied three dif-
ferent classifiers namely: k-nearest neighbor, rel-
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evance feedback and Bayesian independence clas-
sifiers for assigning ICD-9 codes to dictated in-
patient discharge summaries. The study found
that a combination of different classifiers produced
better results than any single type of classifier.
(Farkas and Szarvas, 2008) proposed a rule-based
ICD-9-CM coding system for radiology reports
and achieved good classification performances on
a limited number of ICD-9-CM codes (45 in total).
Similarly, (Goldstein et al., 2007; Pestian et al.,
2007b; Crammer et al., 2007) also proposed au-
tomated system for assigning ICD-9-CM codes to
free text radiology reports.

(Koopman et al., 2015) proposed a system for
automatic ICD-10 classification of cancer from
free-text death certificates. The classifiers were
deployed in a two-level cascaded architecture,
where the first level identifies the presence of can-
cer (i.e., binary form cancer/no cancer), and the
second level identifies the type of cancer. How-
ever, all ICD-10 codes were truncated into three
character level.

All the above mentioned research studies are
based on some type of deep learning, machine
learning or statistical approach, where the infor-
mation contained in the training data is distillate
into mathematical models, which can be success-
fully employed for assigning ICD codes (Chiar-
avalloti et al., 2014). One of the main flaws in
these approaches is that training data is annotated
by human coders. Thus, there is a possibility of in-
accurate ICD codes. Therefore, if clinical records
labelled with incorrect ICD codes are given as an
input to an algorithm, it is likely that the model
will also provide incorrect predictions.

2.1 Standard Pipeline for Clinical Text
Classification

Various research studies have used different meth-
ods and techniques to handle and process clinical
text, but the standard pipeline is utilised in some
shape or form. This section details the steps in the
standard pipeline in machine learning, as it is re-
quired for the auto-coding.

2.1.1 Types of clinical record
Clinical text classification techniques have been
employed on different types of clinical records
such as surgical reports (Stocker et al., 2014; Raja
et al., 2012), radiology reports (Mendona et al.,
2005), autopsy reports (Mujtaba et al., 2018),
death certificates (Koopman et al., 2015), clini-

cal narratives (Meystre and Haug, 2006; Friedlin
and McDonald, 2008), progress notes (Frost et al.,
2005), laboratory reports (Friedlin and McDonald,
2008; Liu et al., 2012), admission notes and pa-
tient summaries (Jensen et al., 2012), pathology
reports (Imler et al., 2013), and unstructured elec-
tronic text (Portet et al., 2009). In this research, we
aim to primarily use clinical discharge summaries
as the input text data.

2.1.2 Datasets available

The data sources used in various research stud-
ies can be categorised into two types: homoge-
neous sources and heterogeneous sources, which
can further be divided into three subtypes: binary
class, multi-class single labeled, multi-class multi-
labeled datasets (Mujtaba et al., 2019). There are
few datasets that are publicly available such as
PhysioNet1, i2b2 NLP dataset2, and OHSUMED3.
In this research, we aim to use both publicly avail-
able and data acquired from hospitals.

2.1.3 Preprocessing

Preprocessing is done to remove meaningless in-
formation from the dataset as the clinical narra-
tives may contain high level of noise, sparsity,
mispelled words, grammatical errors (Nguyen and
Patrick, 2016; Mujtaba et al., 2019). Different pre-
processing techniques are applied in research stud-
ies including sentence splitting, tokenisation, spell
error detection and correction, stemming and lem-
matisation, normalisation (Manning et al., 2008),
removal of stop words, removal of punctuation or
special symbols, abbreviation expansion, chunk-
ing, named entity recognition (Bird et al., 2009),
negation detection (Chapman et al., 2001).

2.1.4 Feature Engineering

Feature engineering is the combination of feature
extraction, feature representation, and feature se-
lection (Mujtaba et al., 2019). Feature extraction is
the process of extracting useful features which in-
cludes Bag of Words (BoW), n-gram, Word2Vec,
and GloVe. Once features are extracted, next step
is to represent in numeric form to feature vectors
using either binary representation, term frequency
(tf), term frequency with inverse document fre-
quency (tf-idf), or normalised tf-idf.

1https://physionet.org/mimic2/
2https://www.i2b2.org/NLP/DataSets/
3http://davis.wpi.edu/xmdv/datasets/ohsumed.html
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2.1.5 Classification
For classification, various research studies have
used classifiers such as Support Vector Machine
(SVM) (Cortes and Vapnik, 1995), k-Nearest
Neighbor (kNN) (Altman, 1992), Convolutional
Neural Network (CNN) (Karimi et al., 2017), Re-
current Neural Network (RNN), Long short-term
memory (LSTM)(Luo, 2017), and Gated Recur-
rent Unit (GRU) (Jagannatha and Yu, 2016).

2.1.6 Evaluation Metrics
The performance of clinical text classification
models can be measured using standard evalua-
tion metrics which include precision, recall, F-
measure (or F-score), accuracy, precision (mi-
cro and macro-average), recall (micro and macro-
average), F-measure (micro and macro-average),
and area under the curve (AUC). These metrics
can be computed by using values of true positive
(TP), false positive (FP), true negative (TN), and
false negative (FN) in the standard confusion ma-
trix (Mujtaba et al., 2019).

3 Experimental Framework

3.1 Data collection and ethics approval

This research has ethics approval from Western
Sydney University Human Research Ethics Com-
mittee (HREC) under reference No: H12628 to
use 1,200 clinical records. The ethics approval
is valid for the next four years until 11th April,
2023. In addition, we also have access to publicly
available dataset such as MIMIC-III and Compu-
tational Medicine Center (CMC) (Pestian et al.,
2007a). Apart from this, more clinical records
from acute or sub-acute hospitals will also be col-
lected.

3.2 Proposed Research

Within the broader scope of this proposal, the
work will be focused on the research questions
given below:

How to optimise the use of computerised algo-
rithms to assign ICD-10-AM and ACHI codes
to clinical records, while adhering to local cod-
ing standard (for example, Australian Coding
Standard (ACS)) and international guidelines,
leveraging on a distributed knowledge-base?

To address main research question, the follow-
ing sub-research questions will be investigated:

Why do certain algorithms perform differently
with similar dataset?
The No free lunch theorem (Wolpert, 1996) states
that there is no such algorithm that is universally
best for every problem. If one algorithm does re-
ally good for a given dataset, it may not do really
well for other dataset. For example, one cannot
say that SVM always does better prediction than
Naı̈ve Bayes or Decision Tree all the times. The
intention of ML or statistical learning research is
not to find the universally best algorithm, but the
reason is that most of the algorithms work on the
sample data and then make predictions or infer-
ence out of that. We cannot make proper truthful
prediction just by working on a sample data. In
fact, the results are all probabilistic in nature, not
100% true or certain. The study (Kaur and Ginige,
2018), performed comparative analysis on differ-
ent approaches such as pattern matching, rule-
based, ML, and hybrid. Each of the above men-
tioned methods and techniques performed differ-
ently in every case, but there was no explanations
given behind the performance of each algorithm.
Moreover, this study did not used ACS rules while
assigning ICD-10-AM and ACHI codes.

There are few reasons that may have effected
the algorithms performance used for codification
of ICD-10-AM and ACHI codes in the previ-
ous study (Kaur and Ginige, 2018). Firstly, do-
main knowledge is very essential before assigning
codes. In Australia, coding standards are used for
clinical coding purpose to provide consistency of
data collection, and support secondary classifica-
tions based on ICD such as the Australian Refined
Diagnosis Related Groups (AR-DRGs). There-
fore, during ICD-10-AM and ACHI code assign-
ment, ACS rules are considered. If these ACS
rules are not considered, then there is a possibil-
ity of wrong assignment of codes. Secondly, the
study (Kaur and Ginige, 2018) had very limited
number of medical records due to which the al-
gorithms were unable to learn and predict correct
codes properly. A similar study (Kaur and Ginige,
2019) done by the same set of authors using the
same dataset describes that the dataset contains
420 unique labels, out of which 221 labels ap-
peared only once in the whole dataset, 77 labels
appeared twice, and only 24 labels appeared more
than 15 times. Therefore, it lowers the learning
rate of the algorithms.

To overcome the above stated problems, we
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will make use of ACS in conjunction in ICD-10-
AM and ACHI codes, and use large-scale data
so that the algorithms can learn properly and
make correct predictions. In order to process
raw data, feature engineering will be carried out
to transform the raw data into feature vectors.
Moreover, in NLP, word embeddings has the abil-
ity to capture high-level semantic and syntactic
properties of text. A study by (Henriksson et al.,
2015) leverages word embeddings to identify
adverse drug events from clinical notes and
shows that using word embeddings can improve
the predictive performance of machine learning
methods. Therefore, in our research, we will
explore semantic and syntactic properties of text
to improve the performance of algorithms which
give different performance on the same dataset.

How to assign ICD codes before referring to lo-
cal and international standards and guidelines?
In the U.S, the Centers for Medicare and Med-
icaid Services (CMS) and the National Center
for Health Statistics (NCHS), provide the guide-
lines for coding and reporting using the ICD-10-
CM. These guidelines are a set of rules that have
been approved by the four organisations: Amer-
ican Hospital Association (AHA), the American
Health Information Association (AHIMA), CMS,
and NCHS (for Health Statistics). Similarly, in
Australia, the clinical coding standards i.e., ACS
rules are designed to be used in conjunction with
ICD-10-AM and ACHI and are applicable to all
public and private hospitals in Australia (for Clas-
sification Development, 2017). The clinical codes
are not only assigned based on the information
provided on the front sheet or the discharge sum-
mary but a complete analysis is performed by fol-
lowing the guidelines given in the ACS.

Since the introduction of ICD-10 in 1992, many
countries have modified the WHO’s ICD-10 clas-
sification system into their country specific report-
ing purpose. For example, ICD-10-CA (Canadian
Modification) and ICD-10-GM (German Modi-
fication). There are few major difference be-
tween the US and Australian classification sys-
tems. Firstly, there are few additional ICD-10-
AM codes that are more specific (approximately
4, 915 codes) that are coded only in Australia and
15 other countries including Ireland, and Saudi
Arabia that use Australian classification system
as their national classification system. For exam-

Figure 2: Difference between ICD-10 and ICD-10-AM
codes.

ple, in the U.S, contact with venomous spiders is
coded as X21, whereas in Australia, it is more
specific by adding fourth character level as shown
in Figure 2. There are 12% ICD-10-AM specific
codes that do not exist in ICD-10-CM, ICD-9-
CM or any other classification system. Secondly,
countries that have developed their own national
classification system use different coding prac-
tices. For example, in the U.S, Pulmonary oedema
is coded as J81, whereas in Australia, to assign
code for Pulmonary oedema, there is ACS rule
0920 which says,“When acute pulmonary oedema
is documented without further qualification about
the underlying cause, assign I50.1 Left ventricular
failure”. Therefore, in our research, we will find
methods and techniques to represent the coding
standards and guidelines in a computerised format
before assigning ICD codes. In addition, we will
also explore mechanisms to manage the evolving
nature of coding standards.

How to pre-process heterogeneous dataset?
Collecting data in health-care domain is a chal-
lenge in itself. Though, there are few publicly
available repositories, there are certain issues to
be resolved before using these in our research. For
example, MIMIC dataset contains de-identified
health data based on ICD-9 codes and Current
Procedural Terminology (CPT) codes. As our
research is focused on assigning ICD-10-AM
and ACHI codes to clinical records, there is
a need of mapping between ICD-9 to ICD-10
and vice-versa and ICD-10-CM to ICD-10-AM.
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There are some existing look-up, translators, or
mapping tools, which will translate ICD-9 codes
into ICD-10 codes and vice versa (Butler, 2007).
Therefore, we will explore and use the existing
mapping tools to convert ICD-9 to ICD-10 codes,
ICD-10 to ICD-10-AM codes or another classifi-
cation system in order to train the model that is
not annotated using ICD-10-AM and ACHI codes.

What sort of a distributed knowledge-based
system would support the assigning clinical
codes?
The majority of studies have used ML, hybrid, and
deep learning approaches for clinical text classifi-
cation. There are two main challenges that one
has to face while doing research in health-care
domain. First, to train the model when data is
scarce. The ML based algorithms for classification
and automated ICD code assignment are charac-
terised by many limitations. For example, knowl-
edge acquisition bottleneck, in which ML algo-
rithms require a large number of annotated data
for constructing an accurate classification model.
Therefore, many believe that the quality of ML
based algorithms highly depended on data rather
than algorithms (Mujtaba et al., 2019). Even af-
ter a great efforts, researchers are able to col-
lect millions of data, there is still a possibility
that the occurrence of some diseases and inter-
ventions will not be enough to train the model
properly and give correct codes. However, when
data is insufficient, transfer learning or fine tun-
ing are other possible options to look into (Singh,
2018). Secondly, it is difficult and expensive to
assign ground truth codes (or label) to the clini-
cal records. Although, the above mentioned ap-
proaches are capable of providing good results, but
these approaches require annotated data in order to
train the model. The labelling process requires hu-
man expert to assign labels (or ICD codes) to each
clinical record. For example, the study (Kaur and
Ginige, 2018) contains 190 de-identified discharge
summaries belonging to diseases and interventions
of respiratory and digestive system. The discharge
summaries were in the hand written form, which
were later converted into digital form and assigned
ground truth codes with the help of a human ex-
pert. Thus, a considerable amount of effort was
exerted in preparing the training data.

Therefore, in our research we aim to develop a
distributed knowledge-base system where humans

(clinical coders) and machines can work together
to overcome the above mentioned challenges. If
machine is unable to predict the correct ICD code
for a given disease or intervention then humans
input will be considered. Moreover, the human
coder can also verify the codes assigned by ma-
chine.

3.3 Baseline Methods
There are three main approaches for automated
ICD codes assignment: (1) machine learning;
(2) hybrid (combining machine learning and rule-
base); and (3) deep learning. Deep learning mod-
els have demonstrated successful results in many
NLP tasks such as language translation (Zhang
and Zong, 2015), image captioning (LeCun et al.,
2015) and sentiment analysis (Socher et al., 2013).
We will work on different ML and deep learn-
ing models including LSTM, CNN-RNN, and
GRU. Pre-processing will be done using standard
pipeline and convert the assigned labels based
on Australian classification system using existing
mapping tools. Feature extraction will be done
using non-sequential and sequential features fol-
lowed by training and testing of the model using
baseline models and deep learning models.

4 Conclusion

In this research proposal, we aim to develop a
knowledge-based clinical auto-coding system that
uses computerised algorithms to assign ICD-10-
AM, ACHI, ICD-11, and ICHI codes to an episode
of care of a patient while adhering coding guide-
lines. Further, we will explore how ML models
can be trained with limited dataset, mapping be-
tween different classification systems, and avoid-
ing labelling efforts.
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Abstract

There are a lot of noisy texts surrounding a
person in modern life. A traditional approach
is to use spelling correction, yet the existing
solutions are far from perfect. We propose a
robust to noise word embeddings model which
outperforms existing commonly used models
like fasttext and word2vec in different tasks.
In addition, we investigate the noise robustness
of current models in different natural language
processing tasks. We propose extensions for
modern models in three downstream tasks, i.e.
text classification, named entity recognition
and aspect extraction, these extensions show
improvement in noise robustness over existing
solutions.

1 Introduction

The rapid growth of the usage of mobile elec-
tronic devices has increased the number of user
input text issues such as typos. This happens be-
cause typing on a small screen and in transport
(or while walking) is difficult, and people acci-
dentally hit wrong keys more often than when us-
ing a standard keyboard. Spell-checking systems
widely used in web services can handle this issue,
but they can also make mistakes. These typos are
considered to be noise in original text. Such noise
is a widely known issue and to mitigate its pres-
ence there were developed spelling correcting sys-
tems, e.g. (Cucerzan and Brill, 2004). Although
spelling correction systems have been developed
for decades up to this day, their quality is still far
from perfect, e.g. for the Russian language it is
85% (Sorokin, 2017). So we propose a new way
to handle noise i.e. to make models themselves
robust to noise.

This work is considering the main area of noise
robustness in natural language processing and, in
particular, in four related subareas which are de-
scribed in corresponding sections. All the subar-

eas share the same research questions applied to a
particular downstream task:

RQ1. Are the existing state of the art models
robust to noise?

RQ2. How to make these models more robust
to noise?

In order to answer these RQs, we describe the
commonly used approaches in a subarea of interest
and specify their features which could improve or
deteriorate the performance of these models. Then
we define a methodology for testing existing mod-
els and proposed extensions. The methodology in-
cludes the experiment setup with quality measure
and datasets on which the experiments should be
run.

This work is organized as follows: in Section
2 the research on word embeddings is motivated
and proposed, in further sections, i.e. 3, 4, 5,
there are propositions to conduct research in the
area of text classification, named entity recogni-
tion and aspect extraction respectively. In Section
6 we present preliminary conclusions and propose
further research directions in the mentioned areas
and other NLP areas.

2 Word Embeddings

Any text processing system is now impossible to
imagine without word embeddings — vectors en-
code semantic and syntactic properties of individ-
ual words (Arora et al., 2016). However, to use
these word vectors user input should be clean (i.e.
free of misspellings), because a word vector model
trained on clean data will not have misspelled ver-
sions of words. There are examples of models
trained on noisy data (Li et al., 2017), but this ap-
proach does not fully solve the problem, because
typos are unpredictable and a corpus cannot con-
tain all possible incorrectly spelled versions of a
word. Instead, we suggest that we should make
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algorithms for word vector modelling robust to
noise.

Figure 1: RoVe model architecture.

We suggest a new architecture RoVe (Robust
Vectors).1 It is presented on Fig. 1. The main
feature of this model is open vocabulary. It en-
codes words as sequences of symbols. This en-
ables the model to produce embeddings for out-
of-vocabulary (OOV) words. The idea as such
is not new, many other models use character-
level embeddings (Ling et al., 2015) or encode
the most common ngrams to assemble unknown
words from them (Bojanowski et al., 2016). How-
ever, unlike analogous models, RoVe is specifi-
cally targeted at typos — it is invariant to swaps of
symbols in a word. This property is ensured by the
fact that each word is encoded as a bag of charac-
ters. At the same time, word prefixes and suffixes
are encoded separately, which enables RoVe to
produce meaningful embeddings for unseen word
forms in morphologically rich languages. Notably,
this is done without explicit morphological analy-
sis. This mechanism is depicted on Fig. 2.

Another feature of RoVe is context dependency
— in order to generate an embedding for a word
one should encode its context (the top part of
Fig. 1). The motivation for such architecture is
the following. Our intuition is that when process-
ing an OOV word our model should produce an
embedding similar to that of some similar word

1An open-source implementation is available here:
https://gitlab.com/madrugado/robust-w2v

from the training data. This behaviour is suit-
able for typos as well as unseen forms of known
words. In the latter case we want a word to get an
embedding similar to the embedding of its initial
form. This process reminds lemmatisation (reduc-
tion of a word to its initial form). Lemmatisation
is context-dependent since it often needs to resolve
homonymy based on word’s context. By making
RoVe model context-dependent we enable it to do
such implicit lemmatisation.

At the same time, it has been shown that em-
beddings which are generated considering word’s
context in a particular sentence are more infor-
mative and accurate, because a word’s immediate
context informs a model of the word’s grammat-
ical features (Peters et al., 2018). On the other
hand, use of context-dependent representations al-
lowed us to eliminate character-level embeddings.
As a result, we do not need to train a model that
converts a sequence of character-level embeddings
to an embedding for a word, as it was done in
(Ling et al., 2015).

2.1 Methodology

We suppose to compare RoVe with common word
vector tools: word2vec (Mikolov et al., 2013) and
fasttext (Bojanowski et al., 2016).

We score the performance of word vectors gen-
erated with RoVe and baseline models on three
tasks: paraphrase detection, sentiment analysis,
identification of text entailment. We consider
these tasks to be binary classification ones, so we
use ROC AUC measure for model quality evalua-
tion.

For all tasks we suppose to train simple baseline
models. This is done deliberately to make sure that
the performance is largely defined by the quality of
vectors that we use. For all the tasks we will com-
pare word vectors generated by different modifica-
tions of RoVe with vectors produced by word2vec
and fasttext models.

We presume to conduct the experiments on
datasets for three languages: English (analytical
language), Russian (synthetic fusional), and Turk-
ish (synthetic agglutinative). Affixes have differ-
ent structures and purposes in these types of lan-
guages, and in our experiments we show that our
character-based representation is effective for all
of them.

For the above mentioned tasks we are go-
ing to use the following corpora: Paraphraser.ru
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Figure 2: Generation of input embedding for the word previous. Left: generation of character-level one-hot vectors,
right: generation of BME representation.

English Russian
noise (%) 0 10 20 0 10 20
BASELINES
word2vec 0.649 0.611 0.554 0.649 0.576 0.524
fasttext 0.662 0.615 0.524 0.703 0.625 0.524
RoVe
stackedLSTM 0.621 0.593 0.586 0.690 0.632 0.584
SRU 0.627 0.590 0.568 0.712 0.680 0.598
biSRU 0.656 0.621 0.598 0.721 0.699 0.621

Table 1: Results of the sentiment analysis task in terms of ROC AUC.

(Pronoza et al., 2016) for the Russian language
paraphrase identification task, Microsoft Research
Paraphrase Corpus (Dolan et al., 2004) for the
English language paraphrase identification task,
Turkish Paraphrase Corpus (Demir et al., 2012)
for the Turkish language paraphrase identifica-
tion task; Russian Twitter Sentiment Corpus
(Rubtsova, 2014) for the Russian language senti-
ment analysis task, Stanford Sentiment Treebank
(Socher et al., 2013) for the English language sen-
timent analysis task; and Stanford Natural Lan-
guage Inference (Bowman et al., 2015) for the En-
glish language natural language inference task.

2.2 Results

Due to lack of space we provide the results only
for sentiment analysis task for the Russian and En-
glish languages and for natural language inference
task for the English language.

There are three variants of the proposed RoVe
model listed in Tables 1 and 2, these are ones us-
ing different recurrent neural networks for context
encoding. The whole results are published in (hid-
den).

For both mentioned tables the robust word em-
bedding model Rove shows better results for all
noise level and both tasks, with the exception of
zero noise for English language sentiment analy-

English
noise (%) 0 10 20
BASELINES
word2vec 0.624 0.593 0.574
fasttext 0.642 0.563 0.517
RoVe
stackedLSTM 0.617 0.590 0.516
SRU 0.627 0.590 0.568
biSRU 0.651 0.621 0.598

Table 2: Results of the task on identification of textual
entailment.

sis task for which the fasttext word embeddings
are showing better results. The latter could be ex-
plained as fasttext has been explicitly trained for
this zero noise level, which is unnatural for human
generated text.

3 Text Classification

A lot of text classification applications like senti-
ment analysis or intent recognition are performed
on user-generated data, where no correct spelling
or grammar may be guaranteed.

Classical text vectorisation approach such as
bag of words with one-hot or TF-IDF encoding
encounters out-of-vocabulary problem given vast
variety of spelling errors. Although there are suc-
cessful applications to low-noise tasks on com-
mon datasets (Bojanowski et al., 2016; Howard
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and Ruder, 2018), not all models behave well with
real-world data like comments or tweets.

3.1 Methodology
We do experiments on two corpora: Airline Twit-
ter Sentiment 2 and Movie Review (Maas et al.,
2011), which are marked up for sentiment analy-
sis task.

We conduct three types of experiments: (a) the
train- and testsets are spell-checked and artificial
noise in inserted; (b) the train- and testsets are not
changed (with the above mentioned exception for
Russian corpus) and no artificial noise is added;
and (c) the trainset is spell-checked and noised, the
testset is unchanged.

These experimental setups are meant to demon-
strate the robustness of tested architectures to arti-
ficial and natural noise.

As baselines we use architectures based on fast-
text word embedding model (Bojanowski et al.,
2016) and an architecture which follows (Kim
et al., 2016). Another baseline, which is purely
character-level, will be adopted from the work
(Kim, 2014).

3.2 Results
Fig. 3 contains results for 4 models:

• FastText, which is recurrent neural network
using fasttext word embeddings,

• CharCNN, which is a character-based convo-
lutional neural network, based on work (Kim,
2014),

• CharCNN-WordRNN - a character-based
convolutional neural network for word em-
beddings with recurrent neural network for
entire text processing; it follows (Kim et al.,
2016),

• and RoVe, which is a recurrent neural net-
work using robust to noise word embeddings.

One could see in the figure that the model which
uses robust word embeddings is more robust to
noise itself starting from 0.075 (7.5%) noise level.

4 Named Entity Recognition

The field of named entity recognition (NER) re-
ceived a lot of attention in past years. This task

2Publicly available here: https://www.kaggle.
com/crowdflower/twitter-airline-sentimen

is an important part of dialog systems (Béchet,
2011). Nowadays dialog systems become more
and more popular. Due to that the number of dia-
log system users is increased and also many users
communicate with such systems in inconvenient
environments, like being in transport. This makes
a user to be less concentrated during a conversa-
tion and thus causes typos and grammatical errors.
Considering this we need to pay more attention to
NER models robustness to this type of noise.

4.1 Methodology

We conduct three types of experiments: (a) the
trainset and testset are not changed and no artifi-
cial noise is induced; (b) the artificial noise is in-
serted into trainset and testset simultaneously; and
(c) the trainset is being noised, the testset is un-
changed.

These experimental setups are meant to demon-
strate the robustness of tested architectures to arti-
ficial and natural noise (i.e. typos).

The proposed corpora to use are: English
and Russian news corpora, CoNLL’03 (Tjong
Kim Sang and De Meulder, 2003) and Persons-
1000 (Mozharova and Loukachevitch, 2016) re-
spectively, and French social media corpus
CAp’2017 (Lopez et al., 2017).

We investigate variations of the state of the art
architecture for Russian (Anh et al., 2017) and En-
glish (Lample et al., 2016) languages and apply
the same architecture to the French language cor-
pus.

5 Aspect Extraction

Aspect extraction task could provide information
to make dialogue systems more engaging for user
(Liu et al., 2010).

Therefore, we have decided to study the
Attention-Based Aspect Extraction (ABAE)
model (He et al., 2017) robustness using ar-
tificially generated noise. We propose three
extensions for an ABAE model, which are
supposedly more noise robust. There are:

• CharEmb - a convolutional neural network
over characters in addition to word as a whole
embeddings; these two embeddings are con-
catenated and used in ABAE model;

• FastText - an ABAE model using fasttext
word embeddings;
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Figure 3: Airline Twitter Sentiment Dataset. Trained on spell-checked and noised data, tested on spell-checked
and noised with the same noise level as the training set.

• RoVe - an ABAE model using robust word
embeddings.

5.1 Methodology

As the noise model, we took simple character
swapping with some probability, i.e. for any given
string we go through it character by character and
randomly decide if we need to replace this particu-
lar letter of the input with some random character.

As a quality measure we take F1 (weighted by
class representativity) score following (He et al.,
2017). The authors of the original paper used data
from the Citysearch corpus with user reviews on
restaurants in New York city originally described
in (Ganu et al., 2009). The reviews were labeled
by human annotators with a set of categories, like
“Food” or “Stuff”. The authors used only reviews
with exactly one labeled category. So in the end a
model predicts a label for a review in the unsuper-
vised way. The label is considered to be the most
probable aspect label.

5.2 Results

In Fig. 4 we show both the baseline ABAE model
and its extended version proposed in this work.
The original model has shown lower results for
all lower noise levels, while all extensions show
improvement over the original model. The RoVe
extensions shows improvement for all noise levels
over the original model and the other extensions.
The full results for aspect extraction task are pub-
lished in (Malykh and Khakhulin, 2018).

Figure 4: F1 measure for ABAE model and proposed
extensions.

6 Preliminary Results and Future
Research Directions

In this work the research in four related subareas
is proposed, these are word embeddings, text clas-
sification and named entity recognition and aspect
extraction.

Preliminary experiments for the robust to noise
word embeddings showed that explicit noise han-
dling is better than implicit like in fasttext model.
The preliminary results for the word embeddings
had been published in (Malykh, 2017). The pos-
sible further research in that direction could be an
investigation of embeddings for infix morphology
languages, like Arabic and Hebrew.

In the downstream tasks experiments show that
designed noise robustness improves quality on
noisy data. For named entity recognition task the

14



preliminary results are published in (Malykh and
Lyalin, 2018), and for aspect extraction task the
results are published in (Malykh and Khakhulin,
2018). The further research could be done in three
directions. Firstly, all of the tasks could be ap-
plied to more languages. Secondly, for classifi-
cation task corpora with more marked up classes
could be used. This task is harder in general case,
and there are some available corpora with dozens
of classes. And last but not least, thirdly, the sug-
gested methodology could be applied to the other
subareas of natural language processing, like Au-
tomatic Speech Recognition and Optical Character
Recognition, and achieve results in noise robust-
ness improvement there.
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Abstract

Mental health research can benefit increas-
ingly fruitfully from computational linguis-
tics methods, given the abundant availability
of language data in the internet and advances
of computational tools. This interdisciplinary
project will collect and analyse social me-
dia data of individuals diagnosed with bipolar
disorder with regard to their recovery experi-
ences. Personal recovery - living a satisfying
and contributing life along symptoms of se-
vere mental health issues - so far has only been
investigated qualitatively with structured in-
terviews and quantitatively with standardised
questionnaires with mainly English-speaking
participants in Western countries. Comple-
mentary to this evidence, computational lin-
guistic methods allow us to analyse first-
person accounts shared online in large quan-
tities, representing unstructured settings and a
more heterogeneous, multilingual population,
to draw a more complete picture of the aspects
and mechanisms of personal recovery in bipo-
lar disorder.

1 Introduction and background

Recent years have witnessed increased perfor-
mance in many computational linguistics tasks
such as syntactic and semantic parsing (Collobert
et al., 2011; Zeman et al., 2018), emotion classifi-
cation (Becker et al., 2017), and sentiment analy-
sis (Barnes et al., 2017, 2018a,b), especially con-
cerning the applicability of such tools to noisy on-
line data. Moreover, the field has made substantial
progress in developing multilingual models and
extending semantic annotation resources to lan-
guages beyond English (Pianta et al., 2002; Boas,
2009; Piao et al., 2016; Boot et al., 2017).

Concurrently, it has been argued for mental
health research that it would constitute a ‘valu-
able critical step’ (Stuart et al., 2017) to analyse

first-hand accounts by individuals with lived ex-
perience of severe mental health issues in blog
posts, tweets, and discussion forums. Several se-
vere mental health difficulties, e.g., bipolar dis-
order (BD) and schizophrenia are considered as
chronic and clinical recovery, defined as being re-
lapse and symptom free for a sustained period of
time (Chengappa et al., 2005), is considered dif-
ficult to achieve (Forster, 2014; Heylighen et al.,
2014; U.S. Department of Health and Human Ser-
vices: The National Institute of Mental Health,
2016). Moreover, clinically recovered individ-
uals often do not regain full social and educa-
tional/vocational functioning (Strakowski et al.,
1998; Tohen et al., 2003). Therefore, research
originating from initiatives by people with lived
experience of mental health issues has been advo-
cating emphasis on the individual’s goals in recov-
ery (Deegan, 1988; Anthony, 1993). This move-
ment gave rise to the concept of personal recov-
ery (Andresen et al., 2011; van Os et al., 2019),
loosely defined as a ‘way of living a satisfying,
hopeful, and contributing life even with limitations
caused by illness’ (Anthony, 1993). The aspects
of personal recovery have been conceptualised in
various ways (Young and Ensing, 1999; Mansell
et al., 2010; Morrison et al., 2016). According to
the frequently used CHIME model (Leamy et al.,
2011), its main components are Connectedness,
Hope and optimism, Identity, Meaning and pur-
pose, and Empowerment.

Here, we focus on BD, which is characterised
by recurring episodes of depressed and elated
(hypomanic or manic) mood (Jones et al., 2010;
Forster, 2014). Bipolar spectrum disorders were
estimated to affect approximately 2% of the UK
population (Heylighen et al., 2014) with rates
ranging from 0.1%-4.4% across 11 other Euro-
pean, American and Asian countries (Merikangas
et al., 2011). Moreover, BD is associated with a
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high risk of suicide (Novick et al., 2010), making
its prevention and treatment important tasks for
society. BD-specific personal recovery research is
motivated by mainly two facts: First, the pole of
positive/elevated mood and ongoing mood insta-
bility constitute core features of BD and pose spe-
cial challenges compared to other mental health
issues, such as unipolar depression (Jones et al.,
2010). Second, unlike for some other severe men-
tal health difficulties, return to normal functioning
is achievable given appropriate treatment (Coryell
et al., 1998; Tohen et al., 2003; Goldberg and Har-
row, 2004).

A substantial body of qualitative and quan-
titative research has shown the importance of
personal recovery for individuals diagnosed with
BD (Mansell et al., 2010; Jones et al., 2010, 2012,
2015; Morrison et al., 2016). Qualitative evidence
mainly comes from (semi-)structured interviews
and focus groups and has been criticised for small
numbers of participants (Stuart et al., 2017), lack-
ing complementary quantitative evidence from
larger samples (Slade et al., 2012). Some quanti-
tative evidence stems from the standardised bipo-
lar recovery questionnaire (Jones et al., 2012) and
a randomised control trial for recovery-focused
cognitive-behavioural therapy (Jones et al., 2015).
Critically, previous research has taken place only
in structured settings.

What is more, the recovery concept emerged
from research primarily conducted in English-
speaking countries, mainly involving researchers
and participants of Western ethnicity. This might
have led to a lack of non-Western notions of well-
being in the concept, such as those found in in-
digenous peoples (Slade et al., 2012), limiting its
the applicability to a general population. Indeed,
the variation in BD prevalence rates from 0.1% in
India to 4.4% in the US is striking. It has been
shown that culture is an important factor in the di-
agnosis of BD (Mackin et al., 2006), as well as
on the causes attributed to mental health difficul-
ties in general and treatments considered appropri-
ate (Sanches and Jorge, 2004; Chentsova-Dutton
et al., 2014). While approaches to mental health
classification from texts have long ignored the cul-
tural dimension (Loveys et al., 2018), first studies
show that online language of individuals affected
by depression or related mental health difficulties
differs significantly across cultures (De Choud-
hury et al., 2017; Loveys et al., 2018).

Hence, it seems timely to take into account the
wealth of accounts of mental health difficulties
and recovery stories from individuals of diverse
ethnic and cultural backgrounds that are available
in a multitude of languages on the internet. Corpus
and computational linguistic methods are explic-
itly designed for processing large amounts of lin-
guistic data (Jurafsky and Martin, 2009; O’Keeffe
and McCarthy, 2010; McEnery and Hardie, 2011;
Rayson, 2015), and as discussed above, recent ad-
vances have made it feasible to apply them to
noisy user-generated texts from diverse domains,
including mental health (Resnik et al., 2014; Ben-
ton et al., 2017b). Computer-aided analysis of
public social media data enables us to address sev-
eral shortcomings in the scientific underpinning of
personal recovery in BD by overcoming the small
sample sizes of lab-collected data and including
accounts from a more heterogeneous population.

In sum, our research questions are as follows:
(1) How is personal recovery discussed online by
individuals meeting criteria for BD? (2) What new
insights do we get about personal recovery and
factors that facilitate or hinder it? We will in-
vestigate these questions in two parts, looking at
English-language data by westerners and at multi-
lingual data by individuals of diverse ethnicities.

2 Data

Previous work in computational linguistics and
clinical psychology has tended to focus on the
detection of mental health issues as classification
tasks (Arseniev-Koehler et al., 2018). Datasets
have been collected for various conditions includ-
ing BD using publicly available social-media data
from Twitter (Coppersmith et al., 2015) and Red-
dit (Sekulić et al., 2018; Cohan et al., 2018). Un-
fortunately, the Twitter dataset is unavailable for
further research.1 In both Reddit datasets, mental
health-related content was deliberately removed.
This allows the training of classifiers that try to
predict the mental health of authors from excerpts
that do not explicitly address mental health, yet
it renders the data useless for analyses on how
mental health is talked about online. Due to this
lack of appropriate existing publicly accessible
datasets, we will create such resources and make
them available to subsequent researchers.

We plan to collect data relevant for BD in gen-

1Email communication with the first author of Copper-
smith et al. (2015).
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eral as well as for personal recovery in BD from
three sources varying in their available amount
versus depth of the accounts we expect to find:
1) Twitter, 2) Reddit (focusing on mental health-
related content unlike previous work), 3) blogs au-
thored by affected individuals. Twitter and Reddit
users with a BD diagnosis will be identified au-
tomatically via self-reported diagnosis statements,
such as ‘I was diagnosed with BD-I last week’.
To do so, we will extend on the diagnosis pat-
terns and terms for BD provided by Cohan et al.
(2018)2. Implicit consent is assumed from users
on these platforms to use their public tweets and
posts.3 Relevant blogs will be manually identified,
and their authors will be contacted to obtain in-
formed consent for using their texts.

Since language and culture are important fac-
tors in our research questions, we need informa-
tion on the language of the texts and the coun-
try of residence of their authors3, which is not
provided in a structured format in the three data
sources. For language identification, Twitter em-
ploys an automatic tool (Trampus, 2015), which
can be used to filter tweets according to 60 lan-
guage codes, and there are free, fairly accurate
tools such as the Google Compact Language De-
tector4, which can be applied to Reddit and blog
posts. The location of Twitter users can be auto-
matically inferred from their tweets (Cheng et al.,
2010) or the (albeit noisy) location field in their
user profiles (Hecht et al., 2011). Only one attempt
to classify the location of Reddit users has been
published so far (Harrigian, 2018) showing mea-
gre results, indicating that the development of ro-
bust location classification approaches on this plat-
form would constitute a valuable contribution.

Some companies collect mental health-related
online data and make them available to researchers
subject to approval of their internal review boards,
e.g., OurDataHelps5 by Qntfy or the peer-support
forum provider 7 Cups6. Unlike ‘raw’ social me-
dia data, these datasets have richer user-provided
metadata and explicit consent for research usage.
On the other hand, less data is available, the pro-
cess to obtain access might be tedious within the
short timeline of a PhD project and it might be im-

2http://ir.cs.georgetown.edu/data/
smhd/

3See Section 4 for ethical considerations on this.
4https://github.com/CLD2Owners/cld2
5https://ourdatahelps.org/
6https://7cups.com/

possible to share the used portions of the data with
other researchers. Therefore, we will follow up the
possibilities of obtaining access to these datasets,
but in parallel also collect our own datasets to
avoid dependence on external data providers.

3 Methodology and Resources

As explained in the introduction, the overarching
aim of this project is to investigate in how far
information conveyed in social media posts can
complement more traditional research methods in
clinical psychology to get insights into the recov-
ery experience of individuals with a BD diagnosis.
Therefore, we will first conduct a systematic liter-
ature review of qualitative evidence to establish a
solid base of what is already known about personal
recovery experiences in BD for the subsequent so-
cial media studies.

Our research questions, which regard the expe-
riences of different populations, lend themselves
to several subprojects. First, we will collect and
analyse English-language data from westerners.
Then, we will address ethnically diverse English-
speaking populations and finally multilingual ac-
counts. This has the advantage that we can build
data processing and methodological workflows
along an increase in complexity of the data col-
lection and analysis throughout the project.

In each project phase, we will employ a mixed-
methods approach to combine the advantages of
quantitative and qualitative methods (Tashakkori
and Teddlie, 1998; Creswell and Plano Clark,
2011), which is established in mental health re-
search (Steckler et al., 1992; Baum, 1995; Sale
et al., 2002; Lund, 2012) and specifically recom-
mended to investigate personal recovery (Leon-
hardt et al., 2017). Quantitative methods are suit-
able to study observable behaviour such as lan-
guage and yield more generalisable results by
taking into account large samples. However,
they fall short of capturing the subjective, id-
iosyncratic meaning of socially constructed real-
ity, which is important when studying individuals’
recovery experience (Russell and Browne, 2005;
Mansell et al., 2010; Morrison et al., 2016; Crowe
and Inder, 2018). Therefore, we will apply an
explanatory sequential research design (Creswell
and Plano Clark, 2011), starting with statistical
analysis of the full dataset followed by a manual
investigation of fewer examples, similar to ‘distant
reading’ (Moretti, 2013) in digital humanities.
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Since previous research mainly employed
(semi-)structured interviews and we do not expect
to necessarily find the same aspects emphasised in
unstructured settings, even less so when looking at
a more diverse and non-English speaking popula-
tion, we will not derive hypotheses from existing
recovery models for testing on the online data. In-
stead, we will start off with exploratory quantita-
tive research using comparative analysis tools such
as Wmatrix (Rayson, 2008) to uncover important
linguistic features, e.g., on keywords and key con-
cepts that occur with unexpected frequency in our
collected datasets relative to reference corpora.
The underlying assumption is that keywords and
key concepts are indicative of certain aspects of
personal recovery, such as those specified in the
CHIME model (Leamy et al., 2011), other pre-
vious research (Mansell et al., 2010; Morrison
et al., 2016; Crowe and Inder, 2018), or novel
ones. Comparing online sources with transcripts
of structured interviews or subcorpora originating
from different cultural backgrounds might uncover
aspects that were not prominently represented in
the accounts studied in prior research.

A specific challenge will be to narrow down
the data to parts relevant for personal recovery,
since there is no control over the discussed top-
ics compared to structured interviews. To inves-
tigate how individuals discuss personal recovery
online and what (potentially unrecorded) aspects
they associate with it, without a priori narrow-
ing down the search-space to specific known key-
words seems like a chicken-and-egg problem. We
propose to address this challenge by an iterative
approach similar to the one taken in a corpus lin-
guistic study of cancer metaphors (Semino et al.,
2017). Drawing on results from previous qualita-
tive research (Leamy et al., 2011; Morrison et al.,
2016), we will compile an initial dictionary of
recovery-related terms. Next, we will examine a
small portion of the dataset manually, which will
be partly randomly sampled and partly selected to
contain recovery-related terms. Based on this, we
will be able to expand the dictionary and addi-
tionally automatically annotate semantic concepts
of the identified relevant text passages using a se-
mantic tagging approach such as the UCREL Se-
mantic Analysis System (USAS) (Rayson et al.,
2004). Crucially for the multilingual aspect of
the project, USAS can tag semantic categories in
eight languages (Piao et al., 2016). Then, se-

mantic tagging will be applied to the full corpus
to retrieve all text passages mentioning relevant
concepts. Furthermore, distributional semantics
methods (Lenci, 2008; Turney and Pantel, 2010)
can be used to find terms that frequently co-occur
with words from our keyword dictionary. Occur-
rences of the identified keywords or concepts can
be quantified in the full corpus to identify the im-
portance of the related personal recovery aspects.

Linguistic Inquiry and Word
Count (LIWC) (Pennebaker et al., 2015) is a
frequently used tool in social-science text analysis
to analyse emotional and cognitive components
of texts and derive features for classification
models (Cohan et al., 2018; Sekulić et al., 2018;
Tackman et al., 2018; Wang and Jurgens, 2018).
LIWC counts target words organised in a man-
ually constructed hierarchical dictionary without
contextual disambiguation in the texts under
analysis and has been psychometrically validated
and developed for English exclusively. While
translations for several languages exist, e.g.,
Dutch (Boot et al., 2017), and it is questionable
to what extent LIWC concepts can be transferred
to other languages and cultures by mere trans-
lation. We therefore aim to apply and develop
methods that require less manual labour and are
applicable to many languages and cultures. One
option constitute unsupervised methods, such
as topic modelling, which has been applied to
explore cultural differences in mental-health
related online data already (De Choudhury et al.,
2017; Loveys et al., 2018). The Differential
Language Analysis ToolKit (DLATK) (Schwartz
et al., 2017) facilitates social-scientific language
analyses, including tools for preprocessing, such
as emoticon-aware tokenisers, filtering according
to meta data, and analysis, e.g. via robust topic
modelling methods.

Furthermore, emotion and sentiment analysis
constitute useful tools to investigate the emotions
involved in talking about recovery and identify
factors that facilitate or hinder it. There are
many annotated datasets to train supervised clas-
sifiers (Bostan and Klinger, 2018; Barnes et al.,
2017) for these actively researched NLP tasks.
Machine learning methods were found to usu-
ally outperform rule-based approaches based on
look-ups in dictionaries such as LIWC. Again,
most annotated resources are English, but state
of the art approaches based on multilingual em-
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beddings allow transferring models between lan-
guages (Barnes et al., 2018a).

4 Ethical considerations

Ethical considerations are established as essential
part in planning mental health research and most
research projects undergo approval by an ethics
committee. On the contrary, the computational
linguistics community has started only recently to
consider ethical questions (Hovy and Spruit, 2016;
Hovy et al., 2017). Likely, this is because com-
putational linguistics was traditionally concerned
with publicly available, impersonal texts such as
newspapers or texts published with some tempo-
ral distance, which left a distance between the text
and author. Conversely, recent social media re-
search often deals with highly personal informa-
tion of living individuals, who can be directly af-
fected by the outcomes (Hovy and Spruit, 2016).

Hovy and Spruit (2016) discuss issues that can
arise when constructing datasets from social me-
dia and conducting analyses or developing pre-
dictive models based on these data, which we re-
view here in relation to our project: Demographic
bias in sampling the data can lead to exclusion
of minority groups, resulting in overgeneralisation
of models based on these data. As discussed in
the introduction, personal recovery research suf-
fers from a bias towards English-speaking West-
ern individuals of white ethnicity. By studying
multilingual accounts of ethnically diverse pop-
ulations we explicitly address the demographic
bias of previous research. Topic overexposure is
tricky to address, where certain groups are per-
ceived as abnormal when research repeatedly finds
that their language is different or more difficult
to process. Unlike previous research (Copper-
smith et al., 2015; Cohan et al., 2018; Sekulić
et al., 2018) our goal is not to reveal particularities
in the language of individuals affected by men-
tal health problems. Instead, we will compare ac-
counts of individuals with BD from different set-
tings (structured interviews versus informal online
discourse) and of different backgrounds. While
the latter bears the risk to overexpose certain mi-
nority groups, we will pay special attention to this
in the dissemination of our results.

Lastly, most research, even when conducted
with the best intentions, suffers from the dual-use
problem (Jonas, 1984), in that it can be misused or
have consequences that affect people’s life nega-

tively. For this reason, we refrain from publishing
mental health classification methods, which could
be used, for example, by health insurance compa-
nies for the risk assessment of applicants based on
their social media profiles.

If and how informed consent needs to be ob-
tained for research on social media data is a de-
bated issue (Eysenbach and Till, 2001; Beninger
et al., 2014; Paul and Dredze, 2017), mainly be-
cause it is not straightforward to determine if posts
are made in a public or private context. From a
legal point of view, the privacy policies of Twit-
ter7 and Reddit8, explicitly allow analysis of the
user contents by third party, but it is unclear to
what extent users are aware of this when posting to
these platforms (Ahmed et al., 2017). However, in
practice it is often infeasible to seek retrospective
consent from hundreds or thousands of social me-
dia users. According to current ethical guidelines
for social media research (Benton et al., 2017a;
Williams et al., 2017) and practice in compara-
ble research projects (O’Dea et al., 2015; Ahmed
et al., 2017), it is regarded as acceptable to waive
explicit consent if the anonymity of the users is
preserved. Therefore, we will not ask the account
holders of Twitter and Reddit posts included in our
datasets for their consent.

Benton et al. (2017a) formulate guidelines for
ethical social media health research that pertain es-
pecially to data collection and sharing. In line with
these, we will only share anonymised and para-
phrased excerpts from the texts, as it is often possi-
ble to recover a user name via a web search for the
verbatim text of a post. However, we will make the
original texts available as datasets to subsequent
research under a data usage agreement. Since the
(automatic) annotation of demographic variables
in parts of our dataset constitutes especially sensi-
tive information on minority status in conjunction
with mental health, we will only share these an-
notations with researchers that demonstrate a gen-
uine need for them, i.e. to verify our results or to
investigate certain research questions.

Another important question is in which situa-
tions of encountering content indicative of a risk
of self-harm or harm to others it would be appro-

7https://cdn.cms-twdigitalassets.
com/content/dam/legal-twitter/
site-assets/privacy-policy-new/
Privacy-Policy-Terms-of-Service_EN.pdf

8www.redditinc.com/policies/
privacy-policy
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priate or even required by duty of care for the re-
search team to pass on information to authorities.
Surprisingly, we could only find two mentions of
this issue in social media research (O’Dea et al.,
2015; Young and Garett, 2018). Acknowledging
that suicidal ideation fluctuates (Prinstein et al.,
2008), we accord with the ethical review board’s
requirement in O’Dea et al. (2015) to only analyse
content posted at least three months ago. If the
research team, which includes clinical psycholo-
gists, still perceives users at risk we will make use
of the reporting facilities of Twitter and Reddit.

As a central component we consider the in-
volvement of individuals with lived experience in
our project, an aspect which is missing in the dis-
cussion of ethical social media health research so
far. The proposal has been presented to an advi-
sory board of individuals with a BD diagnosis and
was received positively. The advisory board will
be consulted at several stages of the project to in-
form the research design, analysis, and publica-
tion of results. We believe that board members
can help to address several of the raised ethical
problems, e.g., shaping the research questions to
avoid feeding into existing biases or overexposing
certain groups and highlighting potentially harm-
ful interpretations and uses of our results.

5 Impact and conclusion

The importance of the recovery concept in the
design of mental health services has recently
been prominently reinforced, suggesting recovery-
oriented social enterprises as key component of
the integrated service (van Os et al., 2019). We
think that a recovery approach as leading princi-
ple for national or global health service strategies,
should be informed by voices of individuals as di-
verse as those it is supposed to serve. Therefore,
we expect the proposed investigations of views on
recovery by previously under-researched ethnic,
language, and cultural groups to yield valuable in-
sights on the appropriateness of the recovery ap-
proach for a wider population. The datasets col-
lected in this project can serve as useful resources
for future research. More generally, our social-
media data-driven approach could be applied to in-
vestigate other areas of mental health if it proves
successful in leading to relevant new insights.

Finally, this project is an interdisciplinary en-
deavour, combining clinical psychology, input
from individuals with lived experience of BD, and

computational linguistics. While this comes with
the challenges of cross-disciplinary research, it has
the potential to apply and develop state-of-the-art
NLP methods in a way that is psychologically and
ethically sound as well as informed and approved
by affected people to increase our knowledge of
severe mental illnesses such as BD.
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Dawn Knight, Michal Křen, Laura Löfberg,
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Abstract
The adaptation of neural approaches to NLP
is a landmark achievement that has called into
question the utility of linguistics in the de-
velopment of computational systems. This
research proposal consequently explores this
question in the context of a neural morpho-
logical analyzer for a polysynthetic language,
St. Lawrence Island Yupik. It asks whether in-
corporating elements of Yupik linguistics into
the implementation of the analyzer can im-
prove performance, both in low-resource set-
tings and in high-resource settings, where rich
quantities of data are readily available.

1 Introduction

In the years to come, the advent of neural ap-
proaches will undoubtedly stand out as a pivotal
point in the history of computational linguistics
and natural language processing. The introduction
of neural techniques has resulted in system imple-
mentations that are performant, but highly depen-
dent on algorithms, statistics, and vast quantities
of data. Still we consider this work to belong to
computational linguistics, which raises the ques-
tion: Where does linguistics fit in?

Researchers have endeavored to answer this
question, though some years before the popular-
ization of neural approaches, demonstrating in
particular the value of linguistics to morpholog-
ical and syntactic parsing (Johnson, 2011; Ben-
der, 2013) as well as machine translation (Raskin,
1987). This question is all the more relevant now
in light of machine learning; as such, the research
proposed herein is an exploration of the value of
linguistics and how its pairing with neural tech-
niques consequently affects system performance.

2 Previous Work

As this question is too broad in scope to explore
as is, we instead apply it to a specific context, and

ask how the use of linguistics can facilitate the de-
velopment of a neural morphological analyzer for
the language St. Lawrence Island Yupik.

St. Lawrence Island Yupik, hereafter Yupik,
is an endangered, polysynthetic language of the
Bering Strait region that exhibits considerable
morphological productivity. Yupik words may
possess several derivational suffixes, such as -pig
in (1), which are responsible for deriving new
words from existing ones: mangteghapig- ‘Yupik
house’ from mangteghagh- ‘house’. Derivational
suffixes are then followed by inflectional suffixes
which mark grammatical properties such as case,
person, and number.

(1) mangteghapiput
mangteghagh- -pig- -put
house- -real- ABS.PL.1PLPOSS

‘our Yupik houses’ (Nagai, 2001, p.22)

Analyzing a Yupik word into its constituent
morphemes thus poses a challenge given the po-
tential length and morphological complexity of
that word, as well as the fact that its morphemes’
actual forms may have been altered by the lan-
guage’s morphophonology (see § 4.2), as illus-
trated in (1). Moreover, since there exist few
Yupik texts that could qualify as training data for
a neural morphological analyzer, Yupik may also
be considered a low-resource language.

Low-resource settings offer initial insights into
how linguistics impacts a morphological ana-
lyzer’s performance. While many neural systems
perform well when they are trained on a multi-
tude of data points, studies have shown that uti-
lizing linguistic concepts and incorporating lan-
guage features can enhance performance in set-
tings where training data is scarce.

With respect to the task of morphological anal-
ysis in particular, Moeller et al. (2019) demon-
strated that when data was limited to 10,000 to
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30,000 training examples, a neural morphologi-
cal analyzer for Arapaho verbs that considered
linguistically-motivated intermediate forms ulti-
mately outperformed the analyzer that did not.

3 Linguistics in Low-Resource Settings

Given the success of Moeller et al. (2019)’s study,
we replicated the morphological parsing or analy-
sis experiments for Yupik nouns, studying the ex-
tendability of the claim that incorporating linguis-
tics eases the task of morphological analysis.

3.1 Methodology
3.1.1 Morphological Analysis as Machine

Translation
Initial steps toward recreating the Arapaho exper-
iments involved recasting morphological analy-
sis as a sequence-to-sequence machine translation
task. The input sequence consists of characters
that comprise the surface form, such as whales,
which is translated into an output sequence of
characters and morphological tags that comprise
the glossed form, such as whale[PL]:

w h a l e s
↓

w h a l e [PL]

The morphological analysis of the Yupik surface
form in (2) can consequently be regarded as the
following translation:

a g h v e g h e t
↓

a g h v e g h [ABS] [PL]

Observe that the glossed form resembles the in-
terlinear morphological gloss, underlined in (2),
which offers a lexical or linguistic description of
each individual morpheme.

(2) aghveghet
aghvegh- -et
whale- -ABS.PL

‘whales’

While this methodology of training a machine
translation system to translate between surface
forms and glossed forms (the direct strategy) has
resulted in fairly successful morphological analyz-
ers (Micher, 2017; Moeller et al., 2018; Schwartz
et al., 2019), Moeller et al. (2019) found that sup-
plementing the training procedure with an inter-
mediate translation step (the intermediate strat-
egy) improved the performance of the Arapaho

verb analyzer in instances of data scarcity. This
intermediate step utilized the second line seen in
(2) that is neglected in the direct strategy, but is
regarded as significant by linguists for listing con-
stituent morphemes in their full forms. As a re-
sult, in addition to training an analyzer via the di-
rect strategy, Moeller et al. (2019) trained a second
analyzer via the intermediate strategy, that per-
formed two sequential translation tasks, from sur-
face form (SF) to intermediate form (IF), and from
intermediate form to glossed form (GF).

SF: aghveghet

↓

IF: aghvegh-et

↓

GF: aghvegh[ABS][PL]

3.1.2 Generating Training Data

The training data in our replicated study conse-
quently consisted of Yupik SF-IF-GF triplets. Like
the training sets described in Moeller et al. (2019),
the Yupik datasets were generated via the exist-
ing finite-state morphological analyzer (Chen and
Schwartz, 2018), implemented in the foma finite-
state toolkit (Hulden, 2009). Since analyzers im-
plemented in foma perform both morphological
analysis (SF→GF) and generation (GF→SF) and
permit access to intermediate forms, the glossed
forms were generated first, by pairing a Yupik
noun root with a random selection of derivational
suffixes, and a nominal case ending, as in (3) (see
§ 4.1 for a more detailed discussion).

(3) aghvegh-ghllag[ABS][PL]

Each glossed form’s intermediate and surface
forms were subsequently generated via our Yupik
finite-state analyzer (Chen and Schwartz, 2018),
resulting in triplets such as the one seen below:

SF aghveghllaget
IF aghvegh-ghllag-et
GF aghvegh-ghllag[ABS][PL]

Each triplet was split into three training sets,
consisting of the following parallel data:

1. SF → IF
2. IF → GF
3. SF → GF
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The first two sets were used to train the analyzer
via the intermediate strategy, and the last set was
used to train the analyzer that adhered to the di-
rect strategy. Lastly, whereas Moeller et al. (2019)
developed training sets consisting of 14.5K, 18K,
27K, 31.5K, and 36K examples, the Yupik train-
ing sets varied from 1K to 20K examples in incre-
ments of 5000, to more realistically represent the
low-resource setting of Yupik.

3.1.3 Training Parameters
For training, each parallel dataset was tokenized
by character and randomly partitioned into a train-
ing set, a validation set, and a test set in a 0.8 /
0.1 / 0.1 ratio. The two analyzers trained on each
of these datasets were then implemented as bidi-
rectional recurrent encoder-decoder models with
attention (Schuster and Paliwal, 1997; Bahdanau
et al., 2014) in the Marian Neural Machine Trans-
lation framework (Junczys-Dowmunt et al., 2018).
We used the default parameters of Marian, de-
scribed in Sennrich et al. (2016), where the en-
coder and decoder consisted of one hidden layer
each, and the model was trained to convergence
via early stopping and holdout cross validation.

3.2 Results
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Figure 1: Accuracy scores of the analyzers trained
on the intermediate and direct strategies, for all five
datasets

The two trained analyzers for each dataset were
evaluated on identical held-out test sets in order to
compare their performances. As illustrated in Fig-
ure 1, it was only in the lowest data setting that
the intermediate strategy outperformed the direct
strategy with respect to accuracy. In all other in-

stances, the direct strategy emerged as the better
training methodology.

We speculate that this disparity in our results
and that of Moeller et al. (2019) is due to differ-
ences in the morphophonological systems of Ara-
paho and Yupik and their effects on spelling. Ara-
paho’s morphophonology, in particular, can radi-
cally alter the spelling of morphemes in the GF
versus SF of a given word, as seen below (Moeller
et al., 2019). It is possible that the intermediate
step consequently assists the Arapaho analyzer in
bridging this orthographical gap.

SF nonoohobeen
IF noohoween
GF [VERB][TA][ANIMATE-OBJECT]

[AFFIRMATIVE][PRESENT]
[IC]noohow[1PL-EXCL-SUBJ][2SG-OBJ]

In Yupik, however, there is considerably less
variation in the spelling (see § 3.1.2). This may
mean the addition of the intermediate step in the
Yupik analyzer only creates more room for error,
and the direct strategy fares better as a result.

Though the results of our replicated study seem
to point to the expendability of linguistics for the
task of morphological analysis, calculating the
Levenshtein distances between the incorrect out-
puts of each analyzer and their gold standard out-
puts offers a novel interpretation.

For every morphological analysis flagged as in-
correct, its Levenshtein distance to the correct
analysis was calculated, and all such distances
were averaged for each analyzer (see Figure 2).
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Figure 2: Average Levenshtein distances of the analyz-
ers trained on the intermediate and direct strategies, for
all five datasets

29



(4) nunivagseghat
nunivagseghagh- -t
tundra.vegetation- -ABS.PL

‘tundra vegetation’ (Nagai, 2001, p.60)

(5) Sivuqaghhmiinguunga
Sivuqagh- -mii- -ngu- -u- -nga
St. Lawrence Island- -resident.of- -to.be. -INTR.IND- -1SG

‘I am a St. Lawrence Islander’ (Jacobson, 2001, p.42)

(6) ilughaghniighunneghtughllagyalghiit
ilughagh- -niigh- -u- -negh- -tu- -ghllag- -yalghii- -t
cousin- -tease- -do- -very.many- -do.habitually- -very- -INTR.PTCP OBL- -3PL

‘Many cousins used to teach each other a lot’ (Apassingok et al., 1993, p.47)

We found that the average Levenshtein distance
for the analyzer trained on the intermediate strat-
egy was statistically less than that of the direct
strategy analyzer (p < 0.0001), with the excep-
tion of the lowest data setting. At 15K and 20K
training examples, for instance, the average Lev-
enshtein distances differed by nearly 10 or 11 op-
erations. Furthermore, there did not appear to be a
statistically significant difference in the complex-
ity of the analyses being flagged as incorrect; the
direct strategy was just as likely as the intermedi-
ate strategy to misanalyze simple words with one
or two derivational suffixes.

The shorter Levenshtein distances suggest that
the analyzers trained on the intermediate strategy
consistently returned analyses that better resem-
bled the correct answers as compared to their di-
rect strategy counterparts. Therefore, even though
the direct strategy proved superior to the interme-
diate strategy with respect to general accuracy, the
outputs of the intermediate strategy may be more
valuable to students of Yupik who are more reliant
on the neural analyzer for an initial parse.

4 Linguistics in High-Resource Settings

The replicated study suggests that the accuracy
of the analyzer is proportional to the quantity of
training examples, especially for the direct strat-
egy, as evidenced in Figure 1. Additional experi-
ments demonstrated, however, that even using the
finite-state analyzer to generate as many as 10 mil-
lion training examples resulted in the accuracy of
the neural analyzer plateauing around 88.77% for
types and 87.19% for tokens on a blind test set
that encompassed 659 types and 796 tokens re-

spectively. This raises the question as to whether it
is possible to improve the neural analyzer to com-
petitive accuracy scores above 90% by reinforcing
the direct strategy with aspects of Yupik linguis-
tics whose effects have yet to be explored. Thus,
the remainder of this proposal introduces these lin-
guistic aspects and suggests means of integrating
them into the high-resource implementation of the
neural analyzer.

4.1 Integrating Yupik Morphology

One aspect of Yupik that may be useful is its word
structure, which typically adheres to the following
template, where ( ) denotes optionality:

Root + (Derivational Suffix(es)) + Inflectional
Suffix(es) + (Enclitic)

Most roots can be identified as common nouns
or verbs and are responsible for the most morpho-
logically complex words in the language, as they
are the only roots that can take derivational suf-
fixes. Moreover, all derivational morphology is
suffixing in nature, and Yupik words may have
anywhere from zero to seven derivational suffixes,
with seven being the maximum that has been at-
tested in Yupik literature (de Reuse, 1994). Lastly,
there are two types of inflection in Yupik: nominal
inflection and verbal inflection.

This word structure consequently results in
Yupik words of varying length as well as varying
morphological complexity (see (4), (5), and (6)),
which in turn constitutes ideal conditions for cur-
riculum learning.

Curriculum learning, with respect to machine
learning, is a training strategy that “introduces dif-
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ferent concepts at different times, exploiting previ-
ously learned concepts to ease the learning of new
abstractions” (Bengio et al., 2013). As such, “sim-
ple” examples are presented in the initial phases
of training, with each phase introducing examples
that are progressively more complex than the last,
until the system has been trained on all phases, that
is, the full curriculum.

The morphological diversity of Yupik words is
naturally suited for curriculum learning, and may
positively impact the accuracy of the neural ana-
lyzer. One proposed experiment of this paper is to
restructure the training dataset, such that the neu-
ral analyzer is trained on the simplest Yupik words
first, that is, those words consisting of an inflected
root with zero derivational suffixes. Each suc-
cessive phase introduces words with an additional
derivational suffix, until the last phase presents the
most morphologically complex words attested in
the language.

4.2 Integrating Yupik Morphophonology

A second aspect of Yupik linguistics that may be
integrated is its complex morphophonological rule
system. In particular, the suffixation of deriva-
tional and inflectional morphemes in Yupik is con-
ditioned by morphophonological rules that apply
at each morpheme boundary and obscure them,
rendering a surface form that may be unrecogniz-
able from the glossed form, as in (7):

(7) kaanneghituq
kaate- -nghite- -u- -q
arrive- -did.not- -INTR.IND- -3SG

‘he/she did not arrive’ (Jacobson, 2001, p.43)

Moreover, each morphophonological rule has
been assigned an arbitrary symbol in the Yupik
literature (Jacobson, 2001), and so, every deriva-
tional and inflectional suffix can be written with all
of the rules associated with it, as in (8). Here, @
modifies root-final -te, – deletes root-final conso-
nants, ∼f deletes root-final -e, and (g/t) designates
allomorphs that surface under distinct phonologi-
cal conditions.

(8) kaanneghituq
kaate- -@–nghite- -∼f(g/t)u- -q
arrive- -did.not- -INTR.IND- -3SG

‘he/she did not arrive’ (Jacobson, 2001, p.43)

A second proposed experiment will conse-
quently explore the potential insight provided by

including these morphophonological symbols in
the training examples, studying whether the sym-
bols facilitate learning of the surface form to
glossed form mapping or whether these additional
characters actually introduce noise. Since mini-
mal pairs do exist to differentiate the phonolog-
ical conditions under which each symbol applies
(see (9)), inclusion of the symbols may in fact as-
sist the system in learning the morphophonologi-
cal changes that are induced by certain suffixes.

(9) nuna–ghllak → nunaghllak
qulmesiite–ghllak → qulmesiiteghllak
anyagh–ghllak → angyaghllak
sikig–ghllak → sikigllak
kiiw–ghllak → kiiwhllagek

Lastly, Yupik morphophonology may also be in-
tegrated into a curriculum learning training strat-
egy, where separating the “easy-to-learn” training
examples from the “hard-to-learn” training exam-
ples can be accomplished in the following ways:

1. Quantifying the number of morphophonolog-
ical rules associated with a given morpheme,
such that the simplest training examples en-
compass all suffixes with zero symbols at-
tached, such as -ni ‘the smell of; the odor
of; the taste of ’ (Badten et al., 2008, p.658).
Subsequent phases successively increase this
quantity by one.

2. Ranking the morphophonological rules them-
selves by difficulty, such that the initial phase
introduces Yupik suffixes with the rules that
have been deemed “easiest to learn”, while
future phases gradually introduce those that
are “harder to learn” 1.

5 Presenting A Holistic Experiment

In summary, the objective of this proposed re-
search is to utilize aspects of the Yupik language to
reinforce the direct strategy in high-resource set-
tings, guiding how the training examples are struc-
tured and the nature of their content. Previous
sections share possible ways in which these lin-
guistic elements of Yupik may be taken into ac-
count, but they can in fact be integrated into a sin-
gle holistic experiment that trains multiple analyz-
ers with varying degrees of linguistic information.

1A difficulty ranking was elicited from a single student
during fieldwork conducted in March 2019, as most Yupik
students had not yet mastered the symbols and the rules they
represented.
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In particular, we propose developing several sets
of training data with the following characteristics:

1. Includes the morphophonological symbols
(§ 4.2)

2. Ranks the training examples with respect to
the number of morphemes (§ 4.1)

3. Ranks the training examples with respect to
the number of morphophonological symbols
per morpheme (§ 4.2)

4. Ranks the training examples with respect to
the learning difficulty of the symbols (§ 4.2)

Each training dataset will incorporate as many
or as few of these characteristics as desired, for
a total of 15 datasets (

(
4
4

)
+

(
4
3

)
+

(
4
2

)
+

(
4
1

)
),

and by extension, 15 neural analyzers. We expect
any training set that involves morphophonological
symbols to improve upon the existing analyzer’s
ability to distinguish between otherwise homo-
graphic suffixes, often a point of confusion. Tak-
ing morpheme count into consideration may also
improve the analyzer’s handling of words with rel-
atively few derivational suffixes (∼0-3), leaving
the bulk of errors to instead comprise the most
morphologically complex words. Furthermore, by
virtue of training on an organized dataset rather
than a randomly selected one, we predict that the
analyzer will be exposed to a much more equal
distribution of Yupik roots and suffixes. It should
then be less likely than it is now to invent roots
and suffixes that conform morphophonologically,
but do not actually exist in the attested lexicon.
Lastly, the performance of these analyzers can be
compared to the performance of a baseline system,
that is simply trained on the direct strategy with-
out any morphophonological symbols or structure
to its training data.

6 Conclusion

Moeller et al. (2019) and the replicated study for
Yupik presented herein suggest that the use of lin-
guistics can positively impact the performances of
neural morphological analyzers, at least in lower
resource settings. The proposed research, how-
ever, seeks to extend this observation to any data
setting, and explore the effects of incorporating
varying degrees of linguistic information in the
training data, in hopes of shedding light on how
best to approach to the task of morphological anal-
ysis via machine learning.
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Abstract

Consumers read online reviews for insights
which help them to make decisions. Given
the large volumes of reviews, succinct review
summaries are important for many applica-
tions. Existing research has focused on mining
for opinions from only review texts and largely
ignores the reviewers. However, reviewers
have biases and may write lenient or harsh re-
views; they may also have preferences towards
some topics over others. Therefore, not all re-
views are equal. Ignoring the biases in reviews
can generate misleading summaries. We aim
for summarization of reviews to include bal-
anced opinions from reviewers of different bi-
ases and preferences. We propose to model re-
viewer biases from their review texts and rat-
ing distributions, and learn a bias-aware opin-
ion representation. We further devise an ap-
proach for balanced opinion summarization of
reviews using our bias-aware opinion repre-
sentation.

1 Introduction

Consulting online reviews on products or services
is popular among consumers. Opinions in re-
views are scrutinised to make an informed deci-
sion on which product to buy, what service to use,
or which point-of-interest to visit. An opinion
is a view or judgment formed about something,
not necessarily based on fact or knowledge.1 In
the context of online reviews, opinions contain in-
formation about the target (“something”) and the
sentiment (“view or judgment”) that is associated
with it. There can also be more than one opinion
in a review.

Opinion mining research is dedicated to tasks
that involves opinions (Pang and Lee, 2008). Cur-
rent research in opinion mining mostly focuses

1Oxford dictionary

only on review texts. Some key tasks include sen-
timent polarity classification (Hu and Liu, 2004b)
at levels of words, sentences or documents, and
opinion target (e.g., aspect) identification and clas-
sification.

Opinion summarization from reviews is an im-
portant task related to opinion mining. Early work
on opinion summarization aims for structured rep-
resentation of aspect-sentiment pairs (Hu and Liu,
2004a), where the positive and negative sentiment
for each aspect are extracted from review texts and
aggregated. Opinion summaries in natural lan-
guage texts contain richer, detailed description of
opinions and are easier for end users to under-
stand. Existing studies mainly use the review texts
for summarization.

However, reviewers are unique individuals with
beliefs and preferences. Reviewers have prefer-
ences towards certain aspects, for example ser-
vice or cleanliness in hotel reviews (Wang et al.,
2010). Different reviewers can have different ways
of expressing their opinions (Tang et al., 2015b).
Also, some reviewers are lenient in their assess-
ment of products or services, while others are
harsher (Lauw et al., 2012). Overall, an opinion
is a reflection of the reviewer as it encompasses
their biases. Thus, not all reviews are equal.

Depending on the application, biases captured
in the reviews can be amplified. Hu et al. (2006)
suggest that reviewers write reviews when they are
extremely satisfied or when they are extremely up-
set. Existing summarization techniques often treat
all reviews equally by selecting salient opinions
which may not necessarily be representative for
different reviewers. We aim to compensate for bi-
ases in reviews, especially for review summariza-
tion. We focus on the following research ques-
tions:

1. How to model a reviewer’s bias? What in-
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formation from a reviewer should be used to
model a reviewer’s bias?

2. How to learn a representation for reviews that
captures reviewer biases as well as the opin-
ion?

3. How to generate a balanced opinion summary
of reviews written by different reviewers?

Below, we outline the relevant past studies as well
as our our research proposal to address these ques-
tions.

2 Related Work

Our research is related to two research areas sum-
marized below.

2.1 Opinion and Reviewer Modeling
We identified two studies that jointly model opin-
ions and reviewers. Wang et al. (2010) investi-
gate the problem of decomposing the overall re-
view rating into aspect ratings using a hotel do-
main dataset. The authors model opinions and re-
viewers using a generative approach. Reviewers
are modeled to reflect their individual emphasis on
various aspects. The authors demonstrate that de-
spite giving the same overall review rating, two
reviewers can value and rate aspects differently.
Meanwhile, Li et al. (2014) present a topic model
incorporating reviewer and item information for
sentiment analysis. Through probabilistic matrix
factorisation of reviewer-item matrix, the latent
factors are included in a supervised topic model
guided by sentiment labels. The proposed model
outperforms baselines in predicting the sentiment
label given the review text, reviewer and item on a
movie review dataset and a microblog dataset.

Opinion modeling Opinion can be represented
as a aspect-sentiment tuple (Hu and Liu, 2004b).
In order to obtain the components of the opinion,
aspect identification and sentiment classification
are key. Both tasks can be treated separately or
combined. For aspect identification, aspects can
be identified with the help of experts (Hu and Liu,
2004b; Zhang et al., 2012). The drawback is that it
requires input from experts and is specific to a do-
main. This triggered studies that seek to discover
aspects in an unsupervised manner using topic
models (Brody and Elhadad, 2010; Moghaddam
and Ester, 2010). However, such methods may not
always produce interpretable aspects. Subsequent

models are developed to discover interpretable as-
pects (McAuley and Leskovec, 2013; Titov and
McDonald, 2008a,b). To determine opinion polar-
ity, lexicon-based (Hu and Liu, 2004b) and clas-
sification (Dave et al., 2003) approaches are of-
ten used. However, modeling opinions based on
aspects and sentiment separately is not sufficient
as the sentiment words can depend on the aspect.
More recent models focus on incorporating con-
text to model opinions. Such approaches include
joint aspect-sentiment models (Lin and He, 2009),
word embeddings (Maas et al., 2011), and neural
network models (He et al., 2017).

Alternatively, opinions can potentially be repre-
sented as a high-dimensional vector. Opinion rep-
resentation in this form is a relatively unexplored
space. However, in the closely related area of
sentiment classification, sentences and documents
are represented as vectors to be used as inputs for
classification (Conneau et al., 2017; Tang et al.,
2015a). The idea is to model a sequence of words
as a high-dimensional vector that captures the re-
lationships of words. Similarly, opinions are se-
quences of sentences, thus it is appropriate to build
on the work in sentence and document representa-
tion. One of the earliest work is an extension of
word2vec (Mikolov et al., 2013) to learn a dis-
tributed representation of text (Le and Mikolov,
2014). More recently, pre-trained sentence en-
coders trained on a large general corpus aim to
capture task-invariant properties that can be fine-
tuned for downstream tasks (Cer et al., 2018; Con-
neau et al., 2017; Kiros et al., 2015). On another
front, progress in context-aware embeddings (Pe-
ters et al., 2018) and pre-trained language mod-
els (Devlin et al., 2018; Howard and Ruder, 2018)
provide other options to capture context that can
be used to obtain sequence representation. All
these studies focus on encoding topical semantics
of text sequences, where opinions are not explic-
itly modeled.

Reviewer modeling Various reviewer charac-
teristics that are modeled include expertise (Liu
et al., 2008), reputation (Chen et al., 2011; Shaalan
and Zhang, 2016), characteristics of language
use (Tang et al., 2015b) and preferences (Zheng
et al., 2017). Some of these modelings are
achieved using reviewer aggregated statistics and
review meta-data. Reviewer expertise is modeled
by number of reviews, where larger number of re-
views suggests higher expertise (Liu et al., 2008).
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Reviewer reputation can be modeled by the num-
ber of helpfulness votes and total votes received by
the reviewer. A higher ratio of helpfulness votes
to total votes suggests a better reputation (Shaalan
and Zhang, 2016). In another reviewer reputa-
tion model, reviewers are modeled to have domain
expertise which corresponds to the product cate-
gories that the reviewer reviewed on (Chen et al.,
2011).

Review text is also used in reviewer model-
ing. When predicting ratings from review text,
the same sentiment bearing word, for example
“good”, can mean different sentiment intensity to
different reviewers. Tang et al. (2015b) model re-
viewers’ word use by using review text and its cor-
responding review rating. The resulting reviewer-
modified word representations capture variations
in reviewers’ word use that translates to better
rating prediction. Recently, review text is used
in addition to review ratings to model users and
items together for recommendation (Zheng et al.,
2017). Using all the reviews written by the re-
viewer, the model learns a latent representation of
the reviewer. All the above approaches focus on
modeling the reviewer. However, our focus is to
model opinions, where reviewer information is to
be used as a factor during the process of modeling.

For our proposed work, we explore using review
text, review ratings and meta data to model review-
ers except for helpfulness votes. The helpfulness
mechanism is shown to be biased (Liu et al., 2007)
and it is still not well understood what we can infer
from such votes (Ocampo Diaz and Ng, 2018).

2.2 Opinion Summarization

Opinion summarization aims to capture salient
opinions within a collection of document, in our
case online reviews. Key challenges in summariz-
ing opinions from a collection of documents are
highlighted by Pang and Lee (2008): (1) How to
identify documents and parts of the document that
are of the same opinion; and (2) How to decide two
sentences or texts have the same semantic mean-
ing.

To identify documents and parts of documents
of the same opinion, one strategy is to use re-
view ratings as a means to identify similar opin-
ion. However, review ratings have drawbacks such
as rating scales differ for different review sources,
different assessment criteria among reviewers and
reviewers may not share the same opinion despite

giving the same overall rating. Review ratings can
be adjusted to correct for different assessment cri-
teria by comparing the reviewers’ rating behaviour
relative to the community rating behaviour (Lauw
et al., 2012; Wadbude et al., 2018). The review
rating only captures the overall sentiment polarity
of the review but not the individual opinions that
make up the review. As such, the authors propose
to decompose the review rating into aspect ratings
according to the review text (Wang et al., 2010).
Alternatively, the same opinions can be found by
mining aspects and sentiment polarity of each re-
view. Opinion summarization can be seen as a task
that builds on top of the opinion mining task.

In deciding if two sentences or texts have the
same semantic meaning, the crux lies in the rep-
resentation of sentences and text. Sentences with
the same meaning have good overlap in words
(Ganesan et al., 2010). More recent approaches
adopt representing sentences or texts as high-
dimensional vectors such that similar represen-
tations have similar meaning (Le and Mikolov,
2014; Tang et al., 2015a).

The presentation of the opinion summary de-
pends on two considerations, (1) the needs of the
reader; and (2) the approach to construct opin-
ion summaries. An opinion summary can be pre-
sented in different ways, catering to the differ-
ent needs of readers. The summary can be on
one product (Angelidis and Lapata, 2018; Hu and
Liu, 2004a), comparing two products (Sipos and
Joachims, 2013) or generate a summary in re-
sponse to a query (Bonzanini et al., 2013).

There are two main ways of constructing opin-
ion summaries. The extractive opinion summaries
are summaries put together by selecting sentences
or word segments (Angelidis and Lapata, 2018;
Xiong and Litman, 2014). For abstractive sum-
maries, the summary is generated from scratch
(Ganesan et al., 2010; Wang et al., 2010).

An early work in opinion summarization pro-
posed an aspect-based summary by organising all
opinions according to aspects and their sentiment
polarity (Hu and Liu, 2004a). Although there is no
textual summarization involved, it inspired future
work to focus on including aspects into the gen-
erated summary regardless whether it is extractive
or abstractive.

For extractive summarization, the objective is
to identify salient sentences, at the same time re-
ducing redundancy in the selected sentences. An-
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gelidis and Lapata (2018) score opinion segments
according to the aspect and the sentiment polar-
ity. In another work, sentences in the review are
scored according to a combination of textual fea-
tures and latent topics discovered by helpfulness
votes (Xiong and Litman, 2014). To reduce re-
dundancy in selected sentences, a greedy algo-
rithm can be applied to add one sentence at a time
to form the summary. The greedy algorithm im-
poses the criterion that the selected sentence must
be different from the sentences that are already
in the summary (Angelidis and Lapata, 2018).
As most extractive summarization techniques are
closely coupled with identifying opinions from re-
view texts, the outcome is a set of sentences that
are salient in terms of topic coverage, but they may
not necessarily be the most representative opinions
from reviewers.

On the other hand, abstractive methods first
learn to identify the salient opinions before gen-
erating a shorter text to reflect the opinion. A
graph-based method is proposed by Ganesan et al.
(2010) which models a word with its Part-of-
Speech (POS) tag as nodes and directed edges to
represent the order of words. The edge weights
increases when the sequence of words is repeated.
The summary is generated by capturing the paths
with high edge weights. In a recent study, an
encoder-decoder network is employed to generate
an abstractive summary of movie reviews (Wang
and Ling, 2016).

3 Proposed Methodology

The intuition for our research is that summariza-
tion techniques that rely on similarity between
opinions to identify salient opinions benefit from
clustering similar opinions together and separat-
ing different opinions into different clusters. By
modeling reviewers with opinions, we aim to cap-
ture biases reviewers bring into their opinions. We
next elaborate our approaches to modeling user bi-
ases, learning bias-aware opinion representations
and balanced opinion summarization.

3.1 Bias-Aware Opinion Representation

To achieve a bias-aware opinion representation,
we model opinions and reviewer biases for each
sentence in a review. We assume that one sentence
contains one opinion (Hu and Liu, 2004b). We
envision two possible approaches to learn a bias-
aware opinion representation: (1) Two-step pro-

cess by modeling opinions then adjust the opinions
according to reviewer biases; and, (2) Generative
approach using text, rating and reviewer informa-
tion.

Using a two-step process, our main objective is
to first learn a representation of the sentences to
capture the opinion and this is not a trivial task.
Ideally, we expect our opinion representation to
exhibit two key characteristics: (1) Similar opin-
ions need to be close in its representation. Us-
ing opinions for restaurant reviews as an exam-
ple, “The soup is rich and creamy” and “Delicious
food” are similar opinions but expressed differ-
ently; and, (2) Opinion models should be able to
tease apart different opinions.

In terms of representing opinions that are simi-
lar, a promising technology for us is to make use of
pre-trained sentence encoders and language mod-
els (Cer et al., 2018; Devlin et al., 2018; Peters
et al., 2018; Conneau et al., 2017). These pre-
trained models have the advantage of transferring
the learned information from large corpora. How-
ever, we hypothesize that even with the use of
pre-trained models, we are unable to capture sen-
timent polarity of opinions accurately. It will be
similar to the problem that word embeddings are
not able to capture sentiment polarity (Maas et al.,
2011). One potential direction is to adopt super-
vised learning using labeled aspect and sentiment
polarity labels to improve our opinions represen-
tation. But labeled data is expensive to acquire
and the granularity of aspect can vary with differ-
ent aspect annotation guidelines. We propose to
use review ratings as supervision signal to improve
our opinion representation as ratings can provide a
guide to sentiment polarity of opinions.

Towards learning bias-aware opinion represen-
tations, we further refine the learnt opinion vec-
tors via modeling reviewer biases from their re-
views and ratings. Reviewer biases can influence
their star rating and textual expressions. The key
to model reviewer biases is learning a distribution
of latent factors and sentiment polarity from the
reviews and their rating distributions for the re-
viewer. The refinement will be a user matrix that
learn weights corresponding to the opinion repre-
sentation. This can also be seen as the matrix that
represents the biases of reviewers. We plan to ex-
plore different ways to learn this matrix. One op-
tion to model reviewers’ biases is to learn repre-
sentations from their past reviews such as using
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techniques in recommender systems literature to
model reviewers using review text (Zheng et al.,
2017). Alternatively, other associated review in-
formation such as review ratings and even meta-
data of reviews can possibly guide the modeling
of biases. We can also explore textual features of
review such as the position of opinions may also
provide clues to model reviewers.

For our second possible approach, we adopt a
generative approach to model opinions as topics
using reviewer information as latent factors (Li
et al., 2014; Wang et al., 2010). However, the topic
model approach is restricted to using words as to-
kens. The neural topic model (Cao et al., 2015) is
a potential technique to utilise word embeddings
to improve the learning of topics in the collection
of reviews.

3.2 Balanced Opinion Summarization

Summaries generated by the existing summariza-
tion techniques are accurate to the collection of
reviews it summarizes. They are not a reflection
of the true opinion towards the product. In view
that opinions capture reviewer biases, we propose
a novel way of summarizing opinions.

Instead of the usual summary that is presented
as a paragraph of selected sentences, we are in-
spired by the work of Paul et al. (2010) and Wang
et al. (2010), where opposing opinions are con-
trasted. We propose a balanced opinion summary,
where we summarize and contrast the opinions
of reviewers having different biases. For exam-
ple, we contrast opinions of a reviewers who are
lenient against reviewers who are critical. This
allows us to present a balanced summary to the
reader. The biases can be latent factors that will
be discovered during the modeling process.

We propose to achieve a balanced summary
that selects salient opinions from reviewers with
different biases. We hypothesize that the bias-
aware opinion representation will form clusters
of similar opinions from reviewers with similar
biases. Building on a graph-based approach to
summarization like LexRank (Erkan and Radev,
2004) and Yin and Pei (2015), opinions can be
represented as nodes and edges as the similarity
between bias-aware opinion representation. The
density of the graph can be adjusted by the similar-
ity threshold imposed on the graph. The saliency
of the opinions can then be obtained by apply-
ing PageRank on the graph. In doing so, we

also model the similar opinions that signals agree-
ment or consensus among reviewers. After rank-
ing opinions based on its salience, we can utilise
a diversity objective through a greedy approach
or Maximal Marginal Relevance (MMR) to select
salient opinions that are different.

4 Evaluation

Datasets Suitable datasets in the restaurant do-
main for our research questions are: (1) NY city
search (Ganu et al., 2013); (2) SemEval 2016
ABSA Restaurant Reviews in English (Pontiki
et al., 2016); and, (3) Yelp dataset challenge2. All
datasets contain user ID, product ID, review text
and review rating, which will allow us to model
opinions. In addition, datasets (1) and (2) are
labeled with aspect and sentiment polarity. Al-
though we choose to work in the restaurant do-
main for our proposed work, our models are not
domain-specific. Other potential review datasets
are on product and hotel reviews (McAuley et al.,
2015; Wang et al., 2010).

We approach evaluation in a two part process.
First, we evaluate our proposed model on how
well it learns a representation of opinion sentence.
Next, we compare summaries generated with our
bias-aware opinion representation with selected
baseline models.

4.1 Bias-Aware Opinion Representation

Our objective is to learn a bias-aware opinion rep-
resentation such that similar opinions from re-
viewers with similar bias should cluster together
and different opinions form different clusters.
We apply the evaluation method used to evalu-
ate vector representation of text sequences by Le
and Mikolov (2014). We believe this evaluation
method is applicable for our representation. We
begin with a dataset of labeled opinions. From the
labeled dataset, a triplet of opinions is created with
the first and second opinions of the triplet to be of
the same opinion, and first and third opinions to be
of different opinions. We compute the similarity
of opinion between a pairs of the triplet of repre-
sentation. We expect the first and second opinion
to produce a higher similarity as compared to the
similarity of the first and third opinion. Of all the
triplets we create, we will report the error rate. Er-
ror rate here refers to the number of triplets that

2https://www.yelp.com/dataset/challenge
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first and third opinion is more similar than first and
second opinion over the total number of triplets.

Our second evaluation will be a cluster analy-
sis of opinion representations. We expect homo-
geneous clusters of similar opinions from review-
ers with similar bias and different clusters for dif-
ferent opinions with reviewer biases. A potential
approach will be to perform a k-means clustering
where the number of clusters k can be determined
by an elbow plot. The quality of clusters can be
evaluated using the Silhouette Score.

In order to evaluate the bias-aware opinion rep-
resentation, we look to answer a related question.
Suppose each opinion captures the opinion tar-
get, the polarity and reviewer bias. Each opinion
within the review contributes to the overall rating.
The task is to predict the overall rating based on re-
view text. The model will be trained on a training
set of review text, reviewer information and rat-
ing. If the model accurately captures the opinion
and reviewer bias in the representation, the repre-
sentative should improve the ability to predict the
overall rating of the review given the review text
and reviewer information.

4.2 Summarization

Evaluating summaries is a challenging problem.
There are two options to evaluate summaries.
First, an automatic evaluation method using met-
rics such as ROUGE and BLEU. However, such
method requires a gold standard summary. Ob-
taining a gold standard summary for our purpose is
a challenging task. The second method of evalua-
tion is a user-study type evaluation. Users are pre-
sented with generated summaries and are asked to
judge the summary according to given criteria or
to compare between different summaries. Some
baseline models to compare against are Lexrank
(Erkan and Radev, 2004) to represent word level
models and DivSelect+CNNLM to represent vec-
tor representation models (Yin and Pei, 2015). We
intend to evaluate our summaries using a user-
study.

5 Summary

Not all reviews are equal as reviews capture biases
of their reviewers. These biases can be amplified
when we analyse a collection of reviews that is
not representative of the consumers of the prod-
uct. As such, analysis on the collection of reviews
is not representative and can potentially impact

readers who depend on the analysis for decision-
making. To address this problem, we propose to
model opinion with its reviewer using review text
and review rating to obtain a bias-aware opinion
representation. We plan to demonstrate the util-
ity of the representation in opinion summarization.
Specifically, the representation will be useful in
the scoring the sentences for saliency and selection
of sentences for generating a balanced summary.
Although we focus on modeling opinions for opin-
ion summarization, we believe the same modeling
concepts can also be applied to recommendation.
We leave evaluation of bias-aware opinion repre-
sentation on recommendations to future work.
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2016. SemEval-2016 Task 5: Aspect Based Sen-
timent Analysis. In Proceedings of the Interna-
tional Workshop on Semantic Evaluation, pages 19–
30, San Diego, CA.

Yassien Shaalan and Xiuzhen Zhang. 2016. A time and
opinion quality-weighted model for aggregating on-
line reviews. In Australasian Database Conference,
pages 269–282. Springer.

Ruben Sipos and Thorsten Joachims. 2013. Generating
Comparative Summaries from Reviews. In Proceed-
ings of the ACM International Conference on In-
formation & Knowledge Management, pages 1853–
1856, San Francisco, CA.

Duyu Tang, Bing Qin, and Ting Liu. 2015a. Docu-
ment Modeling with Gated Recurrent Neural Net-
work for Sentiment Classification. In Proceedings
of the Conference on Empirical Methods in Natu-
ral Language Processing, pages 1422–1432, Lisbon,
Portugal.

Duyu Tang, Bing Qin, Ting Liu, and Yuekui Yang.
2015b. User Modeling with Neural Network for Re-
view Rating Prediction. In Proceedings of the Inter-
national Conference on Artificial Intelligence, pages
1340–1346, Buenos Aires, Argentina.

Ivan Titov and Ryan McDonald. 2008a. A Joint Model
of Text and Aspect Ratings for Sentiment Sum-
marization. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies, pages 308–
316, Columbus, OH.

Ivan Titov and Ryan McDonald. 2008b. Modeling
Online Reviews with Multi-grain Topic Models.
In Proceedings of the International Conference on
World Wide Web, pages 111–120, Beijing, China.

Rahul Wadbude, Vivek Gupta, Dheeraj Mekala, and
Harish Karnick. 2018. User Bias Removal in Re-
view Score Prediction. In Proceedings of the ACM
India Joint International Conference on Data Sci-
ence and Management of Data, pages 175–179,
Goa, India.

Hongning Wang, Yue Lu, and Chengxiang Zhai. 2010.
Latent Aspect Rating Analysis on Review Text Data:
A Rating Regression Approach. In Proceedings
of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 783–
792, Washington, DC.

Lu Wang and Wang Ling. 2016. Neural Network-
Based Abstract Generation for Opinions and Ar-
guments. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 47–57, San Diego, CA.

Wenting Xiong and Diane Litman. 2014. Empirical
Analysis of Exploiting Review Helpfulness for Ex-
tractive Summarization of Online Reviews. In Pro-
ceedings of the International Conference on Compu-
tational Linguistics: Technical Papers, pages 1985–
1995, Dublin, Ireland.

Wenpeng Yin and Yulong Pei. 2015. Optimizing Sen-
tence Modeling and Selection for Document Sum-
marization. In Proceedings of International Con-
ference on Artificial Intelligence, pages 1383–1389,
Buenos Aires, Argentina.

41



Kunpeng Zhang, Yu Cheng, Wei-keng Liao, and Alok
Choudhary. 2012. Mining Millions of Reviews: A
Technique to Rank Products Based on Importance of
Reviews. In Proceedings of the International Con-
ference on Electronic Commerce, pages 12:1–12:8,
Liverpool, United Kingdom.

Lei Zheng, Vahid Noroozi, and Philip S. Yu. 2017.
Joint Deep Modeling of Users and Items Using Re-
views for Recommendation. In Proceedings of the
ACM International Conference on Web Search and
Data Mining, pages 425–434, Cambridge, United
Kingdom.

42



Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 43–47
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics 

 

Abstract 

Using rooted, directed and labeled graphs, 

Abstract Meaning Representation (AMR) 

abstracts away from syntactic features such 

as word order and does not annotate every 

constituent in a sentence. AMR has been 

specified for English and was not supposed 

to be an Interlingua. However, several 

studies strived to overcome divergences in 

the annotations between English AMRs 

and those of their target languages by 

refining the annotation specification. 

Following this line of research, we have 

started to build the first Turkish AMR 

corpus by hand-annotating 100 sentences 

of the Turkish translation of the novel “The 

Little Prince” and comparing the results 

with the English AMRs available for the 

same corpus. The next step is to prepare the 

Turkish AMR annotation specification for 

training future annotators.  

1 Introduction 

For a long time, semantic annotation of natural 

language sentences was split into subtasks, i.e. 

there were independent semantic annotations for 

named entity recognition, semantic relations, 

temporal entities, etc. The ultimate goal of 

Abstract Meaning Representation (AMR) is to 

build a SemBank of English sentences paired with 

their whole-sentence logical meaning. To do this, 

one of the primary rules in AMR annotating 

sentences is to disregard many syntactic 

characteristics to unify the semantic annotations 

into a simple, readable SemBank (Banarescu et 

al., 2013). 

According to the Abstract Meaning 

Representation specification, AMR is not an 

Interlingua. The assertion has attracted 

researchers’ attention to sample AMR formalism 

on different languages. Several researches have 

been done to examine the compatibility of AMR 

framework with other languages such as Chinese 

and Czech (Xue et al., 2014; Hajic et al., 2014; Li 

et al., 2016). Other studies proposed methods to 

generate AMR annotations for languages with no 

gold standard dataset by implementing cross 

lingual and other rule based methods (Damonte 

and Cohen, 2017; Vanderwende et al., 2015).  

In this work, we have manually annotated 

100 sentences from the Turkish translation of the 

novel “The Little Prince” with AMRs to describe 

the differences between these annotations and 

their English counterparts. The next step is to 

prepare the Turkish AMR guideline based on the 

differences extracted in the previous phase for 

training future annotators who wish to construct 

the first Turkish AMR bank by hand-annotating 

1562 sentences of “The Little Prince” for which 

the English AMR bank is available.  

2 Abstract Meaning Representation 

Abstract Meaning Representation is defined as a 

simple readable semantic representation of 

sentences with rooted, directional labeled graphs 

(Flanigan et al., 2014). The main goal was set to 

build a SemBank resembling the proposition bank 

which is independent and disregards syntactic 

idiosyncrasies. 

The building blocks of AMR graphs are 

concepts represented in nodes and relations that 

hold among these concepts as the edges of the 

graph. Thus, instead of using syntactic features, 

AMR focuses on the relationships among 

concepts, some of which are extracted from 

PropBank and other words. Example 1 shows the 

English AMR for the sentence “I have had to 

grow old.” The root of the graph is a reference to 

the sense obligate-01 and is extracted from 

Towards Turkish Abstract Meaning Representation 
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Example 1: The AMR annotation graph for the 

sentence “ I have had to grow old.” 

 

PropbBank frames as the sentence contains the 

syntactic modal had to.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AMR does not annotate every single 

word in the sentence since its goal is to represent 

the analysis of a sentence in predicative and 

conceptual levels. Furthermore, AMR does not 

represent inflectional morphology for syntactic 

categories like tense which results in the same 

meaning representation of similar sentences with 

different wordings or word order. For example, 

the two sentences “The boss has decided to fire 

the employee.” and “This is the boss decision to 

fire the employee.” have same AMR annotations. 

3 AMR Resources  

Inspired by the UNL project1, a freely 

downloadable annotated corpus of the novel “The 

Little Prince” containing 1562 sentences has been 

released by the project initiators2. The purpose was 

to release a corpus so that other researchers could 

compare their annotated sentences based on the 

same text. There is another annotated corpus, Bio 

AMR, freely available on the same website which 

contains cancer-related articles including about 

1000 sentences. Moreover, Abstract Meaning 

Representation release 2.0 which contains more 

than 39,260 annotated sentences was developed by 

the Linguistic Data Consortium (LDC), 

SDL/language Weaver, Inc., The University of 

                                                           
1 http://www.unlweb.net/unlweb/ 
2 https://amr.isi.edu/download.html 

Colorado, and the University of Southern 

California and is distributed via the LDC catalog.  

4 AMR Parsing 

The ultimate goal of semantic formalisms such as 

Abstract Meaning Representation in natural 

language processing is to automatically map 

natural language strings to their meaning 

representations. In an AMR parsing system, we 

work on graphs which have their own 

characteristics specified by AMR formalism. 

These properties like reentrancy in which a single 

concept participates in multiple relations or the 

possibility to represent a sentence with different 

word orders by a single AMR make the parsing 

phase challenging. On the bright side, similar to 

dependency trees, AMR has a graph structure in 

which nodes contain concepts and edges represent 

linguistic relationships. 

Several AMR parsing algorithms have 

been proposed so far (Wang et al., 2015; 

Vanderwende et al., 2015; Welch et al., 2018; 

Damonte et al., 2016; Damonte and Cohen, 2016) 

among which JAMR is the first open-source 

automatic parser published by the project 

initiators3. It works based on a two-stage 

algorithm in which concepts and then relations are 

identified using statistical methods. On the other 

hand, the transition-based method which 

transforms the dependency tree to an AMR graph 

seems promising because of its use of available 

dependency trees for different languages (Wang 

et al., 2015).  

Sometimes, in natural language 

processing, due to limited resources or lack of 

NLP tools, researchers seek to discover methods 

to get the most out of it. Cross-lingual Abstract 

Meaning Representation parsing (Damonte and 

Cohen, 2017) for which we do not require a 

standard gold data seems to overcome the 

structural differences between English and a 

target language in AMR annotation process using 

“annotation projection” method. The parser 

works based on annotation projection from 

English to a target language and has been trained 

for Italian, German, Chinese, and Spanish.  

3 https://github.com/jflanigan/JAMR 
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Figure 1: Textual forms of AMR annotations for the 

sentence “I would talk to him about bridge, and golf, and 

politics, and neckties.” and its Turkish translation 

(“Onlarla/them-with briç/bridge, golf/golf, politika/politics 

ve/and boyun bağları/neckties hakkında/about konuştum/I 

talked.”) 

Building a semantically hand-annotated 

corpus like an AMR bank is an arduous time-

consuming task. However, annotating a small 

amount of data manually results in achieving an 

understanding of the formalism, in the first place, 

and facilitating the evaluation of AMR parsers. 

The annotated AMR corpus of this study can be 

utilized in evaluating future Turkish AMR 

parsers. 

5 Turkish AMR 

As AMR is not an interlingua, several studies 

have examined the differences between AMR 

annotations of sentences in languages like 

Chinese and Czech with English AMR 

annotations (Xue et al., 2014; Hajic et al., 2014; 

Li et al., 2016) so far and some have introduced 

cross-lingual and rule based methods to generate 

AMR graphs for languages other than English 

(Damonte and Cohen, 2015; Vanderwende et al., 

2015). However, none of them had ever tackled 

an agglutinative language in which there is a 

possibility to derive and inflect words by 

cascading suffixes indefinitely. 

One of the main challenges in developing 

language models for morphologically rich 

languages with productive derivational 

morphology like Hungarian, Finnish, and modern 

Turkish is the number of word forms that can be 

derived from a root. According to Turkish 

Language Association (TDK)4, 759 root verbs 

exist in Turkish. Moreover, 2380 verbs are 

derived from nouns and 2944 verbs from verbs. 

Thus, there is almost no limit on suffixes a verb 

can take which results in tens of possible word 

formations. 

Another challenge in Turkish processing 

is its free word order that allows sentence 

constituents to move freely at different phrase 

levels. One should note that as the word order 

changes, some pragmatic characteristics such as 

focus and topics change as well. This property of 

Turkish might lead to several challenges such as 

the need for collecting as much data as possible to 

cover all possible word orders. 

For the first step, we have started hand-

annotating the Turkish translation of “The Little 

Prince” aligning to its English AMR annotation 

                                                           
4 www.tdk.gov.tr  

to find out divergences and at the same time 

developing the very first Turkish AMR 

specification based on both English AMR 

guideline and differences between the two 

languages. The sentences were annotated by a 

non-Turkish linguist who aligned the English 

sentences with their literary translation in Turkish 

and created the AMR graphs using the Online 

AMR Editor5. Final annotations were proofread 

by a Turkish speaker.  

We annotated 100 sentences and came up 

with following observations. First, a small 

number of sentences have exactly the same AMR 

structure as their English translation. An example 

is shown in figure 1. As it is illustrated in the 

textual form of the annotation, which is in the 

form of PENMAN notation (Matthiessen and 

Bateman, 1991), concepts and relations are 

aligned, although objects of the two sentences are 

different. 

(t / talk-01 

  :ARG0 (i / i) 

  :ARG1 (a / and 

          :op1 (b / bridge) 

          :op2 (g / golf) 

          :op3 (p / politics) 

          :op4 (n2 / necktie)) 

  :ARG2 (h / he)) 

 

 

 

(k / konuşmak 

      :ARG0 (b / ben) 

      :ARG1 (v / ve 

            :op1 (b2 / briç) 

            :op2 (g / golf) 

            :op3 (p / politika) 

            :op4 (b3 / boyun-bağı)) 

      :ARG2 (o / onlar)) 

 

 

 

 

 

 

 

Second, most of the AMR annotations’ 

divergences were due to different word choices in 

5 https://www.isi.edu/cgi-bin/div3/mt/amr-editor/login-gen-

v1.7.cgi 
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Figure 3: The AMR annotation graph for the sentence “I 

pondered deeply” which is translated as (“uzun 

uzun/long long düşündüm/ thought-I.”) 

translating the text. Third, Turkish seems to be 

more expressive as suffixes add nuances to the 

words such as possession markers and 

intensifiers. Figure 2 shows AMR annotations for 

two sentences from the parallel corpus where 

ARG0 of live-01 in English has been changed to 

a non-core role, :poss, which shows possession in 

Turkish. Although there was the possibility to 

ignore the possession marker and list the 

arguments of the predicate, yaşamak (to live), like 

its English counterpart, we chose to leave it as it 

is to highlight the differences between English 

and Turkish as an agglutinative language in AMR 

annotation.  

Another important characteristic of 

Turkish is that unlike English, there are many 

light verbs and multiword expressions. In English 

AMR, we simply remove light verb constructions 

and use onto-notes predicate frames to deal with 

verb-particle combinations. However, due to the 

highly productive nature of Turkish and its 

idiosyncratic features, we need to be more 

cautious dealing with multiword expressions and 

light verb constructions. Figure 3 shows the 

inclination of Turkish toward productivity by 

duplicating the adjective, uzun (long), to be used 

as an adverb.   

In our future study, we will also 

investigate how morphosemantic features like 

case markers might help specifying relations 

between concepts in Turkish and whether adding 

these properties to the AMR annotation structure 

may help achieving more accurate results. 

(s / small 

  :degree (v / very) 

  :domain (e / everything) 

  :location (l2 / live-01 

              :ARG0 (i / i))) 

 

(k / küçük 

      :degree (x / çok) 

      :domain (x2 / şey 

            :mod (h / her)) 

      :location (y / yaşamak 

            :poss (b / ben))) 

Figure 2: Textual forms of AMR annotations for the 

sentence “Where I live, everything is very small.” and 

its Turkish translation (“Benim/my yaşadığım/where 

live-I yerde/place-in her/every şey/thing çok/very 

küçük/small.”) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 Future Work 

We have started the Turkish AMR project by 

annotating the first 100 hundred sentences of our 

parallel corpus, “The Little Prince”, and 

analyzing the divergences between our 

annotations and English AMR annotations. 

Currently, we are developing an AMR annotation 

guideline to construct the first Turkish Abstract 

Meaning Representation standard gold data. 

Finally, based on Turkish language peculiarities, 

we are going to create a transition-based parser to 

generate Turkish AMRs, which will be the first 

AMR parser for an agglutinative language. 
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Abstract

Written language often contains gender stereo-
types, typically conveyed unintentionally by
the author. Existing methods used to evaluate
gender stereotypes in a text compute the dif-
ference in the co-occurrence of gender-neutral
words with female and male words. To study
the difference in how female and male au-
thors portray people of different genders, we
quantitatively evaluate and analyze the gen-
der stereotypes in their writings on two dif-
ferent datasets and from multiple aspects, in-
cluding the overall gender stereotype score,
the occupation-gender stereotype score, the
emotion-gender stereotype score, and the ra-
tio of male words used to female words. We
show that writings by females on average have
lower gender stereotype scores. We also find
that emotion words in writings by males have
much lower stereotype scores than the aver-
age score of all words, while in writings by
females the scores are similar. We study and
interpret the distributions of gender stereotype
scores of individual words, and how they differ
between male and female writings.

1 Introduction

Gender stereotypes in language have been receiv-
ing more and more attention from researchers
across different fields. In the past, these studies
have been carried out mainly by conducting sur-
veys with humans (Williams and Best, 1977), re-
quiring a large amount of human labor. Garg et al.
(2018) quantified gender stereotypes by analyzing
word embeddings trained on US Census over the
past 100 years. Word embeddings capture gen-
der stereotypes in the training data and transfer
them to downstream applications (Bolukbasi et al.,
2016). For example, if programmer appears more
frequently with he than she in the training corpus,
in the word embedding it will have a closer dis-
tance to he compared with she.

In this study, we analyze gender stereotypes
directly from writings under different metrics.
Specifically, we compare the writings by males
and females to see how gender stereotypes differ
between writings by the gender of authors. Our
results show that writings by female authors con-
tain much fewer gender stereotypes than writings
by male authors. We recognize that there are more
than two types of gender, but for the sake of sim-
plicity, in this study we consider just female and
male.

To the best of our knowledge, this study is the
first quantitative analysis of how gender stereo-
types differ between writings by authors of differ-
ent genders. Our contributions are as follows: 1)
we show that writings by females contain fewer
gender stereotypes; 2) we find that over the past
few decades, gender stereotypes in writings by
males have decreased.

2 Related Work

Quantifying Gender Stereotypes It has been
noticed that stereotypes might be implicitly intro-
duced to image corpora and text corpora in proce-
dures such as data collection (Misra et al., 2016;
Gordon and Durme, 2013). Particularly in gen-
der stereotypes, Garg et al. (2018) bridged social
science with machine learning when they quanti-
fied gender and ethnic stereotypes in word embed-
dings. Park et al. (2018) measured gender stereo-
types on various abusive language models, while
analyzing the effect of different pre-trained word
embeddings and model architectures. Zhao et al.
(2018) showed the effectiveness of measuring and
correcting gender stereotypes in co-reference res-
olution tasks.

Categorizing Text by Author Gender Shimoni
et al. (2002) proposed techniques to categorize
text by author gender. They selected multiple fea-
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tures, for example, determiners and prepositions,
and calculated their frequency means and standard
errors in texts. They showed that the distributions
of some of these features differ between writings
by female and male. Mukherjee and Liu (2010)
used POS sequence patterns to capture stylistic
regularities in male and female writings. To re-
duce the number of features, they also proposed a
selection method. They showed that author gen-
der can be revealed by multiple features of their
writings. Cheng et al. (2011) based on psycho-
linguistics and gender-preferential cues to build a
feature space and trained machine learning models
to identify author gender. They pointed out that
function words, word-based features and struc-
tural features can act as gender discriminators. All
these three studies achieved accuracy above 80%
for identifying author gender.

3 Methodology

3.1 Dataset
In the first experiment, we use a dataset by Lahiri
(2013), which consists of 3,036 English books
written by 142 authors. Among these, 189 books
were written by 14 female authors, others were
produced by male authors.

In the second experiment, we use a dataset by
Schler et al. (2006), which consists of 681,288
posts from 19,320 bloggers; approximately 35
posts and 7250 words from each blogger. The
blogs are divided into 40 categories, for example,
agriculture, arts and science, etc. Female bloggers
and male bloggers are of equal number.

3.2 Evaluation Methods
Overall Gender Stereotypes We define the
gender stereotype score of a word as:

b(w) =

∣∣∣∣log
c(w,m)

c(w, f)

∣∣∣∣ ,

where f is a set of female words, for example, she,
girl, and woman. m is a set of male words, for ex-
ample, he, actor, and father. c(w, g) is the number
of times a gender-neutral word w co-occurs with
gendered words. The gendered word lists are by
Zhao et al. (2018).We use a window size of 10
when calculating co-occurrence.

A word is used in a neutral way if the stereo-
type score is 0, which means it occurs equally fre-
quently with male words and females word in the
text. The overall stereotype score of a text, Tb,

is the sum of stereotype scores of all the gender-
neutral by definition words that have more than 10
co-occurrences with gendered words in the text,
divided by the total count of words calculated, N .

Tb =
1

N

∑

w∈N
b(w)

Ratio of Male Words to Female Words To
compare the frequency of male words with that of
female words in a text, we calculate the ratio of
male word count to female word count and denote
it by R.

Occupation-Gender Stereotypes Occupation
stereotypes are the most common stereotypes in
studies on gender stereotypes (Lu et al., 2018).
A few decades ago, females normally worked as
dairy maids, housemaids and nurses, etc, while
males worked as doctors, smiths, and butchers,
etc. Nowadays both genders have more choices
when looking for a job and for most occupations,
there isnt a restriction on gender. Therefore, it is
interesting to study how occupation stereotypes
change over the years in female and male writings.

Occupation stereotypes score, Ob, in a text is the
average stereotype score of a list of 200 gender-
neutral occupations, O, in the text.

Ob =
1

|O|
∑

w∈O
b(w)

Emotion-Gender Stereotypes Emotion stereo-
types are another kind of common gender stereo-
types. In writings, especially novels, different
genders are associated closely with different emo-
tions, resulting in emotion stereotypes.

Emotion stereotypes score, Eb, in a text is the
average stereotype score of a list of 200 emotion
words, E, in the text.

Eb =
1

|E|
∑

w∈E
b(w)

Distribution of Stereotype Scores We compare
the distributions of stereotype scores to analyze
differences in writings by females and writings by
males. We consider the following aspects of dis-
tributions: mean, variance, skewness, and kurto-
sis. We use Sv, Ss, and Sk to denote the average
of variance, skewness, and kurtosis respectively of
the distributions of stereotype scores. We plan to
also add directions to individual scores by remov-
ing the absolute value function when calculating
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Gutenberg Novels Blogs
Tb R Ob Eb Sv Ss Sk Tb R Ob Eb Sv SS Sk

f 0.54 1.14 0.70 0.62 0.25 1.58 3.48 0.56 1.46 0.72 0.56 0.21 1.74 4.81
m 1.41 3.40 1.62 1.04 0.43 0.60 0.92 0.74 2.79 0.82 0.52 0.29 1.26 2.35

Table 1: Statistics of gender stereotypes in female and male writings

Figure 1: Distribution of stereotype scores in novels written by female(left) and male(right) authors

the scores, and analyze the distribution. We use
the absolute function for most of the experiments
because positive and negative values will cancel
off each other when they are summed up.

Words Most Biased We alter the equation used
for evaluating individual stereotype scores by re-
moving the absolute value function, so that words
occurring more with female words have negative
values and words occurring more with male words
have positive values. By sorting individual stereo-
type scores, we collect lists of words most biased
towards the female gender or the male gender.

4 Results

4.1 Gender Stereotypes in Novels

We categorize 3036 books written in English and
analyze the overall gender stereotypes in writings
by each author. When sorted by overall stereo-
type scores from low to high, 12 female authors
out of 14 are ranked among the top 20, or in an-
other word, top 13.8%.

The average ratio of the total number of male
words to female words in novels by female authors
is close to 1, indicating that female authors men-
tion the two genders in their novels almost equally
frequently. Male authors, on the other hand, tend
to write three times more frequently about their
own gender.

Figure 1 shows the distribution of stereotype
scores in example novels written by female and
male authors. Inspection shows that the individual
scores of female writings tend to cluster around
score value 0 or other small values close to 0, and
the percentage of words among all words calcu-
lated constantly decreases when stereotype score
increases, while the individual scores of male writ-
ings tend to cluster around score values between
0.5 and 1.5, and the percentage of words among
all words calculated first increases and then de-
creases.

Statistical analysis on the distributions confirms
our observation. Table 1 shows that the average
variance of stereotype scores in male writings is
much larger than that of female writings, indicat-
ing that stereotype scores in female writings tend
to gather near the mean while those in male writ-
ings spread out more broadly. The distribution
of stereotype scores in female writings has both
larger average skewness and larger kurtosis, in ac-
cordance with our observation that the distribution
is skewed right with a sharp peak at a small stereo-
type score. In contrast, the distribution of stereo-
type scores in male writings has much smaller av-
erage skewness and kurtosis, in accordance with
our observation that the distribution has tails on
both left and right sides and has a less distinct
peak.
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Figure 2: Distribution of stereotype scores in blogs written by female(left) and male(right) authors

Category Author Bias Direction Top 20 Words in the Most Biased Wordlist

novel male male
judge, us, speech, friends, much, ask, created, made, never, life,
framed, yet, knows, also, like, declared, each, great, believe, political

novel male female
necessarily, married, constitution, struck, need, short, votes, before, want,
consent, taught, due, but, portion, course, alone, bread, engage, equal, five

novel female male
pocket, russian, hands, few, probably, said, round, that, admitted, out,
way, caught, read, sure, stared, coming, gravely, began, followed, face

novel female female
suppose, bed, set, new, suddenly, door, right, morning, meant, remembered,
given, well, up, lay, possible, realized, smiled, kind, lips, eyes

blog male male
sure, over, three, saw, got, if, now, did, things, as,
two, before, really, this, gets, our, back, being, left, feels

blog male female
bring, and, issue, friends, so, said, what, wet, take, telling,
wanted, call, going, much, me, always, something, same, little, met

blog female male
mail, does, stories, report, lucky, online, beat, imagine, surprised, reply,
tonight, reporting, cut, blue, radio, reports, jeans, story, thank, forget

blog female female
talk, body, baby, age, death, won, pain, weight, together, later,
beautiful, ears, walk, head, large, sees, sexy, dress, passed, family

Table 2: A sample of most biased words in female and male writings from experiments on novels and blogs

4.2 Gender Stereotypes in Blogs
After analyzing blogs on 40 categories written by
equal numbers of male and female bloggers, we
find out that for 35 categories, writings by males
contains more gender stereotypes by 41.39% on
average. Only in 5 categories including account-
ing, agriculture, biotech, construction and mil-
itary, writings by female contains more gender
stereotypes than male writings by 16.29% on av-
erage.

The average ratio of the total number of male
words to female words in blogs by female authors
is around 1.5, while in blogs by male authors, the
ratio is around 2.8. Similar to the findings in the
first experiment, male authors write more about
the male gender.

Figure 2 shows a similar pattern in blogs with
the pattern in novels. Individual stereotype scores

also cluster closer around 0 or a relatively small
value in female writings, while those of male writ-
ings cluster around a larger value. This pattern,
however, is weaker than that found in experiments
on novels. Both Figure 2 and statistics in Table
1 show that difference in blogs written by female
and male authors in terms of gender stereotypes
is smaller than the difference in novels. It is also
worth mentioning that while Tb of blogs written
by females is almost the same as that of novels
written by females, Tb of blogs written by males is
much lower than that of novels written by males.
The trend in the ratio of male word count to fe-
male word count is similar. One possible interpre-
tation of this is that while the blogs were written in
2004, the novels in the Gutenberg subsample were
written decades ago, when the society had more
constraints on female and gender equality was not
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paid as much attention to as it is today.

4.3 Gender Stereotypes Categories

For both two datasets, Ob is larger than Tb, indi-
cating that occupation words in both female and
male writings contain more gender stereotypes
than most other words. Eb is almost the same as
Tb in female writings, while it is much lower than
Tb in male writings, indicating that gender stereo-
types in emotion words are not the main contribu-
tors to the overall gender stereotypes in male writ-
ings.

5 Conclusion and Discussion

In this study, we perform experiments on two
datasets to analyze how gender stereotypes dif-
fer between male and female writings. From our
preliminary results we observe that writings by
female authors contain fewer gender stereotypes
than writings by male authors. This difference
appears to have narrowed over time, mainly by
the reduction of gender stereotypes in writings
by male authors. We plan to: 1)further analyze
the typical types of gender stereotypes in writings
by authors of different genders and how they re-
semble with or differ from each other, by study-
ing the most biased words and the average stereo-
type scores of different categories of words, for
example, verbs, adjectives, etc.; 2) perform ex-
periments on more writings from the past century
to inspect more closely if there exists a trend in
the transformation of gender stereotypes; 3) ex-
isting stereotype evaluation methods evaluate ev-
ery word not in the excluded word lists, in our
case, the male and female word lists. Some fre-
quently used words, such as the, one, and an, are
not considered to be able to contain stereotypes,
unlike words such as strong, doctor, and jealous,
which are more closely associated with one gen-
der in writings. We plan to seek a way to filter
gender-neutral words and only keep those capable
of carrying stereotypes for stereotype quantifica-
tion.
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Abstract

Question answering techniques have mainly
been investigated in open domains. How-
ever, there are particular challenges in extend-
ing these open-domain techniques to extend
into the biomedical domain. Question answer-
ing focusing on patients is less studied. We
find that there are some challenges in patient
question answering such as limited annotated
data, lexical gap and quality of answer spans.
We aim to address some of these gaps by ex-
tending and developing upon the literature to
design a question answering system that can
decide on the most appropriate answers for
patients attempting to self-diagnose while in-
cluding the ability to abstain from answering
when confidence is low.

1 Introduction

Question Answering (QA) is the downstream task
of information seeking wherein a user presents
a question in natural language, Q, and a system
finds an answer or a set of answers from a col-
lection of natural language documents or knowl-
edge bases (Lende and Raghuwanshi, 2016), A,
that satisfies the user’s question (Molla and Gon-
zlez, 2007).

Questions fall into one of two categories: fac-
toid and non-factoid. Factoid QA provides brief
facts to the users’ questions; for example, Ques-
tion: What day is it? Answer: Monday. Non-
factoid question answering is a more complex
task. It involves answering questions that require
specific knowledge, common sense or a procedure
due to ambiguity or the scope of the question. An
example from the Yahoo non-factoid question an-
swer dataset1 illustrates this: Question: Why is it
considered unlucky to open an umbrella indoors?.
The answer is not apparent and requires specific
knowledge about cultural superstitions.

1https://ciir.cs.umass.edu/downloads/nfL6/

Question answering is fundamental in high-
level tools such as chatbots (Qiu et al., 2017;
Yan et al., 2016; Amato et al., 2017; Ram et al.,
2018), search engines (Kadam et al., 2015), and
virtual assistants (Yaghoubzadeh and Kopp, 2012;
Austerjost et al., 2018; Bradley et al., 2018). How-
ever, being a downstream task, question answering
suffers from pipeline error, as it often relies on the
quality of several upstream tasks such as coref-
erence resolution (Vicedo and Ferrández, 2000),
anaphora resolution (Ram et al., 2018), named en-
tity recognition (Aliod et al., 2006), information
retrieval (Mao et al., 2014), and tokenisation (De-
vlin et al., 2019).

Thus, there has been a growing demand for
these QA systems to deliver precise question-
specific answers (Pudaruth et al., 2016) and con-
sequently has sparked much research into improv-
ing upon relevant natural language processing ap-
proaches (Malik et al., 2013), datasets (Rajpurkar
et al., 2016; Kociský et al., 2017) and informa-
tion retrieval techniques (Weienborn et al., 2013;
Mao et al., 2014). These improvements have al-
lowed the domain to evolve from shallow keyword
matching to contextual and semantic retrieval sys-
tems (Kadam et al., 2015). However, most of
these techniques have been focused on the open-
domain (Soares and Parreiras, 2018) and the chal-
lenges harbouring the biomedical domain have not
been well addressed and remain unsolved. Here,
we define biomedical QA as either factoid or non-
factoid QA on biomedical literature.

One such challenge is due to the creation
of complex medical queries which require ex-
pert knowledge and up to four hours per
query (Russell-Rose and Chamberlain, 2017) to
adequately answer. This requirement of expert
knowledge leads to a lack of high-quality, publicly
available biomedical QA datasets. Furthermore,
medical datasets tend to be locked behind ethical,
obligatory agreements and are usually small due to
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cost constraints and lack of domain experts for an-
notation (Pampari et al., 2018; Shen et al., 2018).
Therefore, open-domain techniques which assume
data-rich conditions are not suitable for direct ap-
plication to the biomedical domain.

Another challenge is clinical term ambiguity,
which is due to the temporally and spatially vary-
ing nature of clinical terminology, and the fre-
quent use of abbreviation and esoteric medical ter-
minology (Lee et al., 2019) (see Table 1 for ex-
amples). It is difficult for systems to adequately
disambiguate clinical words to be used in down-
stream QA systems due to the complexity of the
ambiguity of medical terminology, such as abbre-
viations, due to their varying contexts. Though
there are existing tools such as MetaMap (Aron-
son and Lang, 2010) to disambiguate these terms
by mapping them to the UMLS (Unified Medi-
cal Language System) metathesaurus, coverage of
these systems is low and mappings are often inac-
curate (Wu et al., 2012).

Furthermore, systems in the open-domain typ-
ically retrieve a long answer before extracting a
short continuous span of text to present to the
user (Soares and Parreiras, 2018; Rajpurkar et al.,
2016). However, for biomedical responses, it is
not always sufficient to retrieve short answer con-
tinuous spans, and Answer Evidence spans that are
discontinuous that cross the sentence boundary are
often required (Pampari et al., 2018; Hunter and
Cohen, 2006; Nentidis et al., 2018).

These problems are not yet solved in the
biomedical domain and are reflected in the
BioASQ challenge (Nentidis et al., 2018), an an-
nual challenge with a biomedical question answer-
ing track. Currently, the state-of-the-art systems
do not perform much better than random guess
with an accuracy of 66.67% for binary question
answering (Chandu et al., 2017), 24.24% for fac-
toid (ranked list of named entities as answers) and
an F1-score of 0.3312 for list-type (unranked list
of named entities) (Peng et al., 2015) suggesting
that there is much room for improvement in terms
of algorithms and research.

Furthermore, we found that there is a lack of
a biomedical question answering system directed
for patients. Biomedical question answering for
patients is important as studies from the Pew Re-
search Centre have shown that 35% of U.S. adults
have diagnosed themselves using the information

they found online2. Of these adults, 35% said
that they did not get a professional opinion on
their self-diagnosis, illustrating that patients may
blindly trust the results of search engines without
consulting a medical professional. This is cause
for concern, as search engines tend to display the
most severe ailments first which could lead to a
potential waste of hospital resources or deteriora-
tion in patient health (Korfage et al., 2006).

Furthermore, although there are negatives to
searching symptoms via search engine, for the par-
ticipants who visited doctors after self-diagnosis,
research has revealed that doctor-patient relation-
ships and patient compliance with treatment im-
prove as the patients have a clearer understanding
of their symptoms and potential disease after self-
diagnosis (Cocco et al., 2018). These studies mo-
tivate the need for a strong biomedical question
answering question for patients as it will benefit
patients who self-diagnose and patients who seek
medical advice after looking up their symptoms
online.

Finally, we highlight that there is a lexical and
semantic gap between clinical and patient lan-
guage. For example, the expression “hole in lung“
taken literally is about a punctured lung. However,
this colloquialism refers to the condition known
as Pleurisy (Ben Abacha and Demner-Fushman,
2019; Abacha and Demner-Fushman, 2016), illus-
trating that patients do not have the level of literacy
to formulate complex medical queries nor under-
stand them (Graham and Brookey, 2008).

We aim to address the challenges in applying
question answering to biomedical question an-
swering for patients. We highlight that the cur-
rent gaps of biomedical QA research stem from
lack of clinical disambiguation tools, lack of high-
quality data, the quality of answer spans, weak
algorithms and clinical-patient lexical gaps. Our
goal is to present a patient biomedical QA system
that can address the gaps in biomedical research
and allows a patient to query their symptoms, dis-
eases or available treatment options accurately, but
will also abstain from providing answers in cases
where there is low confidence in the best answer,
question malformation or insufficiency of data to
answer the question.

2https://www.pewinternet.org/2013/01/15/health-online-
2013/
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Type Example Explanation
Temporally varying Flu The Flu evolves every year and the cause is predicated on the

year it is contracted
Spatially varying Cancer Cancer is a disease that varies with severity based on location

(Late stage brain cancer is much worse than early stage skin
cancer)

Abbreviation HR A common clinical abbreviation that typically means heart
rate, but may mean hazard ratio depending on the context

Esoteric terminology c.248T>C A gene mutation that does not appear in any open-domain cor-
pus such as Wikipedia and has no layman definition

Table 1: Examples of ambiguity in biomedical text.

2 Literature Review

Here, we detail a review of question answering in
the open and biomedical domains.

2.1 Information Retrieval Approaches

Biomedical QA systems up until 2015 relied heav-
ily on Information Retrieval (IR) techniques such
as tf-idf ranking (Lee et al., 2006) and entity
extraction tools such as MetaMap (Aronson and
Lang, 2010) in order to obtain candidate answers
(by querying biomedical databases) and feature
extraction before using machine learning mod-
els such as logistic regression (Weienborn et al.,
2013). While other techniques included using
cosine similarity between one-hot encoded vec-
tors of answer and question for candidate re-
ranking (Mao et al., 2014). However, these tech-
niques were inherently bag-of-word approaches
that ignored the context of words. Furthermore,
these techniques relied on complete matches of
question terms and answer paragraphs, which is
not realistic in practice. Patients use different ter-
minology to that of medical experts and biomedi-
cal literature (Graham and Brookey, 2008).

In more recent years, more neural approaches to
IR have been used in the biomedical space (Nen-
tidis et al., 2017, 2018) such as Position-
Aware Convolutional Recurrent Relevance Match-
ing (Hui et al., 2017), Deep Relevance Match-
ing Model (Guo et al., 2017) and Attention Based
Convolutional Neural Network (Yin et al., 2015).
However, though these approaches do not rely on
complete matching of words and capture seman-
tics, they either ignore local or global contexts
which are useful for disambiguation of clinical ter-
minology and comprehension (McDonald et al.,
2018).

2.2 Semantic-level Approach

QA requires the retrieval of long answers be-
fore summarisation or retrieval of answer spans.
Punyakanok et al. (2004) introduced the use of
a question’s dependency trees and candidate an-
swers’ dependency trees and aligning with the
Tree Edit Distance metric to augment statistical
classifiers such as Logistic Regression and Con-
ditional Random Fields. However, these meth-
ods failed to capture complex semantic informa-
tion due to a reliance on effective part-of-speech
tagging and were not attractive end-to-end solu-
tions. Otherwise, WordNet was utilised to extract
semantic relationships and estimate semantic dis-
tances between answers and questions (Terol et al.,
2007). However, WordNet suffered from being
open-domain focused and also was not able to cap-
ture complex semantic information such as poly-
semy (Molla and Gonzlez, 2007).

2.3 Neural Approaches

In recent years, approaches that use neural net-
works have become popular. Word embedding
techniques such as Word2vec and GloVe can
model the latent semantic distribution of language
through unsupervised learning (Chiu et al., 2016).
Furthermore, they are quickly adopted into neu-
ral networks as these models take fixed-sized
vector inputs, where embeddings could be used
as encoded inputs into neural networks such as
LSTM (Hochreiter and Schmidhuber, 1997) and
CNN (LeCun et al., 1999) in the biomedical do-
main (Nentidis et al., 2017, 2018).

Though these embedding techniques were use-
ful in capturing latent semantics, they did not dis-
tinguish between multiple meanings of clinical
text (Molla and Gonzlez, 2007; Vine et al., 2015).

There have been several solutions to this prob-
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lem (Peters et al., 2018; Howard and Ruder,
2018; Devlin et al., 2019) proposed but they are
not relevant specifically to the biomedical do-
main. Instead, we highlight BioBERT (Lee et al.,
2019), a biomedical version of BERT (Devlin
et al., 2019) which is a deeply bidirectional trans-
former (Vaswani et al., 2017) that is able to incor-
porate rich context into the encoding or embed-
ding process that has pre-trained on the Wikipedia
and PubMed corpora. However, this model fails to
account for the spatial and temporal aspects of dis-
eases in biomedical literature as temporality is not
encoded into its input. Furthermore, Biobert uses
a WordPiece tokeniser (Wu et al., 2016) which
keeps a fixed-size vocabulary dictionary for learn-
ing new words. However, the vocabulary within
the model is derived from Wikipedia, a general
domain corpus, and thus Biobert is unable to learn
distinct morphological semantics of medical terms
like -phobia, where ’-‘ denotes suffixation, mean-
ing fear as it only has the internal representation
for -bia.

3 Research Plan

We list the research questions to address some
of the research gaps in biomedical QA and the
system we aim to design, alongside baseline ap-
proaches and methodology as starting points. We
will also mention future directions to address these
research questions.

RQ1: What are the limitations of current
biomedical QA? The limitations in current
biomedical QA include the lack of: sufficient
ambiguity resolution tools (Wu et al., 2012),
robust techniques to using semantic neural ap-
proaches (Lee et al., 2019; Nentidis et al., 2018).
The lack of strong comprehension from systems
to produce sufficient answer spans that cross the
sentence boundary as reflected by poor results
in ideal answer production in BioASQ (Nentidis
et al., 2018, 2017) and addressing issues using
real-world patient queries rather than artificially
curated queries (Pampari et al., 2018; Guo et al.,
2006) which contain colloquial ambiguous non-
medical terminology such as hole in lung.

In our research, we aim to address each of these
gaps by researching into: higher coverage clini-
cal ambiguity tools that use contexts in the spatial
and temporal domains, summarisation techniques
that can translate from biomedical terminology to
patient language (Mishra et al., 2014; Shi et al.,

2018) and tuning biomedical models to solve com-
plex answer span tasks that cross sentence bound-
aries (Kociský et al., 2017) or require common
sense (Talmor et al., 2018).

RQ2: Data-driven approaches require high-
quality datasets. How can we construct or
leverage existing datasets to mimic real-world
biomedical question answering? By leverag-
ing existing techniques such as variational auto-
encoder (Shen et al., 2018) and Snorkel (Bach
et al., 2018), we will be able to generate, label and
process additional data that can meet stringent data
requirements of neural approaches.

However, synthetic datasets generally perform
weaker than handcrafted datasets (Bach et al.,
2018). In order to bridge this gap in the re-
search, we propose augmenting these data gener-
ation methods via crowd-sourcing methods with
textual entailment (Abacha and Demner-Fushman,
2016) and natural language inference (Johnson
et al., 2016) to improve the quality of the gener-
ated labels and data. For instance, we can use fo-
rums like Quora or medical specific forums such
as Health243 and utilise techniques such as ques-
tion entailment to find questions that are related
to ones seen in the dataset in order to generate
higher-quality annotated labels.

We will then develop techniques that can com-
bine synthetic and higher-quality labelled datasets
that can be utilized downstream in a QA system.
We will compare this against baselines such as
majority voting and Snorkel to evaluate our ap-
proaches.

Allowing the model to abstain from a deci-
sion, through comprehension, has been the focus
of many datasets as of late (Rajpurkar et al., 2016;
Kociský et al., 2017). We can use these datasets as
a starting problem to solve before applying these
techniques to the biomedical domain. However,
we will also develop and research further tech-
niques in order to allow for improved confidence
and low uncertainty from the model.

RQ3: How do we indicate the confidence of the
answer that the model has provided? Often re-
searchers interpret softmax or confidence scores
from the classifier models as direct correlations to
probability but often forget about uncertainties in
this measurement (Kendall and Gal, 2017). Due
to the real-world application and sensitivity of pre-

3https://www.health24.com/Experts
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dictions in a health-based QA system, there needs
to be guarantees that predictions are of both high
accuracy and low uncertainty.

In order to account for uncertainty, techniques
such as Inductive Conformal Prediction (Pa-
padopoulos, 2008) and Deep Bayesian Learn-
ing (Siddhant and Lipton, 2018) can be used to
model epistemic uncertainty, which is not inher-
ently captured by the model during training, in or-
der to make the loss function more robust to noise
and uncertainty and thereby strengthen the predic-
tions of the model. This would then allow soft-
max scores to be used as confidence scores within
a reasonable level of uncertainty.

RQ4: How do we include temporality or lo-
cality of diseases into answers? Diseases are
non-static, they evolve such as the flu or are sea-
sonal such as the summer cold. Current models
utilise only static vector inputs, such as word em-
beddings, that do not account for this temporal as-
pect of the input. Furthermore, though diseases
are non-static, they may be more likely in different
countries as there is a spatiotemporal relationship
where countries will experience different seasons
and thus different diseases. In order to accommo-
date for these relationships, we can draw on prior
research as starting points such as space-time lo-
cal embeddings (Sun et al., 2015), dynamic word
embeddings (Bamler and Mandt, 2017) or time-
embeddings (Barbieri et al., 2018) as baselines and
extend them into the biomedical setting.

RQ5: How do we bridge the semantic gap be-
tween clinical text and terminology that a pa-
tient can understand? Most patients lack the
expertise in utilising resources such as biomed-
ical literature in order to self-diagnose. There-
fore, knowledge or answers should be presented
in a form that they can understand (Graham and
Brookey, 2008). Biomedical language and pa-
tient language can be construed as two sepa-
rate languages as biomedical language changes
and evolves over time (Yan and Zhu, 2018) and
also pose the same problems (Hunter and Cohen,
2006). Therefore, we can model this problem as
a language translation problem and thus can use
techniques in neural machine translation (Qi et al.,
2018; Chousa et al., 2018) based on word embed-
dings.

However, as biomedical language and patient
English are primarily borne of the same language,
this poses unique problems. For instance, a token

in plain English may translate to several tokens in
the biomedical space or vice versa. This is known
as the alignment problem (Qi et al., 2018). We can
potentially remedy this by borrowing ideas from
n-gram embedding (Zhao et al., 2017) as a starting
point or using Biobert (Lee et al., 2019) projected
to a dual-language embedding space and use atten-
tion to produce the alignment. Furthermore, there
are biomedical abbreviations that need to be dis-
ambiguated before translation (Festag and Spreck-
elsen, 2017), for which we would use direct, rule-
based approaches using thesauri or tools such as
Metamap (Aronson and Lang, 2010) as our base-
line approaches and extend upon using data-driven
approaches (Wu et al., 2017).

4 Experimental Framework

4.1 Datasets

High-quality data is required to address the chal-
lenges we outlined. We therefore consider the
following datasets: (1) MEDNLI (Johnson et al.,
2016; Goldberger et al., 2000) for medical lan-
guage inference; (2) i2b2 in the form of em-
rQA (Pampari et al., 2018) for synthetic question-
answer pairs; (3) SQuAD (Rajpurkar et al.,
2016) for open-domain transfer learning; (4) the
question-answering datasets provided on MediQA
20194; (5) the question entailment dataset and
MedQuAD (Ben Abacha and Demner-Fushman,
2019); (5) CLEF eHealth (Suominen et al., 2018)
to utilize and evaluate IR methods; and (6) we will
supplement our datasets by generating labels for
unlabelled data by leveraging the signals from the
labelled datasets through the use of tools such as
Snorkel (Bach et al., 2018) and CVAE (Shen et al.,
2018).

4.2 Evaluation Metrics

In our experiments, we will evaluate our
summarisation strategies with metrics such as
ROGUE (Lin, 2004), in particular, rogue-
2 (Owczarzak and Dang, 2009) and BLEU (Pap-
ineni et al., 2002). For question-answering, we use
standard ranking metrics such as Mean Average
Precision and Mean Reciprocal Rank for evaluat-
ing candidate ranking and standard metrics such
as f1-score, Precision, Accuracy and more medi-
cal targeted metrics such as sensitivity and speci-
ficity (Parikh et al., 2008).

4https://sites.google.com/view/mediqa2019
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4.3 Proposed Framework

From the research questions mentioned, we pro-
pose a framework to unify their solutions.

Embeddings To begin, we need to construct our
date/seasonal embeddings (Barbieri et al., 2018),
to do this, we will need datasets that have mentions
of the seasonality and locality of disease entities.
Also, we will require embeddings that are repre-
sentative of the text, we will consider state-of-the-
art word-level context sensitive embeddings (Lee
et al., 2019; Peters et al., 2018) and word-level
context insensitive embeddings (Chiu et al., 2016)
and ensure they properly represent the biomedi-
cal datasets. For instance, BERT will need to pre-
trained with a biomedical vocabulary rather than
a general purpose open-domain one, and, in doing
so, we will be able to resolve ambiguity in poly-
semy or abbreviations.

Furthermore, we will also be researching
methodologies to handle out-of-vocabulary words
as the current WordPiece tokenization (Devlin
et al., 2019) or character-level embeddings (Barbi-
eri et al., 2018) would not be sufficient to address
esoteric terminology (Lee et al., 2019). The time
embeddings and the word-level embeddings will
be concatenated and used as input to the model.

Model Architecture Given the success of multi-
task learning (Zhao et al., 2018; Liu et al., 2019),
and having been proposed as the blocking task in
NLP (McCann et al., 2018) that needs to be solved.
We therefore apply multi-task learning to this
problem. From the state of the art multi-task learn-
ing models, we borrow the fundamental building
blocks such as multi-headed self-attention (Liu
et al., 2019) and multi-pointer generation (Mc-
Cann et al., 2018) to be used as decisions in a
Neural Architecture Search (NAS) (Zoph and Le,
2016). NAS will use reinforcement learning tech-
niques to find a suitable architecture for multi-task
learning. We elect to find the architecture to rep-
resent our problem this way due to one main rea-
son. The reason is that the field of deep learning
in NLP is quickly changing, and thus the state-
of-the-art techniques will always change. There-
fore, by having a tool that builds architectures
from the building blocks of state-of-the-art mod-
els is vital. However, crucially, we must add Het-
eroscedastic Aleatoric Uncertainty and Epistemic
Uncertainty minimisation to the model by adjust-
ing the loss function and weight distribution which

will allow the model to be more certain about deci-
sions (Kendall and Gal, 2017). One such decision
must be the ability to abstain from answering.

Concretely, we use NAS to discover models for
NMT from clinical text to the patient language
by conditioning to an encoder-decoder structure.
From here, using this model a starting point, NAS
will add task-specific layers that will minimise the
joint loss over the biomedical tasks such as ques-
tion answering (Nentidis et al., 2018), question
entailment (Abacha and Demner-Fushman, 2016)
and natural language inference (Johnson et al.,
2016). In doing so, multi-task learning will allow
for stronger generalisability and end-to-end train-
ing (McCann et al., 2018; Liu et al., 2019).

5 Summary

We highlight gaps within the literature in ques-
tion answering in the biomedical domain. We
outline challenges associated with implementing
these systems due to the limitations of current
work: lack of annotated data, ambiguity in clin-
ical text and lack of comprehension of ques-
tion/answer text by models.

We motivate this research in the area of patient
QA due to the high volume of medical queries in
search engines that are trusted by patients. Our re-
search aims to build upon the strengths of the cur-
rent state-of-the-art and research new strategies in
solving technical challenges to support a patient
in retrieving the answers they require with low un-
certainty and high confidence.

Acknowledgements

I thank for my supervisors, Dr Sarvnaz Karimi and
Dr Zhenchang Xing for providing invaluable in-
sight into the writing of this proposal. This re-
search is supported by the Australian Research
Training Program and the CSIRO Postgraduate
Scholarship.

References
Ben Abacha and Demner-Fushman. 2016. Recogniz-

ing Question Entailment for Medical Question An-
swering. American Medical Informatics Association
Annual Symposium Proceedings, 2016:310–318.

Diego Aliod, Menno Zaanen, and Daniel Smith. 2006.
Named entity recognition for question answering. In
The Australasian Language Technology Association,
Sydney, Australia.

59



Flora Amato, Stefano Marrone, Vincenzo Moscato,
Gabriele Piantadosi, Antonio Picariello, and Carlo
Sansone. 2017. Chatbots meet ehealth: Automa-
tizing healthcare. In Proceedings of the Workshop
on Artificial Intelligence with Application in Health
co-located with the 16th International Conference
of the Italian Association for Artificial Intelligence,
Bari, Italy.

Alan Aronson and François-Michel Lang. 2010. An
overview of Metamap: Historical perspective and
recent advances. Journal of the American Medical
Informatics Association, 17(3):229–236.

Jonas Austerjost, Marc Porr, Noah Riedel, Dominik
Geier, Thomas Becker, Thomas Scheper, Daniel
Marquard, Patrick Lindner, and Sascha Beutel.
2018. Introducing a virtual assistant to the lab: A
voice user interface for the intuitive control of lab-
oratory instruments. SLAS Technology: Translating
Life Sciences Innovation, 23:476–482.

Stephen Bach, Daniel Rodriguez, Yintao Liu, Chong
Luo, Haidong Shao, Cassandra Xia, Souvik Sen,
Alexander Ratner, Braden Hancock, Houman Al-
borzi, Rahul Kuchhal, Christopher Ré, and Rob
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Abstract

The unprompted patient experiences shared on
patient forums contain a wealth of unexploited
knowledge. Mining this knowledge and cross-
linking it with biomedical literature, could ex-
pose novel insights, which could subsequently
provide hypotheses for further clinical re-
search. As of yet, automated methods for open
knowledge discovery on patient forum text
are lacking. Thus, in this research proposal,
we outline future research into methods for
mining, aggregating and cross-linking patient
knowledge from online forums. Additionally,
we aim to address how one could measure the
credibility of this extracted knowledge.

1 Introduction

In the biomedical realm, open knowledge dis-
covery from text has traditionally been limited
to semi-structured data, such as electronic health
records, and biomedical literature (Fleuren and
Alkema, 2015). Patient forums (or discussion
groups), however, contain a wealth of unexploited
knowledge: the unprompted experiences of the pa-
tients themselves. Patients indicate that they rely
heavily on the experiences of others (Smailhodzic
et al., 2016), for instance for learning how to cope
with their illness on a daily basis (Burda et al.,
2016; Hartzler and Pratt, 2011).

In recent years, researchers have begun to ac-
knowledge the value of such knowledge from ex-
perience, also called experiential knowledge. It
is increasingly recognized as complementary to
empirical knowledge (Carter et al., 2013; Knot-
tnerus and Tugwell, 2012). Consequently, patient
forum data has been used for a range of health-
related applications from tracking public health
trends (Sarker et al., 2016b) to detecting adverse
drug responses (Sarker et al., 2015). In contrast to
other potential sources of patient experiences such

as electronic health records or focus groups, pa-
tient forums offer uncensored and unsolicited ex-
periences. Moreover, it has been found that pa-
tients are more likely to share their experiences
with their peers than with a physician (Davison
et al., 2000).

Nonetheless, so far, the mining of experien-
tial knowledge from patient forums has been lim-
ited to the extraction of adverse drug responses
(ADRs) that patients experience when taking pre-
scription drugs. Yet, patient forums contain an
abundance of valuable information hidden in other
experiences. For example, patients may report ef-
fective coping techniques for side effects of med-
ication. Nevertheless, automated methods for
open knowledge discovery from patient forum
text, which could capture a wider range of expe-
riences, have not yet been developed.

Therefore, we aim to develop such automated
methods for mining anecdotal medical experi-
ences from patient forums and aggregating them
into a knowledge repository. This could then be
cross-linked to a comparable repository of curated
knowledge from biomedical literature and clini-
cal trials. Such a comparison will expose any
novel information present in the patient experi-
ences, which could subsequently provide hypothe-
ses for further clinical research, or valuable aggre-
gate knowledge directly for the patients.

Although hypothesis generation in this manner
could potentially advance research for all patient
groups, we expect it to be the most promising for
patients with rare diseases. Research into these
diseases is scarce (Aymé et al., 2008): their rar-
ity obstructs data collection and for-profit indus-
try considers this research too costly. Aggregation
of data from online forums could spur the coordi-
nated, trans-geographic effort necessary to attain
progress for these patients (Aymé et al., 2008).
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Problem statement Patient experiences are
shared in abundance on patient forums. Experi-
ential knowledge expressed in these experiences
may be able to advance understanding of the
disease and its treatment, but there is currently
no method for automatically mining, aggregating,
cross-linking and verifying this knowledge.

Research question To what extent can auto-
mated text analysis of patient forum posts aid
knowledge discovery and yield reliable hypothe-
ses for clinical research?

Contributions Our main contributions to the
NLP field will be: (1) methods for extracting of
aggregated knowledge from patient experiences
on online fora, (2) a method for cross-linking
curated knowledge and complementary patient
knowledge, and (3) a method for assessing the
credibility of claims derived from medical user-
generated content. We will release all code and
software related to this project. Data will be avail-
able upon request to protect the privacy of the pa-
tients.

2 Research Challenges

In order to answer this research question, five chal-
lenges must be addressed:

• Data Quality Knowledge extraction from so-
cial media text is complicated by colloquial
language, typographical errors, and spelling
mistakes (Park et al., 2015). The complex
medical domain only aggravates this chal-
lenge (Gonzalez-Hernandez et al., 2017).
• Named Entity Recognition (NER) Previous

work has been limited to extracting drug
names and adverse drug responses (ADRs).
Consequently, methods for extracting other
types of relevant entities, such as those re-
lated to coping behaviour, still need to be
developed. In general, layman’s terms and
creative language use hinder NER from user-
generated text (Sarker et al., 2018).
• Automatic Relation Annotation Relation ex-

traction from forum text has been explored
only for ADR-drug relations. A more open
extraction approach is currently lacking. The
typically small size of patient forum data
and the subsequent lack of redundancy is the
main challenge for relation extraction. Other
challenges include determining the presence,

direction and polarity of relations and nor-
malizing relationships in order to aggregate
claims.
• Cross-linking with Curated Knowledge In or-

der to extract novel knowledge, the extracted
knowledge should be compared with curated
sources. Thus, methods need to be developed
to build comparable enough knowledge bases
from both types of knowledge.
• Credibility of Medical User-generated Con-

tent In order to assess the trustworthiness
of novel, health-related claims from user-
generated online content, a method for mea-
suring their relative credibility must be devel-
oped.

3 Prior work

In this section, we will highlight the prior work
for each of these research challenges. Hereafter, in
section 4, we will outline our proposed approach
to tackling them in light of current research gaps.

3.1 Data quality

The current state-of-the-art lexical normalization
pipeline for social media was developed by Sarker
(2017). Their spelling correction method de-
pends on a standard dictionary supplemented with
domain-specific terms to detect mistakes, and on
a language model of generic Twitter data to cor-
rect these mistakes. For domains that have many
out-of-vocabulary terms compared to the available
dictionaries and language models, such as medical
social media, this is problematic and results in a
low precision for correct domain-specific words.

Besides improving data quality through spelling
normalization, it is essential to identify which
forum posts contain patient experiences before
knowledge can be extracted from these experi-
ences. Previous research into systematically dis-
tinguishing experiences on patient forums is lim-
ited to a single study on Dutch forum data (Ver-
berne et al., 2019). They identified narratives
using only lower-cased words as features. Fur-
thermore, specialized classifiers for differentiating
factual statements about ADRs and personal ex-
periences of ADRs on social media have also been
developed (e.g. Nikfarjam et al. (2015)). How-
ever, these are too specialized to be suited for iden-
tifying patient experiences in general.
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3.2 NER on health-related social media

Named entity recognition on patient forums is cur-
rently restricted to the detection of ADRs to pre-
scription drugs (Sarker et al., 2015). Leaman et al.
(2010) were the first to extract ADRs from patient
forum data by matching tokens to a lexicon of side
effects compiled from three medical databases and
manually curated colloquial phrases. As lexicon-
based approaches are hindered by descriptive and
colloquial language use (O’Connor et al., 2014),
later studies attempted to use association mining
(Nikfarjam and Gonzalez, 2011). Although par-
tially successful, concepts occurring in infrequent
or more complex sentences remained a challenge.

Consequently, more recent studies have em-
ployed supervised machine learning, which can
detect inexact matches. The current state-of-the-
art systems use conditional random fields (CRF)
with lexicon-based mapping (Nikfarjam et al.,
2015; Metke-Jimenez and Karimi, 2015; Sarker
et al., 2016a). Key to their success is their ability
to incorporate textual information. Information-
rich semantic features, such as polarity (Liu et al.,
2016); and unsupervised word embeddings (Nik-
farjam et al., 2015; Sarker et al., 2016a), were
found to aid the supervised extraction of ADRs.
As of yet, deep learning methods have not been
explored for ADR extraction from patient forums.

For subsequent concept normalization of ADRs
i.e. their mapping to concepts in a controlled vo-
cabulary, supervised methods outperform lexicon-
based and unsupervised approaches (Sarker et al.,
2018). Currently, the state-of-the-art system is
an ensemble of a Recurrent Neural Network and
Multinomial Logistic Regression (Sarker et al.,
2018). In contrast to previous research, we aim
to extract a wider variety of entities, such as those
related to coping, and thus we will also extend
normalization approaches to a wider range of con-
cepts.

3.3 Automated relation extraction on
health-related social media

Research on relation extraction from patient fo-
rums has been explored to a limited extent in the
context of ADR-drug relations. Whereas earlier
studies simply used co-occurrence (Leaman et al.,
2010), Liu and Chen (2013) opted for a two-step
classifier system with a first classifier to determine
whether entities have a relation and a second to
define it. Another study used a Hidden Markov

Model (Sampathkumar et al., 2014) to predict the
presence of a causal relationship using a list of
keywords e.g. ‘effects from’. More recently, Chen
et al. (2018) opted for a statistical approach: They
used the Proportional Reporting Ratio, a statistical
measure for signal detection, which compares the
proportion of a given symptom mentioned with a
certain drug to the proportion in combination with
all drugs. In order to facilitate more open knowl-
edge discovery on patient forums, we aim to inves-
tigate how other relations than ADR-drug relations
can be extracted.

3.4 Cross-linking medical user-generated
content with curated knowledge

Although the integration of data from different
biomedical sources has become a booming topic
in recent years (Sacchi and Holmes, 2016), only
two studies have cross-linked user-generated con-
tent from health-related social media with struc-
tured databases. Benton et al. (2011) compared
co-occurrence of side effects in breast cancer posts
to drug package labels, whereas Yeleswarapu et al.
(2014) combined user comments with structured
databases and MEDLINE abstracts to calculate
the strength of associations between drugs and
their side effects. We aim to develop cross-
linking methods with curated sources that go be-
yond ADR-drug relations in order to extract diver-
gent novel knowledge from user-generated text.

3.5 Credibility of medical user-generated
content

As the Web accumulates user-generated content, it
becomes important to know if a specific piece of
information is credible or not (Berti-Equille and
Ba, 2016). For novel claims, the factual truth can
often not be determined, and thus credibility is the
highest attainable.

So far, the approaches to automatically assess-
ing credibility of health-related information on so-
cial media has been limited to three studies (Vi-
viani and Pasi, 2017a). Firstly, Vydiswaran et al.
(2011) used textual features to compute trustwor-
thiness based on community support. They eval-
uated their approach using simulated data with
varying amounts of invalid claims, defined as dis-
approved or non-specific treatments, e.g. paraceta-
mol. Secondly, Mukherjee et al. (2014) developed
a semi-supervised probabilistic graph that uses an
expert medical database of known side effects as
a ground truth to assess the credibility of rare or
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Figure 1: Proposed pipeline

unknown side effects on an online health commu-
nity. Kinsora et al. (2017) was the first to not
focus solely on accessing relations of treatments
and side effects. They developed the first labeled
data set of misinformative and non-misinformative
comments from a health discussion forum, where
misinformation is defined as ‘medical relations
that have not been verified’. By definition, how-
ever, the novel health-related claims arising from
our knowledge discovery process will not be veri-
fied. Thus, so far, a methodology for assessing the
credibility of novel health-related claims on social
media is lacking. We aim to address this gap.

4 Proposed Pipeline

As can be seen in Figure 1, we propose a pipeline
that will automatically output a list of medical
claims from the knowledge contained in user-
generated posts on a patient forum. They will be
ranked in order of credibility to allow clinical re-
searchers to focus on the most credible candidate
hypotheses.

After preprocessing, we aim to extract relevant
entities and their relations from only those posts
that contain personal experiences. Therefore, we
need a classifier for personal experiences as well
as a robust preprocessing system. From the fil-
tered posts, we will subsequently extract a wider
range of entities than was done in previous re-
search, such as those related to coping with ad-
verse drug responses, medicine efficacy, comor-
bidity and lifestyle. Since patients with comor-
bities, i.e. co-occurring medical conditions, are
often excluded from clinical trials (Unger et al.,
2019), it is unknown whether medicine efficacy
and adverse drug responses might differ for these
patients. Moreover, certain lifestyle choices, such
as diet, are known to influence both the working of

medication (Bailey et al., 2013) and the severity of
side effects. For instance, patients with the rare
disease Gastro-Intestinal Stromal Tumor (GIST)
provide anecdotal evidence that sweet potato can
influence the severity of side effects.1 These is-
sues greatly impact the quality of life of patients
and can be investigated with our approach. How-
ever, extending towards a more open information
extraction approach instigates various questions.
Could, for instance, dependency parsing be em-
ployed? Should a pre-specified list of relations
be used and if so, which criteria should this list
conform to? Which approaches and insights from
other NLP domains could help us here?

Answering these questions is complicated by
our consecutive aim to cross-link the patient
knowledge with curated knowledge: the approach
to knowledge extraction and aggregation needs to
be similar enough to allow for filtering. A com-
pletely open approach may therefore not be pos-
sible. A key feature that impedes the generation
of comparable data repositories is the difference
in terminology. Extracting curated claims is also
not trivial, as biomedical literature is at best semi-
structured. Yet, comparable repositories are essen-
tial, as they will enable us to eliminate presently
known facts from our findings.

Finally, we aim to automatically assess the cred-
ibility of these novel claims in order to output
a ranked list of novel hypotheses to clinical re-
searchers. Our working definition of credibility is
the level of trustworthiness of the claim, or how
valid the audience perceives the statement itself to
be (Hovland et al., 1953). The development of a
method for measuring credibility raises interest-
ing points for discussion, such as: which linguistic
features could be used to measure the credibility of
a claim? And how could support of a statement, or
lack thereof, by other forum posts be measured?

In the next two sections, we will elaborate,
firstly, on initial results for improving data qual-
ity and, secondly, on implementation ideas for our
NER and relation extraction system; and for our
method for assessing credibility.

5 Initial results

To reduce errors in knowledge extraction, our re-
search initially focused on improving data quality
through (1) lexical normalization and (2) identify-

1https://liferaftgroup.org/
managing-side-effects/
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ing messages that contain personal experiences.2

Lexical normalization Since the state-of-the-
art lexical normalization method (Sarker, 2017)
functions poorly for social media in the health do-
main, we developed a data-driven spelling correc-
tion module that is dependent only on a generic
dictionary and thus capable of dealing with small
and niche data sets (Dirkson et al., 2018, 2019b).
We developed this method on a rare cancer fo-
rum for GIST patients3 consisting of 36,722 posts.
As a second cancer-related forum, we used a sub-
reddit on cancer of 274,532 posts 4.

For detecting mistakes, we implemented a de-
cision process that determines whether a token is
a mistake by, firstly, checking if it is present in
a generic dictionary, and if not, checking for vi-
able candidates. Viable candidates, which are de-
rived from the data, need to have at least double
the corpus frequency and a high enough similarity.
This relative, as opposed to an absolute, frequency
threshold enables the system to detect common
spelling mistakes. The underlying assumption is
that correct words will occur frequently enough
to not have any viable correction candidates: they
will thus be marked as correct. Our method at-
tained an F0.5 score of 0.888. Additionally, it
manages to circumvent the absence of specialized
dictionaries and domain- and genre-specific pre-
trained word embeddings. For correcting spelling
mistakes, relative weighted edit distance was em-
ployed: the weights are derived from frequen-
cies of online spelling errors (Norvig, 2009). Our
method attained an accuracy of 62.3% compared
to 20.8% for the state-of-the-art method (Sarker,
2017). By pre-selecting viable candidates, this ac-
curacy was further increased by 1.8% point.

This spelling correction pipeline reduced out-
of-vocabulary terms by 0.50% and 0.27% in the
two cancer-related forums. More importantly, it
mainly targeted, and thus corrected, medical con-
cepts. Additionally, it increased classification ac-
curacy on five out of six benchmark data sets of
medical forum text (Dredze et al. (2016); Paul and
Dredze (2009); Huang et al. (2017); and Task 1
and 4 of the ACL 2019 Social Media Mining 4
Health shared task5).

2Code and developed corpora can be found on https:
//github.com/AnneDirkson

3https://www.facebook.com/groups/
gistsupport/

4www.reddit.com/r/cancer
5https://healthlanguageprocessing.org/

Personal experience classification As research
into systematically distinguishing patient experi-
ences was limited to Dutch data with only one fea-
ture type (Verberne et al., 2019), we investigated
how they could best be identified in English forum
data (Dirkson et al., 2019a). Each post was classi-
fied as containing a personal experience or not. A
personal experience did not need to be about the
author but could also be about someone else.

We found that character 3-grams (F1 = 0.815)
significantly outperform psycho-linguistic fea-
tures and document embeddings in this task.
Moreover, we found that personal experiences
were characterized by the use of past tense, health-
related words and first-person pronouns, whereas
non-narrative text was associated with the future
tense, emotional support words and second-person
pronouns. Topic analysis of the patient experi-
ences in a cancer forum uncovered fourteen medi-
cal topics, ranging from surgery to side effects. In
this project, developing a clear and effective an-
notation guideline was the major challenge. Al-
though the inter-annotator agreement was substan-
tial (κ = 0.69), an error analysis revealed that an-
notators still found it challenging to distinguish a
medical fact from a medical experience.

6 Current and Future work

In the upcoming second year of the PhD project,
we will focus on developing an NER and relation
extraction (RE) system (Section 6.1). After that,
we will address the challenge of credibility assess-
ment (Section 6.2).

6.1 Extracting entities and their relations

For named entity recognition, we are currently ex-
perimenting with BiLSTMs combined with Con-
ditional Random Fields. Our system builds on the
state-of-the-art contextual flair embeddings (Ak-
bik et al., 2018) trained on domain-specific data
(Dirkson and Verberne, 2019). Our next step will
be to combine these with Glove or Bert Embed-
dings (Devlin et al., 2018). We may also incorpo-
rate domain knowledge from structured databases
in our embeddings, as this was shown to im-
prove their quality (Zhang et al., 2019). The ex-
tracted entities will be mapped to a subset of pre-
selected categories of the UMLS (Unified Medical
Language System) (National Library of Medicine,

smm4h/challenge/
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2009), as this was found to improve precision (Tu
et al., 2016).

For relation extraction (RE), our starting point
will also be state-of-the-art systems for various
benchmark tasks. Particularly the system by
Vashishth et al. (2018), RESIDE, is interesting as
it focuses on utilizing open IE methods (Angeli
et al., 2015) to leverage relevant information from
a Knowledge Base (i.e. possible entity types and
matching to relation aliases) to improve perfor-
mance. We may be able to employ similar meth-
ods using the UMLS. Nonetheless, as patient fo-
rums are typically small in size, recent work in
transfer learning for relation extraction (Alt et al.,
2019) is also interesting, as such systems may be
able to handle smaller data sets better. Recent
work on few-shot relation extraction (Han et al.,
2018) may also be relevant for this reason. Han
et al. (2018) showed that meta-learners, models
which try to learn how to learn, can aid rapid gen-
eralization to new concepts for few-shot RE. The
best performing meta-learner for their new bench-
mark FewRel was the Prototypical Network by
Snell et al. (2018): a few-shot classification model
that tries to learn a prototypical representation for
each class. We plan to investigate to what extent
these various state-of-the-art systems can be em-
ployed, adapted and combined for RE in domain-
specific patient forum data.

6.2 Assessing credibility

To assess credibility, we build upon extensive re-
search into rumor verification on social media. Zu-
biaga et al. (2018) consider a rumor to be: “an item
of circulating information whose veracity status is
yet to be verified at time of posting”. According to
this definition, our unverified claims would qualify
as rumors.

An important feature for verifying rumors is
the aggregate stance of social media users towards
the rumor (Enayet and El-Beltagy, 2017). This
is based on the idea that social media users can
collectively debunk inaccurate information (Proc-
ter et al., 2013), especially over a longer period
of time (Zubiaga et al., 2016b). In employing
a similar approach, we assume that collectively
our users, namely patients and their close rela-
tives, have sufficient expertise for judging a claim.
Stances of posts are generally classified into sup-
porting, denying, querying or commenting i.e.
when a post is either unrelated to the rumor or to

its veracity (Qazvinian et al., 2011; Procter et al.,
2013). We plan to combine the state-of-the-art
LSTM approach by Kochkina et al. (2017) with
the two-step decomposition of stance classifica-
tion suggested by Wang et al. (2017): comments
are first distinguished from non-comments to then
classify non-comments into supporting, denying,
or querying. We will take into account the en-
tire conversation, as opposed to focusing on iso-
lated messages, since this has been shown to im-
prove stance classification (Zubiaga et al., 2016a).
We may employ transfer learning by using a pre-
trained language model tuned on domain-specific
data as input. Additional features will be derived
from previous studies into rumor stance classifica-
tion e.g. Aker et al. (2017).

For determining credibility, we plan to experi-
ment with the model-driven approach by Viviani
and Pasi (2017b), which was used to assess the
credibility of Yelp reviews. They argue that a
model-driven MCDM (Multiple-Criteria Decision
Analysis) grounded in domain knowledge can lead
to better or comparable results to machine learn-
ing if the amount of criteria is manageable on top
of allowing for better interpretability. According
to Zubiaga et al. (2018), interpretability is essen-
tial to make a credibility assessment more reli-
able for users. Alternatively, we may use inter-
pretable machine learning methods, such as Logis-
tic Regression or Support Vector Machines, simi-
lar to the state-of-the-art rumor verification system
(Enayet and El-Beltagy, 2017). Besides stance,
other linguistic and temporal features for deter-
mining credibility could be derived from rumor
veracity studies e.g. Kwon et al. (2013); Castillo
et al. (2011). We also plan to conduct a survey
amongst patients in order to include factors they
indicate to be important for judging credibility of
information on their forum.

A challenge we foresee is the absence of a
ground truth for the credibility of claims. To
solve this, we could make use of the ground truth
of claims that match curated knowledge through
distant supervised learning and extrapolate our
method to the unknown instances, comparable to
the work by Mukherjee et al. (2014). Likewise,
we could mirror Mukherjee et al. (2014) in our
evaluation of the credibility scores: we could ask
experts to evaluate ten random claims and the ten
most credible as determined by our method.
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Abstract
Speech deficits are common symptoms among
Parkinson’s Disease (PD) patients. The auto-
matic assessment of speech signals is promis-
ing for the evaluation of the neurological state
and the speech quality of the patients. Re-
cently, progress has been made in applying
machine learning and computational methods
to automatically evaluate the speech of PD pa-
tients. In the present study, we plan to an-
alyze the speech signals of PD patients and
healthy control (HC) subjects in three differ-
ent languages: German, Spanish, and Czech,
with the aim to identify biomarkers to discrim-
inate between PD patients and HC subjects and
to evaluate the neurological state of the pa-
tients. Therefore, the main contribution of this
study is the automatic classification of PD pa-
tients and HC subjects in different languages
with focusing on phonation, articulation, and
prosody. We will focus on an intelligibility
analysis based on automatic speech recogni-
tion systems trained on these three languages.
This is one of the first studies done that consid-
ers the evaluation of the speech of PD patients
in different languages. The purpose of this re-
search proposal is to build a model that can
discriminate PD and HC subjects even when
the language used for train and test is differ-
ent.

1 Introduction

Parkinsons disease (PD) (i.e. Shaking palsy
(Parkinson, 2002)) is the second most common
neurodegenerative disorder after Alzheimers dis-
ease. PD displays a great prevalence in individuals
of advanced age (Dexter and Jenner, 2013), espe-
cially, over the age of fifty (Fahn, 2003). The signs
and symptoms of PD can significantly influence
the quality of life of patients. They are grouped

into two categories: motor and non-motor symp-
toms. Speech impairments are one of the earliest
manifestations in PD patients.

Early diagnosis of PD is a vital challenge in
this field. The first step in analyzing this disease
is the development of markers of PD progression
through collecting data from several cohorts. To
reach this aim, different clinical rating scales have
been developed, such as the Unified Parkinson’s
Disease Rating Scale (UPDRS), Movement Dis-
orders Society - UPDRS (MDS-UPDRS) 1 (Goetz
et al., 2008) and Hoehn & Yahr (H & Y) staging,
(Visser et al., 2006).

The UPDRS is the most widely used rating tool
for the clinical evaluation of PD patients. The ex-
amination requires observation and interview by
a professional clinician. The scale is distributed
into 4 sections: (i) Mentation, behavior and mood,
(ii) Activities of daily living (ADL), (iii) Motor
sections, and (iv) Motor complications.

One of the most common motor problems is
related to speech impairments in PD (Jankovic,
2008). Most of the patients with PD show dis-
abilities in speech production. The most common
speech disturbances are monotonic speech, hypo-
phonia (a speech weakness in the vocal muscula-
ture and vocal sounds) and hypokinetic dysarthria.
These symptoms reduce the intelligibility of the
patients, and affect different aspects of the speech
production such as articulation, phonation, nasal-
ity, and prosody (Little et al., 2009; Goetz et al.,
2008; Ramig et al., 2001). Therefore, there is a
great interest to develop tools or methods to eval-
uate and improve the speech production of PD pa-
tients.

1MDS-UPDRS is the most updated version of the UP-
DRS.
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Recently, there has been a proliferation of new
speech recognition-based tools for the acoustic
analysis of PD. The use of speech recognition
software in clinical examinations could make a
powerful supplement to the state-of-the-art sub-
jective reports of experts and clinicians that are
costly and time-consuming (e.g., Little et al.,
2009; Hernandez-Espinosa et al., 2002). In the
clinical field, the detection of PD is a complex task
due to the fact that the symptoms of this disease
are more related to clinicians’ observations and
perception of the way patients move and speak.

Recently, machine learning tools are used to de-
velop speech recognition systems that make the
whole process of objective evaluation and recogni-
tion faster and more accurate than analytical clini-
cians’ methods (Yu and Deng, 2016; Hernandez-
Espinosa et al., 2002). Using machine learning
techniques to extract acoustic features for detect-
ing the PD has become widely used in recent stud-
ies (e.g., Dahl et al., 2012; Little et al., 2009).

Automatic speech recognition (ASR) systems
are used to decode and transcribe oral speech. In
other words, the goal of ASR systems is to find and
recognize the words that best represent the acous-
tic signal. For example, automatic speech recog-
nition systems are used to evaluate how speech in-
telligibility is affected by the disease.

This study will seek to further investigate the
speech patterns of HC and PD groups using
recordings from patients speaking in German,
Spanish, and Czech. Most of the previous studies
only considered recordings in one language and
focused on it for detecting PD, but in this study,
we plan to evaluate the effect of the PD in three
different languages.

2 Related work: ASR for detecting PD
symptoms

Speech can be measured by acoustic tools sim-
ply using aperiodic vibrations in the voice. The
field of speech recognition has been improved
in recent years by research in computer-assisted
speech training system for therapy (Beijer and Ri-
etvel, 2012) machine learning techniques, which
can lead to establish efficient biomarkers to dis-
criminate HC from people with PD (e.g., Orozco-
Arroyave et al., 2013).

There are a vast number of advanced tech-
niques to design ASR systems: hybrid Deep Neu-

ral Networks-Hidden Markov Models (DNN 2-
HMM) (Hinton et al., 2012) and Convolutional
Neural Networks (CNN) (Abdel-Hamid et al.,
2014). Deep neural networks have recently re-
ceived increasing attention in speech recognition
(Canevari et al., 2013). Other studies have high-
lighted the strength of the DNN-HMM framework
for speech recognition (e.g., Dahl et al., 2012).

On the other hand, regarding the assessment of
PD from speech, Skodda et al. (2011) assessed
the progression of speech impairments of PD from
2002 to 2012 in a longitudinal study by only using
a statistical test to evaluate changes in aspects re-
lated to voice, articulation, prosody, and fluency of
the recorded speech.

Orozco-Arroyave et al. (2016) considered more
than one language for producing isolated words
for discriminating PDs from HCs. The character-
ization and classification processes were based on
a method on the systematic separation of voiced
and unvoiced segments of speech in their study.
Vásquez-Correa et al. (2017) analyzed the ef-
fect of acoustic conditions on different algorithms.
The obtained detection accuracy of PD speech was
reported and shown that the background noise af-
fect the performance of the different algorithms.
However, most of these systems are not yet capa-
ble of automatically detecting speech impairment
of individual speech sounds, which are known
to have an impact on speech intelligibility (Zhao
et al., 2010; Ramaker et al., 2002).

Our goal is to develop robust ASR systems for
pathological speech and incorporate the ASR tech-
nology to detect their speech intelligibility prob-
lems. A major interest is to investigate acoustic
features in the mentioned languages (differences
and similarities), including gender differences be-
tween subject (HC & PD) groups. The overall pur-
pose of this project is to address the question of
whether cross-lingual speech intelligibility among
PDs and HCs can help the recognition system to
detect the correct disease. The classification of
PD from speech in different languages has to be
carefully conducted to avoid bias towards the lin-
guistic content present in each language. For in-
stance, Czech and German languages are richer
than Spanish language in terms of consonant pro-
duction, which may cause that it is easier to pro-
duce consonant sounds by Czech PD patients than

2DNN is a feed-forward neural network that has more
than one layer of hidden units between its inputs and its out-
puts (Hinton et al., 2012).
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by Spanish PD patients. In addition, with the
use of transfer learning strategies, a model trained
with utterances from one language can be used as
a base model to train a model in a different lan-
guage.

After reviewing the aforementioned literature,
the main contribution of our research for modeling
speech signals in PD patients is twofold:

• This is one of the first cross-lingual stud-
ies done to evaluate speech of people with
PD. This work requires a database consisting
of recordings of different languages. There
is currently a lack of cross-lingual research,
which provides reliable classification meth-
ods for assessing PDs’ speech available in the
literature.

• Using speech data is expected to help the de-
velopment of a diagnostic of PD patients.

This project seeks to bridge the gap in speech
recognition for speech of PD, with the hope of
moving towards a higher adoption rate of ASR-
based technologies in the diagnosis of patients.

3 The set-up of the ASR system

In this work, we will build an ASR system to rec-
ognize the speech of patients of Parkinson’s Dis-
ease. The task of ASR is to convert this raw au-
dio into text. The ASR system is created based
on three models: acoustic model (i.e. to recognize
phonemes), pronunciation model (i.e. to map se-
quence of phonemes into word sequences), and
language model (i.e. to estimate probabilities of
word sequences). We place particular emphasis
on the acoustic model portion of the system. We
also provide some acoustic models output features
that could be used in future speech recognition of
PD severity in the clinical field. Ravanelli et al.
(2019) stated that along with the improvement of
ASR systems, several deep learning frameworks
(e.g., TensorFlow (Abadi et al., 2016)) in machine
learning are also widely used.

The next section describes the process for mod-
eling the intelligibility of PD speech followed by
the description of processes whether the speech
signal is from PD patient or from HC subjects.

3.1 Training
The proposed ASR system will be developed us-
ing a standard state-of-the-art architecture hybrid
DNN-HMM (see Nassif et al., 2019 for more

information about the existing models in ASR),
built using the Kaldi speech recognition toolkit
3. The preprocessing (i.e. Feature extraction) of
the acoustic signal into usable parameters (i.e. la-
bel computation) tries to remove any acoustic in-
formation that is not useful for the task; it will
be done before beginning to train the acoustic
model. In this study, we will use Mel-frequency
Cepstral coefficients (MFCC) and Mel filter bank
energies (e.g., compute-mfcc-feats and compute-
fbank-feats) to train the acoustic models of the
ASR systems. The task of calculating MFCCs
from acoustic features is to characterize an under-
lying signal using spectrograms and represent the
shape of the vocal tract including tongue, teeth etc.

It was observed that filter bank (fbank), one of
the most popular speech recognition features, per-
forms better than MFCCs when used with deep
neural networks (Hinton et al., 2012). The purpose
of using acoustic model is to help us to get bound-
aries of the phoneme labels. The acoustic models
will be trained based on different acoustic features
extracted in Kaldi ”nnet3” recipes. The extracted
acoustic features and the observation probabilities
of our ASR system will be used to train the hybrid
DNN-HMM acoustic model. The performance of
an ASR system will be measured by Word Error
Rate (WER) of the transcript produced by the sys-
tem against the target transcript.

PyTorch: PyTorch is one of the most well
known deep learning toolkit that facilitates the de-
sign of neural architectures. This tool will be used
to design new DNN architectures to improve the
performance of the ASR system. We will addition-
ally use PyTorch-Kaldi (Ravanelli et al., 2019),
to train4 deep neural network based models (e.g.,
DNNs, CNNs, and Recurrent Neural Networks
(RNNs) models) and traditional machine learning
classifier. Ravanelli et al. (2019) stated that this
PyTorch-Kaldi toolkit acts like an interface with
different speech recognition features in it and can
be used as a state-of-the-art in the field of ASR
(See Figure 1). Figure 1 is shown the general
methodology that will be applied in this research.

3Kaldi: http://kaldi-asr.org/doc/
4PyTorch-Kaldi:https://github.com/

mravanelli/pytorch-kaldi
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Figure 1: ASR system architecture that will be used in
this study (Ravanelli et al., 2019).

4 Methods

4.1 Data
The data of this study comes from an extended ver-
sion of PC-GITA database for Spanish (Orozco-
Arroyave et al., 2014), German (Skodda et al.,
2011), and Czech (Rusz et al., 2011) with more
recordings from PDs and HCs. The database con-
sists of both PD and HC subjects.

All subjects were asked to do multiple types of
speaking tasks to understand how speech changes
in different conditions, due to the fact that voice
variation is difficult to identify without human ex-
perience (Jeancolas et al., 2017). The speech di-
mensions considered in this project are phonation,
articulation and prosody (See Figure 2).

Figure 2: Speech dimensions: Phonation, Articulation
and Prosody.

For each subject, speech material includes
(i) sustained vowel phonation; participants were
asked to phonate vowels for several seconds;,
(ii) rapid syllable repetition (ideally Diadochoki-
netic (DDK)); participants were asked to produce
such as /pa-ta-ka/, /pa-ka-ta/, /pe-ta-ka/, /pa/, /ta/,

and /ka/, (iii) connected speech, consisting of:,
(iv) reading a specific text, and (v) spontaneous
speech.

This dataset consists of speech samples
recorded from 88 PD and 88 HC German speak-
ing participants, 50 PD and 50 HC Spanish
speaking participants (balanced in age and gen-
der), and 20 PD and 16 HC Czech speaking
participants. These speech samples were assessed
by expert neurologists using UPDRS-III and
H & Y scales. Their neurological labels were
reported based on the UPDRS-III and H & Y
scales (mean± SD) for each PD group:

• PD-German: UPDRS-III (22.7 ± 10.9), H&Y (2.4 ±
0.6)

• PD-Spanish: UPDRS-III (36.7 ± 18.7), H&Y (2.3 ±
0.8)

• PD-Czech: UPDRS-III (17.9± 7.3), H&Y (2.2± 0.5)

Further details are shown in Table 1:

Language HC PD
Female Male Female Male

German n= 44
(63.8± 12.7 )

n= 44
(62.6± 15.2)

n= 41
(66.2± 9.7)

n= 47
(66.7± 8.4)

Spanish n= 25
(61.4± 7.0)

n= 25
(60.3± 11.6)

n= 25
(60.7± 7.3)

n= 25
(61.6± 11.2)

Czech — n= 16
(61.8± 13.3) — n= 20

(61± 12)

Table 1: Age information of HC and PD subjects in
the study (n = number of participant) & the mean and
standard deviation are in the parenthesis (Mean±SD).

Although the size of the data is not big enough,
the vocabulary that was used by the patients in
the capture process of the speech was fixed. This
aspect compensates the need to have a huge cor-
pus to evaluate a vocabulary dependent task like
the assessment of pathological speech (see Parra-
Gallego et al., 2018).

4.2 Sample
Praat software (Boersma and Weenink, 2016) is
used for segmenting speech, extracting acoustics
features, removing silence from beginning and
end of speech file and visualization of speech
data. Generally, spoken words, represented as
sound waves, have two axes: time on the x-
axis and amplitude on the y-axis. Figure 3 illus-
trates the example of input feature maps extracted
from the speech signal which shows the selected
spectrograms (the audio waveform is encoded as
a representation) of PD and HC subjects when
they pronounce the syllable /pa-ta-ka/ that con-
vey 3-dimensional information in 2 dimensions
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(a) HC (b) PD

Figure 3: Top: Raw waveforms of /pa-ta-ka/ (x-axis: time; y-axis: amplitude). Middle: Spectrograms (x-axis:
time; y-axis: frequency; shading: amplitude (energy), darker means higher). Bottom: the word-level annotation
of the signal.

(i.e. Time: x-axis, Frequency: y-axis, and Ampli-
tude: color intensity). The proposed model will
be able to identify specific aspects in the speech
related to the pronunciation of consonants, which
are the most affected aspects of the speech of the
patients due to the disease. The segmentation pro-
cess will be performed using a trained model to de-
tect phonological classes, like those ones used in
the previous studies (Vásquez-Correa et al., 2019;
Cernak et al., 2017). Figure 3 shows the possi-
ble differences in articulation and phonation in PD
and HC subjects. By using Praat, the speech sam-
ples of syllable /pa-ta-ka/ will be segmented into
vowel and consonant frames. The contour of HC
sample is more stable than the obtained contour
from PD sample. In each sample, silences will be
removed from the beginning and the end of each
token, using Praat.

5 Conclusion

In this research proposal, we introduced and de-
scribed the background for speech recognition of
PD patients. The focus is on Parkinsons disease
speech recognition based on the acoustic analysis
of their voice. A brief overview of clinical and
machine learning research in this field was pro-
vided. The goal is to improve the ASR system to
be able to model and detect PD patients indepen-
dently from their language by taking speech as an
input and using machine learning and natural lan-
guage processing technologies to advance health-
care and provide an overview of the patients men-

tal health. All in all, the proposed method should
be able to detect the patient with PD and discrimi-
nate them from HC subjects.
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Abstract

This paper presents a more recent literature re-
view on Natural Language Generation. In par-
ticular, we highlight the efforts for Brazilian
Portuguese in order to show the available re-
sources and the existent approaches for this
language. We also focus on the approaches
for generation from semantic representations
(emphasizing the Abstract Meaning Represen-
tation formalism) as well as their advantages
and limitations, including possible future di-
rections.

1 Introduction

Natural Language Generation (NLG) is a promis-
ing area in Natural Language Processing (NLP)
community. NLG aims to build computer sys-
tems that may produce understandable texts in En-
glish or other human languages from some under-
lying non-linguistic representation of information
(Reiter and Dale, 2000). Tools generated by this
area are useful for other applications like Auto-
matic Summarization, Question-Answering Sys-
tems, and others.

There are several efforts in NLG for English1.
For example, one may see the works of Krahmer
et al. (2003) and Li et al. (2018), which focused
on referring expressions generation, and the work
of (Gatt and Reiter, 2009), focused on developing
a surface realisation tool called SimpleNLG. One
may also easily find other works that tried to gen-
erate text from semantic representations (Flanigan
et al., 2016; Ferreira et al., 2017; Puzikov and
Gurevych, 2018b).

For Brazilian Portuguese, there are few works,
some of them focused on representations like Uni-
versal Networking Language (UNL) (Nunes et al.,
2002) or Resource Description Framework (RDF)

1Most of the works may be found in the main NLP publi-
cation portal at https://www.aclweb.org/anthology/

(Moussallem et al., 2018), and other ones that are
very specific to the Referring Expression Gener-
ation (Pereira and Paraboni, 2008; Lucena et al.,
2010) and Surface Realisation tasks (Oliveira and
Sripada, 2014; Silva et al., 2013).

More recently, several representations have
emerged in the NLP area (Gardent et al., 2017;
Novikova et al., 2017; Mille et al., 2018). In par-
ticular, Abstract Meaning Representation (AMR)
has gained interest from the research community
(Banarescu et al., 2013). It is a semantic formal-
ism that aims to encode the meaning of a sen-
tence with a simple representation in the form of
a directed rooted graph. This representation in-
cludes information about semantic roles, named
entities, wiki entities, spatial-temporal informa-
tion, and co-references, among other information.

AMR has gained attention mainly due to its
simplicity to be read by humans and computers,
its attempt to abstract away from syntactic id-
iosyncrasies (focusing only on semantic process-
ing) and its wide use of other comprehensive lin-
guistic resources, such as PropBank (Palmer et al.,
2005) (Bos, 2016).

For English, there is a large AMR-annotated
corpus that contains 39,260 AMR-annotated sen-
tences2, which allows deeper studies in NLG and
experiments with different approaches (mainly
statistical approaches). This may be evidenced
in the SemEval-2017 shared-task 9 (May and
Priyadarshi, 2017)3.

For Brazilian Portuguese, Anchiêta and Pardo
(2018) built the first corpus using sentences from
the “The Little Prince” book. The authors took
advantage of the alignment between the English
and Brazilian Portuguese versions of the book to
import the AMR structures from one language to

2Available at https://catalog.ldc.upenn.edu/LDC2017T10.
3Available at http://alt.qcri.org/semeval2017/task9/.
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another (but also performing the necessary adap-
tations). They had to use the Verbo-Brasil reposi-
tory (Duran et al., 2013; Duran and Aluı́sio, 2015),
which is a PropBank-like resource for Portuguese.
Nowadays, there is an effort to build a larger
AMR-annotated corpus that is similar to the cur-
rent one available for English.

In this context, this study presents a litera-
ture review on Natural Language Generation for
Brazilian Portuguese in order to show the re-
sources (in relation to semantic representations)
that are available for Portuguese and the existent
efforts in the area for this language. We focus
on the NLG approaches based on semantic repre-
sentations and discuss their advantages and limi-
tations. Finally, we suggest some future directions
to the area.

2 Literature Review

The literature review was based on the following
research questions:

• What was the focus of the existent NLG
efforts for Portuguese and which resources
were used for this language?

• What challenges exist in the NLG ap-
proaches?

• What are the advantages and limitations in
the approaches for NLG from semantic repre-
sentations, specially Abstract Meaning Rep-
resentation?

Such issues are discussed in what follows.

2.1 Natural Language Generation for
Portuguese

In general, we could find few works for Por-
tuguese (considering the existing works for En-
glish). These works focus mainly on the refer-
ring expression generation (Pereira and Paraboni,
2008; Lucena et al., 2010) and surface realiza-
tion tasks (Silva et al., 2013; Oliveira and Sri-
pada, 2014), usually restricted to specific domains
and applications (like undergraduate test scoring).
Nevertheless, there are some recent attempts fo-
cused on other tasks and in more general domains
(Moussallem et al., 2018; Sobrevilla Cabezudo
and Pardo, 2018).

Among the NLG approaches, we may highlight
the use of templates (Pereira and Paraboni, 2008;
Novais et al., 2010b), rules (Novais and Paraboni,

2013) and language models (LM) (Novais et al.,
2010a). In general, these approaches were suc-
cessful because they were focused on restricted
domains. Specifically, template-based methods
used basic templates to build sentences. Simi-
larly, some basic rules involving noun and verbal
phrases were defined to build sentences. Finally,
LM-based methods applied a two-stage strategy to
generate sentences. This strategy consisted in gen-
erating surface realization alternatives and select-
ing the best alternative according to the language
model.

In the case of LM-based methods, we may point
out that classical LMs (based on n-grams) were
not suitable because it was necessary to use a large
corpus to deal with sparsity of data. Sparsity is a
big problem in morphologically marked languages
like Portuguese. In order to solve the sparsity of
the data, some works used Factored LMs, obtain-
ing better results than the classical LMs (de Novais
et al., 2011).

In relation to NLG from semantic representa-
tions for Portuguese, we may point out the work
of Nunes et al. (2002) (focused on Universal Lan-
guage Networking), and Moussallem et al. (2018)
(focused on ontologies). Another representation
was the one proposed by Mille et al. (2018) (based
on Universal Dependencies), which is based on
syntax instead of semantics.

In relation to NLG tools, we highlight PortNLG
(Silva et al., 2013) and SimpleNLG-BP (Oliveira
and Sripada, 2014) as surface realisers that were
based on SimpleNLG initiative (Gatt and Reiter,
2009)4. Finally, other NLG works aimed to build
NLP applications, e.g., for structured data visual-
ization and human-computer interaction purposes
(Pereira et al., 2012, 2015).

2.2 Natural Language Generation from
Semantic Representations

Recently, the number of works on NLG
from semantic representations has increased.
This increase is reflected in the shared tasks
WebNLG (Gardent et al., 2017), E2E Challenge
(Novikova et al., 2017), Semeval Task-9 (May
and Priyadarshi, 2017) and Surface Realization
Shared-Task (Belz et al., 2011; Mille et al., 2018).

In general, there is a trend to apply methods
based on neural networks. However, methods

4Specifically, SimpleNLG-BP was built using the French
version of SimpleNLG due to the similarities between both
languages.
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based on templates, transformation to intermediate
representations and language models have shown
interesting results. It is also worthy noticing that
most of these methods have been applied to En-
glish, except for the methods presented in the
shared-task proposed by Mille et al. (2018).

In relation to the shared-tasks mentioned before,
we point out that the one proposed by Belz et al.
(2011) and Mille et al. (2018) (based on Univer-
sal Dependencies) used syntactic representations.
Specifically, they presented two tracks, one fo-
cused on word reordering and inflection genera-
tion (superficial track), and other that focused on
generating sentences from a deep syntactic repre-
sentation that is similar to a semantic represen-
tation (deep track). Furthermore, these tasks fo-
cused on several languages in the superficial task
(including Portuguese) and three languages in the
deep track (English, Spanish, and French).

Among the methods used for the superficial
track in these shared-tasks, we may highlight the
use of rule-based methods and language models in
the early years (Belz et al., 2011) and a wide ap-
plication of neural models in recent years (Mille
et al., 2018). In the case of the deep track, it is pos-
sible to notice that rule-based methods were ap-
plied in the first competition, and methods based
on transformation to intermediate representations
and based on neural models were applied in the
last competition.

The results in these tasks showed that ap-
proaches based on transformation to intermediate
representations obtained poor results in the auto-
matic evaluation due to the great effort in building
transformation rules for their own systems. How-
ever, they usually showed better results in human
evaluations. This may be explained by the matu-
rity of the original proposed systems. This way,
although the coverage of the rules was not good,
the results were good from a human point of view.

Differently from the approach mentioned be-
fore, methods based on neural models (deep learn-
ing) obtained the best results. However, some
methods used data augmentation strategies to deal
with data sparsity (Elder and Hokamp, 2018; So-
brevilla Cabezudo and Pardo, 2018).

One point to highlight is that the results for Por-
tuguese were poor (compared to similar languages
like Spanish). Two reasons to explain this issue are
related to the amount of data for Portuguese in this
task (less than English or Spanish) and the quality

of the existing models for related tasks that were
used. Another point to highlight is the division of
the general task into two sub-tasks: linearisation
and inflection generation. Puzikov and Gurevych
(2018a) pointed out that there is a strong relation
between the linearisation and the inflection gener-
ation, and, thus, both sub-tasks should be treated
together.

In contrast to Puzikov and Gurevych (2018a),
(Elder and Hokamp, 2018) showed that incorpo-
rating syntax and morphological information into
neural models did not bring significant contribu-
tion in the generation process, but incorporated
more difficulty in the task.

Finally, it is important to notice the proposal of
Madsack et al. (2018), which trained linearisation
models using the dataset for each language inde-
pendently and in a joint way, using multilingual
embeddings. Although the results of this work did
not present a lot of variation when used for all lan-
guages together, this work suggests that it is pos-
sible to train systems with similar languages (for
example, Spanish and French) in order to take ad-
vantage of the syntax similarities and to overcome
the problems of lack of data.

In relation to other used representations (Gar-
dent et al., 2017; Novikova et al., 2017), a large
number of works based on deep learning strategies
were proposed, obtaining good results. However,
the use of pipeline-based methods yielded promis-
ing results regarding grammar and fluency criteria
in a joint evaluation (for RDF representation), but
these methods (which usually use rules) obtained
the worst results in the E2E Challenge.

Methods based on Statistical Machine Transla-
tion kept a reasonable performance (ranking 2nd
in RDF Shared-Task), obtaining good results when
evaluating the grammar. The explanation for this
result comes from the ability to learn complete
phrases. Thus, these methods may generate gram-
matically correct phrases, but with poor general
fluency and dissimilarity to the target output. Fi-
nally, methods based on template obtained promis-
ing results in restricted domains, like in the E2E
Challenge.

2.3 Natural Language Generation from
Abstract Meaning Representation

In relation to generation methods from Abstract
Meaning Representation, it was possible to high-
light approaches based on machine translation
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(Pourdamghani et al., 2016; Ferreira et al., 2017),
on transformation to intermediate representations
(Lampouras and Vlachos, 2017; Mille et al.,
2017), on deep learning models (Konstas et al.,
2017; Song et al., 2018), and on rule extraction
(from graphs and trees) (Song et al., 2016; Flani-
gan et al., 2016).

Methods based on transformation into inter-
mediate representations focused on transforming
AMR graphs into simpler representations (usu-
ally dependency trees) and then using an appro-
priate surface realization system. Authors usually
took advantage of the similarity between depen-
dency trees and AMR graphs to map some results.
However, some problems in this approach were
the need to manually build transformation rules
(excepting for Lampouras and Vlachos (2017),
who automatically perform this) and the need of
alignments between the AMR graph and inter-
mediate representations, which could bring noise
into the generation process. Overall, this ap-
proach presented poor results (compared to other
approaches) in automatic evaluations5

Methods based on rule extraction obtained bet-
ter results than the approach mentioned previ-
ously. This approach tries to learn conversion
rules from AMR graphs (or trees) to the final text.
First methods of this approach tried to transform
the AMR graph into a tree before learning rules.
As (Song et al., 2017) mentioned, these methods
suffer with the loss of information (by not using
graphs and being restricted to trees), due to its
projective nature. Likewise, (Song et al., 2016)
and (Song et al., 2017) could suffer from the same
problem (ability to deal with non-projective struc-
tures) due to their nature to extract and apply the
learned rules. Furthermore, these methods used
some manual rules to keep the text fluency. How-
ever, these rules did not produce a statistically sig-
nificant increase in the performance, when com-
pared to learned rules.

Some problems of this approach are related to:
(1) the need of alignments between AMR graph
and the target sentence, as the aligners could lead
to more errors (depending of the performance) in
the rule extraction process; (2) the argument re-
alization modeling (Flanigan et al., 2016; Song
et al., 2016); and (3) the data sparsity in the rules,
as some rules are too specific and there is a need

5Except for the work of Gruzitis et al. (2017), who incor-
porated the system proposed by Flanigan et al. (2016) into
their pipeline.

to generalize them.
Methods based on Machine Translation usu-

ally outperformed other methods. Specifically,
methods based on Statistical Machines Transla-
tion (SMT) outperformed methods based on Neu-
ral Machine Translation (NMT), which use data
augmentation strategies to improve their perfor-
mance (Konstas et al., 2017). In general, both
SMT and NMT-based methods explored some pre-
processing strategies like delexicalisation6, com-
pression7 and graph linearisation8 (Ferreira et al.,
2017)

In relation to the linearisation, the proposals
of Pourdamghani et al. (2016) and Ferreira et al.
(2017) depended on alignments to perform lineari-
sation. Both works point out that the way lineari-
sation is carried out affects performance, thus, lin-
earisation is an important preprocessing strategy
in NLG. However, Konstas et al. (2017) show that
linearisation is not that important in NMT-based
methods, as the authors propose a data augmenta-
tion strategy, decreasing the effect of the linearisa-
tion.

In relation to compression, the dependency of
alignments also occurred. Moreover, it is neces-
sary a deep analysis to determine the usefulness
of compression. On the one hand, compression
contributed positively in the SMT-based methods
but, on the other hand, it was harmful in NMT-
based methods (Ferreira et al., 2017). It is also
important to point out that both compression and
linearisation processes were executed in sequence
in these works. This could be harmful, as the order
of execution could lead to loss of information.

Finally, according to (Ferreira et al., 2017),
delexicalisation produces an increase and decrease
of performance in NMT-based and SMT-based
methods, respectively. An alternative to deal with
data sparsity is to use copy mechanisms, which
have shown performance increase in NLG meth-
ods (Song et al., 2018).

Some limitations of these methods were the
alignment dependency (similar to the previous ap-
proaches) and the linearisation of long sentences.
NMT-based methods could not represent or cap-
ture information for long sentences, producing un-

6Delexicalisation aims to decrease the data sparsity by re-
placing some common tokens by constants.

7Compression tries to keep important concepts and rela-
tions in the text generation process.

8Linearisation tries to transform the graph into a sequence
of tokens.
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satisfactory results.
In order to solve these problems, methods based

on neural models proposed Graph-to-Sequence
architectures to better capture information from
AMR graphs. This architecture showed better re-
sults than its predecessors, requiring less training
data (augmented data) (Beck et al., 2018).

The main difficulty associated to deep learning
is the need of large corpora to get better results.
Thus, this could be hard to get for languages like
Portuguese, as there are no large available corpora
as there are for English.

3 Conclusions and Future Directions

This work showed a more recent literature re-
view on NLG, specially those based on semantic
representations and for Brazilian Portuguese lan-
guage. As it may be seen, NLG works for Por-
tuguese were mainly focused on Referring Expres-
sion Generation and Surface Realisation. There
were a few recent works about NLG from se-
mantic representations like ontologies or Univer-
sal Dependencies (although this last one is of syn-
tactic nature), producing poor results.

Some resources for Portuguese were found (ad-
ditional to AMR-annotated corpus), as corpora for
generation from RDF (Moussallem et al., 2018)
and from Universal Dependencies (Mille et al.,
2018). This opens the possibility to explore the
use of other resources for similar tasks in order
to improve the AMR-to-Text generation. There
are also corpora for languages that are relatively
similar to Portuguese. Considering the proposal
of Madsack et al. (2018), to learn realisations
from languages that share some characteristics
with Portuguese (like French or Spanish) is a rea-
sonable alternative.

Among other strategies to deal with lack of data,
it is possible to consider Unsupervised Machine
Translation and back-translation strategies. The
first one tries to learn without parallel corpora
(these would be a corpus of AMR graphs and a
corpus of sentences). This strategy has proven to
be useful in this context (Lample et al., 2018a,b;
Freitag and Roy, 2018). In this case, it would be
necessary to extend the corpus of AMR annota-
tions, which could represent one of the challenges.
The second one aims to generate corpus in a target
language (Portuguese) from other languages (as
English) in order to increase the corpus size and
reduce the data sparseness. In this case, it is nec-

essary to evaluate the influence of the quality of
translations and how this affects the performance
of the text generator.

Additionally to the above issue, there are cur-
rently large corpora for Portuguese (for example,
the corpus used by Hartmann et al. (2017)), which
may allow to train robust language models.

The main challenges for Portuguese are its mor-
phologically marked nature and its high syntac-
tic variation9. These challenges contribute to data
sparseness. Thus, two-stage strategies might not
be useful, producing an explosion in the search
for the best alternative. Moreover, to treat syn-
tactic ordering and inflection generation together
could lead to the introduction of more complexity
into the models. Therefore, to tackle NLG for Por-
tuguese as two separate tasks seems to be a good
alternative, reducing the complexity of the syntac-
tic ordering and treating inflection generation as a
sequence labeling problem.

Among the challenges associated to the meth-
ods found in the literature, we may highlight two:
(1) the alignment dependency, and (2) the need to
better understand the semantic representations (in
our case, the AMR graphs) to be able to deduce
how they may be syntactically and morphologi-
cally realized.

Several approaches need alignments to learn
rules and ways to linearise and compress data in
AMR graphs. This is a problem because there is
a need to manually align AMR graphs and target
sentences in order to allow the tools to learn to
align by themselves and, then, to introduce these
tools into some existent NLG pipeline. Thus, lim-
itations in the aligners may lead to errors in the
NLG pipeline. This problem could be bigger in
NLG for Portuguese as there is limited resources,
and some of these do not present alignments. To
solve this, it is possible to use approaches those
are not constrained by explicit graph-to-text align-
ments (for example, graph-to-sequence architec-
tures). Furthermore, this could help to join all the
available resources for similar tasks (i. e., cor-
pora for other semantic representations), with no
need of alignments, in a easy way and train a se-
mantic representation-independent text generation
method. However, it is necessary to measure the
usefulness of this approach, comparing it with tra-
ditional methods.

9The interested reader may find an overview
of Portuguese characteristics at http://www.meta-
net.eu/whitepapers/volumes/portuguese.
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Finally, to better understand a semantic repre-
sentation (and what it means) is very important, as
one may better learn the possible syntactic realisa-
tions and, therefore, to give a better clue of how
sentences may be morphologically constructed.
For Portuguese, there is a challenge to deal with
different semantic representations. Although the
concepts may be shared among different semantic
representations, relations are not the same, and the
decision on how to code them could generate some
problems in the NLG training.
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20(3):31–48.

Marco Antonio Sobrevilla Cabezudo and Thiago
Pardo. 2018. Nilc-swornemo at the surface real-
ization shared task: Exploring syntax-based word
ordering using neural models. In Proceedings of
the First Workshop on Multilingual Surface Reali-
sation, pages 58–64. Association for Computational
Linguistics.

Linfeng Song, Xiaochang Peng, Yue Zhang, Zhiguo
Wang, and Daniel Gildea. 2017. Amr-to-text gener-
ation with synchronous node replacement grammar.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, pages 7–
13. Association for Computational Linguistics.

Linfeng Song, Yue Zhang, Xiaochang Peng, Zhiguo
Wang, and Daniel Gildea. 2016. Amr-to-text gener-
ation as a traveling salesman problem. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2084–2089,
Austin, Texas. Association for Computational Lin-
guistics.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for amr-
to-text generation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics, pages 1616–1626. Association for Com-
putational Linguistics.

88



Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 89–99
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

Long-Distance Dependencies don’t have to be Long:
Simplifying through Provably (Approximately) Optimal Permutations

Rishi Bommasani
Department of Computer Science

Cornell University
rb724@cornell.edu

Abstract

Neural models at the sentence level often op-
erate on the constituent words/tokens in a way
that encodes the inductive bias of processing
the input in a similar fashion to how humans
do. However, there is no guarantee that the
standard ordering of words is computationally
efficient or optimal. To help mitigate this, we
consider a dependency parse as a proxy for
the inter-word dependencies in a sentence and
simplify the sentence with respect to combi-
natorial objectives imposed on the sentence-
parse pair. The associated optimization re-
sults in permuted sentences that are provably
(approximately) optimal with respect to min-
imizing dependency parse lengths and that
are demonstrably simpler. We evaluate our
general-purpose permutations within a fine-
tuning schema for the downstream task of sub-
jectivity analysis. Our fine-tuned baselines re-
flect a new state of the art for the SUBJ dataset
and the permutations we introduce lead to fur-
ther improvements with a 2.0% increase in
classification accuracy (absolute) and a 45%
reduction in classification error (relative) over
the previous state of the art.

1 Introduction

Natural language processing systems that operate
at the sentence level often need to model the in-
teraction between different words in a sentence.
This kind of modelling has been shown to be nec-
essary not only in explicit settings where we con-
sider the relationships between words (GuoDong
et al., 2005; Fundel et al., 2006) but also in opinion
mining (Joshi and Penstein-Rosé, 2009), question
answering (Cui et al., 2005), and semantic role la-
belling (Hacioglu, 2004). A standard roadblock
in this process has been trying to model long-
distance dependencies between words. Neural
models for sentence-level tasks, for example, have
leveraged recurrent neural networks (Sutskever

et al., 2014) and attention mechanisms (Bahdanau
et al., 2015; Luong et al., 2015) as improvements
in addressing this challenge. LSTMs (Hochreiter
and Schmidhuber, 1997) in particular have been
touted as being well-suited for capturing these
kinds of dependencies but recent work suggests
that the modelling may be insufficient to vari-
ous extents (Linzen et al., 2016; Liu et al., 2018;
Dangovski et al., 2019). Fundamentally, these
neural components do not restructure the chal-
lenge of learning long-distance dependencies but
instead introduce computational expressiveness as
a means to represent and retain inter-word rela-
tionships efficiently (Kuncoro et al., 2018).

Models that operate at the sentence level in nat-
ural language processing generally process sen-
tences word-by-word in a left-to-right fashion.
Some models, especially recurrent models, con-
sider the right-to-left traversal (Sutskever et al.,
2014) or a bidirectional traversal that combines
both the left-to-right and right-to-left traversals
(Schuster and Paliwal, 1997). Other models
weaken the requirement of sequential processing
by incorporating position embeddings to retain the
sequential nature of the data and then use self-
attentive mechanisms that don’t explicitly model
the sequential nature of the input (Vaswani et al.,
2017). All such approaches encode the prior that
computational processing of sentences should ap-
peal to a cognitively plausible ordering of words.

Nevertheless in machine translation, re-
orderings of both the input and output sequences
have been considered for the purpose of im-
proving alignment between the source and target
languages. Specifically, preorders, or permuting
the input sequence, and postorders, or permuting
the output sequence, have been well-studied in
statistical machine translation (Xia and McCord,
2004; Goto et al., 2012) and have been recently in-
tegrated towards fully neural machine translation
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(De Gispert et al., 2015; Kawara et al., 2018). In
general, these re-ordering methods assume some
degree of supervision (Neubig et al., 2012) and
have tried to implicitly maintain the original struc-
ture of the considered sequence despite modifying
it to improve alignment. Similar approaches have
also been considered for cross-lingual transfer
in dependency parsing (Wang and Eisner, 2018)
based on the same underlying idea of improving
alignment.

In this work, we propose a general approach for
permuting the words in an input sentence based
on the notion of simplification, i.e. reducing the
length of inter-word dependencies in the input. In
particular, we appeal to graph-based combinato-
rial optimization as an unsupervised approach for
producing permutations that are provably optimal,
or provably approximately optimal, in minimizing
inter-word dependency parse lengths.

Ultimately, we hypothesize that our
simplification-based permutations over input
sentences can be incorporated as a lightweight,
drop-in preprocessing step for neural models to
improve performance for a number of standard
sentence-level NLP problems. As an initial case
study, we consider the task of sentence-level
subjectivity classification and using the SUBJ
dataset (Pang and Lee, 2004), we first introduce
baselines that achieve a state of the art 95.8%
accuracy and further improve on these baselines
with our permutations to a new state of the art of
97.5% accuracy.

2 Limitations

This work considers simplifying inter-word de-
pendencies for neural models. However, we mea-
sure inter-word dependencies using dependency
parses and therefore rely on an incomplete de-
scription of inter-word dependencies in general.
Further, we assume the existence of a strong
dependency parser, which is reasonably well-
founded for English which is the language stud-
ied in this work. This assumption is required for
providing theoretical guarantees regarding the op-
timality of sentence permutations with respect to
the gold-standard dependency parse.1 In spite of
these assumptions, it is still possible for the subse-
quent neural models to recover from errors in the

1The generated permutations are always (approximately)
optimal with respect to the system-generated dependency
parse.

initial sentence permutations.
Beyond this, we consider dependency parses

which graph theoretically are edge-labelled di-
rected trees. However, in constructing optimal
sentence permutations, we simplify the graph
structure by neglecting edge labels and edge di-
rections. Both of these are crucial aspects of a de-
pendency parse tree and in §6 we discuss possible
future directions to help address these challenges.

Most concerningly, this approach alters the or-
der of words in a sentence for the purpose of sim-
plifying one class of dependencies — binary inter-
word dependencies marked by dependency parses.
However, in doing so, it is likely that other crucial
aspects of the syntax and semantics of a sentence
that are a function of word order are obscured.
We believe the mechanism proposed in §3.3 helps
to alleviate this by making use of powerful ini-
tial word representations that are made available
through recent advances in pretrained contextual
representations and transfer learning (Peters et al.,
2018; Devlin et al., 2018; Liu et al., 2019).

3 Model

Our goal is to take a dependency parse of a sen-
tence and use it is as scaffold for permuting the
words in a sentence. We begin by describing two
combinatorial measures on graphs that we can use
to rank permutations of the words in a sentence
by, and therefore optimize with respect to, in or-
der to find the optimal permutation for each mea-
sure. Given the permutation, we then train a model
end-to-end on a downstream task and exploit pre-
trained contextual word embeddings to initialize
the word representations for our model.

3.1 Input Structure

Given a sentence as an input for some down-
stream task, we begin by computing a depen-
dency parse for the sentence using an off-the-
shelf dependency parser. This endows the sen-
tence with a graph structure corresponding to an
edge-labelled directed tree G∗ = (V∗, E∗) where
the vertices correspond to tokens in the sentence
(V∗ = {w1, w2, . . . , wn}) and the edges corre-
spond to dependency arcs. We then consider the
undirected tree G = (V, E) where V = V∗ and
E = E∗ without the edge labels and edge direc-
tions.
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3.2 Combinatorial Objectives

We begin by defining a linear layout on G to be a
bijective, i.e. one-to-one, ordering on the vertices
π : V → {1, 2, . . . , n}. For a graph associated
with a sentence, we consider the identity linear
layout πI to be given by πI(wi) = i: the linear
layout of vertices is based on the word order in the
input sentence. For any given linear layout π we
can further associate each edge (u, v) ∈ E with an
edge distance du,v = |π(u)− π(v)|.2

By considering the modified dependency parse
G alongside the sentence, we recognize that a
computational model of the sentence may need
to model any given dependency arc (wi, wj) ∈
E . As a result, for a model that processes sen-
tences word-by-word, information regarding this
arc must be stored for a number of time-steps
given by dwi,wj = |πI(wi) − πI(wj)| = |j − i|.
This implies that a model may need to store a
dependency for a large number of time-steps (a
long-distance dependency) and we instead con-
sider finding an optimal linear layout π∗ (that is
likely not to be the identity) to minimize these
edge distances with respect to two well-studied
objectives on linear layouts.

Bandwidth Problem The bandwidth problem
on graphs corresponds to finding an optimal lin-
ear layout π∗ under the objective:

argmin
π∈Π

max
(u,v)∈E

du,v (1)

The bandwidth problem is a well known prob-
lem dealing with linear layouts with applications
in sparse matrix computation (Gibbs et al., 1976)
and information retrieval (Botafogo, 1993) and has
been posed in equivalent ways for graphs and ma-
trices (Chinn et al., 1982). For dependency parses,
it corresponds to finding a linear layout that min-
imizes the length of the longest dependency. Pa-
padimitriou (1976) proved the problem was NP-
hard and the problem was further shown to re-
main NP-hard for trees and even restricted classes
of trees (Unger, 1998; Garey et al., 1978). In
this work, we use the better linear layout of those
produced by the guaranteed O(log n) approxima-
tion of Haralambides and Makedon (1997) and the
heuristic of Cuthill and McKee (1969) and refer to
the resulting linear layout as π∗b .

2Refer to Dı́az et al. (2002) for a survey of linear layouts,
related problems, and their applications.

Minimum Linear Arrangement Problem
Similar to the bandwidth problem, the minimum
linear arrangement (minLA) problem considers
finding a linear layout given by:

argmin
π∈Π

∑

(u,v)∈E
du,v (2)

While less studied than the bandwidth problem,
the minimum linear arrangement problem con-
siders minimizing the sum of the edge lengths
of the dependency arcs which may more closely
resemble how models need to not only handle
the longest dependency well, as in the bandwidth
problem, but also need to handle the other de-
pendencies. Although the problem is NP-hard for
general graphs (Garey et al., 1974), it admits poly-
nomial time exact solutions for trees (Shiloach,
1979). We use the algorithm of Chung (1984),
which runs in O(n1.585), to find the optimal lay-
out π∗m.

3.3 Downstream Integration

Given a linear layout π, we can define the associ-
ated permuted sentence s′ of the original sentence
s = w1 w2 . . . wn where the position of wi in
s′ is given by π(wi). We can then train models
end-to-end taking the permuted sentences as di-
rect replacements for the original input sentences.
However, this approach suffers from the facts that
(a) the resulting sentences may have lost syntac-
tic/semantic qualities of the original sentences due
to the permutations and (b) existing pretrained
embedding methods would need to be re-trained
with these new word orders, which is computa-
tionally expensive, and pretraining objectives like
language modelling may be less sensible given the
problems noted in (a). To reconcile this, we lever-
age a recent three-step pattern for many NLP tasks
(Peters et al., 2019):

1. Pretrained Word Representations: Repre-
sent each word in the sentence using a pre-
trained contextualizer (Peters et al., 2018;
Devlin et al., 2018).

2. Fine-tuned Sentence Representation:
Learn a task-specific encoding of the sen-
tence using a task-specific encoder as a
fine-tuning step on top of the pretrained word
representations.

3. Task Predictions: Generate a prediction for
the task using the fine-tuned representation.
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As a result, we can introduce the permutation be-
tween steps 1 and 2. What this means is the initial
pretrained representations model the sentence us-
ing the standard ordering of words and therefore
have access to the unchanged syntactic/semantic
properties. These properties are diffused into the
word-level representations and therefore the fine-
tuning encoder may retrieve them even if they are
not observable after the permutation. This allows
the focus of the task-specific encoder to shift to-
wards modelling useful dependencies specific to
the task.

4 Experiments

Using our approach, we begin by studying how
optimizing for these combinatorial objectives af-
fects the complexity of the input sentence as mea-
sured using these objective functions. We then
evaluate performance on the downstream task of
subjectivity analysis and find our baseline model
achieves a new state of the art for the dataset which
is improved further by the permutations we intro-
duce.

For all experiments, we use the spaCy depen-
dency parser (Honnibal and Montani, 2017) to
find the dependency parse. In studying properties
of the bandwidth optimal permutation π∗b and the
minLA optimal permutation π∗m, we compare to
baselines where the sentence is not permuted/the
identity permutation πI as well as where the words
in the sentence are ordered using a random permu-
tation πR. A complete description of experimen-
tal and implementation details is provided in Ap-
pendix A.

Our permutations do not introduce or change
the size or runtime of existing models while pro-
viding models with dependency parse information
implicitly. The entire preprocessing process, in-
cluding the computation of permutations for both
objectives, takes 21 minutes in aggregate for the
10000 examples in the SUBJ dataset. A complete
description of changes in model size, runtime, and
convergence speed is provided in Appendix B.

Data and Evaluation To evaluate the direct
effects of our permutations on input sentence
simplification, we use 100000 sentences from
Wikipedia; to evaluate the downstream impacts we
consider the SUBJ dataset (Pang and Lee, 2004)
for subjectivity analysis. The subjectivity anal-
ysis task requires deciding whether a given sen-
tence is subjective or objective and the dataset is
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Figure 1: Example of the sentence permutation along
with overlayed dependency parses. Blue indicates the
standard ordering, green indicates the bandwidth opti-
mal ordering, and red indicates the minLA optimal or-
dering. Black indicates the longest dependency arc in
the original ordering.

balanced with 5000 subjective and 5000 objective
examples. We consider this task as a starting point
as it is well-studied and dependency features have
been shown to be useful for similar opinion min-
ing problems (Wu et al., 2009).

Examples In Figure 1, we present an example
sentence and its permutations under πI , π∗b and
π∗m. Under the standard ordering, the sentence has
bandwidth 8 and minLA score 22 and this is re-
duced by both the bandwidth optimal permutation
to 3 and 17 respectively and similarly the minLA
permutation also improves on both objectives with
scores of 6 and 16 respectively. A model process-
ing the sequence word-by-word may have strug-
gled to retain the long dependency arc linking ‘re-
ject’ and ‘won’ and therefore incorrectly deemed
that ‘actor’ was the subject of the verb ‘won’ as
it is the only other viable candidate and is closer
to the verb. If this had occured, it would lead an
incorrect interpretation (here the opposite mean-
ing). While both of the introduced permutations
still have ‘actor’ closer to the verb, the distance
between ‘reject’ and ‘won’ shrinks (denoted by the
black arcs) and similarly the distance between ‘un-
like’ and ‘actor’ shrinks. These combined effects
map help to mitigate this issue and allow for im-
proved modelling. Across the Wikipedia data, we
see a similar pattern for the minLA optimal per-
mutations in that they yield improvements on both
objectives but we find the bandwidth optimal per-
mutations on average increase the minLA score
as is shown in Table 1. We believe this is nat-
ural given the relationship of the objectives; the
longest arc is accounted for in the minLA objec-
tive whereas the other arcs don’t contribute to the
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Bandwidth minLA
πI (Standard) 17.64 82.39
πR (Random) 20.94 294.43
π∗b (Bandwidth) 6.75 101.23
π∗m (minLA) 9.43 54.57

Table 1: Bandwidth and minimum linear arrange-
ment scores for the specified permutation type averaged
across 100000 Wikipedia sentences.

Accuracy
πI (Standard) 95.8
πR (Random) 94.8
π∗b (Bandwidth) 96.2
π∗m (minLA) 97.5
AdaSent (Zhao et al., 2015)† 95.5
CNN+MCFA (Amplayo et al., 2018)† 94.8

Table 2: Accuracy on the SUBJ dataset using the spec-
ified ordering of pretrained representations for the fine-
tuning LSTM. † indicates prior models that were evalu-
ated using 10-fold cross validation instead of a held-out
test set.

bandwidth cost. We also find the comparison of
the standard and random orderings to be evidence
that human orderings of words to form sentences
(at least in English) are correlated with these ob-
jectives, as they are significantly better with re-
spect to these objectives as compared to random
orderings. Refer to Figure 3 for a larger example.

Downstream Performance In Table 2, we
present the results on the downstream task. De-
spite the fact that the random permutation LSTM
encoder cannot learn from the word order and im-
plicitly is restrained to permutation-invariant fea-
tures, the associated model performs comparably
with previous state of the art systems, indicating
the potency of current pretrained embeddings and
specifically ELMo. When there is a deterministic
ordering, we find that the standard ordering is the
least helpful of the three orderings considered. We
see a particularly significant spike in performance
when using permutations that are minLA optimal
and we conjecture that this may be because minLA
permutations improve on both objectives on aver-
age and empirically we observe they better main-
tain the order of the original sentence (as can be
seen in Figure 1).

5 Related Work

This work draws upon inspiration from the liter-
ature on psycholinguistics and cognitive science.
Specifically, dependency lengths and the existing
minimization in natural language has been studied
under the dependency length minimization (DLM)
hypothesis (Liu, 2008) which posits a bias in hu-
man languages towards constructions with shorter
dependency lengths.3

In particular, the relationship described between
random and natural language orderings of words
to form sentences as in Table 1 has been stud-
ied more broadly across 37 natural languages in
Futrell et al. (2015). This work, alongside Gildea
and Temperley (2010); Liu et al. (2017); Futrell
et al. (2017) helps to validate the extent and per-
vasiveness of DLM in natural languages. More
generally, this literature body has proposed a num-
ber of reasons for this behavior, many of which
center around the related notions of efficiency
(Gibson et al., 2019) and memory constraints
(Gulordava et al., 2015) for humans. Recent
research at the intersection of psycholinguistics
and NLP that has tried to probe for dependency-
oriented understanding in neural networks (pri-
marily RNNs) does indicate relationships with
specific dependency-types and RNN understand-
ing. This includes research considering specific
dependency types (Wilcox et al., 2018, 2019a),
word-order effects (Futrell and Levy, 2019), and
structural supervision (Wilcox et al., 2019b).

Prompted by this, the permutations considered
in this work can alternatively be seen as lin-
earizations (Langkilde and Knight, 1998; Filip-
pova and Strube, 2009; Futrell and Gibson, 2015;
Puzikov and Gurevych, 2018) of a dependency
parse in a minimal fashion which is closely related
to Gildea and Temperley (2007); Temperley and
Gildea (2018). While such linearizations have not
been well-studied for downstream impacts, the us-
age of dependency lengths as a constraint has been
studied for dependency parsing itself. Towards
this end, Eisner and Smith (2010) showed that us-
ing dependency length can be a powerful heuristic
tool in dependency parsing (by either enforcing a
strict preference or favoring a soft preference for
shorter dependencies).

3In this work, we partially deviate from this linguistic ter-
minology, which primarily deals with the measure defined
in Equation 2, and prefer algorithmic terminology to accom-
modate the measure defined in Equation 1 and disambiguate
these related measures more clearly.
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6 Future Directions

Graph Structure Motivated by recent work on
graph convolutional networks that began with
undirected unlabelled graphs (Kipf and Welling,
2016; Zhang et al., 2018) that was extended to
include edge direction and edge labels (Marcheg-
giani and Titov, 2017), we consider whether these
features of a dependency parse can also lever-
aged in computing an optimal permutation. We
argue that bidirectionally traversing the permuted
sequence may be sufficient to address edge direc-
tion. A natural approach to encode edge labels
would be to define a mapping (either learned on an
auxiliary objective or tuned as a hyperparameter)
from categorical edge labels to numericals edge
weights and then consider the weighted analogues
of the objectives in Equation 1 and Equation 2.

Improved Objective The objectives introduced
in Equation 1 and Equation 2 can be unified by
considering the family of cost functions:

fp(π) =
∑

(u,v)∈E
|π(u)− π(v)|p (3)

Here, minLA correspond to p = 1 and the band-
width problem corresponds to p = ∞. We can
then propose a generalized objective that is the
convex combination of the individual objectives,
i.e. finding a permutation that minimizes:

fα1,∞(π) = αf1(π) + (1− α)f∞(π) (4)
Setting α to 0 or 1 reduces to the original objec-
tives. This form of the new objective is reminis-
cent of Elastic Net regularization in statistical op-
timization (Zou and Hastie, 2005). Inspired by
this parallel, a Lagrangian relaxation of one of the
objectives as a constraint may be an approach to-
wards (approximate) optimization.

Task-specific Permutations The permutations
produced by these models are invariant with re-
spect to the downstream task. However, differ-
ent tasks may benefit from different sentence or-
ders that go beyond task-agnostic simplification.
A natural way to model this in neural models is
to learn the permutation in a differentiable fashion
and train the permutation model end-to-end within
the overarching model for the task. Refer to Ap-
pendix C for further discussion.

7 Conclusion

In this work, we propose approaches that permute
the words in a sentence to provably minimize com-

binatorial objectives related to the length of depen-
dency arcs. We find that this is a lightweight pro-
cedure that helps to simplify input sentences for
downstream models and that it leads to improved
performance and state of the art results (97.5%
classification accuracy) for subjectivity analysis
using the SUBJ dataset.
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Katrin Fundel, Robert Küffner, and Ralf Zimmer.
2006. Relexrelation extraction using dependency
parse trees. Bioinformatics, 23(3):365–371.

Richard Futrell and Edward Gibson. 2015. Experi-
ments with generative models for dependency tree
linearization. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1978–1983.

Richard Futrell, Roger Levy, and Edward Gibson.
2017. Generalizing dependency distance: Comment
on dependency distance: A new perspective on syn-
tactic patterns in natural languages by haitao liu et
al. Physics of life reviews, 21:197–199.

Richard Futrell and Roger P. Levy. 2019. Do RNNs
learn human-like abstract word order preferences?
In Proceedings of the Society for Computation in
Linguistics (SCiL) 2019, pages 50–59.

Richard Futrell, Kyle Mahowald, and Edward Gibson.
2015. Large-scale evidence of dependency length
minimization in 37 languages. Proceedings of

the National Academy of Sciences, 112(33):10336–
10341.

Michael R Garey, Ronald L Graham, David S Johnson,
and Donald Ervin Knuth. 1978. Complexity results
for bandwidth minimization. SIAM Journal on Ap-
plied Mathematics, 34(3):477–495.

Michael R Garey, David S Johnson, and Larry Stock-
meyer. 1974. Some simplified np-complete prob-
lems. In Proceedings of the sixth annual ACM
symposium on Theory of computing, pages 47–63.
ACM.

Norman E. Gibbs, William G. Poole, and Paul K.
Stockmeyer. 1976. An algorithm for reducing the
bandwidth and profile of a sparse matrix. SIAM
Journal on Numerical Analysis, 13(2):236–250.

Edward Gibson, Richard Futrell, Steven T Piandadosi,
Isabelle Dautriche, Kyle Mahowald, Leon Bergen,
and Roger Levy. 2019. How efficiency shapes hu-
man language. Trends in cognitive sciences.

Daniel Gildea and David Temperley. 2007. Optimizing
grammars for minimum dependency length. In Pro-
ceedings of the 45th Annual Meeting of the Associa-
tion of Computational Linguistics, pages 184–191.

Daniel Gildea and David Temperley. 2010. Do gram-
mars minimize dependency length? Cognitive Sci-
ence, 34(2):286–310.

Isao Goto, Masao Utiyama, and Eiichiro Sumita. 2012.
Post-ordering by parsing for japanese-english statis-
tical machine translation. In 50th Annual Meeting of
the Association for Computational Linguistics, page
311.

Kristina Gulordava, Paola Merlo, and Benoit Crabbé.
2015. Dependency length minimisation effects in
short spans: a large-scale analysis of adjective place-
ment in complex noun phrases. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), volume 2, pages 477–482.

Zhou GuoDong, Su Jian, Zhang Jie, and Zhang Min.
2005. Exploring various knowledge in relation ex-
traction. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, ACL
’05, pages 427–434, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Kadri Hacioglu. 2004. Semantic role labeling using
dependency trees. In Proceedings of the 20th inter-
national conference on Computational Linguistics,
page 1273. Association for Computational Linguis-
tics.

J. Haralambides and F. Makedon. 1997. Approxi-
mation algorithms for the bandwidth minimization
problem for a large class of trees. Theory of Com-
puting Systems, 30(1):67–90.

95



Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339.

Mahesh Joshi and Carolyn Penstein-Rosé. 2009. Gen-
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A Implementation Details

We implement our models in PyTorch (Paszke
et al., 2017) using the Adam optimizer (Kingma
and Ba, 2014) with its default parameters in Py-
Torch. We split the dataset using a 80/10/10
split and the results in Table 2 are on the test
set whereas those in Figure 2 are on the devel-
opment set. We use ELMo embeddings (Peters
et al., 2018)4, for the initial pretrained word repre-
sentations by concatenating the two 1024 dimen-
sional pretrained vectors, yielding a 2048 dimen-
sional initial pretrained representation for each to-
ken. These representations are frozen based on the
results of Peters et al. (2019) and passed through
a single-layer bidirectional LSTM with output di-
mensionality 256. The outputs of the forward and
backward LSTMs at position i are concatenated
and a sentence representation is produced by max-
pooling as was found to be effective in Howard
and Ruder (2018) and Peters et al. (2019). The
sentence representation is passed through a linear
classifier M ∈ R512×2 and the entire model is
trained to minimize cross entropy loss. All mod-
els are trained for 13 epochs with a batch size of

4Specifically, we use embeddings available at:
https://s3-us-west-2.amazonaws.com/
allennlp/models/elmo/2x4096_512_2048cnn_
2xhighway/elmo_2x4096_512_2048cnn_
2xhighway_options.json
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Figure 2: Development set performance for each or-
dering. Values are reported beginning at epoch 1 in
intervals of 3 epochs.

16 with the test set results reported being from
the model checkpoint after epoch 13. We also ex-
perimented with changing the LSTM task-specific
encoder to be unidirectional but found the results
were strictly worse.

B Efficiency Analysis

Model Size The changes we introduce only im-
pact the initial preprocessing and ordering of the
pretrained representations for the model. As a re-
sult, we make no changes to the number of model
parameters and the only contribution to the model
footprint is we need to store the permutation on a
per example basis. This can actually be avoided
in the case where we have frozen pretrained em-
beddings as the permutation can be computed in
advance. Therefore, for the results in this paper,
the model size is entirely unchanged.

Runtime The wall-clock training time, i.e. the
wall-clock time for a fixed number of epochs, and
inference time are unchanged as we do not change
the underlying model in any way and the permuta-
tions can be precomputed. As noted in the paper,
on a single CPU it takes 21 minutes to complete
the entire preprocessing process and 25% of this
time is a result of computing bandwidth optimal
permutations and 70% of this time is a result of
computing minLA optimal permutations. The pre-
processing time scales linearly in the number of
examples and we verify this as it takes 10 minutes
to process only the subjective examples (and the
dataset is balanced). Figure 2 shows the develop-
ment set performance for each of the permutation
types over the course of the fine-tuning process.

C End-to-End Permutations

In order to approach differentiable optimization
for permutations, we must specify a representa-
tion. A standard choice that is well-suited for lin-
ear algebraic manipulation is a permutation ma-
trix, i.e Pπ ∈ Rn×n, where Pπ[i, j] = 1 if π(i) =
j and 0 otherwise. As a result, permutation matri-
ces are discrete, and therefore sparse, in the space
of real matrices. As such they are poorly suited
for the gradient-based optimization that supports
most neural models. A recent approach from vi-
sion has considered a generalization of permu-
tation matrices to the associated class of doubly
stochastic matrices and then considered optimiza-
tion with respect to the manifold they define (the
Sinkhorn Manifold) to find a discrete permutation
(Santa Cruz et al., 2017). This approach cannot
be immediately applied for neural models for sen-
tences since the algorithms exploits that images,
and therefore permutations of the pixels in an im-
age, are of fixed size between examples. That be-
ing said we ultimately see this as being an impor-
tant direction of study given the shift from discrete
optimization to soft/differentiable alternatives for
similar problems in areas such as structured pre-
diction.
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Figure 3: Addition example sentence with sentence permutations and overlayed dependency parses. Blue indi-
cates the standard ordering, green indicates the bandwidth optimal ordering, and red indicates the minLA optimal
ordering. Black indicates the longest dependency arc in the original ordering.
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Abstract

As liberal states across the world face a decline
in political participation by citizens, deliber-
ative democracy is a promising solution for
the publics decreasing confidence and apathy
towards the democratic process (Dahl et al.,
2017). Deliberative dialogue is method of
public interaction that is fundamental to the
concept of deliberative democracy. The abil-
ity to identify and predict consensus in the di-
alogues could bring greater accessibility and
transparency to the face-to-face participatory
process. The paper sets out a research plan
for the first steps at automatically identifying
and predicting consensus in a corpus of Ger-
man language debates on hydraulic fracking.
It proposes the use of a unique combination
of lexical, sentiment, durational and further
derivative features of adjacency pairs to train
traditional classification models. In addition
to this, the use of deep learning techniques to
improve the accuracy of the classification and
prediction tasks is also discussed. Preliminary
results at the classification of utterances are
also presented, with an F1 between 0.61 and
0.64 demonstrating that the task of recognis-
ing agreement is demanding but possible.

1 Introduction

Liberal states across the world are facing a signif-
icant decline in political participation by citizens.
The global voter turnout rate has dropped by more
than 10% over the last 25 years (Groupe de la
Banque mondiale, 2017), and this trend does not
appear to be slowing down. The public have re-
ported decreasing confidence and apathy towards
the democratic process (Dahl et al., 2017). De-
liberative Democracy represents a potential solu-
tion to these problems. Through the evaluation
of different policy proposals using a process of
truthful and rational discussion between citizens
and authority, Deliberative democracy can enable

consensual, well-justified, decision making. It can
improve the political competence of citizens by;
facilitating the exchange of arguments and shar-
ing of ideas on proposals from authority (Estlund
et al., 1989); reconfiguring democracy as a pro-
cess of ‘public reasoning’ and connecting citizens
with each other and with their governing institu-
tions (Parkinson and Mansbridge, 2012; Dryzek,
2012).

Deliberative Dialogue is a structured, face-to-
face method of public interaction. As a form
of participatory process, it is fundamental to the
concept of Deliberative Democracy (McCoy and
Scully, 2002). There are many different forms of
deliberative dialogue, including, but not limited to:
citizens’ assemblies, citizens’ juries and planning
cells. The European Commission’s ‘Future of Eu-
rope debates’ (Directorate-General for Communi-
cation, 2017b) are an exemplar of hosting deliber-
ative dialogue successfully at large scale.

The ‘Future of Europe debates’ are due to come
to their natural conclusion after a two year long
process that started with the release of the ‘White
paper on the future of Europe’ in March of 2017
(ibid.). This white paper set out the main chal-
langes and opportunities facing the 27 European
Union (EU) member states for the next decade. To
encourage citizens’ participation, the Commission
hosted a series of debates across cities and regions
within Europe (Directorate-General for Commu-
nication, 2017a). At the debates, all members of
the Commission engaged in dialogue with citizens
and listened to their views and expectations con-
cerning the future of Europe. The debates were
well received, with 129 debates in more than 80
towns, attended by over 21,000 citizens (ibid.).

In the deliberative democratic process, one of
the main aims is for informed agreement to be
reached among all involved parties. However, in
dialogues with larger citizenry, it is less likely that
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consensus is reached between all participants (Pe-
ter, 2016). As can be seen with the ‘Future of Eu-
rope debates’, numbers in attendance can be high.
Therefore, the ability to automatically identify, or
even predict, consensus between participants in
these dialogues can make the participatory process
even more transparent and accessible. In the fu-
ture, it could even provide authority with a tool for
deciding when to move to an aggregative mecha-
nism for deciding the outcome, such as majority
voting.

2 Related Work

Previous work has reported some levels of success
in the automatic classification of agreement and no
agreement using machine learning techniques.

Galley et al. (2004) used a statistical approach,
with Bayesian networks to model agreements and
disagreements in conversational interaction. Sim-
ple Bayesian networks were trained with contex-
tual features of adjacency pairs identified in an an-
notated corpus of meetings. With the recent ad-
vances in deep learning techniques, there is an op-
portunity to apply the techniques from this paper
to multi-speaker debates

On the use of sentiment analysis to aid in the
detection of agreement, as employed in this pa-
per, a number of previous works have success-
fully applied the technique. For example, Thomas
et al. (2006) used sentiment property for classi-
fying support or opposition of proposed legisla-
tive speeches in transcripts from United States’
Congress debates. Further work by Balasubra-
manyan et al. (2011) investigated classifying senti-
ment polarity of comments on a blog post, towards
the topics in the blog.

Abbott et al. (2011) reported on automatically
recognising disagreement between online posts.
The paper presented the ARGUE corpus, contain-
ing thousands of quote and response pairs posted
to an online debate forum. Abbott et al. pro-
posed the use of simple classifiers to label a quote
and response pair as in either agreement or dis-
agreement. An improvement over baseline was
achieved by the authors, though this was limited
to informal, online political arguments.

The majority of research into the classification
of agreement and disagreement has been heavily
focused on postings in online forums and social
networks. There has been very little work on the
classification of agreement in face-to-face partici-

patory process; the research area of this paper.

3 Data Set

The data set for the task is drawn from a total of 34
German language dialogues which all took place
in an experimentally controlled environment. In
each of the dialogues, there are four participants
who were recorded discussing the topic of hy-
draulic fracking in Germany. The participants are
tasked with coming to consensus around allowing
or disallowing fracking within a time period of 60
minutes. Whole dialogues within the data set are
annotated with either agreement or no agreement,
by trusted annotators. These annotators also ex-
plicitly mark the utterance at which consensus oc-
curs. All utterances are plain text, with a limited
number of attributes, including the utterance iden-
tifier and speaker name.

This data set is composed of 20 dialogues where
consensus is reached by the participants, 9 dia-
logues where no consensus took place and 5 di-
alogues where the session ‘timed out’ before any
consensus was reached. By extracting single ut-
terances from each dialogue, this is broken down
into 1,376 utterances of agreement, 458 with no
agreement and 240 with timeout. A manual inves-
tigation into the dialogues revealed that there was
no clear difference in text between the dialogues
of time out and no agreement.

For training and testing of the classifier, the data
set was split into multiple subsets, with cross val-
idation (Mosteller and Tukey, 1968) used to eval-
uate performance. The risk of overfitting by the
classifier is minimised through the use of a 5-fold
cross validation method.

4 Methodology

4.1 Tasks

There are two main goals of research which pro-
vide the body of work proposed in this paper.
These two goals are:

• To identify where consensus has occurred be-
tween participants

• Prediction of whether it is likely that consen-
sus between participants is going to occur

Of note is that these tasks are performed on a
corpus of lower resource language.
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4.2 Features
Work has already begun on the extraction of fea-
tures from the data set in its current form without
any further embellishment, such as the identifica-
tion of argumentation structure, discussed in fur-
ther detail in section 5of this paper.

Three distinct feature sets have been created
from the data for use in machine learning tech-
niques, these are termed:

• Base Features – Attributes connected to a sin-
gle utterance

• Derivative Features – The change of Base
Features across a pair of utterances

• Second Derivative Features – The change of
Derivative Features between pairs of utter-
ance pairs.

Base Features
A number of attributes from each singular utter-
ance were extracted for input into the classifier re-
sponsible for identifying agreement and disagree-
ment of utterances.

Lexical In order to capture basic lexical infor-
mation, unigram and bigram features are extracted
from each utterance. Text of an utterance is
first processed before tokenisation and occurrence
counting. In the text pre-processing: speaker
names and punctuation are removed from the text,
unicode characters normalised, German diacritics
and ligatures translated1, and finally words lem-
matised.

Sentiment Prior work has shown that sentiment
features can provide some value in the prediction
of speakers’ position on a topic, such as what
the speaker supports or opposes (Pang and Lee,
2008). To access this information, an analysis of
speaker sentiment within each utterance is under-
taken. The SentimentWortschatz (SentiWS) (Re-
mus et al., 2010) resource for German-language
is used. The latest version2 of the resource con-
tains over 1,600 positive words and 1,800 negative
words, or over 16,000 positive and 17,500 negative
words when calculated to include inflections of ev-
ery word. For each word in the resource, a polar-
ity score, weighted between [-1; 1] is provided. It
should be noted, that in cases where a word can-
not be found in the resource, a ‘neutral’ score of

1Translation as per the DIN 5007-2 standard.
2SentiWS v2.0 at the time of writing.

0 is used. For this work, a method was developed
using SentiWS to give a score for each utterance
in the corpus. By summing up the sentiment score
for each word in the utterance, a total score for the
utterance can be calculated. This total is then used
as a feature for the classification model.

Durational Durational features for each utter-
ance are also calculated. This includes, word
count and character count, average word length
and number of stop words.

Derivative Features
Adjacency Pairs Adjacency pairs, composed of
two utterances from two speakers in succession
are extracted from the dialogues and similarity
measures are calculated for the features of each
utterance in a pair.

Durational The change in Durational features
between utterances in an adjacency pair.

Sentiment The change in Sentiment features be-
tween utterances in an adjacency pair to capture
any possible shift in sentiment between speaker
turns.

Similarity Measures To test the hypothesis that
utterance pairs in agreement, are higher in simi-
larity, this paper proposes using a similarity mea-
sure calculated between utterance pairs as a fea-
ture variable. An example of term based simi-
larity, cosine similarity uses the cosine angle be-
tween the two vectors as a similarity measure. The
spaCy3 open-source software library for Natural
Language Processing (NLP) will be used to cal-
culate the similarity between the utterance text of
two adjacency pairs.

Further Adjacency Pairs
Collection of Adjacency Pairs Similarity mea-
sures are calculated between a collection of two or
more adjacency pairs.

4.3 Techniques

To classify an utterance as either agreement or no
agreement, some work has already been under-
taken using traditional machine learning models.

Traditional Classification Models
Support Vector Machine A Support Vector
Machine (SVM) is a classifier that can be used to

3Git repository for the library is hosted at:
https://github.com/explosion/spaCy/.
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perform identification of agreement on each utter-
ance. SVMs are a versatile, supervised learning
method that are well-suited to classification and
regression tasks. The method produces non-linear
boundaries using a linear boundary in a trans-
formed version of the input feature space (Hastie
et al., 2009). For the work in this paper, an
SVM from the Scikit-learn open-source project
(Pedregosa et al., 2011) was used. The input fea-
tures to the classifier are from the aforementioned
set, whilst the output is the binary label of agree-
ment or no agreement.

Random Decision Forest The Random Deci-
sion Forest is a machine learning algorithm that is
particularly suited for problems of both classifica-
tion and regression. They operate by constructing
and then average the results of a large collection of
de-correlated decision trees (Hastie et al., 2009).
The algorithm is particularly attractive for its high
speed of classification and straight-forward train-
ing (Ho, 1995). A Random Decision Forest classi-
fier from the Scikit-learn project (Pedregosa et al.,
2011) is used for this work.

Naı̈ve Bayes Another family of machine learn-
ing algorithms that remain popular and receives
continuous levels of high usage, are Naı̈ve Bayes.
This is a method of classification that simplifies
estimation by assuming that every attribute or fea-
ture contributes independently to the probability of
a class (McCallum and Nigam, 1998). The family
can often outperform more sophisticated alterna-
tives (Hastie et al., 2009). However, when classi-
fying text there is the potential for the model to ad-
versely affect results if some adjustments are not
made (Rennie et al., 2003).

Naı̈ve Bayes Another family of machine learn-
ing algorithms that remain popular and receives
continuous levels of high usage, are Naı̈ve Bayes.
This is a method of classification that simplifies
estimation by assuming that every attribute or fea-
ture contributes independently to the probability of
a class (McCallum and Nigam, 1998). The family
can often outperform more sophisticated alterna-
tives (Hastie et al., 2009). However, when classi-
fying text there is the potential for the model to ad-
versely affect results if some adjustments are not
made (Rennie et al., 2003).

Deep Learning Models
For the second task discussed in this paper –
predicting the point at which consensus between
speakers is likely to occur – the use of a super-
vised, deep structured learning technique could
possibly offer an advantage over the more tradi-
tional machine learning algorithms discussed pre-
viously.

RNN The Recurrent Neural Network (RNN)
overcomes the shortcomings of traditional neural
networks when dealing with sequential data, such
as text. A class of artificial neural network, it uses
connections between nodes to form a direct graph
along a sequence (Graves, 2012). RNNs are lim-
ited to a short-term memory due to the ‘vanishing
gradient problem’ (Bengio et al., 1994).

LSTM A class of RNN, Long Short Term Mem-
ory (LSTM) networks are capable of learning
long-term dependencies. The repeating module of
an LSTM has four neural network layers which in-
teract to enable an RNN to remember inputs over
a longer period of time (Graves, 2012). LSTMs
reduce the problem of vanishing gradient (Chung
et al., 2014). This will prove particularly impor-
tant, due to the sequential nature of the adjacency
pairs in the dialogues.

5 Proposed Work

Whilst work has been done using traditional ma-
chine learning algorithms to classify utterances, as
per the first task described in section 4.1 of this
paper, there remains work to be done in the use
of deep learning models as a means for improved
accuracy and performance in classification.

At present, the data set is mostly represented as
plain text, with no further dimension to the utter-
ances. One opportunity that could bring another
dimension and realise unknown relationships in
this data, is through the identification of argument
structure within the discourse.

Argument structures are associated with, and
constructed from, basic ‘building blocks’, and
these components could also be identified. The
blocks can come in the form of a premise, con-
clusion or argumentation scheme. There also ex-
ists a further opportunity for diversification of data
through the analysis of relationships between ar-
gument pairs and their components. By modelling
these structures, there arises the ability to gather a
deeper understanding of what is being uttered by a
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speaker (Lawrence et al., 2015). So, not only can
the views expressed by a speaker be drawn from
the argument structure, but it can also expose why
these particular views are held.

Automatic identification or ‘mining’ of such ar-
gument structures would provide a significant time
saving, allowing almost immediate use of the ex-
tracted model as features in a machine learning al-
gorithm. However, despite the enormous growth
in the field of Argument Mining, it is still diffi-
cult to identify argument structures with accuracy
and reliability (Stede and Schneider, 2018). As
a consequence of this, before the aforementioned
advantages can be applied to this data set, it must
be manually annotated by a human.

Manual annotation of the dialogues in this data
set is not an insignificant cost, with regards to time
and funding. As to guarantee the accuracy of the
modelled arguments, annotation must follow pre-
defined schemes, such as those set out by Reed and
Budzynska (2011). The annotators carrying out
the analysis must be trained to a sufficient level
on the necessary schemes and also trusted. This
work must be undertaken before the data can be
put through the process responsible for identifica-
tion and prediction of consensus. The manual an-
notation process of dialogues in the corpus is still
ongoing.

Once the dialogues have been annotated, ex-
traction of argumentative structure showing ‘con-
flict’ between two propositions should take place.
The presence, count and exact arrangement of the
propositions in conflict can then be used as an ad-
ditional feature for training of the classifiers.

6 Preliminary Results

Classifier Precision Recall F-
measure

Naı̈ve
Bayes

0.63 0.66 0.61

SVM
(Linear)

0.64 0.67 0.61

Random
Forest

0.66 0.69 0.64

Table 1: Results of classification using traditional clas-
sifiers

Preliminary results related to the identification
of agreement and no agreement in utterances can

be seen in Table 1. This was a classification pro-
cess using only the Base Features set and with tra-
ditional machine learning algorithms. These re-
sults suggest that the task as framed is feasible,
though there is still significant opportunity for im-
provement.

7 Conclusion

The potential benefits resulting from the automatic
identification and prediction of consensus between
participants can be of significant advantage to gov-
ernment around the world. With only the prelim-
inary results from classification of utterances into
agreement and disagreement, it can be seen that
the accuracy is nearing useable values. With the
addition of advanced neural network models, such
as LSTM, there is the possibility to increase the
accuracy even further. The immediate goal after
successfully classifying agreement and no agree-
ment will be to predict where it is likely that agree-
ment between participants is likely to occur.
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Abstract

Reading comprehension (RC) through ques-
tion answering is a useful method for evaluat-
ing if a reader understands a text. Standard ac-
curacy metrics are used for evaluation, where a
high accuracy is taken as indicative of a good
understanding. However, literature in quality
learning suggests that task performance should
also be evaluated on the undergone process to
answer. The Question-Answer Relationship
(QAR) is one of the strategies for evaluating
a reader’s understanding based on their ability
to select different sources of information de-
pending on the question type. We propose the
creation of a dataset to learn the QAR strategy
with weak supervision. We expect to comple-
ment current work on reading comprehension
by introducing a new setup for evaluation.

1 Introduction

Computer system researchers have long been try-
ing to imitate human cognitive skills like mem-
ory (Hochreiter and Schmidhuber, 1997; Chung
et al., 2014) and attention (Vaswani et al., 2017).
These skills are essential for a number of Natural
Language Processing (NLP) tasks including read-
ing comprehension (RC). Until now, the method
for evaluating a system’s understanding imitated
the common classroom setting where students are
evaluated based on their number of correct an-
swers. In the educational assessment literature
this is known as product-based evaluation and is
one of the performance-based assessments types
(McTighe and Ferrara, 1994). However, there
is an alternative form: process-based evaluation.
Process-based evaluation does not emphasize the
output of the activity. This assessment aims to
know the step-by-step procedure followed to re-
solve a given task.

When a reading comprehension system is not
able to identify the correct answer, product-based

evaluation can result in the false impression of
weak understanding (i.e., misunderstanding of the
text, the question, or both) or the absence of re-
quired knowledge. However, the system could
have failed to arrive at the correct answer for some
other reasons. For example, consider the reading
comprehension task shown in Figure 1. For the
question “What were the consequences of Eliza-
beth Choy's parents and grandparents being ‘more
advanced for their times’?” the correct answer
is in the text but it is located in different sen-
tences. If the system only identifies “They wanted
their daughters to be educated” as an answer, it
would be judged to be incorrect when it did not
fail at finding the answer, it failed at connecting
it with the fact “we were sent to schools away
from home” (linking problem). Similarly, any an-
swer the system infers from the text for the ques-
tion “What do you think are the qualities of a war
heroine?” would be wrong because the answer is
not in the text, it relies exclusively on background
knowledge (wrong choice of information source).
We propose to adopt the thesis that reading is not
a passive process by which readers soak up words
and information from the text, but an active pro-
cess1 by which they predict, sample, and confirm
or correct their hypotheses about the text (Weaver,
1988). One of these hypotheses is which source
of information the question requires. The reader
might think it is necessary to look in the text to
then realize she could have answered without even
reading or, on the contrary, try to think of an an-
swer even though it is directly in the text. For
this reason, Raphael (1982) devised the Question-
Answer Relation (QAR) strategy, a technique to
help the reader decide the most suitable source
of information as well as the level of reasoning

1Not to be confused with active learning, a machine learn-
ing concept for a series of methods that actively participate in
the collection of training examples. (Thompson et al., 1999)
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Interviewer:  Mrs. Choy, would you like to tell us something
about your background before the Japanese invasion? 

Elizabeth Choy: 1. Oh, it will go back quite a long way, you
know, because I came to Singapore in December 1929 for
higher education. 2. I was born in North Borneo which is Sabah
now. 3. My ancestors were from China. 4. They went to Hong
Kong, and from Hong Kong, they came to Malaysia. 5. They
started plantations, coconut plantations, rubber plantations. 6.
My parents and grandparents were more advanced for their
times and when they could get on a bit, they wanted their
daughters to be educated too. 

7. So, we were sent to schools away from home. 8. First, we
went to Jesselton which is Kota Kinabalu now. 9. There was a
girls’ school run by English missionaries. 10. My aunt and I
were there for half a year. 11. And then we heard there was
another better school – bigger school in Sandakan also run by
English missionaries. 12. So we went to Sandakan as
boarders. 

13. When we reached the limit, that is, we couldn’t study
anymore in Malaysia, we had to come to Singapore for higher
education. And I was very lucky to be able to get into the
Convent of the Holy Infant Jesus where my aunt had been for a
year already. 

Right there question: When did Elizabeth Choy come
to Singapore for higher education?
Answer: December 1929

Think and search:  What were the consequences of
Elizabeth Choy’s parents and grandparents being ‘more
advanced for their times’? 
Answer: They wanted their daughters to be educated
so they sent them to schools away from home.

Author and me: What do you think of Elizabeth Choy's
character from the interview?

On my own: What do you think are the qualities of a
war heroine?

In the text

In my head

Figure 1: Example of reading comprehension applying the Question-Answer Relationship strategy to categorize
the questions.

needed based on the question type.
In this work, we introduce a new evaluation

setting for reading comprehension systems. We
overview the QAR strategy as an option to move
beyond a scenario where only the product of com-
prehension is evaluated and not the process. We
discuss our proposed approach to create a new
dataset for learning the QAR strategy using exist-
ing reading comprehension datasets.

2 Related work

Reading comprehension is an active research area
in NLP. It is composed of two main components:
text and questions. This task can be found in many
possible variations: setups where no options are
given and the machine has to come up with an
answer (Yang et al., 2015; Weston et al., 2015;
Nguyen et al., 2016; Rajpurkar et al., 2016) and
setups where the question has multiple choices
and the machine needs to choose one of them
(Richardson et al., 2013; Hill et al., 2015; On-
ishi et al., 2016; Mihaylov et al., 2018). In either
case, standard accuracy metrics are used to eval-
uate systems based on the number of correct an-
swers retrieved; a product-based evaluation. In ad-
dition to this evaluation criteria, the current read-
ing comprehension setting constrains systems to
be trained on a particular domain for a specific

type of reasoning. As a result, the good perfor-
mance of a model drops when it is tested on a
different domain. For example, the knowledge-
able reader of Mihaylov and Frank (2018) was
trained to solve questions from children narra-
tive texts that require commonsense knowledge,
achieving competitive results. However, it did not
perform equally well when tested on basic science
questions that also required commonsense knowl-
edge (Mihaylov et al., 2018). Systems have been
able to match human performance but it has also
been proven by Jia and Liang (2017) that they can
be easily fooled with adversarial distracting sen-
tences that would not change the correct answer
or mislead humans.

The motivation behind introducing adversarial
examples for evaluating reading comprehension is
to discern to what extent systems truly understand
language. Mudrakarta et al. (2018) followed the
steps of Jia and Liang (2017) proposing a tech-
nique to analyze the sensitivity of a model to ques-
tion words, with the aim to empower investigation
of reading models’ performance. With the same
goal in mind, we propose a process-based evalu-
ation that will favor a closer examination of the
process taken by current systems to solve a read-
ing comprehension task. In the educational assess-
ment literature, this approach is recommended to
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identify the weaknesses of a student. If we trans-
fer this concept to computers, we would be able
to focus on the comprehension tasks a computer is
weak in, regardless of the data in which the system
has been trained.

3 Question-answer relationship

Raphael (1982) devised the Question-Answer Re-
lationship as a way of improving children reading
performance across grades and subject areas. This
approach reflects the current concept of reading as
an active process influenced by characteristics of
the reader, the text, and the context within which
the reading happens (McIntosh and Draper, 1995).
Since its publication, several studies have explored
its positive effects (Benito et al., 1993; McIntosh
and Draper, 1995; Ezell et al., 1996; Thuy and
Huan, 2018; Apriani, 2019).

QAR states that an answer and its source of in-
formation are directly related to the type of ques-
tion being asked. It emphasizes the importance
of being able to locate this source to then identify
the level of reasoning the question requires. QAR
defines four type of questions categorized in two
broad sources of information:
In the text

• Right There questions: The answer can be
literally found in the text.

• Think and Search questions: The answer
can be found in several sentences in the text
that need to be pieced together.

In my head

• Author and Me questions: The answer is
not directly stated in the text. It is neces-
sary to fit text information with background
knowledge.

• On My Own questions: The answer can be
given without reading the text. The answer
relies solely on background knowledge.

Each one of the QAR categories requires a dif-
ferent level of reasoning. For Right there ques-
tions, the reader only needs to match the ques-
tion with one of the sentences within the text.
Think and search requires simple inference to re-
late pieces of information contained in different
parts of the text. In my head questions introduce
the use of background knowledge. Thus, deeper

thinking is required to relate the information pro-
vided in the text with background information. Fi-
nally, On my own questions ask the reader to only
use their background knowledge to come up with
an answer. Figure 1 shows how QAR is applied
to a reading comprehension task. Note that for
both In the text questions, one can easily match the
words in the question with the words in the text.
However, Think and search goes beyond matching
ability; the reader should be able to conclude that
the information in sentences 6 and 7 are equally re-
quired to answer the question being asked. Thus,
the correct answer is a combination of these two.
For the Author and me question, the readers need
to merge the information given in the text with
their own background knowledge since the ques-
tion explicitly asks for an opinion “from the inter-
view.” Without this statement, the question could
be considered as On my own if the reader is already
familiar with Elizabeth Choy. This is not the case
in the last question, where even though the topic
of the interview is related, the qualities of a war
heroine are not in the text. The readers need to use
their own background knowledge about heroes.

In the case of computers, In my head questions
can be understood as In a knowledge base. We hy-
pothesize that once the system establishes that the
source of information is not in the text, it could
trigger a connection to a knowledge base. For
the time being, the type of knowledge needed is
fixed for RC datasets by design (e.g., general do-
main, commonsense, elementary science) and the
source is chosen accordingly in advance by the au-
thor (e.g., Wikipedia, ConceptNet). Automatically
selecting the appropriate external resource for a
reading comprehension task is a problem that we
would like to explore in the future.

3.1 QAR use cases

As a process-based evaluation strategy, QAR can
be used to understand a reader's ability in terms of
the reasoning level applied and the elected source
of information to answer a given question. In the
case of humans, this outcome is later used as feed-
back to improve performance on a particular pro-
cess. The incorporation of general reading strate-
gies to a RC system has been recently proven ef-
fective by Sun et al. (2018) and we aim to explore
QAR in the same way. However, our short-term
objective is to test the QAR strategy as a comple-
mentary evaluation method for existing machine
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1 Mary moved to the bathroom.
2 John went to the hallway
3 Where is Mary?                                         bathroom             1
4 Daniel went back to the hallway.
5 Sandra moved to the garden.
6 Where is Daniel?                                       hallway                4
7 John moved to the office.
8 Sandra journeyed to the bathroom.
9 Where is Daniel?                                       hallway                4

Sentence Answer Sentence
needed

 

1 Mary moved to the bathroom.
2 Sandra journeyed to the bedroom.
3 John went to the kitchen.
4 Mary took the football there.
5 How many objects is Mary carrying?         one                      4
6 Sandra went back to the office.
7 How many objects is Mary carrying?         one                      4 
8 Mary dropped the football. 
9 How many objects is Mary carrying?         none                    4  8  

Sentence Answer Sentence
needed

 

1 Mary moved to the bathroom.
2 John went to the hallway
3 Where is Mary?                                         bathroom             1
4 Daniel went back to the hallway.
5 Sandra moved to the garden.
6 Where is Daniel?                                       hallway                1
7 John moved to the office.
8 Sandra journeyed to the bathroom.
9 Where is Daniel?                                       hallway                1

Sentence Answer QAR
category

 

1 Mary moved to the bathroom.
2 Sandra journeyed to the bedroom.
3 John went to the kitchen.
4 Mary took the football there.
5 How many objects is Mary carrying?         one                      1
6 Sandra went back to the office.
7 How many objects is Mary carrying?         one                      1 
8 Mary dropped the football. 
9 How many objects is Mary carrying?         none                    2  

Sentence Answer
QAR
category

Figure 2: Example of bAbI annotations for the single supportive fact task (left) and the counting task (right).
Below, our proposed annotations with QAR category.

reading comprehension models, somewhat simi-
lar to PROTEST (Guillou and Hardmeier, 2016),
a test suite for the evaluation of pronoun transla-
tion by Machine Translation systems.

In the next section, we discuss how the QAR
strategy can be imported from the educational lit-
erature to the NLP domain by using existing read-
ing comprehension datasets to create a new re-
source for active reading comprehension evalua-
tion.

4 Research plan

4.1 Dataset

We propose to model QAR learning as a mul-
ticlass classification task with weak supervision.
The dataset would contain labels corresponding to
each one of the QAR categories and the annotation
process will depend on the two sources of infor-
mation Raphael (1982) defined.

In recent years, we have seen a lot of effort
from the NLP community in creating datasets to
test different aspects of RC, like bAbI (Weston
et al., 2015), SQuAD (Rajpurkar et al., 2016),
NarrativeQA (Kočiskỳ et al., 2018), QAngaroo
(Welbl et al., 2018), HotpotQA (Yang et al., 2018),
MCScript (Ostermann et al., 2018), MultiRC
(Khashabi et al., 2018) and CommonsenseQA
(Talmor et al., 2018). In the following sections,
we will briefly overview these datasets and explain
how they can be adapted for our proposed task.

4.1.1 In the text questions
For this type of questions, we can rely on the bAbI
dataset (Weston et al., 2015), a set of synthetically

generated, simple narratives for testing text under-
standing. The dataset has several tasks with 1000
questions each for training and 1000 for testing.
For our purposes, we will focus on the annotations
of Task 8 and 7. Task 8 is a “single supporting
fact” task that shows a small passage in which each
sentence describes the location of a character (e.g.
“Mary moved to the bathroom. John went to the
hallway.”). After some sentences, there is a ques-
tion asking where the character is (e.g. “Where is
Mary?”) and the goal is to give a single word an-
swer to it (e.g. “bathroom”). Task 7 is a “count-
ing” task describing the same situation, but it ag-
gregates a sentence where one of the characters ei-
ther takes (e.g. “Mary took the football there.”) or
drops (e.g. “Mary dropped the football.”) an ob-
ject. This time, the question asks how many ob-
jects is the character carrying and the answer is
also a single word (e.g. “none”). As shown in
Figure 2, bAbI annotations enumerate each one of
the sentences. The number next to the single word
answer is the number of the sentence needed to
answer the question. Instead of the number of the
sentence, we will use as label the number of the
QAR category. This can be done following this
rule:

QARcategory =

{
1, for n = 1
2, for n > 1

}

Where n is the number of sentences and the cat-
egories 1, 2 correspond to Right there and Think
and Search, respectively. The bottom of Figure 2
shows how the new annotations will look like.
This annotations can be generated automatically
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T It was time to prepare for the picnic that we had plans for the last
couple weeks. . . . I needed to set up the cooler, which included
bottles of water, soda and juice to keep every- one hydrated. Then
I needed to ensure that we had all the food we intended to bring or
cook. So at home, I prepared baked beans, green beans and
macaroni and cheese. . . . But in a cooler, I packed chicken,
hotdogs, hamburgers and rots that were to be cooked on the grill
once we were at the picnic location.
 
What type of food did they pack?
a. Meat, drinks and side dishes              b. Pasta salda only

Q1

 

T I wanted to plant a tree. I went to the home and
garden store and picked a nice oak. Afterwards, I
planted it in my garden.
 
What was used to dig the hole?
a. a shovel                        b. his bare hands
 
When did he plant the three?
a. after watering it             b. after taking it home

Q1

Q2

Figure 3: MCScript annotations for text-based questions (left) and common sense questions (right). In blue, key
words and phrases necessary to arrive at the correct answer.

using a script that implements the aforementioned
rule.

The same approach can be applied to HotpotQA
and MultiRC. HotpotQA is a dataset with 113k
Wikipedia-based question-answer pairs for which
reasoning over multiple documents is needed
to answer. Its annotations already identify the
sentence-level supporting facts required for rea-
soning, making this dataset a perfect match for
our subset of Think and search questions. SQuAD
(100,000+ questions) has a very similar design and
format, although questions are designed to be an-
swered by a single paragraph. Since the correct
answer is literally contained in one part of the text,
questions will fall under the Right there category.
The annotations only include the start-offset of the
answer in the text, but we can easily use this infor-
mation to identify the answer's position at a sen-
tence level. In the same line of multiple-sentence
reasoning, MultiRC presents∼6k multiple-choice
questions from paragraphs across 7 different do-
mains. The additional challenge of this dataset is
that multiple correct answers are allowed. Since
the supporting sentences are already annotated,
this dataset can be used entirely as a Think and
search instance.

The multi-hop nature of QAngaroo and Narra-
tiveQA questions also match the Think and search
category. However, no span or sentence-level an-
notation is provided, making this datasets unsuit-
able for our approach.

4.1.2 In my head questions
For these questions we will use the MCScript
dataset (Ostermann et al., 2018). This dataset is
intended to be used in a machine reading com-
prehension task that requires reasoning over script
knowledge, sequences of events describing stereo-
typical human activities. MCScript contains 2,100
narrative texts annotated with two types of ques-

tions: Text-based questions and commonsense
questions with 10,160 and 3,827 questions each.
Text-based questions match Author and me cat-
egory since the answer is not directly contained
within the text; it is necessary to combine the text
information with background knowledge (script
knowledge). Commonsense questions, on the
other hand, depend only on background knowl-
edge. Thus, there is no need to read the text to
answer if the script activity is known.

Consider the example annotations shown in Fig-
ure 3. For the text on the left, the reader cannot
give an answer even if it has knowledge of types
of foods. It is necessary to read the text to identify
the types of food the characters in the text packed.
In contrast, the questions for the text on the right
can be answered if the reader is familiar with the
scenario of planting a tree.

The MCScript training annotations identify the
correct answer and whether this can be found in
the text or if commonsense knowledge is needed.
All questions where commonsense is required can
be assumed to be On my own questions. However,
there are some Text-based questions in which the
answer is explicitly contained in the text. It would
be necessary to review these questions to manu-
ally annotate the Author and me QAR type. This
could be achieved in a crowd-sourcing process, in-
structing the annotators on script knowledge and
asking them to label a question as Author and me
if they first are not able to answer without reading
the text.

With a major focus on background knowl-
edge, CommonsenseQA shifts from the common
text-question-answer candidates setting to only
question-answer candidates. This dataset could in
principle complement the On my own questions
type, but the absence of a passage makes Com-
monsenseQA inconsistent for a RC task.
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To ensure the integrity of our resulting dataset,
we will take a subset for manual inspection.

5 Summary

We introduced process-based evaluation as a new
setting to evaluate systems in reading comprehen-
sion. We propose to model QAR learning as a
weak supervision classification task and discussed
how existing RC datasets can be used to generate
new data for this purpose. Our work is inspired
by the findings of the educational assessment field
and we expect it to complement current work in
reading comprehension. We will leave the details
on how to use the QAR classification task for a RC
model’s evaluation performance to future work.

Acknowledgements

I would like to thank my supervisors Jun Suzuki,
Koji Matsuda and Kentaro Inui for their feedback,
support and helpful discussions. I am also thank-
ful to Benjamin Heinzerling, Kyosuke Nishida and
the anonymous reviewers for their insightful com-
ments. This work was supported by JST CREST
Grant Number JPMJCR1513, Japan.

References
Luthfiyah Apriani. 2019. The use of question-answer

relationship to improve students’ reading compre-
hension. In International Seminar and Annual
Meeting BKS-PTN Wilayah Barat, volume 1.

Yolande M Benito, Christy L Foley, Craig D Lewis,
and Perry Prescott. 1993. The effect of instruction in
question-answer relationships and metacognition on
social studies comprehension. Journal of Research
in Reading, 16(1):20–29.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Helen K Ezell, Stacie A Hunsicker, Maria M Quinque,
and Elizabeth Randolph. 1996. Maintenance and
generalization of qar reading comprehension strate-
gies. Literacy Research and Instruction, 36(1):64–
81.

Liane Guillou and Christian Hardmeier. 2016. Protest:
A test suite for evaluating pronouns in machine
translation. In LREC.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2015. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. arXiv preprint arXiv:1511.02301.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
arXiv preprint arXiv:1707.07328.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 252–262.
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Abstract
Paraphrases, the rewordings of the same se-
mantic meaning, are useful for improving gen-
eralization and translation. However, prior
works only explore paraphrases at the word
or phrase level , not at the sentence or corpus
level. Unlike previous works that only explore
paraphrases at the word or phrase level, we use
different translations of the whole training data
that are consistent in structure as paraphrases
at the corpus level. We train on parallel para-
phrases in multiple languages from various
sources. We treat paraphrases as foreign lan-
guages, tag source sentences with paraphrase
labels, and train on parallel paraphrases in the
style of multilingual Neural Machine Transla-
tion (NMT). Our multi-paraphrase NMT that
trains only on two languages outperforms the
multilingual baselines. Adding paraphrases
improves the rare word translation and in-
creases entropy and diversity in lexical choice.
Adding the source paraphrases boosts per-
formance better than adding the target ones.
Combining both the source and the target para-
phrases lifts performance further; combining
paraphrases with multilingual data helps but
has mixed performance. We achieve a BLEU
score of 57.2 for French-to-English translation
using 24 corpus-level paraphrases of the Bible,
which outperforms the multilingual baselines
and is +34.7 above the single-source single-
target NMT baseline.

1 Introduction
Paraphrases, rewordings of texts with preserved
semantics, are often used to improve generaliza-
tion and the sparsity issue in translation (Callison-
Burch et al., 2006; Fader et al., 2013; Ganitkevitch
et al., 2013; Narayan et al., 2017; Sekizawa et al.,
2017). Unlike previous works that use paraphrases
at the word/phrase level, we research on different
translations of the whole corpus that are consis-
tent in structure as paraphrases at the corpus level;

(a) multilingual NMT

(b) multi-paraphrase NMT
Figure 1: Translation Paths in (a) multilingual NMT (b)
multi-paraphrase NMT. Both form almost a complete bipar-
tite graph.

we refer to paraphrases as the different transla-
tion versions of the same corpus. We train para-
phrases in the style of multilingual NMT (Johnson
et al., 2017; Ha et al., 2016) . Implicit parameter
sharing enables multilingual NMT to learn across
languages and achieve better generalization (John-
son et al., 2017). Training on closely related lan-
guages are shown to improve translation (Zhou
et al., 2018). We view paraphrases as an extreme
case of closely related languages and view multi-
lingual data as paraphrases in different languages.
Paraphrases can differ randomly or systematically
as each carries the translator’s unique style.

We treat paraphrases as foreign languages, and
train a unified NMT model on paraphrase-labeled
data with a shared attention in the style of multi-
lingual NMT. Similar to multilingual NMT’s ob-
jective of translating from any of the N input lan-
guages to any of the M output languages (Firat
et al., 2016), multi-paraphrase NMT aims to trans-
late from any of the N input paraphrases to any
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of the M output paraphrases in Figure 1. In Fig-
ure 1, we see different expressions of a host show-
ing courtesy to a guest to ask whether sake (a type
of alcohol drink that is normally served warm in
Asia) needs to be warmed. In Table 6, we show
a few examples of parallel paraphrasing data in
the Bible corpus. Different translators’ styles give
rise to rich parallel paraphrasing data, covering
wide range of domains. In Table 7, we also show
some paraphrasing examples from the modern po-
etry dataset, which we are considering for future
research.

Indeed, we go beyond the traditional NMT
learning of one-to-one mapping between the
source and the target text; instead, we exploit the
many-to-many mappings between the source and
target text through training on paraphrases that
are consistent to each other at the corpus level.
Our method achieves high translation performance
and gives interesting findings. The differences be-
tween our work and the prior works are mainly the
following.

Unlike previous works that use paraphrases at
the word or phrase level, we use paraphrases at the
entire corpus level to improve translation perfor-
mance. We use different translations of the whole
training data consistent in structure as paraphrases
of the full training data. Unlike most of the mul-
tilingual NMT works that uses data from multi-
ple languages, we use paraphrases as foreign lan-
guages in a single-source single-target NMT sys-
tem training only on data from the source and the
target languages.

Our main findings in harnessing paraphrases in
NMT are the following.

1. Our multi-paraphrase NMT results show sig-
nificant improvements in BLEU scores over
all baselines.

2. Our paraphrase-exploiting NMT uses only
two languages, the source and the target lan-
guages, and achieves higher BLEUs than the
multi-source and multi-target NMT that in-
corporates more languages.

3. We find that adding the source paraphrases
helps better than adding the target para-
phrases.

4. We find that adding paraphrases at both the
source and the target sides is better than
adding at either side.

Figure 2: Examples of different ways of adding 5 para-
phrases. e[?n] and f[?n] refers to different English and
French paraphrases, es refers to the Spanish (an example
member of Romance family) data. We always evaluate the
translation path from f0 to e0.

5. We also find that adding paraphrases with ad-
ditional multilingual data yields mixed per-
formance; its performance is better than
training on language families alone, but is
worse than training on both the source and
target paraphrases without language families.

6. Adding paraphrases improves the sparsity is-
sue of rare word translation and diversity in
lexical choice.

In this paper, we begin with introduction and re-
lated work in Section 1 and 2. We introduce our
models in Section 3. Finally, we present our re-
sults in Section 4 and conclude in Section 5.

2 Related Work

2.1 Paraphrasing
Many works generate and harness paraphrases
(Barzilay and McKeown, 2001; Pang et al., 2003;
Callison-Burch et al., 2005; Mallinson et al., 2017;
Ganitkevitch et al., 2013; Brad and Rebedea,
2017; Quirk et al., 2004; Madnani et al., 2012;
Suzuki et al., 2017; Hasan et al., 2016). Some are
on question and answer (Fader et al., 2013; Dong
et al., 2017), evaluation of translation (Zhou et al.,
2006) and more recently NMT (Narayan et al.,
2017; Sekizawa et al., 2017). Past research in-
cludes paraphrasing unknown words/phrases/sub-
sentences (Callison-Burch et al., 2006; Narayan
et al., 2017; Sekizawa et al., 2017; Fadaee et al.,
2017). These approaches are similar in transform-
ing the difficult sparsity problem of rare words
prediction and long sentence translation into a
simpler problem with known words and short sen-
tence translation. It is worthwhile to contrast para-
phrasing that diversifies data, with knowledge dis-
tillation that benefits from making data more con-
sistent (Gu et al., 2017).

Our work is different in that we exploit para-
phrases at the corpus level, rather than at the word
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Data 1 6 11 13
Vsrc 22.5 41.4 48.9 48.8
Vtgt 22.5 40.5 47.0 47.4

Table 1: Comparison of adding source paraphrases and
adding target paraphrases. All acronyms including data are
explained in Section 4.3.

data 1 6 11 16 22 24
WMT 22.5 30.8 29.8 30.8 29.3 -
Family 22.5 39.3 45.4 49.2 46.6 -
Vmix 22.5 44.8 50.8 53.3 55.4 57.2
Vmf - - 49.3 - - -

Table 2: Comparison of adding a mix of the source para-
phrases and the target paraphrases against the baselines. All
acronyms including data are explained in Section 4.3.

or phrase level.

2.2 Multilingual Attentional NMT
Machine polyglotism which trains machines to
translate any of the N input languages to any
of the M output languages from many languages
to many languages, many languages is a new
paradigm in multilingual NMT (Firat et al., 2016;
Zoph and Knight, 2016; Dong et al., 2015; Gillick
et al., 2016; Al-Rfou et al., 2013; Tsvetkov et al.,
2016). The objective is to translate from any of
the N input languages to any of the M output lan-
guages (Firat et al., 2016).

Many multilingual NMT systems involve multi-
ple encoders and decoders (Ha et al., 2016), and it
is hard to combine attention for quadratic language
pairs bypassing quadratic attention mechanisms
(Firat et al., 2016). An interesting work is training
a universal model with a shared attention mech-
anism with the source and target language labels
and Byte-Pair Encoding (BPE) (Johnson et al.,
2017; Ha et al., 2016). This method is elegant in
its simplicity and its advancement in low-resource
language translation and zero-shot translation us-
ing pivot-based translation mechanism (Johnson
et al., 2017; Firat et al., 2016).

Unlike previous works, our parallelism is across
paraphrases, not across languages. In other words,
we achieve higher translation performance in the
single-source single-target paraphrase-exploiting
NMT than that of the multilingual NMT.

3 Models

We have four baseline models. Two are single-
source single-target attentional NMT models, the
other two are multilingual NMT models with a
shared attention (Johnson et al., 2017; Ha et al.,
2016). In Figure 1, we show an example of
multilingual attentional NMT. Translating from

all 4 languages to each other, we have 12 trans-
lation paths. For each translation path, we la-
bel the source sentence with the source and tar-
get language tags. Translating from “你的清
酒凉了吗?” to “Has your sake turned cold?”,
we label the source sentence with opt src zh
opt tgt en. More details are in Section 4.
In multi-paraphrase model, all source sentences

are labeled with the paraphrase tags. For ex-
ample, in French-to-English translation, a source
sentence may be tagged with opt src f1
opt tgt e0, denoting that it is translating from

version “f1” of French data to version “e0” of En-
glish data. In Figure 1, we show 2 Japanese and 2
English paraphrases. Translating from all 4 para-
phrases to each other (N = M = 4), we have
12 translation paths as N × (N − 1) = 12. For
each translation path, we label the source sentence
with the source and target paraphrase tags. For the
translation path from “お酒冷めましたよね?” to
“Has your sake turned cold?”, we label the source
sentence with opt src j1 opt tgt e0 in
Figure 1. Paraphrases of the same translation path
carry the same labels. Our paraphrasing data is
at the corpus level, and we train a unified NMT
model with a shared attention. Unlike the para-
phrasing sentences in Figure 1, We show this ex-
ample with only one sentence, it is similar when
the training data contains many sentences. All sen-
tences in the same paraphrase path share the same
labels.

4 Experiments and Results

4.1 Data
Our main data is the French-to-English Bible cor-
pus (Mayer and Cysouw, 2014), containing 12
versions of the English Bible and 12 versions of
the French Bible 1. We translate from French to
English. Since these 24 translation versions are
consistent in structure, we refer to them as para-
phrases at corpus level. In our paper, each para-
phrase refers to each translation version of whole
Bible corpus. To understand our setup, if we use
all 12 French paraphrases and all 12 English para-
phrases so there are 24 paraphrases in total, i.e.,
N = M = 24, we have 552 translation paths be-

1We considered the open subtitles with different scripts
of the same movie in the same language; they covers many
topics, but they are noisy and only differ in interjections. We
also considered the poetry dataset where a poem like “If” by
Rudyard Kipling is translated many times, by various people
into the same language, but the data is small.
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Source Sentence Machine Translation Correct Target Translation
Comme de l’eau fraı̂che pour une per-
sonne fatigué, Ainsi est une bonne
nouvelle venant d’une terre lointaine.

As cold waters to a thirsty soul, so is
good news from a distant land.

Like cold waters to a weary soul, so is
a good report from a far country.

Lorsque tu seras invité par quelqu’un à
des noces, ne te mets pas à la première
place, de peur qu’il n’y ait parmi les
invités une personne plus considérable
que toi,

When you are invited to one to the
wedding, do not be to the first place,
lest any one be called greater than you.

When you are invited by anyone to
wedding feasts, do not recline at the
chief seat lest one more honorable than
you be invited by him,

Car chaque arbre se connaı̂t à son fruit.
On ne cueille pas des figues sur des
épines, et l’on ne vendange pas des
raisins sur des ronces.

For each tree is known by its own fruit.
For from thorns they do not gather figs,
nor do they gather grapes from a bram-
ble bush.

For each tree is known from its own
fruit. For they do not gather figs from
thorns, nor do they gather grapes from
a bramble bush.

Vous tous qui avez soif, venez aux
eaux, Même celui qui n’a pas d’argent!
Venez, achetez et mangez, Venez,
achetez du vin et du lait, sans argent,
sans rien payer!

Come, all you thirsty ones, come to the
waters; come, buy and eat. Come, buy
for wine, and for nothing, for without
money.

Ho, everyone who thirsts, come to the
water; and he who has no silver, come
buy grain and eat. Yes, come buy
grain, wine and milk without silver and
with no price.

Oui , vous sortirez avec joie , Et vous
serez conduits en paix ; Les montagnes
et les collines éclateront d’allégresse
devant vous , Et tous les arbres de la
campagne battront des mains .

When you go out with joy , you shall
go in peace ; the mountains shall re-
joice before you , and the trees of the
field shall strike all the trees of the field
.

For you shall go out with joy and be led
out with peace . The mountains and the
hills shall break out into song before
you , and all the trees of the field shall
clap the palm .

Table 3: Examples of French-to-English translation trained using 12 French paraphrases and 12 English paraphrases.

cause N × (N − 1) = 552. The original cor-
pus contains missing or extra verses for different
paraphrases; we clean and align 24 paraphrases of
the Bible corpus and randomly sample the train-
ing, validation and test sets according to the 0.75,
0.15, 0.10 ratio. Our training set contains only
23K verses, but is massively parallel across para-
phrases.

For all experiments, we choose a specific En-
glish corpus as e0 and a specific French corpus
as f0 which we evaluate across all experiments to
ensure consistency in comparison, and we evalu-
ate all translation performance from f0 to e0.

4.2 Training Parameters
In all our experiments, we use a minibatch size of
64, dropout rate of 0.3, 4 RNN layers of size 1000,
a word vector size of 600, number of epochs of
13, a learning rate of 0.8 that decays at the rate of
0.7 if the validation score is not improving or it is
past epoch 9 across all LSTM-based experiments.
Byte-Pair Encoding (BPE) is used at preprocess-
ing stage (Ha et al., 2016). Our code is built on
OpenNMT (Klein et al., 2017) and we evaluate our
models using BLEU scores (Papineni et al., 2002),
entropy (Shannon, 1951), F-measure and qualita-
tive evaluation.

4.3 Baselines
We introduce a few acronyms for our four base-
lines to describe the experiments in Table 1,
Table 2 and Figure 3. Firstly, we have two
single-source single-target attentional NMT mod-

els, Single and WMT. Single trains on f0 and
e0 and gives a BLEU of 22.5, the starting point for
all curves in Figure 3. WMT adds the out-domain
WMT’14 French-to-English data on top of f0 and
e0; it serves as a weak baseline that helps us to
evaluate all experiments’ performance discounting
the effect of increasing data.

Moreover, we have two multilingual baselines2

built on multilingual attentional NMT, Family
and Span (Zhou et al., 2018). Family refers to
the multilingual baseline by adding one language
family at a time, where on top of the French cor-
pus f0 and the English corpus e0, we add up
to 20 other European languages. Span refers to
the multilingual baseline by adding one span at
a time, where a span is a set of languages that
contains at least one language from all the fami-
lies in the data; in other words, span is a sparse
representation of all the families. Both Family
and Span trains on the Bible in 22 Europeans
languages trained using multilingual NMT. Since
Span is always suboptimal to Family in our re-
sults, we only show numerical results for Family
in Table 1 and 2, and we plot both Family and
Span in Figure 3. The two multilingual baselines
are strong baselines while the fWMT baseline is a
weak baseline that helps us to evaluate all exper-
iments’ performance discounting the effect of in-
creasing data. All baseline results are taken from

2 For multilingual baselines, we use the additional Bible
corpus in 22 European languages that are cleaned and aligned
to each other.
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data 6 11 16 22 24
Entropy 5.6569 5.6973 5.6980 5.7341 5.7130
Bootstr.
95% CI

5.6564
5.6574

5.6967
5.6979

5.6975
5.6986

5.7336
5.7346

5.7125
5.7135

WMT - 5.7412 5.5746 5.6351 -
Table 4: Entropy increases with the number of paraphrase
corpora in Vmix. The 95% confidence interval is calculated
via bootstrap resampling with replacement.

data 6 11 16 22 24
F1(freq1) 0.43 0.54 0.57 0.58 0.62
WMT - 0.00 0.01 0.01 -

Table 5: F1 score of frequency 1 bucket increases with the
number of paraphrase corpora in Vmix, showing training on
paraphrases improves the sparsity at tail and the rare word
problem.

a research work which uses the grid of (1, 6, 11,
16, 22) for the number of languages or equiva-
lent number of unique sentences and we follow the
same in Figure 3 (Zhou et al., 2018). All experi-
ments for each grid point carry the same number
of unique sentences.

Furthermore, Vsrc refers to adding more
source (English) paraphrases, and Vtgt refers to
adding more target (French) paraphrases. Vmix
refers to adding both the source and the target
paraphrases. Vmf refers to combining Vmix with
additional multilingual data; note that only Vmf,
Family and Span use languages other than
French and English, all other experiments use only
English and French. For the x-axis, data refers
to the number of paraphrase corpora for Vsrc,
Vtgt, Vmix; data refers to the number of lan-
guages for Family; data refers to and the equiv-
alent number of unique training sentences com-
pared to other training curves for WMT and Vmf.

4.4 Results

Training on paraphrases gives better perfor-
mance than all baselines: The translation per-
formance of training on 22 paraphrases, i.e., 11
English paraphrases and 11 French paraphrases,
achieves a BLEU score of 55.4, which is +32.9
above the Single baseline, +8.8 above the
Family baseline, and +26.1 above the WMT base-
line. Note that the Family baseline uses the grid
of (1, 6, 11, 16, 22) for number of languages, we
continue to use this grid for our results on num-
ber of paraphrases, which explains why we pick
22 as an example here. The highest BLEU 57.2 is
achieved when we train on 24 paraphrases, i.e., 12
English paraphrases and 12 French paraphrases.

Adding the source paraphrases boosts trans-
lation performance more than adding the tar-

Figure 3: BLEU plots showing the effects of different ways
of adding training data in French-to-English Translation. All
acronyms including data are explained in Section 4.3.

get paraphrases: The translation performance of
adding the source paraphrases is higher than that
of adding the target paraphrases. Adding the
source paraphrases diversifies the data, exposes
the model to more rare words, and enables better
generalization. Take the experiments training on
13 paraphrases for example, training on the source
(i.e., 12 French paraphrases and the English para-
phrase e0) gives a BLEU score of 48.8, which
has a gain of +1.4 over 47.4, the BLEU score of
training on the target (i.e., 12 English paraphrases
and the French paraphrase f0). This suggests that
adding the source paraphrases is more effective
than adding the target paraphrases.

Adding paraphrases from both sides is better
than adding paraphrases from either side: The
curve of adding paraphrases from both the source
and the target sides is higher than both the curve
of adding the target paraphrases and the curve of
adding the source paraphrases. Training on 11
paraphrases from both sides, i.e., a total of 22 para-
phrases achieves a BLEU score of 50.8, which
is +3.8 higher than that of training on the target
side only and +1.9 higher than that of training on
the source side only. The advantage of combin-
ing both sides is that we can combine paraphrases
from both the source and the target to reach 24
paraphrases in total to achieve a BLEU score of
57.2.

Adding both paraphrases and language fam-
ilies yields mixed performance: We conduct one
more experiment combining the source and target
paraphrases together with additional multilingual
data. This is the only experiment on paraphrases
where we use multilingual data other than only
French and English data. The BLEU score is 49.3,
higher than training on families alone, in fact, it
is higher than training on eight European fami-
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lies altogether. However, it is lower than training
on English and French paraphrases alone. Indeed,
adding paraphrases as foreign languages is effec-
tive, however, when there is a lack of data, mixing
the paraphrases with multilingual data is helpful.

Adding paraphrases increases entropy and
diversity in lexical choice, and improves the
sparsity issue of rare words: We use bootstrap
resampling and construct 95% confidence inter-
vals for entropies (Shannon, 1951) of all models of
Vmix, i.e., models adding paraphrases at both the
source and the target sides. We find that the more
paraphrases, the higher the entropy, the more di-
versity in lexical choice as shown in Table 4. From
the word F-measure shown in Table 5, we find
that the more paraphrases, the better the model
handles the sparsity of rare words issue. Adding
paraphrases not only achieves much higher BLEU
score than the WMT baseline, but also handles the
sparsity issue much better than the WMT baseline.

Adding paraphrases helps rhetoric transla-
tion and increases expressiveness: Qualitative
evaluation shows many cases where rhetoric trans-
lation is improved by training on diverse sets of
paraphrases. In Table 3, Paraphrases help NMT
to use a more contemporary synonym of “silver”,
“money”, which is more direct and easier to un-
derstand. Paraphrases simplifies the rhetorical or
subtle expressions, for example, our model uses
“rejoice” to replace “break out into song”, a per-
sonification device of mountains to describe joy,
which captures the essence of the meaning being
conveyed. However, we also observe that NMT
wrongly translates “clap the palm” to “strike”.
We find the quality of rhetorical translation ties
closely with the diversity of parallel paraphrases
data. Indeed, the use of paraphrases to improve
rhetoric translation is a good future research ques-
tion. Please refer to the Table 3 for more qualita-
tive examples.

5 Conclusion
We train on paraphrases as foreign languages
in the style of multilingual NMT. Adding para-
phrases improves translation quality, the rare word
issue, and diversity in lexical choice. Adding the
source paraphrases helps more than adding the
target ones, while combining both boosts perfor-
mance further. Adding multilingual data to para-
phrases yields mixed performance. We would like
to explore the common structure and terminology
consistency across different paraphrases. Since

structure and terminology are shared across para-
phrases, we are interested in a building an ex-
plicit representation of the paraphrases and extend
our work for better translation, or translation with
more explicit and more explainable hidden states,
which is very important in all neural systems.

We are interested in broadening our dataset in
our future experiments. We hope to use other par-
allel paraphrasing corpora like the poetry dataset
as shown in Table 7. There are very few poems
that are translated multiple times into the same
language, we therefore need to train on extremely
small dataset. Rhetoric in paraphrasing is impor-
tant in poetry dataset, which again depends on the
training paraphrases. The limited data issue is also
relevant to the low-resource setting.

We would like to effectively train on extremely
small low-resource paraphrasing data. As dis-
cussed above about the potential research poetry
dataset, dataset with multiple paraphrases is typi-
cally small and yet valuable. If we can train us-
ing extremely small amount of data, especially in
the low-resource scenario, we would exploit the
power of multi-paraphrase NMT further.

Cultural-aware paraphrasing and subtle expres-
sions are vital (Levin et al., 1998; Larson, 1984).
Rhetoric in paraphrasing is a very important too.
In Figure 1, “is your sake warm enough?” in Asian
culture is an implicit way of saying “would you
like me to warm the sake for you?”. We would
like to model the culture-specific subtlety through
multi-paraphrase training.
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Appendix A Supplemental Materials

We show a few examples of parallel paraphras-
ing data in the Bible corpus. We also show some
paraphrasing examples from the modern poetry
dataset, which we are considering for future re-
search.
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English Paraphrases

Consider the lilies, how they grow: they neither toil nor spin, yet I tell you, even Solomon in
all his glory was not arrayed like one of these. English Standard Version.
Look how the wild flowers grow! They don’t work hard to make their clothes. But I tell you
Solomon with all his wealth wasn’t as well clothed as one of these flowers. Contemporary
English Version.
Consider how the wild flowers grow. They do not labor or spin. Yet I tell you, not even
Solomon in all his splendor was dressed like one of these. New International Version.

French Paraphrases

Considérez les lis! Ils poussent sans se fatiguer à tisser des vêtements. Et pourtant, je vous
l’assure, le roi Salomon lui-même, dans toute sa gloire, n’a jamais été aussi bien vêtu que l’un
d’eux! La Bible du Semeur.
Considérez comment croissent les lis: ils ne travaillent ni ne filent; cependant je vous dis que
Salomon même, dans toute sa gloire, n’a pas été vêtu comme l’un d’eux. Louis Segond.
Observez comment poussent les plus belles fleurs: elles ne travaillent pas et ne tissent pas;
cependant je vous dis que Salomon lui-même, dans toute sa gloire, n’a pas eu d’aussi belles
tenues que l’une d’elles. Segond 21.

Tagalog Paraphrases

Wariin ninyo ang mga lirio, kung paano silang nagsisilaki: hindi nangagpapagal, o nangag-
susulid man; gayon ma’y sinasabi ko sa inyo, Kahit si Salomon man, sa buong kaluwalhatian
niya, ay hindi nakapaggayak na gaya ng isa sa mga ito. Ang Biblia 1978.
Isipin ninyo ang mga liryo kung papaano sila lumalaki. Hindi sila nagpapagal o nag-iikid.
Gayunman, sinasabi ko sa inyo: Maging si Solomon, sa kaniyang buong kaluwalhatian ay
hindi nadamitan ng tulad sa isa sa mga ito. Ang Salita ng Diyos.
Tingnan ninyo ang mga bulaklak sa parang kung paano sila lumalago. Hindi sila nagtatrabaho
ni humahabi man. Ngunit sinasabi ko sa inyo, kahit si Solomon sa kanyang karangyaan ay
hindi nakapagdamit ng singganda ng isa sa mga bulaklak na ito. Magandang Balita Biblia.

Spanish Paraphrases

Considerad los lirios, cómo crecen; no trabajan ni hilan; pero os digo que ni Salomón en toda
su gloria se vistió como uno de éstos. La Biblia de las Américas.
Fı́jense cómo crecen los lirios. No trabajan ni hilan; sin embargo, les digo que ni siquiera
Salomón, con todo su esplendor, se vestı́a como uno de ellos. Nueva Biblia al Dı́a.
Aprendan de las flores del campo: no trabajan para hacerse sus vestidos y, sin embargo,
les aseguro que ni el rey Salomón, con todas sus riquezas, se vistió tan bien como ellas.
Traducción en lenguaje actual.

Table 6: Examples of parallel paraphrasing data with English, French, Tagalog and Spanish paraphrases in Bible translation.

English Original If you can fill the unforgiving minute with sixty seconds’ worth of distance run, yours is
the Earth and everything that’s in it, and—which is more—you’ll be a Man, my son! “if”,
Rudyard Kipling.

German Translations

Wenn du in unverzeihlicher Minute Sechzig Minuten lang verzeihen kannst: Dein ist die
Welt—und alles was darin ist— Und was noch mehr ist—dann bist du ein Mensch! Transla-
tion by Anja Hauptmann.
Wenn du erfüllst die herzlose Minute Mit tiefstem Sinn, empfange deinen Lohn: Dein ist die
Welt mit jedem Attribute, Und mehr noch: dann bist du ein Mensch, mein Sohn! Translation
by Izzy Cartwell.
Füllst jede unerbittliche Minute Mit sechzig sinnvollen Sekunden an; Dein ist die Erde dann
mit allem Gute, Und was noch mehr, mein Sohn: Du bist ein Mann! Translation by Lothar
Sauer.

Chinese Translations

若胸有激雷,而能面如平湖,则山川丘壑,天地万物皆与尔共,吾儿终成人也！ Transla-
tion by Anonymous.
如果你能惜时如金利用每一分钟不可追回的光阴；那么，你的修为就会如天地般博
大，并拥有了属于自己的世界，更重要的是：孩子，你成为了真正顶天立地之人！
Translation by Anonymous.
假如你能把每一分宝贵的光阴, 化作六十秒的奋斗—-你就拥有了整个世界,最重要的
是——你就成了一个真正的人，我的孩子！ Translation by Shan Li.

Portuguese Translations

Se você puder preencher o valor do inclemente minuto perdido com os sessenta segundos
ganhos numa longa corrida, sua será a Terra, junto com tudo que nela existe, e—mais impor-
tante—você será um Homem, meu filho! Translation by Dascomb Barddal.
Pairando numa esfera acima deste plano, Sem receares jamais que os erros te retomem,
Quando já nada houver em ti que seja humano, Alegra-te, meu filho, então serás um homem!...
Translation by Féliz Bermudes.
Se és capaz de dar, segundo por segundo, ao minuto fatal todo valor e brilho. Tua é a Terra
com tudo o que existe no mundo, e—o que ainda é muito mais—és um Homem, meu filho!
Translation by Guilherme de Almeida.

Table 7: Examples of parallel paraphrasing data with German, Chinese, and Portuguese paraphrases of the English poem “If”
by Rudyard Kipling.
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Abstract

For the translation of agglutinative language
such as typical Mongolian, unknown (UN-
K) words not only come from the quite
restricted vocabulary, but also mostly from
misunderstanding of the translation model
to the morphological changes. In this s-
tudy, we introduce a new adversarial train-
ing model to alleviate the UNK problem
in Mongolian→Chinese machine translation.
The training process can be described as
three adversarial sub models (generator, val-
ue screener and discriminator), playing a
win−win game. In this game, the added
screener plays the role of emphasizing that
the discriminator pays attention to the added
Mongolian morphological noise1 in the form
of pseudo-data and improving the training effi-
ciency. The experimental results show that the
newly emerged Mongolian→Chinese task is
state-of-the-art. Under this premise, the train-
ing time is greatly shortened.

1 Introduction

The dominant neural machine translation (NMT)
(Sutskever et al., 2014) models are based on recur-
rent (RNN, (Mikolov et al., 2011)), convolution-
al neural networks (CNN, (Gehring et al., 2017))
or entirely eliminates recurrent connections and
relies instead on a repeated attention mechanism
(Transformer, (Vaswani et al., 2017)) which are
achieved by an attention mechanism (Bahdanau
et al., 2014). A considerable weakness in these
NMT systems is their inability to correctly trans-
late very rare words: end-to-end NMTs tend to
have relatively small vocabularies with a single
< unk > symbol that represents every possible

1These morphological noises exist in most agglutinative
languages in the form of appended stem, which are used to
determine the presentation or tense of words. Some typical
noises, such as suffixes and cases in Mongolian, Korean and
Japanese.

out-of-vocabulary (OOV) word. The problem is
more prominent in agglutinative language tasks,
because the varied morphology brings great confu-
sion to model decoding. The change of suffix and
component case2 in Mongolian largely deceives
the translation model directly resulting in a large
amount of OOV during decoding. This OOV is
then crudely considered the same as an < unk >
symbol.

Generally, there are three ways to solve this
problem. A usual practice is to speed up training
(Morin and Bengio, 2005; Jean et al., 2015; Mnih
et al., 2013), these approaches can maintain a very
large vocabulary. However, it works well when
there are only a few unknown words in the target
sentence. These approaches have been observed
that the translation performance degrades rapidly
as the number of unknown words increases. An-
other aspect is the information in context (Luong
et al., 2015; Hermann et al., 2015; Gulcehre et al.,
2016), they motivate their work from a psycholog-
ical evidence that humans naturally have a tenden-
cy to point towards objects in the context. The last
aspect is the input/output change, these approach-
es change to a smaller resolution, such as char-
acters (Graves, 2013a) and bytecodes (Sennrich
et al., 2016). However, it is worth thinking that
the training process usually becomes much hard-
er because of the length of sequences considerable
increases.

For NLP tasks, generative adversarial network
(GAN) is immature. Some studies, such as (Chen
et al., 2016; Zhang et al., 2017), used GAN for
semantic analysis and domain adaptation. (Yu
et al., 2016; Zhen et al., 2018; Wu et al., 2018)
successfully applied GAN to sequence generation
tasks. (Zhang Y, 2017) propose matching the
high-dimensional latent feature distributions of re-

2Mongolian-case is a special suffix used to determine its
relationship to other words in a sentence.
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al and synthetic sentences, via a kernelized dis-
crepancy metric. This eases adversarial training
by alleviating the mode-collapsing problem.

In the present study, GAN is used for UNK
problem. The motivation for this is GAN

′
s advan-

tage in approaching real data effectively based on
noise in a game training. To obtain generalizable
adversarial training, we propose a noise-added s-
trategy to add noise samples into the training set
in the form of pseudo data. The noise is the main
cause of UNK, such as the segmentation of suffix-
es and the handling of case components in Mongo-
lian. A representative example is used to illustrate
the decoding search process of Mongolian sen-
tences in adversarial training (Fig. 1). During de-
coding, decoder usually can not solve the problem
of morphological variability of words (caused by
morphological noise) through vocabulary, which
leads to OOV. Therefore, we introduce GAN mod-
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Figure 1: Given a sentence, Mongolian words face dif-
ferent suffix and case noises in each decoding process
of the adversarial training, which are the main reason-
s for < unk >. For instance, the verb ‘(learn)’ and
‘(read)’ need to add the verb-suffixes and tense-cases
in order to associate with nouns in Mongolian. Con-
versely, (“learning”) and (read+‘ ’), which are con-
fused by suffixes and cases, do not appear in the vocab-
ulary. This will directly cause <unk> appear in the de-
coding process. The proposed model aims to improve
the generalization ability of noise through adversarial
training.

el with a value screener (VS-GAN), a generaliza-
tion of GAN, which makes the adversarial train-
ing specific to the noise. The model also improves
the efficiency of GAN training by value iteration
network (VIN) (Tamar et al., 2016) and address-
es the problem of optimal parameter updating in
Reinforcement Learning(RL) training. These are
our two contributions. The third contribution is
a thorough empirical evaluation on four differen-

t noises. We compare several strong baselines,
including MIXER (Ranzato et al., 2015), Trans-
former (Vaswani et al., 2017), and BR-CSGAN
(Zhen et al., 2018). The experimental results show
that VS-GAN achieves much better time efficien-
cy and the newly emerged state-of-the-art result on
Mongolian-Chinese MT.

2 GAN with the Value Screener

In this section, we describe the architecture of VS-
GAN in detail. VS-GAN consists of the follow-
ing components: generator G, value screener, and
discriminator D. Given the source language se-
quence {x1, ..., xNx} with length N, G aims to
generate sentences

{
y
′
1, ..., y

′
Ny

}
, which are in-

distinguishable by D. D attempts to discrimi-
nate between

{
y
′
1, ..., y

′
Ny

}
and human translated

ones
{
y1, ..., yNy

}
. The value screener uses the

reward information generated by G to convert the
decoding cost into a simple value, and determines
whether the predictions of current state need to be
passed to D.

2.1 Generator G

The selection of G is individualized and targeted.
In this work, we focus on long short term memory
(LSTM(Graves, 2013b)) with attention mechanis-
m and Transformer (Vaswani et al., 2017). The
temporal structure of LSTM enables it to capture
dependency semantics in agglutinative language.
Transformer has refreshed state-of-the-art perfor-
mance on several languages pairs. For the nec-
essary policy optimization in GAN training, we
focus our problem on the RL framework (Mnih
et al., 2013). The approach can solve the long-
term reward problem because a standard model
for sequential decision making and planning is the
markov decision process (MDP) (Dayan and Ab-
bott, 2003) in RL training. G can be viewed as
an agent which interacts with the external envi-
ronment (the words and the context vector at every
timestep). The parameters of agent define a policy
θ, whose execution results in the agent is selecting
an action aεA. In NMT, an action represents the
prediction of the next word y

′
t in the sequence at t-

th timestep. After taking an action, the agent will
update its internal state sεS (i.e., the hidden unit-
s). RL will observe a reward R(s, a) once the end
of a sequence (or the maximum sequence length)
is reached. We can choose any reward function,
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and in this case, we choose BLEU because it is the
metric we used at the test time.

2.2 Value Screener

So far, the constructed G is still confused by noise
because the effect of noise has not been fully u-
tilized due to the lack of attention from D. To
solve this problem, we add a VIN implemented
value screener between G and D to enhance the
generalization ability of G to the noise. In VIN,
the < unk > symbol corresponds to a low train-
ing reward, whereas the low training reward cor-
responds to a low value. This is what the screener
wants to emphasize.

To achieve VIN, we introduce an interpretation
of an approximate VI algorithm as a particular for-
m of a standard CNN. Specifically, VI in this form,
which makes learning the MDP (R., 1957; Bert-
sekas., 2012) parameters and reward function nat-
ural by backpropagation through the network. We
can train the entire policy end-to-end on the ba-
sis of its simplification by backpropagation. For
the training process, each iteration of VI algorithm
can be seen as passing the previous value of Vt−1
and reward R by a convolution layer and max-
pooling layer. In this analogy, the active function
in the convolution layer corresponds to theQ func-
tion. We can formulate the value iteration as:

yt = maxaQ(s, a)

= max

[
R(s, a) +

N∑

t=1

P (s|st−1, a)Vt−1
]

(1)

where Q(s,a) indicates the value of action a under
state s at t-th timestep, the rewardR(s, a) and dis-
counted transition probabilities P (s|st−1, a) are
obtained from G which mentioned in Section 2.1.
N denotes the length of the sequence. Thus,
the value of sequence Vn will be produced by
applying the convolution layer recurrently sev-
eral times according to the length of the sen-
tence, and for a batch, n is valued between 1
and batchsize of training. The optimal value
Vupdate = Average(V1, ..., Vbatchsize) is the av-
erage long-term return possible from a state. The
value of current predictions represents the cost of
decoding at current state. We select the value of
optimal pre-training model as the initial V ∗and
compare it with Vupdate. Subsequently, we ob-
serve the decoding effect of the current batch;
thus, we can decide the necessity of taking the neg-
ative example as an input of D. The conditions of

screening are as follows:
{

direct input to D if Vupdate < V ∗

screening and V ∗ = Vupdate if Vupdate > V ∗

(2)
Since VIN is simply a form of CNN, once a VIN

design is selected, implementing the screener is s-
traightforward. The networks in the experiments
all require only several lines of Tensor code.

2.3 Discriminator D

We implementD on the basis of CNN. The reason
for this is that CNN has advantages in dealing with
variable length sequences. The CNN padding is
used to transform the sentences to sequences with
fixed length. A source matrix X1:N and a target
matrix Y1:N are created to represent {x1, ..., xNx}
and

{
y
′
1, ..., y

′
Ny

}
. We concatenate every k di-

mensional word embedding into the final matrix
x1:N and y1:N respectively. A kernel wjεRl×k ap-
plies a convolutional operation to a window size
of l words to produce a series of feature maps:

cji = a(wj ⊕Xi:i+l−1 + b), (3)

where b is a bias term and ⊕ is the summation of
element production. We use Relu as the function
to implement the nonlinear activation function a.
Then a max-pooling operation is leveraged over
the feature maps:

cj∼max = max(cj1 , ..., cjN−l+1
). (4)

For different window sizes, we set the corre-
sponding kernel to extract the valid features, and
then we concatenate them to form the source sen-
tence representation cx for D. And the target sen-
tence representation cy can be extracted from the
target matrix Y1:N . Then given the source sen-
tence, the probability that the target sentence is be-
ing real can be computed as:

pD = sigmoid(T [cx; cy]), (5)

where T is the transform matrix which transforms
the concatenation of cx and cy into a 2-dimension
embedding. We can get the final probability if we
use the matrix of 2-dimensional mapping as the
input of the sigmoid function.

2.4 Training Process

We present a standard VS-GAN training process
in the form of data flow directions (Fig. 2):
• Pre-training G with RL algorithm. Note that

we pre-train G to ensure that an optimal parame-
ter is directly involved in training, and provides a
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good search space for beam search.
• Observe the reinforcement reward. Once the

end of sentence (or the maximum sequence length)
is reached, a cumulative reward matrix R is gener-
ated. The observed reward can measure the cumu-
lative value of agent (G) in the prediction process
(action) of a set of sequences.
• Value screening. The reward R is fed into a

convolutional layer and a linear activation func-
tion. This layer corresponds to a particular action
Q. The next-iteration value is then stacked with
the reward and fed back into the convolutional lay-
er N times, where N depends on the length of the
sequence. Subsequently, a long-term value Vupdate
is generated by decoding a sentence. The batch is
screened by the set conditions, as shown in Eq.( 2).
• Stay awake. D is dedicated to differentiat-

ing the screened negative result with the human-
translated sentences, which provide the probabili-
ty pD.
• Adversarial game. When a win-win situation

is achieved, adversarial training will converge to
an optimal state. That is,G can generate confusing
negative samples, and D has an efficient discrimi-
nation ability for negative and human translations.
Thus, the training objective is as follows:

Jθ = E(x,y)[logpD(x, y)]+E(x,y′ )[log(1−pD(x, y
′
))],

(6)
where (x, y) is the ground truth sentence pair,
(x, y

′
) is the sampled translation pair, as positive

and negative training data respectively. pD(., .)
represents a probability which mentioned in D
about the similarity. Jθ can be regard as a game
process between maximum and minimum expec-
tations. That is, the maximum expectation for the
generation G, and the minimum expectation for
D.

A common shortcoming of adversarial training
in NLP applications is that it is non-trivial to de-
sign the training process, i.e., texts (Huszr, 2015).
Given that the discretely sampled y

′
makes it dif-

ficult to back-propagate the error signals from D
to G directly, making Jθ nondifferentiable w.r.t.
G
′
s model parameters θ. To solve this problem,

the Monte Carlo search under the policy of G is
applied to sample the unknown tokens for the es-
timation of the signals. The objective of training
G can be described as minimizing the following
loss:

Loss = E(x,y′ )[log(1− pD(x, y
′
))]. (7)

We use log(1− pD(x, y
′
) as a Monte-Carlo es-

timation of the signals. By simple derivation, we
can get the corresponding gradient of θ:
∂Loss
∂θ∼G

= Ey′ [log(1− pD(x, y
′
))

∂

∂θ∼G
logG(y

′ |x)],
(8)

where ∂
∂θ∼G logG(y

′ |x) represents the gradients
specified with parameters of the translation mod-
el based on RL. Therefore, the gradient update of
parameters can be described as:

θ∼G ← θ∼G + l
∂

∂θ∼G
, (9)

where l is the learning rate, and we back propagate
the gradient along negative direction. Note that we
have not observed a high variance is accompanied
by such a computation.

Figure 2: Presentation of VS-GAN model, in which
different colors represent each component in VS-GAN.

3 Experiment and Analysis

3.1 Dataset and Noise Addition

We verify the effectiveness of our model on a lan-
guage pair where one of the languages involved is
agglutinative: Mongolian-Chinese(M-C). We use
the data from CLDC and CWMT2017 evaluation
campaign. To avoid allocating excessive training
time on long sentences, all sentence pairs longer
than 50 words either on the source or target side
are discarded. Finally, by adding noise, we di-
vide the training data of Mongolian into five cat-
egories3:{Original, BPE4, Original&Suffixes, O-
riginal&Case, Original&Suffixes&Case}. For the
target Chinese besides BPE processing, we adopt
character granularity to provide a smaller unit cor-
responding to the morphological noise. Some ef-
fective work on morphological segmentation (Ata-
man D, 2017; ThuyLinh Nguyen, 2010) can be ap-

3(Original&*) represents a mixed sample of the original
data and the * segmentation of the original data.

4Note that BPE can only represent an open vocabulary
through the variable-length character sequence, it is insensi-
tive to morphological noise.
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plied to agglutinative language. However, in or-
der to be more specific and accurately, we perfor-
m independent-developed Mongolian segmenter.
The final training corpus consists of about 230K
original sentences (including 1000 validation and
1000 test) and corresponding pseudo-data sen-
tences. We tried several num-operands of BPE5

on the data set, and the final selection is: Mongo-
lian: 35,000, Chinese: 15,000.

3.2 Experimental Setup

We select three strong baselines. Transformer
presents an outstanding approach to most MT
tasks. MIXER addresses exposure bias problem
in traditional NMT well through RL, and BR-
CSGAN is among the best endeavors to introduce
the generative adversarial training into NMT.

The screening conditions mentioned in Section
2 enable the model to be trained efficiently. One
problem is that under such conditions, V will grad-
ually increase. Therefore, in the screening pro-
cess, one situation should be considered, e.g., in
batch1 {V1 = 1, ..., Vn = 10}, Vupdate = 5.5, in
batch2 {V1 = 4, ..., Vn = 6}, Vupdate = 5. We
have observed that batch1 has worse sentences
worth noting byD. However, because of the high-
er average value, the batch1 will be screened out.
In fact, we insist that such an operation is still rea-
sonable, because the higher value batches occur
only at the end of the training, and the n-gram nat-
ural of BLEU calculation indicates that the batch2
needs more attention.

For the LSTM and MIXER, we set the dimen-
sion of word embedding as 512 and dropout rate
as 0.1/0.1/0.3. We use a beam search with a
beam size of 4 and length penalty of 0.6. For the
Transformer, the Transformer base configuration
in (Vaswani et al., 2017) is an effective experience
setting for our experiments. We set the G to gen-
erate 500 negative examples per iteration, and the
number for Monte Carlo search is set as 20.

3.3 Main Results and Analysis

We mainly analyze the experimental results in
three aspects: BLEU evaluation, the number of
< unk > symbols in the translations, and the time
efficiency of model training.
• BLEU We use BLEU (Papineni et al., 2002)

score as an evaluation metric to measure the sim-
5https://github.com/rsennrich/

subword-nmt

ilarity degree between the generation and the hu-
man translation.

For G, we select the model with 50 epochs of
pre-training as the initial state, and 80 adversarial
training epochs is used to joint trainG andD. The
results (Table 1) show that the GAN-based mod-
el is obviously superior to baseline systems in any
kind of noisy corpus, and VS-GAN performs bet-
ter than each baseline with average 2-3 BLEU. For
the same model, the added noise provides the ex-
cellent generalization ability in testing, a notable
result shows that VS-GAN improves 3.8 BLEU on
the basis of the original corpus by adding both t-
wo kinds of noise. We notice that in the training
of adding case noise only, the effect of VS-GAN
is not outstanding. The reason for this is that the
individual Mongolian-case is not obviously ’help-
ful’ to the production of< unk > symbol in Mon-
golian, so the screener is insensitive to it.
• UNK We count the number of < unk > sym-

bols in each system with 50 epochs of training to
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Figure 3: Number of < unk > symbols in the transla-
tions of different models in each epoch.

translate the source sentences (Fig. 3). For BR-
CSGAN and VS-GAN, we directly count the num-
ber of < unk > symbols in the negative example.

In comparison with Transformer, MIXER opti-
mizes BLEU through RL training, which can di-
rectly enhance the BLEU score of the translation.
However, in terms of UNK, it is inefficient. The
optimal initial state cannot be effectively main-
tained in the rest of the training (orange lines). We
can see that the change of BLEU coincides with
the change of UNK number in combination with
Table 1 and Fig. 3. Furthermore, we note that UN-
K not only affects the accuracy of source word de-
coding, but also affects the semantic prediction of
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Table 1: Training time consuming and BLEU score of systems under different noise modes. We stop the pre-
training of G (including Transformer and LSTM) until the validation accuracy achieves at δ which is set to 0.6 in
BR-CSGAN and VS-GAN. For the pre-training of D, we consider the threshold of classification accuracy and set
it to 0.7.

Original BPE Original&suffixes Original&Case Original&Suffixes&Case
MIXER(Ranzato et al., 2015) 29.7 26 30.4 28.6 31.3

BR-CSGAN
(G:LSTM)(Zhen et al., 2018)

29.9|(15+17)h 30.8|(21+30)h 31.7|(22+25)h 31.1|(15+19)h 32.3|(27+32)h

VS-GAN
(G:LSTM)

29.6|(15+11)h 31.5|(21+18)h 32.5|(22+19)h 30.8|(15+15)h ?35.4|(27+21)h

Transformer(Vaswani et al., 2017) 30.5 31.5 30.2 29.8 30.5
BR-CSGAN

(G:Transformer)(Zhen et al., 2018)
27.4|(22+29)h 28|(27+34)h 28.9|(23+25)h 28.1|(22+30)h 32.1|(38+36)h

VS-GAN
(G:Transformer)

28.8|(22+18)h 31.1|(27+26)h 32|(23+18)h 29.4|(22+18)h 33.2|(38+22)h

the entire sentence in translation.
• Training Efficiency In terms of training ef-

ficiency, we compared the two GAN-based mod-
els by counting the time of pre-training and ad-
versarial training(italics in Table 1), (e.g., 15 + 17
indicates 15 h of pre-training and 17 h of adver-
sarial training). Reinforcement pre-training is the
same for BR-CSGAN and VS-GAN. In adversar-
ial training, VS-GAN has a remarkable time re-
duction in each noise training strategy. This result
depends on the screener for negative generations,
so that D can regulate G, following UNK directly.
Such combination of structures can converge to an
optimal state rapidly. From the results in Table1,
in the case of the two GANs the training time for
the LSTM is shorter than for the Transformer. We
attribute this to two reasons: i) the time consumed
by LSTM is mainly used to explore long-distance
dependencies in sequences. However, most of our
corpus consists of short sentences (<50 words),
which bridges the gap between LSTM and Trans-
former and even exceeds Transformer (when it
achieves the same accuracy of validation set). i-
i) in fact, according to our extensive experimen-
tal results on Mongolian-based NMT(including
Mongolian-Chinese and Mongolian-Cyrillic Mon-
golian), Transformer usually converges slower
than LSTM when the corpus size exceeds 0.2M.

4 Conclusion

We propose a GAN model with an additional VIN
approximation of value screener to solve the UN-
K problem in Mongolian→Chinese MT, which is
caused by the change of suffixes or component
cases in Mongolian and the limited vocabulary. In
our experiment, we adopt the pretreatment method

on the basis of noise addition to enhance the gen-
eralization ability of the model for UNK prob-
lem. Experimental results show that our approach
surpasses the state-of-the-art results in a variety
of noise-based training strategies and significant-
ly saves training time. In future research, we will
focus more on the combination of GAN and lan-
guage features to enhance other agglutinative lan-
guage NMT tasks, such as the guidance of syntax
tree for GAN training. On the contrary, it is also
a worthwhile attempt to modify the grammar tree
constructed by adversarial training.
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Abstract

This work presents our ongoing research of
unsupervised pretraining in neural machine
translation (NMT). In our method, we initial-
ize the weights of the encoder and decoder
with two language models that are trained with
monolingual data and then fine-tune the model
on parallel data using Elastic Weight Consoli-
dation (EWC) to avoid forgetting of the orig-
inal language modeling tasks. We compare
the regularization by EWC with the previous
work that focuses on regularization by lan-
guage modeling objectives.

The positive result is that using EWC with the
decoder achieves BLEU scores similar to the
previous work. However, the model converges
2-3 times faster and does not require the orig-
inal unlabeled training data during the fine-
tuning stage.

In contrast, the regularization using EWC is
less effective if the original and new tasks are
not closely related. We show that initializing
the bidirectional NMT encoder with a left-to-
right language model and forcing the model
to remember the original left-to-right language
modeling task limits the learning capacity of
the encoder for the whole bidirectional con-
text.

1 Introduction

Neural machine translation (NMT) using sequence
to sequence architectures (Sutskever et al., 2014;
Bahdanau et al., 2014; Vaswani et al., 2017) has
become the dominant approach to automatic ma-
chine translation. While being able to approach
human-level performance (Popel, 2018), it still re-
quires a huge amount of parallel data, otherwise it
can easily overfit. Such data, however, might not
always be available. At the same time, it is gener-
ally much easier to gather large amounts of mono-
lingual data, and therefore, it is interesting to find
ways of making use of such data. The simplest

strategy is to use backtranslation (Sennrich et al.,
2016), but it can be rather costly since it requires
training a model in the opposite translation direc-
tion and then translating the monolingual corpus.

It was suggested by Lake et al. (2017) that dur-
ing the development of a general human-like AI
system, one of the desired characteristics of such
a system is the ability to learn in a continuous
manner using previously learned tasks as build-
ing blocks for mastering new, more complex tasks.
Until recently, continuous learning of neural net-
works was problematic, among others, due to the
catastrophic forgetting (McCloskey and Cohen,
1989). Several methods were proposed (Li and
Hoiem, 2016; Aljundi et al., 2017; Zenke et al.,
2017), however, they mainly focus only on adapt-
ing the whole network (not just its parts) to new
tasks while maintaining good performance on the
previously learned tasks.

In this work, we present an unsupervised pre-
training method for NMT models using Elastic
Weight Consolidation (Kirkpatrick et al., 2017).
First, we initialize both encoder and decoder with
source and target language models respectively.
Then, we fine-tune the NMT model using the par-
allel data. To prevent the encoder and decoder
from forgetting the original language modeling
(LM) task, we regularize their weights individu-
ally using Elastic Weight Consolidation based on
their importance to that task. Our hypothesis is the
following: by forcing the network to remember the
original LM tasks we can reduce overfitting of the
NMT model on the limited parallel data.

We also provide a comparison of our approach
with the method proposed by Ramachandran et al.
(2017). They also suggest initialization of the en-
coder and decoder with a language model. How-
ever, during the fine-tuning phase they use the
original language modeling objectives as an ad-
ditional training loss in place of model regular-
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ization. Their approach has two main drawbacks:
first, during the fine-tuning phase, they still require
the original monolingual data which might not be
available anymore in a life-long learning scenario.
Second, they need to compute both machine trans-
lation and language modeling losses which in-
creases the number of operations performed dur-
ing the update slowing down the fine-tuning pro-
cess. Our proposed method addresses both prob-
lems: it requires only a small held-out set to esti-
mate the EWC regularization term and converges
2-3 times faster than the previous method.1

2 Related Work

Several other approaches towards exploiting the
available monolingual data for NMT have been
previously proposed.

Currently, the most common method is creat-
ing synthetic parallel data by backtranslating the
target language monolingual corpora using ma-
chine translation (Sennrich et al., 2016). While
being consistently beneficial, this method requires
a pretrained model to prepare the backtranslations.
Additionally, Ramachandran et al. (2017) showed
that the unsupervised pretraining approach reaches
at least similar performance to the backtranslation
approach.

Recently, Lample and Conneau (2019) sug-
gested using a single cross-lingual language model
trained on multiple monolingual corpora as an ini-
tialization for various NLP tasks, including ma-
chine translation. While our work focuses strictly
on a monolingual language model pretraining, we
believe that our work can further benefit from us-
ing cross-lingual language models.

Another possible approach is to introduce an
additional reordering (Zhang and Zong, 2016) or
de-noising objectives, the latter being recently
employed in the unsupervised NMT scenarios
(Artetxe et al., 2018; Lample et al., 2017). These
approaches try to force the NMT model to learn
useful features by presenting it with either shuf-
fled or noisy sentences teaching it to reconstruct
the original input.

Furthermore, Khayrallah et al. (2018) show how
to prevent catastrophic forgeting during domain
adaptation scenarios. They fine-tune the general-
domain NMT model using in-domain data adding

1The speedup is with regard to the wall-clock time. In
our experiments both EWC and the LM-objective methods
require similar number of training examples to converge.

an additional cross-entropy objective to restrict the
distribution of the fine-tuned model to be similar
to the distribution of the original general-domain
model.

3 Elastic Weight Consolidation

Elastic Weight Consolidation (Kirkpatrick et al.,
2017) is a simple, statistically motivated method
for selective regularization of neural network pa-
rameters. It was proposed to counteract catas-
trophic forgetting in neural networks during a life-
long continuous training. The previous work de-
scribed the method in the context of adapting the
whole network for each new task. In this section,
we show that EWC can be also used to preserve
only parts of the network that were relevant for
the previous task, thus being potentially useful for
compositional learning.

To justify the choice of the parameter con-
straints, Kirkpatrick et al. (2017) approach the
neural network training as a Bayesian inference
problem. To put it into the context of NMT, we
would like to find the most probable network pa-
rameters θ, given a parallel data Dmt and mono-
lingual data Dsrc and Dtgt for source and target
languages, respectively:

p(θ|Dmt ∪Dsrc ∪Dtgt) =
p(Dmt|θ)p(θ|Dsrc ∪Dtgt)

p(Dmt)
(1)

Equation 1 holds, assuming datasets Dmt, Dsrc

and Dtgt being mutually exclusive. The probabil-
ity p(Dmt|θ) is the negative of the MT loss func-
tion and p(θ|Dsrc ∪ Dtgt) is the result of the un-
supervised pretraining. We can assume that dur-
ing the unsupervised pretraining, the parameters
θsrc of the encoder are independent of the param-
eters θtgt of the decoder. Furthermore, we as-
sume that the parameters of the encoder are in-
dependent of the target-side monolingual data and
the parameters of the decoder are independent of
the source-side monolingual data. Given these as-
sumptions, we can express the posterior probabil-
ity p(θ|Dsrc ∪Dtgt) in the following way:

p(θ|Dsrc∪Dtgt) = p(θsrc|Dsrc)p(θtgt|Dtgt) (2)

Probabilities p(θsrc|Dsrc) and p(θtgt|Dtgt) are
given by the pretrained source and target lan-
guage models respectively. The true posterior
probabilities given by the language models are in-
tractable during fine-tuning, however, similarly to
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the work of Kirkpatrick et al. (2017), we can es-
timate p(θsrc|Dsrc) as Gaussian distribution us-
ing Laplace approximation (MacKay, 1992), with
mean given by the pretrained parameters θsrc and
variance given by a diagonal of the Fisher informa-
tion matrix Fsrc. Then, we can add the following
regularization term to our loss function:

Lewc−src(θ) =
∑

i,θi⊂θsrc

λ

2
Fsrc,i(θi − θ?src,i)2 (3)

The model parameters not present during the
language model pretraining are ignored by the
regularization term. Analogically, the same can
be applied for the target-side posterior probabil-
ity p(θtgt|Dtgt) giving a target-side regularization
term Lewc−tgt.

In the following section, we show that these reg-
ularization terms can be useful in a low-resource
machine translation scenario. Since we do not
necessarily need to preserve the knowledge of the
original language modeling tasks, we focus on us-
ing them only as prior knowledge to prevent over-
fitting during the fine-tuning.

4 Experiments

In this section, we present the results of our ex-
periments with EWC regularization and compare
them with the previously proposed regularization
by language modeling objectives.

4.1 Model Description
In all experiments, we use the self-attentive Trans-
former network (Vaswani et al., 2017) because it is
the current state-of-the-art NMT architecture, pro-
viding us with a strong baseline. In general, it fol-
lows the standard encoder-decoder paradigm, with
encoder creating hidden representations of the in-
put tokens based on their surrounding context and
decoder generating the output tokens autoregres-
sively while attending to the source sentence to-
ken representations and tokens it generated in the
previous decoding steps.2

We use Transformer with 6 layers in both en-
coder and decoder. We set the dimension of the
hidden states to 512 and the dimension of the feed-
forward layer to 2048. We use multi-head at-
tention with 16 attention heads. To simplify the
pretraining process, we use a separate vocabulary

2For more details about the architecture, see the original
paper.

for source and target languages, each containing
around 32k subwords. We use separate embed-
dings in the encoder and decoder. In the decoder,
we tie the embeddings with the output softmax
layer (Press and Wolf, 2017). During both pre-
training and fine tuning, we use Adam optimizer
(Kingma and Ba, 2014) and gradient clipping. We
set the initial learning rate to 3.1, use a linear
warm-up for 33500 training steps and then decay
the learning rate exponentially. We set the train-
ing batch size to a maximum of 2048 tokens per
batch together with sentence bucketing for more
efficient training. We set dropout to 0.1. During
the final evaluation, we use beam search decoding
with beam size of 8 and length normalization set
to 1.0.

When pretraining the encoder and decoder, we
use identical network parameters. We train each
language model to maximize the probability of
each word in a sentence using its leftward context.
To pretrain the decoder, we use the decoder archi-
tecture from Transformer with encoder-attention
sub-layer removed due to the lack of source sen-
tences. Later, we initialize the NMT decoder
with the language model weights and the encoder-
attention weights by a normal distribution. We
reset all training-related variables (learning rate,
Adam moments) during the NMT initialization.

For simplicity, we apply the same approach for
the encoder pretraining. In Section 4.2, we discuss
the drawbacks of our encoder pretraining and sug-
gest possible improvements. In all experiments,
we set the weight λ of each EWC regularization
term to 0.02.

The model implementation is available in Neu-
ral Monkey3 (Helcl and Libovický, 2017) frame-
work for sequence-to-sequence modeling.

4.2 Dataset and Evaluation

In our experiments, we focused on the low-
resource Basque-to-English machine translation
task featured in IWSLT 2018.4 We used the par-
allel data provided by IWSLT organizers, con-
sisting of 5,600 in-domain sentence pairs (TED
Talks) and around 940,000 general-domain sen-
tence pairs. During pretraining, we used Basque
Wikipedia for source language model and News-

3https://github.com/ufal/neuralmonkey
4https://sites.google.com/site/

iwsltevaluation2018/TED-tasks
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SRC TGT ALL

Baseline 15.68 – – –
Backtrans. 19.65 – – –

LM best – 13.96 15.56 16.83
EWC best – 10.77 15.91 14.10

LM ens. – 15.16 16.60 17.14
EWC ens. – 10.73 16.63 14.66

Table 1: Comparison of the previous work (LM) with
the proposed method (EWC). We compared models
with only pretrained encoder (SRC), pretrained de-
coder (TGT) and both (ALL). All pretrained language
models contained 3 layers. We compared both single
best models and ensemble (using checkpoint averag-
ing) of 4 best checkpoints. Results where the proposed
method outperformed the previous work are in bold.

Commentary 2015 provided by WMT5 for target
language model. Both corpora contain close to 3
million sentences. We used UDPipe6 (Straka and
Straková, 2017) to split the monolingual data to
sentences and SentencePiece7 to prepare the sub-
word tokenization. We used the subword models
trained on the monolingual data to preprocess the
parallel data.

During training, we used development data pro-
vided by IWSLT 2018 organizers which contains
1,140 parallel sentences. To approximate the
Fisher Information Matrix diagonal of the pre-
trained Basque and English language models, we
used the respective parts of the IWSLT validation
set. For final evaluation, we used the IWSLT 2018
test data consisting of 1051 sentence pairs.

Table 1 compares the performance of the mod-
els fine-tuned using the LM objective regulariza-
tion and the EWC regularization. First, we can
see that using EWC when only the decoder was
pretrained slightly outperforms the previous work.
On the other hand, our method fails when used
in combination with the encoder initialization by
the source language model. The reason might be
a difference between the original LM task that
is trained in a left-to-right autoregressive fashion
while the strength of the Transformer encoder is
in modelling of the whole left-and-right context
for each source token. The learning capacity of

5http://www.statmt.org/wmt18/
translation-task.html

6http://ufal.mff.cuni.cz/udpipe
7https://github.com/google/

sentencepiece
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Figure 1: Performance of MT models where only the
encoder was initialized by the language model of vary-
ing depths and then regularized by EWC. We include
the performance of the MT system that was not pre-
trained for comparison.

the encoder is therefore restricted by forcing it to
remember a task that is not so closely related to the
sentence encoding in Transformer NMT. Figure 1
supports our claim: the deeper the pretrained lan-
guage model and therefore more layers regularized
by EWC, the lower the performance of the fine-
tuned NMT system. We think that this behaviour
can be mitigated by initializing the encoder with
a language model that considers the whole bidi-
rectional context, e.g. a recently introduced BERT
encoder (Devlin et al., 2018). We leave this for our
future work.

In addition to improving model performance,
EWC converges much faster than the previously
introduced LM regularizer. Figure 2 shows that
the model fine-tuned without LM regularization
converged in about 10 hours, while it took around
20-30 hours to converge when LM regularization
was in place. Note, that all models converged af-
ter seeing a similar number of training examples,
however, computing the LM loss for regulariza-
tion introduces an additional computation over-
head. The main benefit of both EWC and LM-
based regularization is apparent here, too. The
non-regularized model quickly overfits.

As the comparison to the model trained on the
backtranslated monolingual corpus shows, none of
our regularization methods can match this sim-
ple but much more computationally demanding
benchmark.
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Figure 2: Comparison of relative convergence times
(measured by perplexity) of models where only the de-
coder was pretrained. The models were regularized us-
ing EWC, LM objective or were not using any regular-
ization (no reg.). All models were trained on the same
number of training examples (∼27M sentences). All
used a pretrained LM with 3 Transformer layers.

5 Conclusion

We introduced our work in progress, and explo-
ration of model regularization of NMT encoder
and decoder parameters based on their importance
for previously learned tasks and its application in
the unsupervised pretraining scenario. We doc-
umented that our method slightly improves the
NMT performance (compared to the baseline as
well as the previous work of LM-based regular-
ization) when combined with a pretrained target
language model. We achieve this improvement at
a reduced training time.

We also showed that the method is less effec-
tive if the original language modeling task used
to pretrain the NMT encoder is too different from
the task learned during the fine-tuning. We plan to
further investigate whether we can gain improve-
ments by using a different pretraining method for
the encoder and how much this task mismatch re-
lates to the learning capacity of the encoder.
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Abstract

Māori loanwords are widely used in New
Zealand English for various social functions
by New Zealanders within and outside of the
Māori community. Motivated by the lack of
linguistic resources for studying how Māori
loanwords are used in social media, we present
a new corpus of New Zealand English tweets.
We collected tweets containing selected Māori
words that are likely to be known by New
Zealanders who do not speak Māori. Since
over 30% of these words turned out to be ir-
relevant (e.g., mana is a popular gaming term,
Moana is a character from a Disney movie),
we manually annotated a sample of our tweets
into relevant and irrelevant categories. This
data was used to train machine learning mod-
els to automatically filter out irrelevant tweets.

1 Introduction

One of the most salient features of New Zealand
English (NZE) is the widespread use of Māori
words (loanwords), such as aroha (love), kai
(food) and Aotearoa (New Zealand). See ex. (1)
specifically from Twitter (note the informal, con-
versational style and the Māori loanwords empha-
sised in bold).

(1) Led the waiata for the manuhiri at the
pōwhiri for new staff for induction week.
Was told by the kaumātua I did it with mana
and integrity.

The use of Māori words has been studied inten-
sively over the past thirty years, offering a com-
prehensive insight into the evolution of one of
the youngest dialects of English – New Zealand
English (Calude et al., 2017; Daly, 2007, 2016;
Davies and Maclagan, 2006; De Bres, 2006;
Degani and Onysko, 2010; Kennedy and Ya-
mazaki, 1999; Macalister, 2009, 2006a; Onysko
and Calude, 2013). One aspect which is missing in

this body of work is the online discourse presence
of the loanwords - almost all studies come from
(collaborative) written language (highly edited, re-
vised and scrutinised newspaper language, Davies
and Maclagan 2006; Macalister 2009, 2006a,b;
Onysko and Calude 2013, and picture-books, Daly
2007, 2016), or from spoken language collected in
the late 1990s (Kennedy and Yamazaki, 1999).

In this paper, we build a corpus of New
Zealand English tweets containing Māori loan-
words. Building such a corpus has its challenges
(as discussed in Section 3.1). Before we discuss
these, it is important to highlight the uniqueness
of the language contact situation between Māori
and (NZ) English.

The language contact situation in New Zealand
provides a unique case-study for loanwords be-
cause of a number of factors. We list three partic-
ularly relevant here. First, the direction of lexical
transfer is highly unusual, namely, from an endan-
gered indigenous language (Māori) into a domi-
nant lingua franca (English). The large-scale lex-
ical transfer of this type has virtually never been
documented elsewhere, to the best of our knowl-
edge (see summary of current language contact
situations in Stammers and Deuchar 2012, partic-
ularly Table 1, p. 634).

Secondly, because Māori loanwords are “New
Zealand’s and New Zealand’s alone” (Deverson,
1991, p. 18-19), and above speakers’ conscious-
ness, their ardent study over the years provides a
fruitful comparison of the use of loanwords across
genres, contexts and time.

Finally, the aforementioned body of previous
research on the topic is rich and detailed, and still
rapidly changing, with loanword use being an in-
creasing trend (Macalister, 2006a; Kennedy and
Yamazaki, 1999). However, the jury is still out
regarding the reasons for the loanword use (some
hypotheses have been put forward), and the pat-

136



terns of use across different genres (it is unclear
how language formality influences loanword use).

We find that Twitter data complements the
growing body of work on Māori loanwords in
NZE, by adding a combination of institutional and
individual linguistic exchanges, in a non-editable
online platform. Social media language shares
properties with both spoken and written language,
but is not exactly like either. More specifically,
Twitter allows for creative expression and lexical
innovation (Grieve et al., 2017).

Our Twitter corpus was created by following
three main steps: collecting tweets over a ten-year
period using “query words” (Section 3.1), man-
ually labelling thousands of randomly-sampled
tweets as “relevant” or “irrelevant” (Section 3.2),
and then training a classifier to obtain automatic
predictions for the relevance of each tweet and de-
ploying this model on our target tweets, in a bid
to filter out all those which are “irrelevant” (Sec-
tion 3.3). As will be discussed in Section 2, our
corpus is not the first of its kind but is the first cor-
pus of New Zealand English tweets and the first
collection of online discourse built specifically to
analyse the use of Māori loanwords in NZE. Sec-
tion 4 outlines some preliminary findings from
our corpus and Section 5 lays out plans for future
work.

2 Related Work

It is uncontroversial that Māori loanwords are both
productively used in NZE and increasing in popu-
larity (Macalister, 2006a). The corpora analysed
previously indicate that loanword use is highly
skewed, with some language users leading the way
– specifically Māori women (Calude et al., 2017;
Kennedy and Yamazaki, 1999), and with certain
topics of discourse drawing significantly higher
counts of loanwords than others – specifically
those related to Māori people and Māori affairs,
Māoritanga (Degani, 2010). The type of loan-
words being borrowed from Māori is also chang-
ing. During the first wave of borrowing, some
two-hundred years ago, many flora and fauna
words were being borrowed; today, it is social
culture terms that are increasingly adopted, e.g.,
aroha (love), whaea (woman, teacher), and tangi
(Māori funeral), see Macalister (2006a). However,
the data available for loanword analysis is either
outdated (Calude et al., 2017; Kennedy and Ya-
mazaki, 1999), or exclusively formal and highly

edited (mainly newspaper language, Macalister
2006a; Davies and Maclagan 2006; Degani 2010),
so little is known about Māori loanwords in recent
informal NZE interactions – a gap we hope to ad-
dress here.

With the availability of vast amounts of data,
building Twitter corpora has been a fruitful en-
deavour in various languages, including Turkish
(Şimşek and Özdemir, 2012; Çetinoglu, 2016),
Greek (Sifianou, 2015), German (Scheffler, 2014;
Cieliebak et al., 2017), and (American) English
(Huang et al., 2016) (though notably, not New
Zealand English, while a modest corpus of te
reo Māori tweets does exist, Keegan et al. 2015).
Twitter corpora of mixed languages are tougher to
collect because it is not straightforward to detect
mixed language data automatically. Geolocations
can help to some extent, but they have limitations
(most users do not use them to begin with). Recent
work on Arabic has leveraged the presence of dis-
tinct scripts – the Roman and Arabic alphabet – to
create a mixed language corpus (Voss et al., 2014),
but this option is not available to us. Māori has
traditionally been a spoken (only) language, and
was first written down in the early 1800s by Euro-
pean missionaries in conjunction with Māori lan-
guage scholars, using the Roman alphabet (Smyth,
1946). Our task is more similar to studies such as
Das and Gambäck (2014) and Çetinoglu (2016),
who aim to find a mix of two languages which
share the same script (in their case, Hindi and En-
glish, and Turkish and German, respectively), but
our method for collecting tweets is not user-based;
instead we use a set of target query words, as de-
tailed in Section 3.1.

3 The Corpus

In this section, we describe the process of build-
ing the Māori Loanword Twitter Corpus (here-
after, the MLT Corpus)1. This process consists of
three main steps, as depicted in Figure 1.

3.1 Step 1: Collecting Tweets

In order to facilitate the collection of relevant data
for the MLT Corpus, we compiled a list of 116 tar-
get loanwords, which we will call “query words”.

1The corpus is available online at https:
//kiwiwords.cms.waikato.ac.nz/corpus/.
Note that we have only released the tweet IDs, together with
a download script, in accordance with Twitter’s terms and
conditions. We have also released the list of query words
used.
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 Proud to be a kiwi 
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Figure 1: The corpus-building process.

Most of these are individual words but some are
short phrasal units (tangata whenua, people of the
land; kapa haka, cultural performance). The list
is largely derived from Hay (2018) but was modi-
fied to exclude function words (such as numerals)
and most proper nouns, except five that have native
English counterparts: Aotearoa (New Zealand),
Kiwi(s) (New Zealander(s)), Māori (indigenous
New Zealander), Pākehā (European New Zealan-
der), non-Māori (non-indigenous New Zealander).
We also added three further loanwords which we
deemed useful for increasing our data, namely
haurangi (drunk), wairangi (drugged, confused),
and pōrangi (crazy).

Using the Twitter Search API, we harvested
8 million tweets containing at least one query
word (after converting all characters to lower-
case). The tweets were collected diachronically
over an eleven year period, between 2007-2018.
We ensured that tweets were (mostly) written in
English by using the lang:en parameter.

A number of exclusions and further adjustments
were made. With the aim of avoiding redundancy
and uninformative data, retweets and tweets with
URLs were discarded. Tweets in which the query
word was used as part of a username or men-
tion (e.g., @happy kiwi) were also discarded. For
those query words which contained macrons, we
found that users were inconsistent in their macron
use. Consequently, we consolidated the data by
adjusting our search to include both the macron
and the non-macron version (e.g., both Māori and
Maori). We also removed all tweets containing
fewer than five tokens (words), due to insufficient
context of analysis.

Owing to relaxed spelling conventions on Twit-
ter (and also the use of hashtags), certain query
words comprising multiple lexical items were
stripped of spaces in order to harvest all variants of
the phrasal units (e.g., kai moana and kaimoana).
As kai was itself a query word (in its own right),
we excluded tweets containing kai moana when
searching for tweets containing kai (and repeated

this process with similar items).

After inspecting these tweets, it was clear that
a large number of our query words were polyse-
mous (or otherwise unrelated to NZE), and had
introduced a significant amount of noise into the
data. The four main challenges we encountered
are described below.

First, because Twitter contains many different
varieties of English, NZE being just one of these,
it is not always straightforward to disentangle the
dialect of English spoken in New Zealand from
other dialects of English. This could be a prob-
lem when, for instance, a Māori word like Moana
(sea) is used in American English tweets to denote
the Disney movie (or its main character).

Secondly, Māori words have cognate forms
with other Austronesian languages, such as
Hawaiian, Samoan and Tongan, and many speak-
ers of these languages live and work (and tweet)
in New Zealand. For instance, the word wahine
(woman) has the same written form in Māori
and in Hawaiian. But cognates are not the
only problematic words. Homographs with other,
genealogically-unrelated languages can also pose
problems. For instance, the Māori word hui (meet-
ing) is sometimes used as a proper noun in Chi-
nese, as can be seen in the following tweet: “Yo is
Tay Peng Hui okay with the tip of his finger?”.

Proper nouns constitute a third problematic as-
pect in our data. As is typical for many lan-
guage contact situations where an indigenous lan-
guage shares the same geographical space as an
incoming language, Māori has contributed many
place names and personal names to NZE, such as
Timaru, Aoraki, Titirangi, Hēmi, Mere and so on.
While these proper nouns theoretically count as
loanwords, we are less interested in them than in
content words because the use of the former does
not constitute a choice, whereas the use of the lat-
ter does (in many cases). The “choice” of whether
to use a loanword or whether to use a native En-
glish word (or sometimes a native English phrase)
is interesting to study because it provides insights
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into idiolectal lexical preferences (which words
different speakers or writers prefer in given con-
texts) and relative borrowing success rates (Calude
et al., 2017; Zenner et al., 2012).

Finally, given the impromptu and spontaneous
nature of Twitter in general, we found that cer-
tain Māori words coincided with misspelled ver-
sions of intended native English words, e.g., whare
(house) instead of where.

The resulting collection of tweets, termed the
Original Dataset, was used to create the Raw Cor-
pus, as explained below.

3.2 Step 2: Manually Annotating Tweets
We decided to address the “noisy” tweets in our
data using supervised machine learning. Two
coders manually inspected a random sample of
30 tweets for each query word, by checking the
word’s context of use, and labelled each tweet as
“relevant” or “irrelevant”. For example, a tweet
like that in example (1) would be coded as relevant
and one like “ awesome!! Congrats to Tangi :)”,
would be coded as irrelevant (because the query
word tangi is used as a proper noun). Since 39
of the query words consistently yielded irrelevant
tweets (at least 90% of the time), these (and the
tweets they occurred in) were removed altogether
from the data. Our annotators produced a total of
3, 685 labelled tweets for the remaining 77 query
words, which comprise the Labelled Corpus (see
Tables 1 and 4; note that irrelevant tweets have
been removed from the latter for linguistic anal-
ysis).

Assuming our coded samples are representative
of the real distribution of relevant/irrelevant tweets
that occur with each query word, it makes sense to
also discard the 39 “noisy” query words from our
Original Dataset. In this way, we created the (un-
labelled) Raw Corpus, which is a fifth of the size
(see Table 4).

We computed an inter-rater reliability score for
our two coders, based on a random sample of 200
tweets. Using Cohen’s Kappa, we calculated this
value to be 0.87 (“strong”). In light of the strong
agreement between the initial coders, no further
coders were enlisted for the task.

3.3 Step 3: Automatically Extracting
Relevant Tweets

The next step was to train a classifier using the La-
belled Corpus as training data, so that the resulting
model could be deployed on the Raw Corpus. Our

goal is to obtain automatic predictions for the rel-
evance of each tweet in this corpus, according to
probabilities given by our model.

We created (stratified) test and training sets that
maintain the same proportion of relevant and irrel-
evant tweets associated with each query word in
the Labelled Corpus. We chose to include 80% of
these tweets in the training set and 20% in the test
set (see Table 1 for a break-down of relevant and
irrelevant instances).

Train Test Total
Relevant 1, 995 500 2, 495
Irrelevant 954 236 1, 190
Total 2, 949 736 3, 685

Table 1: Dataset statistics for our labelled tweets. This
Table shows the relevant, irrelevant and total number of
instances (i.e., tweets) in the independent training and
test sets.

Using the AffectiveTweets package (Bravo-
Marquez et al., 2019), our labelled tweets were
transformed into feature vectors based on the word
n-grams they contain. We then trained various
classification models on this transformed data in
Weka (Hall et al., 2009). The models we tested
were 1) Multinomial Naive Bayes (McCallum
et al., 1998) with unigram attributes and 2) L2-
regularised logistic regression models with differ-
ent word n-gram features, as implemented in LIB-
LINEAR2. We selected Multinomial Naive Bayes
as the best model because it produced the highest
AUC, Kappa and weighted average F-Score (see
Table 2 for a summary of results). Overall, logis-
tic regression with unigrams performed the worst,
yielding (slightly) lower values for all three mea-
sures.

After deploying the Multinomial Naive Bayes
model on the Raw Corpus, we found that
1,179,390 tweets were classified as relevant and
448,652 as irrelevant (with probability threshold =
0.5).

Table 3 shows examples from our corpus of
each type of classification. Some tweets were
falsely classified as “irrelevant” and some were
falsely classified as “relevant”. A short explana-
tion why the irrelevant tweets were coded as such
is given in brackets at the end of each tweet.

We removed all tweets classified as irrelevant,

2https://www.csie.ntu.edu.tw/˜cjlin/
liblinear/
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AUC Kappa F-Score
Multinomial Naive Bayes

n = 1 0.872 0.570 0.817
Logistic Regression

n = 1 0.863 0.534 0.801
n = 1, 2 0.868 0.570 0.816
n = 1, 2, 3 0.869 0.560 0.811
n = 1, 2, 3, 4 0.869 0.563 0.813
n = 1, 2, 3, 4, 5 0.869 0.556 0.810

Table 2: Classification results on the test set. The best
results for each column are shown in bold. The value
of n corresponds to the type of word n-grams included
in the feature space.

thereby producing the Processed Corpus. A sum-
mary of all three corpora is given in Table 4.

4 Preliminary Findings

As we are only just beginning to sift through the
MLT Corpus, we note two particular sets of pre-
liminary findings.

First, even though our corpus was primarily
geared up to investigate loanword use, we are find-
ing that, unlike other NZE genres analysed, the
Twitter data exhibits use of Māori which is more in
line with code-switching than with loanword use,
see ex. (2-3). This is particularly interesting in
light of the reported increase in te reo Māori lan-
guage tweets (Keegan et al., 2015).

(2) Mōrena e hoa! We must really meet IRL
when I get back to Tāmaki Makaurau! You
have a fab day too!

(3) Heh! He porangi toku ngeru - especially at
5 in the morning!! Ata marie e hoa ma. I
am well thank you.

Secondly, we also report the use of hybrid hash-
tags, that is, hashtags which contain a Māori
part and an English part, for example #mycrazy-
whanau, #reostories, #Matarikistar, #bringiton-
mana, #growingupkiwi, #kaitoputinmyfridge. To
our knowledge, these hybrid hashtags have never
been analysed in the current literature. Hybrid
hashtags parallel the phenomenon of hybrid com-
pounds discussed by Degani and Onysko (2010).
Degani and Onysko report that hybrid compounds
are both productive and semantically novel, show-
ing that the borrowed words take on reconceptu-
alised meanings in their adoptive language (2010,
p.231).

Irrelevant tweets Relevant tweets
f(x)<0.5
Classified
irrelevant

Haka ne! And i know even the
good guys get blood for body
(0.282, foreign language)

son didnt get my chop ciggies
2day so stopped talking 2 him.
he just walked past and gave me
the maori eyebrow lift and a
smile. were friends (0.337)

Whare has the year gone (0.36,
misspelling)

Shorts and bare feet in this
whare (0.41)

chegar na morena e falar can i
be your girlfriend can i (0.384,
foreign language)

Tangata whenua charged for
killing 6 #kererū for Kai mean-
while forestry corps kill off
widespread habitat for millions
#efficiency #doc (0.306)

f(x)≥0.5
Classified
relevant

Te Wanganga o Aotearoa’s
moving to a new campus in
Palmy, but their media person
has refused to talk to us about it.
#whatajoke (0.998, proper noun)

Our whole worldview as Maori
is whanau based. Pakeha call
it nepotism, tribalism, gangster-
ism, LinkedInism blah de blah.
It’s our way of doing stuff and
it’s not going to change to suit
another point of view. (0.995)

I cant commit to anything but if
I were to commit to one song,
it would be kiwi - harry styles
(0.791, proper noun)

Kia ora koutou - does anyone
know the te reo word for Corn-
wall? (1.0)

Why am I getting headaches out
of no whero never get them :(
I guess its all the stress (0.542,
spelling mistake)

The New Zealand team do an-
other energetic haka though
(0.956)

Table 3: A selection of tweets and their classification
types. The first three irrelevant tweets were classified
correctly (i.e. true negatives), as were the last three
relevant tweets (i.e. true positives). Function f(x) cor-
responds to the posterior probability of the “relevant”
class. The entries in brackets for the irrelevant exam-
ples correspond to the values of f(x) and the reason
why the target word was coded as irrelevant.

Raw Labelled Processed
Tokens (words) 28,804,640 49,477 21,810,637
Tweets 1,628,042 2,495 1,179,390
Tweeters (authors) 604,006 1,866 426,280

Table 4: A description of the MLT Corpus’ three com-
ponents (namely, the Raw Corpus, Labelled Corpus
and Processed Corpus), which were harvested using
the same 77 query words.

5 Conclusions and Future Work

This paper introduced the first purpose-built cor-
pus of Māori loanwords on Twitter, as well as a
methodology for automatically filtering out irrel-
evant data via machine learning. The MLT Cor-
pus opens up a myriad of opportunities for future
work.

Since our corpus is a diachronic one (i.e., all
tweets are time-stamped), we are planning to use
it for testing hypotheses about language change.
This is especially desirable in the context of New
Zealand English, which has recently undergone
considerable change as it comes into the final stage
of dialect formation (Schneider, 2003).

Another avenue of future research is to automat-
ically identify other Māori loanwords that are not
part of our initial list of query words. This could
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be achieved by deploying a language detector tool
on every unique word in the corpus (Martins and
Silva, 2005). The “discovered” words could be
used as new query words to further expand our
corpus.

In addition, we intend to explore the meaning of
our Māori loanwords using distributional semantic
models. We will train popular word embeddings
algorithms on the MLT Corpus, such as Word2Vec
(Mikolov et al., 2013) and FastText (Bojanowski
et al., 2017), and identify words that are close to
our loanwords in the semantic space. We predict
that these neighbouring words will enable us to un-
derstand the semantic make-up of our loanwords
according to their usage.

Finally, we hope to extrapolate these findings
by deploying our trained classifier on other online
discourse sources, such as Reddit posts. This has
great potential for enriching our understanding of
how Māori loanwords are used in social media.
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Abstract
Questions are an integral part of discourse.
They provide structure and support the ex-
change of information. One linguistic theory,
the Questions Under Discussion model, takes
question structures as integral to the function-
ing of a coherent discourse. This theory has
not been tested on the count of its validity for
predicting observations in real dialogue data
though. In the present study, a system for rank-
ing explicit and implicit questions by their ap-
propriateness in a dialogue is presented. This
system implements constraints and principles
put forward in the linguistic literature.

1 Introduction

Questions are important for keeping a dialogue
flowing. Some linguistic theories of discourse
structure, such as the Questions under Discussion
model (Roberts, 2012, and others), view ques-
tions and their answers as the main structuring
element in discourse. As not all questions are
explicitly stated, the complete analysis of a dis-
course in this framework involves selecting ade-
quate implicit questions from the set of questions
that could potentially be asked at any given time.
Correspondingly, a theory of discourse must pro-
vide constraints and principles by which these po-
tential questions can be generated and ranked at
each step in the progression of a discourse.

As a first move towards putting this linguistic
model of discourse structure into practice, we im-
plemented a ranking system for potential ques-
tions. Such a system might be used to investigate
the validity of theoretic claims and to analyze data
in order to enrich the theory with further insights.

The given task is also relevant for practical con-
siderations. A system for ranking potential ques-
tions, i.e. questions that are triggered by some
assertion and could be asked in a felicitous dis-
course, is a useful component for applications that

Q0: What is the way things are?
- Q1: What did you eat for lunch?
– A1: I ate fries,
– Q1.1: How did you like the fries?
— A1.1: but I didn’t like them at all!
— Q1.1.1: Why?
—- A1.1.1: They were too salty.
— Q1.1.2: What did you do?
—- A1.1.1: So I threw them away.

Figure 1: Constructed example of a QUD annotated
discourse. Explicit questions and answers are marked
in bold typeface. Implicit questions are set in italic
type.

generate dialogue, such as chatbots. At some point
in a dialogue, several questions could be asked
next and the most appropriate one has to be de-
termined, for example by using a question ranker.

2 Background

2.1 The Questions-Under-Discussion Model
In 19961, Roberts (2012) published a seminal pa-
per describing a framework that models discourse
as a game. This game allows two kinds of moves,
questions and assertions. The questions that have
been accepted by the participants, also referred to
as questions under discussion (QUDs), provide the
structure of a discourse. An example discourse an-
notated with a question-structure is shown in Fig-
ure 1. The overall goal of the game is to answer the
big question of how things are. The question struc-
ture is given by explicit questions that are prof-
fered and accepted by the participants and implicit
questions that can be accommodated.

We follow the variant by Riester (2019), who
developed the QUD framework further and for-
malized the model. Riester models the question

1Here, we cite the reissued 2012 version.
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structures as QUD trees and introduces the no-
tion of assertions that trigger subsequent ques-
tions. Following Van Kuppevelt (1995), he refers
to such assertions as feeders. Furthermore, Riester
introduces three constraints on the formulation of
implicit QUDs in coherent discourse. These con-
straints ensure that modeled discourses are well-
formed. The first constraint, Q-A-Congruence,
states that the assertions that are immediately
dominated by a QUD must provide an answer
for it. The second constraint, Q-Givenness,
specifies that implicit QUDs can only consist of
given or highly salient material. Finally, the
third constraint, Maximize-Q-Anaphoricity, pre-
scribes that as much given or salient material as
possible should be used in the formulation of
an implicit QUD. Implicit questions are therefore
constrained by both the previous discourse and the
following answer.

The notion of questions triggered by feeders
was strengthened by Onea (2013) who introduces
the concept of potential questions within a QUD
discourse structure. This concept refers to ques-
tions that are licensed by some preceding dis-
course move. That move can be a question, but
also an assertion. Depending on the context, some
potential questions are more appropriate than oth-
ers. In chapter 8, Onea addresses this observation
by describing a number of generation and order-
ing principles, which are listed below. In this pa-
per, we implement Riester’s Q-Anaphoricity con-
straint and Onea’s potential question principles as
features for a question ranker, allowing us to test
them on naturally occurring dialog.

2.2 Generation Principles

Follow formal hints Certain linguistic markers
trigger the generation of potential questions, e.g.
appositives, indefinite determiners and overan-
swers.

Unarticulated constituents Whenever con-
stituents in an assertion are not articulated,
questions about these constituents are generated.

Indexicals For every assertion, questions about
unspecified indexicals are generated.

Rhetorical relations Any assertion licenses typ-
ical questions related to rhetorical relations, e.g.
questions about the result, justification, elabora-
tion, and explanation.

Parallelism and contrast For any question in the

discourse, parallel or contrastive questions that are
triggered by a following assertion should be gen-
erated as potential questions.

Animacy hierarchy Every time a human indi-
vidual is introduced into the discourse, questions
about this individual should be generated.

Mystery Questions about surprising objects or
events that enter the discourse should be gener-
ated.

2.3 Ordering Principles

Strength Rule The Strength Rule states that more
specific questions are generally better (i.e., more
coherent) than less specific ones.

Normality Rule The Normality Rule predicts
that a question triggered by a normal or common
context is better than a question triggered by an
unusual context.

2.4 Question Ranking

While the described work by Roberts, Riester,
and Onea is purely theoretical, other research is
practically concerned with the ranking of ques-
tions. This research does not consider the no-
tion of potential questions though and can there-
fore not offer a direct point of comparison for the
present study. Heilman and Smith (2010), for ex-
ample, present a system for automatically generat-
ing questions from a given answering paragraph.
The system overgenerates questions, which are
subsequently ranked regarding the questions’ ac-
ceptability given the answering text. In contrast to
this, the system described in the present paper con-
siders the assertion preceding the question, rather
than the answer, when determining a question’s fe-
licity in discourse.

3 System

In order to investigate which role the linguistic
constraints and principles play in practice, we im-
plemented a ranking system based on the theoret-
ical insights. The system takes an assertion and a
set of potential questions triggered by this asser-
tion as input and ranks the set of potential ques-
tions by appropriateness, given the preceding as-
sertion.

3.1 Data

The task of implementing a system for ranking po-
tential questions is difficult, as no datasets exist
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that fulfils the requirements of the input. To cir-
cumvent this problem, the required data was ap-
proximated by different data extraction schemes.
We used two corpora: the test set was extracted
from a small manually annotated corpus of inter-
view fragments. The training set was mined from
the Switchboard Dialog Act corpus.

The test corpus consists of eight short texts. The
texts are copies of a segment of an interview with
Edward Snowden2 that was annotated with a QUD
structure like the one in Figure 1 by students of the
class Questions and Models of Discourse, held at
the University of Potsdam in 2018.3 Some pre-
processing, manual and automatic, had to be done
in order to ensure a consistent structure amongst
the texts. The interviews were segmented into as-
sertions and explicit and implicit questions. As-
sertions are often not complete sentences and the
segmentation differs between the individual texts.

We extracted every assertion that was followed
by a question, explicit or implicit, together with
the following question. The three preceding and
three next questions were saved as an approxima-
tion of the set of alternative potential questions.4

We deemed this acceptable because it is likely
that the immediately surrounding questions will be
about similar topics as the assertion. The question
immediately following the assertion was regarded
as the correct label, i.e. the question that should
be ranked highest by the system. Items that con-
tained the same assertions were merged, which re-
sulted in several correct labels, and a larger set of
alternative potential questions per assertion.

As the test set was not sufficiently big to use
for training in a machine learning setting, a sec-
ond dataset was extracted from the Switchboard
Dialog Act corpus (SWDA)5 (Stolcke et al.,
2000). The SWDA corpus contains spontaneous
telephone conversations that are annotated with di-
alog acts. The reasoning behind using this corpus
was that a question following an assertion in a dia-
log can be interpreted as the highest ranked poten-

2https://edwardsnowden.com/2014/01/27/
video-ard-interview-with-edward-snowden/

3The raw annotated files can be accessed un-
der: https://github.com/QUD-comp/
analysis-of-QUD-structures/tree/master/
Snowden

4Incomplete datapoints from the start and end of a docu-
ment, which were followed or preceded by fewer than three
questions, were excluded.

5The version distributed by Christopher Potts (https:
//github.com/cgpotts/swda) was used, as well as
the code he provided for better accessibility of the corpus.

tial question available at that point.
Similar to the extraction of the test set, asser-

tions directly followed by a question were ex-
tracted along with the question. We considered
only prototypical types of assertions and ques-
tions6, excluding for example rhetorical questions,
to avoid inconsistent items. For each item, three
questions were randomly picked from the set of
all questions in the corpus to arrive at a set of
approximate alternative potential questions. The
individual questions and assertions were cleaned
from disfluency annotation. The resulting training
set consists of 2777 items.

3.2 Feature Extraction

In this work, we implemented a subset of
Onea’s (2013) generation and ordering principles
and Riester’s (2019) QUD constraints as features
for ranking a question following a preceding as-
sertion. For linguistic processing spaCy (Honni-
bal and Montani, 2019) (e.g. dependency pars-
ing, named entity recognition and POS tagging),
NLTK (Bird et al., 2009) (wordnet, stopwords)
and neuralcoref7 (coreference resolution) were
used. For features using word embeddings, a
pretrained Word2vec model8 (Mikolov et al.,
2013a,b) was used, the model was handled via the
gensim package (Řehůřek and Sojka, 2010). Be-
low, the implemented features are described.

Indefinite Determiners This feature detects in-
definite noun phrases in the assertion that are
coreferent to some mention in the question.

Indexicals This feature analyzes whether the
question is about a time or a place by searching
for question phrases that inquire about a time or a
place (e.g. when, where etc.).

Explanation Following Onea (2019), who draws
parallels between certain patterns in discourse
trees with question structures and rhetorical re-
lations, the rhetorical relation Explanation is de-
tected by searching for why-questions.

Elaboration The rhetorical relation Elaboration
is linked by Onea (2019) to questions that ask

6List of considered assertion tags: [’s’, ’sd’, ’sv’] (state-
ments with or without opinions); list of considered question
tags: [’qy’, ’qw’, ’ˆd’, ’qo’, ’qr’, ’qwˆd’] (different syntactic
sub-types of questions).

7https://github.com/huggingface/
neuralcoref

8https://code.google.com/archive/p/
word2vec/
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about an explicit or unarticulated constituent in
an assertion with a wh-question phrase. This is
implemented by checking the question for wh-
question phrases that enquire about properties of
some NP (e.g. which, what kind etc.) and that are
used in a non-embedded sentence.

Animacy This feature detects mentions of per-
sons, i.e. named entities or words that belong to
the Wordnet synset person, in the assertion and
checks whether any of these are coreferent to men-
tions in the question.

Strength Rule I This method approximates the
specificity of the question as the relation between
the length of assertion and question. A question
much shorter than the assertion is likely unspe-
cific, a question much longer might talk about
something else and therefore also lose specificity.

Strength Rule II Questions specific to an asser-
tion are likely to be semantically similar to the as-
sertion. Following this observation, the feature ap-
proximates specificity as the cosine similarity of
the word vector representation of the assertion to
the representation of the question. These represen-
tations are computed by adding the word vectors
for the individual words.

Normality Rule This feature checks the normal-
ity of a context by first computing separately the
average cosine similarities of the words within the
question and within the assertion. Unexpected
words in a sentence should have a lower similar-
ity score than expected words when compared to
the rest of the sentence. For example, the words
sandwich and ham should have a higher similarity
score than the words sandwich and screws, giving
the phrase a sandwich with ham a higher normal-
ity score than the phrase a sandwich with screws.
In a second step, a ratio of the normality scores
of the assertion and the question is computed. If
the assertion talks about an unnormal context it is
normal for the question to relate to this.9 Overall,
the closer the score is to 1.0, the more normal the
context of the question is, given the assertion.

Maximize Anaphoricity This method counts
mentions in the question that are coreferent to
something in the assertion and string matches be-
tween question and assertion that were not already
counted as coreference mentions.

9Imagine the following conversation: A: ”I had a sand-
wich with screws yesterday.” B: ”A sandwich with screws??”
(example adapted from (Onea, 2013)). In this context, it
would be rather unnormal if B did not ask about the screws.

Assertion: ”It was the right thing to do.”
Potential questions:
”When was this your greatest fear?”
”But isn’t there anything you’re afraid of?”
”Why don’t you lose sleep?”
”Was it the right thing to do?”
”But are you afraid?”
”Mr. Snowden, did you sleep well the last couple
of nights?”
”Is this quote still accurate?”

Figure 2: Example input for the potential question
ranker from the test set. The correct following ques-
tion is marked in italic.

3.3 Ranking Component
The ranking component takes an assertion and a
list of potential questions as input (see Figure 2
for an example input), transforms every assertion-
question pair into a feature representation, and
ranks the questions based on this representation.
Three modes of ranking are possible. The Base-
line mode shuffles the questions randomly and re-
turns them in this order.

The Uniform mode transforms every assertion-
question pair into a scalar representation by adding
up the individual features. All features based on
Onea’s generation principles return either 0 or 1,
depending on whether the feature is present or not.
Strength Rule I and the Normality Rule should re-
turn a value as close to 1.0 as possible for a high
ranking question. Therefore, the absolute distance
of the return value from 1.0 is subtracted from the
representation. Strength Rule II and the Maxi-
mize Anaphoricity feature return continuous val-
ues. These are also added to the scalar representa-
tion. The questions are sorted by the value of the
feature representation.

The ML (short for machine learning) mode ac-
cumulates features for an assertion-question pair
into vector representations which are fed into a
Random Forest classifier. The choice of using
a Random Forest classifier was motivated by the
amount of available training data and by consid-
erations about transparency. Decision Trees are
usually a good option for small training datasets
and it’s easy to analyze the patterns they learn by
inspecting feature importance. Scikit-learn’s (Pe-
dregosa et al., 2011) Random Forest implementa-
tion was used. A grid search was performed on a
small set of parameters to arrive at an optimal con-
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Mode Top-1 Top-3 Top-5
Baseline 19.23 46.15 65.38
Uniform 38.46 61.54 88.46

ML 50.00 73.08 80.77

Table 1: Results on test set. Top-N signi-
fies the stage of evaluation.

figuration, results for the best configuration10 are
detailed in Table 1.

4 Evaluation

The different ranking modes and classifier configs
were evaluated on the test set extracted from the
annotated Snowden interview. In order to get a
more detailed insight into the performance of the
ranking system, evaluations were done in three
stages. To this end, the Top-N accuracy measure
was used. As a result of the merging of items
described in section 3.1, the average number of
questions that are correct if ranked in first place is
three per item, and the average number of poten-
tial questions available for ranking is 21 per item.
Results are listed in Table 1.

Interestingly, the uniform mode works quite
well, providing the best result in the easiest eval-
uation setting with an accuracy score of almost
90%. The overall best ranking system (ML mode)
achieves an accuracy of 50% for ranking a correct
label highest and a score of 73% for placing a cor-
rect label amongst the top three ranks. These num-
bers show improvements of over 30 and over 25
points compared to the random baseline.

It should be noted that the data in the train-
ing and test sets have different properties. While
the training data is built from spontaneous dia-
logue, the test set contains QUD annotations that
were added in hindsight and that are sometimes
not phrased like natural speech. Training and test
sets that are more similar might therefore provide
better results. This experiment should be repeated
in the future if a reasonably sized QUD-annotated
corpus becomes available.

Furthermore, the random baseline is quite sim-
ple and might be too easy to beat. An anonymous
reviewer suggested implementing a deep learn-
ing model trained for next sentence prediction as
an additional baseline. While we agree that this
would be worthwhile, we have to leave it for fu-

10The best configuration has min samples leaf = 5,
max depth = 10, and class weight = {0:0.5, 1:1}.

Type Utterance
Assertion There are significant threats
Question Are there significant threats?
Assertion ”The greatest fear I have,” and I

quote you, ”regarding these dis-
closures is nothing will change.”

Question But isn’t there anything
you’re afraid of?

Table 2: Examples of questions incorrectly ranked in
top place that the assertion already answers

ture work due to time constraints.
An additional inspection of the best perform-

ing Random Forest model’s features by impor-
tance showed the three ordering constraint fea-
tures, Strength Rule II, the Normality Rule and
Strength Rule I in top position. This confirms
the theoretic background: the ordering principles
should be more important for ranking potential
questions than the generation principles.

4.1 Error Analysis
In order to better understand the failings of the
ranking system, the best configuration was in-
spected more closely in an error analysis. The
most prominent error by far is ranking a question
that the assertion already answers highest, instead
of one that is triggered by the assertion. Some ex-
amples of this type of error are listed in Table 2.

This can be explained by the nature of the train-
ing data. As alternative potential questions were
sampled randomly from the data during training,
they are more likely to be about a different topic
than the assertion compared to the correct ques-
tion, which would enhance the importance of sim-
ilarity features like Strength Rule II. An answer
to a question can be as similar to the question as
the assertion directly preceding a question. In a
real application, questions that are answered by
the preceding assertion should not be part of the
set of potential questions that are fed into the sys-
tem, though.

5 Conclusion

Potential questions are a concept stemming from
theories that organize discourse around questions.
A ranking system11 based on these theories was

11The code and data presented here have been
made available for public use under a GPL-3.0 li-
cense: https://github.com/QUD-comp/
ranking-potential-questions.
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able to improve rankings of a small test dataset by
up to 30 percentage points compared to a random
Baseline. This system is a first step towards an im-
plementation of the until now theoretic but influen-
tial QUD discourse model. It might be of help for
further evaluation and enrichment of these linguis-
tic theories, but might also be useful in dialogue
generation applications, e.g. for machine dialogue
systems and chatbots.
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Abstract

When professional English teachers correct
grammatically erroneous sentences written by
English learners, they use various methods.
The correction method depends on how much
corrections a learner requires. In this paper,
we propose a method for neural grammar er-
ror correction (GEC) that can control the de-
gree of correction. We show that it is possi-
ble to actually control the degree of GEC by
using new training data annotated with word
edit rate. Thereby, diverse corrected sentences
is obtained from a single erroneous sentence.
Moreover, compared to a GEC model that does
not use information on the degree of correc-
tion, the proposed method improves correction
accuracy.

1 Introduction

The number and types of corrections in a sen-
tence containing grammatical errors written by an
English learner vary from annotator to annotator
(Bryant and Ng, 2015). For example, it is known
that the JFLEG dataset (Napoles et al., 2017) has
a higher degree of correction in terms of the
amount of corrections per sentence than that in the
CoNLL-2014 dataset (Ng et al., 2014). This is be-
cause CoNLL-2014 contains only minimal edits,
whereas JFLEG contains corrections with fluency
edits (Napoles et al., 2017). Similarly, the degree
of correction depends on the learners because it
should be personalized to the level of learners. In
this study, we used word edit rate (WER) as an in-
dex of the degree of correction. As WER is an
index that shows the number of rewritten words
in sentences, the WER between an erroneous sen-
tence and a corrected sentence can represent the
degree of correction of the sentence. Figure 1
shows that the WER of the JFLEG test set is higher
than that of the CoNLL-2014 test set; thus, the
WER shows the degree of correction.

Figure 1: Histogram of the WER in one sentence.

However, existing GEC models consider
only the single degree of correction suited for
training corpus. Recently, neural network-based
models have been actively studied for use
in grammatical error correction (GEC) tasks
(Chollampatt and Ng, 2018). These models
outperform conventional models using phrase-
based statistical machine translation (SMT)
(Junczys-Dowmunt and Grundkiewicz, 2016).
Nonetheless, controlling the amount of correction
required to obtain an error-free sentence is not
possible.

Therefore, we propose a method for neural GEC
that can control the degree of correction. In the
training data, in which grammatical errors are cor-
rected, we add information about the degree of
correction to erroneous sentences as WER tokens
to create new training data. Then, we train the neu-
ral network model using the new training data an-
notated with the degree of correction. At the time
of inference, this model can control the degree of
correction by adding a WER token to the input. In
addition, we propose a method to select and es-
timate the degree of correction required for each
input sequence.
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Corpus Sent.

Lang-8 1.3M
NUCLE 16K
Extra Data (NYT 2007) 0.4M

Table 1: Summary of training data.1

In the experiments, we controlled the degree of
correction of the model for the CoNLL and JF-
LEG. As a result, we confirmed that the degree of
correction of the model can actually be controlled,
and consequently diverse corrected sentences can
be generated. Moreover, we calculated the cor-
rection accuracies of both the CoNLL-2014 test
set and JFLEG test set and demonstrated that the
proposed method improved the scores of both F0.5

using the softmax score and GLEU using the lan-
guage model (LM) score more than the baseline
model.

The main contributions of this work are summa-
rized as follows:

• The degree of correction of the neural GEC
model can be controlled using the WER.

• The proposed method increases correction
accuracy and produces diverse corrected sen-
tences to further improve GEC.

2 Controlling the degree of correction by
using WER

We propose a method to control the degree of cor-
rection of the GEC model by adding tokens based
on the WER, which is calculated for all sentences
in the training data. The method of calculating
WER and adding WER tokens is described as fol-
lows.

First, the Levenshtein distance is calculated
from the erroneous sentence and the correspond-
ing corrected sentence in the training data. Then,
WER is calculated by normalizing this distance
with respect to the source length.

Second, appropriate cutoffs are selected to di-
vide the sentences into five equal-sized subsets.
Different WER tokens are defined for each sub-
set and added to the beginning of the source sen-
tences.

Finally, the following parallel corpus is ob-
tained: error-containing sentences annotated with
the WER token representing the correction degree

1Only sentences with corrections are used, and the sen-
tence length limit is 80 words.

WER Token Min Max Sent.

⟨1⟩ 0.01 0.12 350K
⟨2⟩ 0.12 0.20 350K
⟨3⟩ 0.20 0.31 350K
⟨4⟩ 0.31 0.53 350K
⟨5⟩ 0.53 38.00 2 350K

Table 2: Thresholds of WER and number of sentences
corresponding to WER tokens in the training data.

at the beginning of sentences and the correspond-
ing sentences in which errors are corrected. The
GEC model is trained using this newly created
training data.

At the time of inference, five kinds of output
sentences are obtained for each input sentence
through the WER token. Therefore, we propose
two simple ranking methods to automatically de-
cide the optimal degree of correction for each in-
put sentence.

Softmax. Ranking the 5 single best candidates
Y using the sum of log probabilities of soft-
max score normalized by the hypothesis sentence
length |y|. The softmax score shows whether the
hypothesis sentence y is appropriate for source
sentence x.

ŷ = arg max
y∈Y

1

|y|

|y|∑

i=1

log P (yi|y1, · · · , yi−1,x)

Language model (LM). Ranking the 5 single
best candidates Y using the score of an n-gram
LM. This score is normalized by the sentence
length of the GEC model, and shows the fluency
of hypothesis sentence y.

ŷ = arg max
y∈Y

1

|y|

|y|∑

i=1

log P (yi|yi−(n−1), · · · , yi−1)

3 Experiments

3.1 Datasets
Table 1 summarizes the training data. We
used Lang-8 (Mizumoto et al., 2012) and NUCLE
(Dahlmeier et al., 2013) as the training data. The
accuracy of the GEC task is known to be im-
proved by increasing the amount of the training
data (Xie et al., 2018). Therefore, we added more

2WER may exceed the one in which the Levenshtein dis-
tance is larger than the number of words in the target sen-
tence.
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Model CoNLL-2013 (Dev) CoNLL-2014 (Test) JFLEG (Dev) JFLEG (Test)

P R F0.5 P R F0.5 GLEU WER

Baseline 42.19 15.28 31.20 53.20 25.18 43.52 47.92 51.77 0.10

WER Token
⟨1⟩ 52.45 13.60 33.39 60.07 23.52 *45.83 44.85 *48.45 0.06
⟨2⟩ 47.55 17.94 35.75 54.64 28.41 *46.12 47.96 *52.01 0.09
⟨3⟩ 43.38 20.05 35.19 50.48 31.45 *45.03 49.45 *53.59 0.12
⟨4⟩ 40.91 21.32 34.56 47.43 32.68 43.50 49.16 *53.47 0.17
⟨5⟩ 29.48 13.98 24.13 33.77 22.95 *30.86 37.52 *42.21 0.43

Table 3: Results of GEC experiments with controlled degree of correction.

Method CoNLL-2014 (Test) JFLEG (Test)

P R F0.5 GLEU

Softmax 60.15 24.03 ∗46.25 49.07
LM 44.34 20.20 35.79 ∗53.87

Oracle WER 72.57 34.40 59.39 58.49

Gold WER 55.25 28.38 46.45 54.48

Table 4: Results of GEC experiments with ranking of
the 5 single best candidates. The oracle WER shows
the scores when selecting a corrected sentence for each
erroneous sentence that maximizes the F0.5 on CoNLL-
2014 test set and GLEU on JFLEG test set. The gold
WER shows the scores when using the WER token cal-
culated from the reference in evaluation datasets.

data by introducing synthetic grammatical errors
to the 2007 New York Times Annotated Corpus
(LDC2008T19)3 to the original training data in the
same manner as the random noising method done
by Xie et al. (2018). We used the CoNLL-2014
test set and JFLEG test set as the test sets and
CoNLL-2013 dataset (Ng et al., 2013) and JFLEG
dev set as the development sets, respectively.

3.2 Model
We used a multilayer convolutional encoder-
decoder neural network without pre-trained
word embeddings and re-scoring using the
edit operation and language model features
(Chollampatt and Ng, 2018) as the GEC model
with the same hyperparameters. We conducted
the following two experiments. First, we trained
the GEC model (baseline) by using the training
data as is. Second, we created new training data
by adding WER tokens defined by WER to the
beginning of sentences in the original training
data, and used it to train a GEC model. We added
five types of WER tokens to the training data,

3https://catalog.ldc.upenn.edu/LDC2008T19

as shown in Table 2, defined according to the
WER score: ⟨1⟩ (the sentence set with the highest
WER), ⟨2⟩, ⟨3⟩, ⟨4⟩, and ⟨5⟩ (the sentence set
with the lowest WER).

In the ranking experiment, we used
a 5-gram KenLM (Heafield, 2011)
with Kneser-Ney smoothing trained on
the web-scale Common Crawl corpus
(Junczys-Dowmunt and Grundkiewicz, 2016).

As an evaluation method, we computed the
F0.5 score by using the MaxMatch (M2) scorer
(Dahlmeier and Ng, 2012) for the CoNLL-2013
dataset and CoNLL-2014 test set and computed
the GLEU score for the JFLEG dev and test sets.
In addition, we calculated the average WER of the
JFLEG test set.

3.3 Controlling experiment
Table 3 shows the experimental result of control-
ling the degree of correction using WER. The
“WER Token” models are all the same model ex-
cept for each WER token added to the beginning
of the all of input sentences at the time of infer-
ence.

The WER in Table 3 show that the average
WER is proportional to the WER tokens added to
the input sentences. Hence, the WER of the GEC
model can be controlled by the WER tokens de-
fined by WER.

The precision is the highest for the WER token
⟨1⟩ and the recall is low. In contrast, the preci-
sion is the lowest for the WER token ⟨4⟩, while
the recall is the highest. Therefore, the recall is
in proportional to the WER, while the precision is
inversely proportion to the WER.

However, even with the WER of model ⟨5⟩ be-
ing the highest, both its precision and recall are
low. In addition, the GLEU and F0.5 scores of

∗A statistically significant difference can be observed
from the baseline (p < 0.05).
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Source Disadvantage is parking their car is very difficult . WER

Reference The disadvantage is that parking their car is very difficult . 0.33

Baseline Disadvantage is parking their car is very difficult . 0.00

WER Token
⟨1⟩ Disadvantage is parking ; their car is very difficult . 0.11
⟨2⟩ Disadvantages are parking their car is very difficult . 0.22
⟨3⟩ The disadvantage is parking their car is very difficult . 0.22
⟨4⟩ The disadvantage is that parking their car is very difficult . 0.33
⟨5⟩ The disadvantage is that their car parking lot is very difficult . 0.56

Table 5: Example of outputs on the JFLEG test set.

model ⟨5⟩ are the lowest. Table 2 shows the WER
of the training data with WER token ⟨5⟩ is more
than 0.5. The manual inspection of this training
data revealed that it includes noisy data, for exam-
ple, very short source sentences or very long target
sentences with inserted comments not related to
corrections. Consequently, the score is considered
to decrease because the training fails.

The degree of correction differs between the
CoNLL and JFLEG sets, as described in Section
1. In this result, the WER token with the high-
est score differs in CoNLL and JFLEG. Moreover,
these scores are higher than the baseline scores.

The correction accuracies of both the CoNLL
and JFLEG differ for each WER token. Hence,
the proposed model can generate diverse corrected
sentences by using the WER token.

3.4 Ranking experiment

In the controlling experiment, we obtained the 5
single best candidates with different degrees of
correction. Table 4 shows the experimental results
of GEC with the ranking of the 5 single best can-
didates. As shown, these simple ranking methods
can decide the best WER token.

The row of softmax in Table 4 shows the result
of the ranking of the 5 single best using the soft-
max score for each sentence. The result shows that
the F0.5 score of CoNLL-2014 test set is higher
than the scores of the baseline. In contrast, the
GLEU score of JFLEG test set is low. The WER
in Table 3 shows that the GEC model does not cor-
rect much. Hence, the softmax score of the GEC
model tends to be high when there are few correc-
tions.

The result of ranking the 5 single best sentences
using the LM score is shown in the LM row of
Table 4. The GLEU score of JFLEG contain-
ing fluency corrections is higher than the scores
of the baseline model; however, the F0.5 score of

CoNLL-2014 test set containing minimal correc-
tions is low. This outcome is plausible because
LM prefers fluency in a sentence regardless of the
input.

Table 4 shows the scores of “Oracle WER”
when selecting the corrected sentence, which has
a higher evaluation score than any other corrected
sentences for each input sentence. As a result, F0.5

achieves a score of 59.39 on the CoNLL-2014 test
set and GLEU achieves a score of 58.49 on the
JFLEG test set. These scores significantly outper-
form the baseline scores. This could be because
the proposed model can generate diverse sentences
by controlling the degree of correction. These re-
sults imply that the proposed model can be im-
proved by selecting the best corrected sentences.

3.5 Example

Table 5 illustrates outputs of the GEC model with
the addition of different WER tokens to the input
sentences. This example is obtained from the out-
puts on the JFLEG test set for each WER token.
The bold words represent the parts changed from
the source sentence.

This example shows several gold edits to correct
grammatical errors in the source sentence. Model
⟨3⟩ corrects only two of these errors, whereas
model ⟨4⟩ covers all the parts to be corrected.
Model ⟨5⟩ makes further changes although these
edits are termed as erroneous corrections. This ex-
ample confirms that the proposed method corrects
errors with different degrees of correction. Al-
though the output of the baseline is not corrected,
the proposed method could be used to correct all
the errors by performing substantial corrections by
using the WER token.

3.6 Analysis

Effect of the WER token. We confirmed how
accurately the WER token could control the de-
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Figure 2: Comparison of the recall of each WER token
per error type breakdown , which occurs more than 100
times in the CoNLL-2013 dataset.

gree of correction of model. Therefore, we de-
termined the gold WER tokens for each sentence
from the WERs calculated from erroneous and
corrected sentences in the CoNLL-2014 test set
and JFLEG test set, as shown in Table 2. Then,
we calculated the average of the M2 score, GLEU,
and the controlling accuracy because the CoNLL-
2014 test set and JFLEG test set have multiple ref-
erences. The controlling accuracy is the concor-
dance rate of the gold and system WER tokens de-
termined from system output sentences using the
gold WER token and erroneous sentences of the
CoNLL-2014 test set and JFLEG test set.

The scores of F0.5 and GLEU shown in the
“Gold WER” row in Table 4 are higher than the
baseline scores. However, the scores of F0.5 and
GLEU are not higher than the oracle WER. More-
over, the controlling accuracy is 62.16 for the
CoNLL-2014 test set and 53.18 for the JFLEG test
set. This could be because the proposed model
corrects less than the degree of correction corre-
sponding to the gold WER token. Specifically, the
average number of output sentences below the de-
gree of the correction of the gold WER token is
459.5 within 1,312 sentences in the CoNLL-2014
test set and 64 within 747 sentences in the JFLEG
test set. This result shows that it is difficult to
estimate of the WER from erroneous sentences.
In other words, to improve the correction accu-
racy, considering GEC methods without relying on
WER is necessary.

Error types. We calculated recall to analyze
whether the degree of correction can be controlled
in more detail for each error type by using ER-
RANT4 (Bryant et al., 2017) on the CoNLL-2013
dataset. Figure 2 shows the result of compari-

4https://github.com/chrisjbryant/errant

son of each WER token and each error type. As
the WER increases, the recall increases for al-
most all error types except for model ⟨5⟩. Among
them, the recall of DET and NOUN:NUM espe-
cially increases compared to the recall of VERB
and VERB:FORM. This result also shows that the
degree of correction can be controlled by using the
WER.

4 Related work

Junczys-Dowmunt and Grundkiewicz (2016) used
an SMT model with task-specific features, which
outperformed previously published results. How-
ever, the SMT model can only correct few words
or phrases based on a local context, resulting in
unnatural sentences. Therefore, several meth-
ods using a neural network were proposed to en-
sure fluent corrections, considering the context
and meaning between words. Among them, the
method by Chollampatt and Ng (2018) uses a mul-
tilayer convolutional encoder-decoder neural net-
work (Gehring et al., 2017). This model is one of
the state-of-the-art models in GEC, and its imple-
mentation is currently being published5. However,
these models cannot be controlled in terms of the
degree of correction.

Kikuchi et al. (2016) proposed to control the
output length by hinting about the output length to
the encoder-decoder model in the text summariza-
tion task. Sennrich et al. (2016) controlled the po-
liteness of output sentences by adding politeness
information to the training data as WER tokens
in machine translation. In this research, similar
to Sennrich et al. (2016), we added WER indicat-
ing the degree of correction as WER tokens to the
training data to control the degree of correction for
the input sentences.

Similar to our method, Junczys-Dowmunt et al.
(2018) and Schmaltz et al. (2017) trained a GEC
model with corrective edits information to control
the tendency of generating corrections.

5 Conclusion

This study showed that it is possible to control the
degree of correction of a neural GEC model by
creating training data with WER tokens based on
the WER to train a GEC model. Therefore, di-
verse corrected sentences can be generated from
one erroneous sentence. We also showed that the
proposed method improved correction accuracy.

5https://github.com/nusnlp/mlconvgec2018
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In the future, we would like to work on selecting
the best sentence from a wide variety of corrected
sentences generated by a model varying the degree
of correction.
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Abstract

Recent work in cognitive neuroscience has
introduced models for predicting distribu-
tional word meaning representations from
brain imaging data. Such models have great
potential, but the quality of their predictions
has not yet been thoroughly evaluated from a
computational linguistics point of view. Due
to the limited size of available brain imaging
datasets, standard quality metrics (e.g. similar-
ity judgments and analogies) cannot be used.
Instead, we investigate the use of several al-
ternative measures for evaluating the predicted
distributional space against a corpus-derived
distributional space. We show that a state-
of-the-art decoder, while performing impres-
sively on metrics that are commonly used
in cognitive neuroscience, performs unexpect-
edly poorly on our metrics. To address this, we
propose strategies for improving the model’s
performance. Despite returning promising re-
sults, our experiments also demonstrate that
much work remains to be done before distribu-
tional representations can reliably be predicted
from brain data.

1 Introduction

Over the last decade, there has been a growing
body of research on the relationship between neu-
ral and distributional representations of seman-
tics (e.g., Mitchell et al., 2008; Anderson et al.,
2013; Xu et al., 2016). This type of research is
relevant for cognitive neuroscientists interested in
how semantic information is represented in the
brain, as well as to computational linguists in-
terested in the cognitive plausibility of distribu-
tional models (Murphy et al., 2012). So far, most
studies investigated the correlation between neu-
ral and distributional representations either by pre-
dicting brain activity patterns from distributional
representations (Mitchell et al., 2008; Abnar et al.,
2018), or by using more direct correlation analyses

like Representational Similarity Analysis (RSA;
introduced in Kriegeskorte et al. 2008) or simi-
lar techniques (Anderson et al., 2013; Xu et al.,
2016). Recently, however, a new model has been
proposed (Pereira et al., 2018) for decoding distri-
butional representations from brain images.

This new approach is different from the earlier
approaches in a number of interesting ways. First
of all, whereas predicting brain images from dis-
tributional vectors tells us something about how
much neurally relevant information is present in
distributional representations, doing the predic-
tion in the opposite way could tell us something
about how much of the textual co-occurrence in-
formation that distributional models are based on
is present in the brain. Brain decoding is also in-
teresting from an NLP point of view: the output of
the model is a word embedding that could, at least
in principle, be used in downstream tasks. Ulti-
mately, a sufficiently accurate model for predict-
ing distributional representations would amount to
a sophisticated ‘mind reading’ device with numer-
ous theoretical and practical applications.

Interestingly, despite being an early model and
being trained on a (for NLP standards) very small
dataset, Pereira et al. (2018) already report im-
pressively high accuracy scores for their decoder.
However, despite these positive results, there are
reasons to doubt whether it is really possible to de-
code distributional representations from brain im-
ages. Given the high-dimensional nature of both
neural and distributional representations, it is rea-
sonable to expect that the mapping function be-
tween the two spaces, if it indeed exists, is po-
tentially very complicated, and, given the inher-
ent noisiness of fMRI data, could be very hard to
learn, especially from a small dataset.

Moreover, we believe that the evaluation met-
rics used in Pereira et al. (2018) are too limited.
Both of these metrics, pairwise accuracy and rank
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Figure 1: Hypothetical example where the predicted
word embeddings (cat’, apple’, . . . ) are relatively close
to their corresponding target word embeddings (cat, ap-
ple, . . . ), but are far from their correct position in abso-
lute terms and have the wrong nearest neighbours.

accuracy, measure a predicted word embeddings’s
distance to its corresponding target word embed-
ding, relative to its distance to other target word
embeddings; for example, the prediction for cat is
‘good’ if it is closer to the target word embedding
of cat than to the target word embedding of truck
(see 3.1 for more details). Such metrics are useful
for evaluating how well the original word labels
can be reconstructed from the model’s predictions,
but do not say much about the overall quality of
the predicted space. As shown in Figure 1, a bad
mapping that fails to capture the similarity struc-
ture of the gold space could still get a high accu-
racy score. Scenarios like this are quite plausible
given that cross-space mappings are known to be
prone to over-fitting (and hence, poor generaliza-
tion) and often suffer from ‘hubness’, a distortion
of similarity structure caused by a lack of variabil-
ity in the predicted space (Lazaridou et al., 2015).

In this paper, we fill a gap in the literature by
proposing a thorough evaluation of Pereira et al.
(2018), using previously untried evaluation met-
rics. Based on our findings, we identify possi-
ble weaknesses in the model and propose several
strategies for overcoming these.

2 Related work

Our work is largely built on top of Pereira et al.
(2018), which to date is the most extensive at-
tempt at decoding meaning representations from
brain imaging data. In this study (Experiment 1),
fMRI images of 180 different content words were
collected for 16 participants. The stimulus words
were presented in three different ways: the writ-
ten word plus an image representing the word, the
word in a word cloud, and the word in a sentence.
Thus, the dataset consists of 180×3 = 540 images

per participant. Additionally, a combined repre-
sentation was created for each word by averag-
ing the images from the three stimulus presenta-
tion paradigms. Note that data for different partic-
ipants cannot be directly combined due to differ-
ences in brain organization;1 decoders are always
trained for each participant individually.

The vocabulary was selected by clustering a
pre-trained GloVe space (Pennington et al., 2014)2

consisting of 30,000 words into regions, and then
manually selecting a word from each region, yield-
ing a set of 180 content words that include nouns
(both concrete and abstract), verbs, and adjectives.
Next, for every participant, a vector space was cre-
ated whose dimensions are voxel activation values
in that participant’s brain scan.3 This (approxi-
mately) 200,000-dimensional space can be option-
ally reduced to 5,000 dimensions using a complex
feature selection process. Finally, for every par-
ticipant, a ridge regression model was trained for
mapping this brain space to the GloVe space. Cru-
cially, this model predicts each of the 300 GloVe
dimensions separately, the authors’ hypothesis be-
ing that variation in each dimension of semantic
space corresponds to specific brain activation pat-
terns.

The literature relating distributional semantics
to neural data started with Mitchell et al. (2008),
who predicted fMRI brain activity patterns from
distributional representations for 60 hand-picked
nouns from 12 different semantic categories (e.g.
‘animals’, ‘vegetables’, etc.). Many later stud-
ies built on top of this; for example, Sudre et al.
(2012) was a similar experiment using MEG, an-
other neuroimaging technique. Other studies (e.g.,
Xu et al. 2016) reused Mitchell et al. (2008)’s orig-
inal dataset but experimented with different word
embedding models, including distributional mod-
els such as word2vec (Mikolov et al., 2013) or
GloVe, perceptual models (Anderson et al., 2013;
Abnar et al., 2018) and dependency-based mod-
els (Abnar et al., 2018). Similarly, Gauthier and
Ivanova (2018) reused Pereira et al. (2018)’s data
and regression model but tested it on alternative
sentence embedding models.

1Techniques like hyperalignment do allow for this, but
they require very large datasets (Van Uden et al., 2018).

2Version 42B.300d, obtained from https://nlp.
stanford.edu/projects/glove/.

3A voxel is a 3D pixel representing the blood oxygenation
level of a small part of the brain.
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3 Methods

Our work builds on top of Experiment 1 in Pereira
et al. (2018) (described above) and uses the same
datasets and experimental pipeline. In this section,
we introduce our evaluation experiments (3.1) and
our model improvement experiments (3.2).4 Un-
less indicated otherwise, our models were trained
on averaged fMRI images, which Pereira et al.
showed to work better than using images from any
of the individual stimulus presentation paradigms.

3.1 Evaluation experiments

Our evaluation experiments consist of two parts: a
re-implementation of the pairwise and rank-based
accuracy scores methods used in Pereira et al.
(2018) and the introduction of additional evalua-
tion metrics.

Pairwise accuracy is calculated by consider-
ing all possible pairs of words (u, v) in the vo-
cabulary and computing the similarity between
the predictions (pu, pv) for these words and
their corresponding target word embeddings (gu,
gv). Accuracy is then defined as the fraction
of pairs where ‘the highest correlation was be-
tween a decoded vector and the corresponding
text semantic vector’ (Pereira et al., 2018, p.
11). Unfortunately, the original code for com-
puting the scores was not published, but we in-
terpret this as meaning that a pair is considered
to be ‘correct’ iff max(r(pu, gu), r(pv, gv)) >
max(r(pu, pv), r(pv, pu)), where r(x, y) is the
Pearson correlation between two vectors. That is,
for each pair of words, all four possible combi-
nations of the two predictions and the two golds
should be considered, and the highest of the four
correlations should be either between pu and gu or
between pv and gv.

Rank accuracy is calculated by calculating the
correlation, for every word in the vocabulary, be-
tween the predicted word embedding for that word
and all of the target word embeddings, and then
ranking the target word embeddings accordingly.
The accuracy score for that word is then defined
as 1 − rank−1

|V |−1 , where rank is the rank of the cor-
rect target word embedding (Pereira et al., 2018,
p. 11). This accuracy score is then averaged over
all words in the vocabulary. Rank accuracy is very
similar to pairwise accuracy but is slightly stricter.

4A software toolkit for reproducing all of our ex-
periments can be found at https://gitlab.com/
gosseminnema/ds-brain-decoding.

Under pairwise evaluation, it is sufficient if, for
any word pair under consideration (say, cat and
dog), only one of the predicted vectors is ‘good’:
as long as the correlation between pcat and gcat is
higher than the other correlations, the pair counts
as ‘correct’, even if the prediction for dog is far off.
Suppose that dog were the only badly predicted
word in the dataset, then one could theoretically
still get a pairwise accuracy score of 100%. By
contrast, under rank evaluation a bad prediction
for dog would not be ‘forgiven’ and the low rank
of dog would affect the overall accuracy score, no
matter how good the other predictions were.

In order to evaluate the quality of the pre-
dicted word embeddings more thoroughly, one
would ideally use standard metrics such as seman-
tic relatedness judgement tasks, analogy tasks, etc.
(Baroni et al., 2014). However, this is not possible
due to the limited vocabulary sizes of the available
brain datasets. Instead, we test under four addi-
tional metrics that are based on well-established
analysis tools in distributional semantics and else-
where but have not yet been applied to our prob-
lem. The first two of these measure directly how
close the predicted vectors are in semantic space
relative to there expected location, whereas the last
two measure how well the similarity structure of
the semantic space is preserved.

Cosine (Cos) scores are a direct way of mea-
suring how far each prediction is from ‘where it
should be’, using cosine similarity as this is a
standard metric in distributional semantics. Given
a vocabulary V and predicted word embeddings
(pw) and target word embeddings (gw) for every
word w ∈ V , we define the cosine score for a
given model as

∑
w∈V sim(pw,gw)

|V | (i.e., the cosine
similarity between each prediction and its corre-
sponding target word embedding, averaged over
the entire vocabulary).

R2 scores are a standard metric for evaluat-
ing regression models, and are useful for test-
ing how well the value of each individual dimen-
sions is predicted (recall that the ridge regres-
sion model predicts every dimension separately)
and how much of their variation is explain by the
model. We use the definition of R2 scores from
the scikit-learn Python package (Pedregosa
et al., 2011), which defines it as the total squared
distance between the predicted values and the true
values relative to the total squared distance of each
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prediction to the mean true value:

R2(y, ŷ) = 1−
∑n−1

i=0 (yi − ŷi)
2

∑n−1
i=0 (yi − ȳ)2

where y is an array of true values and ŷ is an array
of predicted values. Note that R2 is defined over
single dimensions; in order to obtain a score for
the whole prediction matrix, we take the average
R2 score over all dimensions. Scores normally lie
between 0 and 1 but can be negative if the model
does worse than a constant model that always pre-
dicts the same value regardless of input data.

Nearest neighbour (NN) scores evaluate how
well the similarity structure of the predicted se-
mantic space matches that of the original GloVe
space. For each word in V , we take its predicted
and target word embeddings, and then compare the
ten nearest neighbours of these vectors in their re-
spective spaces. The final score is the mean Jac-
card distance computed over all pairs of neighbour
lists:

∑
w∈V J(P10(pw),T10(tw))

|V | , where J(S, T ) =
|S∩T |
|S∪T | is the Jaccard distance between two sets
(Lescovec et al., 2014) and Pn(v) and Tn(v) de-
note the set of n nearest neighbours (computed
using cosine similarity) of a vector in the predic-
tion space and in the original GloVe space, respec-
tively.

Representational Similarity Analysis (RSA)
is a common method in neuroscience for com-
paring the similarity structures of two (neural or
stimulus) representations by computing the Pear-
son correlation between their respective similar-
ity matrices (Kriegeskorte et al., 2008). We use
it as an additional metric for evaluating how well
the model captures the similarity structure of the
GloVe space. This involves computing two simi-
larity matrices of size V ×V , one for the predicted
space and one for the target space, whose entries
are defined as Pi,j = r(pi, pj) and Ti,j = r(ti, tj),
respectively. Then, the representational similarity
score can be defined as the Pearson correlation be-
tween the two upper halves of each similarity ma-
trix: r(upper(P ), upper(T )), where upper(M) =
[M2,1,M3,1, . . . ,Mn,m−1] is the concatenation of
all entries Mi,j such that i > j.

3.2 Model improvement experiments

The second part of our work tries to improve on
the results of Pereira et al. (2018)’s model, using
three different strategies: (1) alternative regression

models, (2) data augmentation techniques, and (3)
combining predictions from different participants.

Ridge is the original ridge regression model
proposed in Pereira et al. (2018). Ridge regres-
sion is a variant on linear regression that tries to
avoid large weights (by minimizing the squared
sum of the parameters), which is similar to apply-
ing weight decay when training neural networks;
this is useful for data (like fMRI data) with a high
degree of correlation between many of the input
variables (Hastie et al., 2009). However, an im-
portant limitation is that, when there are multiple
output dimensions, the weights for each of these
dimensions are trained independently. This seems
inappropriate for predicting distributional repre-
sentations because values for individual dimen-
sions in such representations do not have much
inherent meaning; instead, it is the interplay be-
tween dimensions that encodes semantic informa-
tion, which we would like to capture this in our
regression model.

Perceptron is a simple single-layer, linear per-
ceptron model that is conceptually very similar to
Ridge, but uses gradient descent for finding the
weight matrix. A possible advantage of this ap-
proach is that the weights for all dimensions are
learned at the same time, which means that the
model should be able to capture relationships be-
tween dimensions. The choice for a linear model
is also in line with earlier work on cross-space
mapping functions (Lazaridou et al., 2015). Like
Ridge, Perceptron takes a flattened representation
of the 5000 ‘best’ voxels as input (see section 2).
Best results were found using a model using co-
sine similarity as the loss function, Adam for opti-
mization (Kingma and Ba, 2014), with a learning
rate and weight decay set to 0.001, trained for 10
epochs.

CNN is a convolutional model that takes as in-
put a 3D representation of the full fMRI image.
Our hypothesis is that brain images, like ordi-
nary photographs, contain strong correlations be-
tween spatially close pixels (or ‘voxels’, as they
are called in the MRI literature) and could thus
benefit from a convolutional approach. We kept
the CNN model as simple as possible and included
only a single sequence of a convolutional layer, a
max-pool layer, and a fully-connected layer (with
a ReLU activation function). Best results were
found with the same settings as for Perceptron, and
a convolutional kernel size of 3 and a pooling ker-
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Model Pair Rank Cos R2 NN RSA
IB IA A IB IA A IB IA A IB IA A IB IA A IB IA A

Random 0.54 0.50 0.49 0.54 0.50 0.51 -0.04 -0.05 -0.05 -3.16 -3.19 -2.48 0.04 0.03 0.03 0.01 -0.00 -0.01
Ridge 0.86 0.76 0.93 0.84 0.73 0.91 0.14 0.09 0.22 -0.30 -0.46 -0.06 0.07 0.05 0.11 0.14 0.08 0.25
Ridge+exp2 0.89* 0.81* 0.94* 0.86* 0.79* 0.92* 0.16* 0.11* 0.23* -0.12* -0.25* -0.06* 0.09* 0.06* 0.12* 0.18* 0.13* 0.25*
Ridge+para 0.90 0.78 0.94 0.88 0.75 0.92 0.18 0.10 0.24 -0.16 -0.24 -0.05 0.09 0.05 0.12 0.20 0.11 0.26
Ridge+aug 0.87 0.77 0.94 0.86 0.75 0.91 0.16 0.10 0.24 -0.18 -0.26 -0.05 0.07 0.05 0.11 0.16 0.09 0.25
Perceptron 0.81 0.70 0.87 0.78 0.68 0.83 0.09 0.05 0.11 -0.75 -41.89 -2.64 0.05 0.04 0.07 0.09 0.05 0.16
CNN 0.72 0.59 0.76 0.70 0.60 0.76 0.07 0.04 0.12 -0.40 -1.02 -0.13 0.05 0.03 0.05 0.08 0.03 0.13

Table 1: Decoding performance of all models. IB : score of the best individual participant; IA: average score for
individual participants; A: score for the combined (averaged) predictions from all participants. ‘*’ indicates that
the model was tested on a subset of participants due to missing data.

nel size of 10.
We also propose several strategies for making

better use of available data. +exp2 adds com-
pletely new data points from Experiment 2 in
Pereira et al. (2018)’s study: fMRI scans of 8
participants (who also participated in Experiment
1) reading 284 sentences, and distributional vec-
tors for these sentences, obtained by summing the
GloVe vectors for the content words in each sen-
tence. By contrast, +para and +aug add extra data
for every word in the existing vocabulary, in or-
der to force the model to learn a mapping between
regions in the brain space and regions in the tar-
get space, rather than between single points. In
+para, the model is trained on four fMRI images
per word: one from each stimulus presentation
paradigm (i.e., the word plus a picture, the word
plus a word cloud or the word in a sentence, and
the average of these). By contrast, under the stan-
dard approach, the model is trained on only one
brain image for each word (either the image from
one of the three paradigms or the average image).
Finally, +aug adds data on the distributional side:
rather than mapping each brain image to just its
‘own’ GloVe vector (e.g. the image for dog to the
GloVe vector of dog), we map it to its own vector
plus the six nearest neighbours of that vector in the
full GloVe space (e.g. not only dog but also dogs,
puppy, pet, cat, cats, and puppies).

A final experiment does not aim at enhancing
the models’ training data, but rather changes how
the model’s predictions are processed. In the brain
decoding literature, models are usually trained and
evaluated for individual participants. However, to
make maximal use of limited training data, one
would like to combine brain images from differ-
ent participants, but as noted, this is not feasi-
ble for our dataset. Instead, we propose a sim-
ple alternative method for obtaining group-level
predictions: we average the predictions from all
of the models for individual participants to pro-

duce a single prediction for each stimulus word.
We hypothesize that this can help ‘smooth out’
flaws in individual participants’ models. To com-
pare individual-level and group-level predictions,
we calculate three different scores for each model:
the highest score for the predictions of any indi-
vidual participant (IB), the average score for the
predictions of all individual participants (IA), and
the score for the averaged predictions (A).

4 Results

The results of all models are summarized in Ta-
ble 1.5 All models beat a simple baseline model
that predicts vectors of random numbers (except
on the R2 metric, where Perceptron performs be-
low baseline). Performance on the Pair and Rank
scores is generally good, but performance on the
other metrics is much worse: Cos is very low and
R2 scores are negative, meaning that the predicted
word embeddings are very far in semantic space
from where they should be. Moreover, the low NN
and RSA scores indicate that the model captures
the similarity structure of the GloVe space only to
a very limited extent. On the model improvement
side, the alternative models Perceptron and CNN
fail to outperform Ridge, while the data augmen-
tation experiments do achieve slightly higher per-
formance. Finally, combining predictions seems
to be quite effective: the scores for the averaged
predictions are better than those for any individ-
ual participant, reaching Pair and Rank scores of
more than 0.90 and Cos, NN, and RSA scores of
up to two times the averaged score for individual
participants.

5 Discussion and conclusion

Our results show that none of our tested models
learns a good cross-space mapping: the predicted

5MLP and Ridge were run with and without feature selec-
tion; table lists best results (MLP: with, Ridge: without).
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semantic vectors are far from their expected loca-
tion and fail to capture the target space’s similar-
ity structure. Meanwhile, excellent performance is
achieved on pairwise and rank-based classification
tasks, which implies that the predictions contain
sufficient information for reconstructing stimulus
word labels. These contradictory results suggest
a situation not unlike the one sketched in Fig. 1.
This means that from a linguistic point of view,
early claims about the success of brain decoding
techniques should be taken cautiously.

Two obvious questions are how such a situa-
tion can arise and how it can be prevented. First
of all, it seems likely that there is simply not
enough training data to learn a precise mapping;
the results of our experiments with adding ‘ex-
tra’ data are in line with this hypothesis. More-
over, the fact that all vocabulary words are rela-
tively far from each other could make the mapping
problem harder. For example, the ‘correct’ near-
est neighbours of dog are pig, toy, and bear; the
model might predict fish, play and bird, which are
‘wrong’ but intuitively do not seem much worse.
We speculate that using a dataset with a more di-
verse similarity structure (i.e. where each word is
very close to some words and further from oth-
ers) could help the model learn a better map-
ping. Yet another issue is contextuality: stan-
dard GloVe embeddings are context-independent
(i.e. a given word always has the same repre-
sentation regardless of its word sense and syntac-
tic position in the sentence), whereas the brain
images are not because they were obtained us-
ing contextualized stimuli (e.g. a word in a sen-
tence). Hence, an interesting question is whether
trying to predict contextualized word embeddings,
obtained using more traditional distributional ap-
proaches (e.g. Erk and Padó, 2010; Thater et al.,
2011) or deep neural language models (e.g. De-
vlin et al., 2018), would be an easier task. Fi-
nally, the success of our experiment with com-
bining participants suggests that using group-level
data can help overcome the challenges inherent in
predicting corpus-based (GloVe) representations
from individual-level (brain) representations.
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Abstract

In this paper, we investigate the task of learn-
ing word embeddings from very sparse data in
an incremental, cognitively-plausible way. We
focus on the notion of informativeness, that is,
the idea that some content is more valuable
to the learning process than other. We fur-
ther highlight the challenges of online learn-
ing and argue that previous systems fall short
of implementing incrementality. Concretely,
we incorporate informativeness in a previously
proposed model of nonce learning, using it for
context selection and learning rate modulation.
We test our system on the task of learning new
words from definitions, as well as on the task
of learning new words from potentially unin-
formative contexts. We demonstrate that infor-
mativeness is crucial to obtaining state-of-the-
art performance in a truly incremental setup.

1 Introduction

Distributional semantics models such as word em-
beddings (Bengio et al., 2003; Collobert et al.,
2011; Huang et al., 2012; Mikolov et al., 2013b)
notoriously require exposure to a large amount of
contextual data in order to generate high quality
vector representations of words. This poses prac-
tical challenges when the available training data
is scarce, or when distributional models are in-
tended to mimic humans’ word learning abilities
by constructing reasonable word representations
from limited observations (Lazaridou et al., 2017).
In recent work, various approaches have been pro-
posed to tackle these problems, ranging from task-
specific auto-encoders generating word embed-
dings from dictionary definitions only (Bosc and
Vincent, 2017, 2018), to Bayesian models used for
acquiring definitional properties of words via one-
shot learning (Wang et al., 2017), or recursive neu-
ral network models making use of morphological
structure (Luong et al., 2013).

Arguing that the ideal model should rely on
an all-purpose architecture able to learn from
any amount of data, Herbelot and Baroni (2017)
proposed a model called Nonce2Vec (N2V), de-
signed as a modification of Word2Vec (W2V;
Mikolov et al., 2013b), refactored to allow in-
cremental learning. The model was tested on
two datasets: a) the newly introduced defini-
tional dataset, where the task is to learn a nonce
word from its Wikipedia definition; and b) the
chimera dataset of Lazaridou et al. (2017), where
the task is to reproduce human similarity judge-
ments related to a novel word observed in 2-6 ran-
domly extracted sentences. The N2V model per-
formed much better than W2V on both datasets
but failed to outperform a basic additive model on
the chimera dataset, leading the authors to hypoth-
esise that their system would need to perform con-
tent selection to deal with the potentially uninfor-
mative chimera sentences.

There are two motivations to the present work.
The first is to provide a formal definition of the
notion of informativeness applied to both senten-
tial context (as a whole) and context words (taken
individually). To do so, we rely on the intuition
that an informative context is a context that is more
specific to a given target, and that this notion of
context specificity can be quantified by computing
the entropy of the probability distribution gener-
ated by a language model over a set of vocabulary
words, given the context.

The secondary motivation of this work lays in
considerations over incrementality. We show that
N2V itself did not fully implement its ideal of
‘online’ concept learning. We also point out that
architectures that have outperformed N2V since
its inception actually move even further from this
ideal. In contrast, we attempt to make our architec-
ture as close as possible to a realistic belief update
system, and we demonstrate that informativeness
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is an essential part of retaining acceptable perfor-
mance in such a challenging setting.

2 Related work

The original Nonce2Vec (N2V) model is designed
to simulate new word acquisition by an adult
speaker who already masters a substantial vocab-
ulary. The system uses some ‘background’ lexical
knowledge in the shape of a distributional space
acquired over a large text corpus. A novel word is
then learnt by using information present in its con-
text sentence. To achieve its goal, N2V proposes
some modifications to the original Word2Vec ar-
chitecture to make it suitable for novel word learn-
ing. Three main changes are suggested: a) the
learning rate should be greatly heightened to allow
for learning via backpropagation using only the
limited amount of data; b) random subsampling
should be reduced to a minimum so that all avail-
able data is used; and c) embeddings in the back-
ground should be ‘frozen’ so that the high learn-
ing rate is prevented from ‘unlearning’ old lexical
knowledge in favour of the scarce, and potentially
uninformative, new context information.

Recent work outperforms N2V on the
chimera (Khodak et al., 2018; Schick and
Schütze, 2019a) and the definitional (Schick and
Schütze, 2018) datasets (see §1 for a description
of the datasets). However, they both deviate from
the original motivation of N2V which is to learn
word representations incrementally from any
amount of data. Instead, those state-of-the-art
models rely—at least in part—on a learned linear
regression matrix which is fixed for a given corpus
and thus does not lend itself well to incremental
learning.

Our work follows the philosophy of N2V but
pushes the notion of incrementality further by
identifying aspects of the original system that in
fact do not play well with true online learning. For
a start, the original model is not fully incremental
as it adopts a one-shot evaluation setup where each
test instance is considered individually and where
the background model is reloaded from scratch at
each test iteration. This does not test how the sys-
tem would react to learning multiple nonces one
after the other (as humans do in the course of
their lives). Related to this, whilst ‘freezing’ back-
ground vectors makes sense as a safety net when
using very high learning rates, it similarly goes
against the notion of incrementality. In any re-

alistic setup, indeed, we would like newly learnt
words to inform our background lexical knowl-
edge and become part of that background them-
selves, being refined over time and contributing
to acquiring the next nonce. Following this phi-
losophy, the system we present in this paper does
away with freezing previously learnt embeddings
and does not reload the background model at each
test iteration.

We should further note that our work on in-
formativeness echoes recent research on the use
of attention mechanisms. Vaswani et al. (2017),
followed by Devlin et al. (2018) and Schick and
Schütze (2019b), have shown that such mecha-
nisms can provide very powerful tools to build
sentence and contextualised word embeddings
which are amenable to transfer learning tasks.
However, we note that from our point of view,
these systems suffer from the same problem as the
previously mentioned architectures: the underly-
ing model consists of a large set of parameters
which can be used to learn a task-specific regres-
sion. It is not designed to be updated with each
new encountered experience.

3 Model

Let us consider context to be defined as a win-
dow of ±n words around a given target. We de-
fine two specific functions: context informative-
ness (CI) which characterises how informative an
entire context is with respect to its corresponding
target; and context word informativeness (CWI)
which characterises how informative a particular
context item is with respect to the target. For in-
stance, if target chases is seen in context c = {the,
cat, the, mouse}, the context informativeness is the
informativeness of c, and the context word infor-
mativeness can be computed for each element in c,
with the expectation, in this case, that the might be
less informative than cat or mouse. The CWI mea-
sure is dependent on CI, as we proceed to show.

3.1 Context informativeness
Let us consider a sequence c of n context items
c = c1 . . . cn. We define the context informative-
ness of a context sequence c as:

CI(c) = 1 +
1

ln(|V|)
∑

w∈V
p(w|c) ln p(w|c) (1)

CI is a slight modification of the Shannon en-
tropy H = −∑w∈V p(w|c) ln p(w|c), normalised
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over the cardinality of the vocabulary |V| to out-
put values in [0, 1]. In this work, we use a CBOW
model (Mikolov et al., 2013a) to obtain the proba-
bility distribution p(w|c). We use CBOW because
it is the simplest word-generation model which
takes the relation between context words into ac-
count, i.e., in contrast to skipgram.

A context will be considered maximally infor-
mative (CI = 1) if only a single vocabulary item
is predicted to occur in context c with a non-null
probability. Conversely, a context will be consid-
ered minimally informative (CI = 0) if all vocab-
ulary items are predicted to occur in context cwith
equal probability. CI should therefore quantify
how specific a given context is regarding a given
target.

3.2 Context word informativeness
Let us consider c6=i = c1 . . . ci−1, ci+1 . . . cn to
be the sequence of context items taken from c to
which the ith item has been removed. We define
the context word informativeness of a context item
ci in a context sequence c as:

CWI(ci) = CI(c)− CI(c6=i) (2)

CWI outputs values in [−1, 1]: a context word
ci will be considered maximally informative
(CWI = 1) if removing it from a maximally in-
formative context leads to a minimally informative
one. Conversely, a context word ci will be con-
sidered minimally informative (CWI = −1) if
removing it from a minimally informative context
leads to a maximally informative one.

3.3 CWI-augmented Nonce2Vec
As explained in §2, N2V introduces several high-
level changes to the W2V architecture to achieve
learning from very sparse data. In practice, this
translates into the following design choices: a)
nonces are initialised by summing context word
embeddings (after subsampling); and b) nonces
are trained with an adapted skipgram function in-
corporating decaying window size, sampling and
learning rates at each iteration, while all other vec-
tors remain frozen. The learning rate is computed
via α = α0e

−λt with a high α0.
The modifications we propose are as follows:

i) we incorporate informativeness into the initial-
isation phase by summing over the set of context
words with positive CWI only; ii) we train on the
entire context without subsampling and window

decay; and iii) we remove freezing and compute
the learning rate as a function of CWI for each
context item ci via:

α(ci) = αmax
etanh(β∗CWI(ci))+1 − 1

e2 − 1
(3)

The purpose of equation 3 is to modulate the learn-
ing rate depending on the context word informa-
tiveness for a context–target pair: α should be
maximal (α = αmax, where αmax is a hyper-
parameter) when context is maximally informa-
tive (CWI = 1) and minimal (α = 0) when con-
text is minimally informative (CWI = −1). The
function x 7→ ex+1−1

e2−1 is therefore designed as a lo-
gistic “S-shape” function with domain [−1, 1] →
[0, 1]. In practice, CWI values are highly depen-
dant on the language model used and may end up
all being close to 0 (±0.01 with our CBOW model
for instance). The tanh function and the β param-
eter are therefore added to compensate for this ef-
fect that would otherwise produce identical learn-
ing rates for all target-context pairs, regardless of
CWI values.

4 Experimental setup and evaluation

To test the robustness of the results of Herbelot
and Baroni (2017), we retrain a skipgram back-
ground model with the same hyperparameters but
from the more recent Wikipedia snapshot of Jan-
uary 2019, and obtain a similar correlation ratio
on the MEN similarity dataset (Bruni et al., 2014):
ρ = 0.74 vs ρ = 0.75 for Herbelot and Baroni
(2017). Probability distributions used for com-
puting CI and CWI are generated with a CBOW
model trained with gensim (Řehůřek and Sojka,
2010) on the same Wikipedia snapshot as our skip-
gram background model, and with the same hy-
perparameters. For the CWI-based learning rate
computation, we set αmax = 1, chosen according
to α0 in the original N2V for fair comparison; and
β = 1000, chosen given min and max CWI val-
ues output by CBOW to produce tanh(β ∗ x) val-
ues distributed across [−1, 1] and apply a learning
rate αmax = 1 to maximally informative context
words.

We report results on the definitional and the
chimera datasets (see §1). The definitional dataset
contains first sentences from Wikipedia for 1000
words: e.g. Insulin is a peptide hormone pro-
duced by beta cells of the pancreatic islets, where
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the task is to learn the nonce insulin. Evalua-
tion is performed on 300 test instances in terms
of Median Rank (MR) and Mean Reciprocal
Rank (MRR). That is, for each instance, the Recip-
rocal Rank of the gold vector (the one that would
be obtained by training standard W2V over the
entire corpus) is computed over the sorted list of
neighbours of the predicted representation.

The chimera dataset simulates a nonce situation
where speaker encounters words for the first time
in naturally-occurring (and not necessarily infor-
mative) sentences. Each nonce instance in the data
is associated with 2 (L2), 4 (L4) or 6 (L6) sen-
tences showing the nonce in context, and a set of
six word probes human-annotated for similarity
to the nonce. For instance, the nonce VALTUOR
is shown in Canned sardines and VALTUOR be-
tween two slices of wholemeal bread and thinly
spread Flora Original [...], and its similarity as-
sessed with respect to rhubarb, onion, pear, straw-
berry, limousine and cushion. Evaluation is per-
formed on 110 test instances by computing the
Spearman correlation between the similarities out-
put by the system for each nonce-probe pair and
the similarities from the human subjects.

We evaluate both datasets using a one-shot
setup, as per the original N2V paper: each nonce
word in considered individually and the back-
ground model is reloaded at each test iteration. We
further propose an incremental evaluation setup
where the background model is loaded only once
at the beginning of testing, keeping its word vec-
tors modifiable during subsequent learning, and
where each newly learned nonce representation is
added to the background model. As performance
in the incremental setup proved to be dependent
on the order of the test items, we report average
and standard deviation scores computed from 10
test runs where the test set is shuffled each time.

5 Results

5.1 Improving additive models
Herbelot and Baroni (2017) show that a simple ad-
ditive model provides an extremely strong base-
line for nonce learning. So we first measure the
contribution of our notion of informativeness to
the context filtering module of a sum model. Com-
parison takes place across four settings: a) no
filter, where all words are retained; b) random,
which applies standard subsampling with a sam-
ple rate of 10,000, following the original N2V ap-

proach; c) self, where all items found in training
with a frequency above a given threshold are dis-
carded;1 and d) CWI, which only retains context
items with a positive CWI value.

Our results on the definitional dataset, displayed
in Table 1, show a consistent hierarchy of filters
with the SUM CWI model outperforming all other
SUM models, in both one-shot and incremental
evaluation setups. Results on the chimera dataset,
displayed in Table 2, are not as clear-cut, although
they do exhibit a similar trend on both L4 and
L6 test sets, with the notable result of achieving
state-of-the-art performances with our SUM CWI
model on the L4 and L6 test sets in incremental
setup, and near state-of-the-art performance on the
L6 test set in one-shot setup. This confirms once
again that additive models can provide very robust
baselines.

Qualitatively, the contribution of each filter on
the definitional dataset can be exemplified on
the following sentence, with nonce word Honey-
well: “Honeywell International Inc is an Amer-
ican multinational conglomerate company that
produces [...] aerospace systems for a wide va-
riety of customers from private consumers to ma-
jor corporations and governments.”. The no-filter
additive model outputs a rank of 383 (the gold vec-
tor for honeywell is found to be the 383th clos-
est neighbour of the predicted vector). The ran-
dom model randomly removes most (but not all)
high frequency words before summing, outputting
a rank of 192 (filtered-out words include also con-
tent words like international or company). The
self -information model reduces the size of the
context words set even further by removing all
high-frequency words left over by the random pro-
cess (rank 170). Finally, the CWI model outputs
the best rank at 85, removing all function words
while keeping some useful high-frequency words
such as international or company.

5.2 Improving neural models in one-shot
settings

Our results for neural models are also displayed
in Table 1 and Table 2: as-is refers to the orig-
inal N2V system; CWI init is N2V as-is with
CWI-based context filtering instead of subsam-
pling; and CWI alpha is a model with a CWI-based

1We take the log of the sample int values computed by
gensim for each word during training, keeping only items
with log values above 22, which gave us the best perfor-
mances overall.
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one-shot incremental
Model MR MRR MR MRR

SOTA 49 .1754 – –

SUM no-filter 5,969 .0087 6,461± 225 .0014±.0002

SUM random 3,047 .0221 3,113± 179 .0071±.0012

SUM self 1,769 .0242 2,095±125 .0121±.0008

SUM CWI 935 .0374 961±24 .0322±.0011

N2V as-is 955 .0477 81,705±14,076 .0096±.0038

N2V CWI init 540 .0493 70,992±17,312 .0079±.0025

N2V CWI alpha 763 .0404 983±175 .0341±.0021

Table 1: Performance of various additive (SUM) and neural (N2V) models on the definitional dataset, measured
in terms of Median Rank (MR) and Mean Reciprocal Rank (MRR). SOTA in one-shot evaluation setup is reported
by the Form-Context model of Schick and Schütze (2018).

sum initialisation (as in SUM CWI), and a CWI-
based learning rate computed on unfiltered context
words, as detailed in §3.3.

When informativeness is incorporated to N2V
in the original one-shot evaluation setup, we also
observe near-systematic improvements. On the
definitional dataset in Table 1, CWI init improves
over the standard N2V as-is model (MR 540 vs
955; MRR .0493 vs .0477) or over the SUM CWI
baseline (MR 540 vs 935; MRR .0493 vs .0374).
In comparison to CWI init, our CWI alpha model
provides robust performances across evaluation
setups and datasets, often reaching similar if not
better results than our best baseline model (SUM
CWI) showing that a neural model fully based on
informativeness is a more robust alternative than
its counterparts. See for example Table 1 on the
definitional dataset where the N2V CWI alpha
model performs better than the SUM CWI model
in one-shot setup (MR 763 vs. 935; MRR .0404
vs .0374) or Table 2 on the chimera dataset where
it also performs better than the SUM CWI model
on both the L2 (ρ .3129 vs .3074) and the L4 (ρ
.3928 vs .3739) test sets and achieves state-of-the-
art performance on the L4 test set.

5.3 Improving incremental learning
As stated in §2, recent approaches to nonce learn-
ing have deviated from the original philosophy of
N2V and in fact, N2V itself did not fully imple-
ment an incremental setting. We now show that
the original N2V performance decreases signifi-
cantly on both datasets in an incremental evalu-
ation setup, without freezing of background vec-

tors. Compare the results of the N2V as-is model
in both one-shot and incremental evaluation setups
on the definitional dataset in Table 1: MR 955 vs
81,705±14,076 and MRR .0477 vs .0096±.0038;
and on the chimera dataset in Table 2: ρ .3412 vs
.1650±.0384 on L2; ρ .3514 vs .1144±.0620 on
L4 and ρ .4077 vs .1391±.0694 on L6. We find
this drastic decrease in performance to be related
to two distinct phenomena: 1) a sum effect which
leads vector representations for nonces to be close
to each other due to the sum initialisation creat-
ing very similar vectors in a ‘special’ portion of
the vector space; and 2) a snowball effect related
to the ‘unfreezing’ of the background space which
leads background vectors to be updated by back-
propagation at a very high learning rate at every
test iteration, moving their original meaning to-
wards the semantics of the new context they are
encountered in. This includes vectors for very fre-
quent words, which are encountered again in their
now shifted version when a new nonce is presented
to the system. This snowball effect ends up sig-
nificantly altering the quality of the background
model and its generated representations.

The sum effect is best illustrated by the decrease
in performance of SUM models between one-shot
and incremental setups on the definitional dataset
in Table 1, as this effect has the property of specif-
ically changing the nature and order of the nearest
neighbours of the predicted nonce vectors, which
is directly reflected in the MR and MRR evalua-
tion metrics on the definitional dataset given the
evaluation task. On the chimera dataset in Ta-
ble 2 however, this effect does not appear to neg-
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one-shot incremental
Model L2 L4 L6 L2 L4 L6

SOTA .3634 .3844 .4360 – – –

SUM no-filter .3047 .3288 .3063 .3047±.0000 .3288±.0000 .3063±.0000

SUM random .3358 .3717 .3584 .3358±.0002 .3717±.0004 .3584±.0003

SUM self .3455 .3638 .3651 .3455±.0000 .3638±.0000 .3651±.0000

SUM CWI .3074 .3739 .4243 .3074±.0000 .3739±.0000 .4243±.0000

N2V as-is .3412 .3514 .4077 .1650±.0384 .1144±.0620 .1391±.0694

N2V CWI init .3002 .3482 .4218 .1451±.0265 .1522±.0396 .1225±.0544

N2V CWI alpha .3129 .3928 .4181 .2970±.0262 .3000±.0268 .2678±.0408

Table 2: Performance of various additive (SUM) and neural (N2V) models on the chimera dataset, measured in
terms of Spearman correlation. SOTA in one-shot evaluation setup on the L2 and L4 test sets are reported by the A
la carte model of Khodak et al. (2018), while SOTA on the L6 test set is reported by the attentive mimicking model
of Schick and Schütze (2019a).

atively impact performance given that evaluation
compares correlations between gold and predicted
similarity rankings of nonces with a prefixed set
of probes. The snowball effect however is visible
on both datasets in Table 1 and Table 2 when com-
paring performances of N2V models between one-
shot and incremental setups. It proves particularly
salient for neural models which do not make use of
informativeness-based adaptative learning rate (all
N2V models but N2V CWI alpha).

Our notion of informativeness proves even more
useful in the context of incremental nonce learn-
ing: on the definitional dataset in Table 1, our
informativeness-based models, be it SUM CWI or
N2V CWI alpha, achieve best (and comparable)
performances (MR 961±24 vs 983±175; MRR
.0322±.0011 vs .0341±.0021). Moreover, we ob-
serve that those models are able to mitigate the un-
desirable effects mentioned above, almost totally
for the sum effect (compare the performance of
the SUM CWI model in Table 1 between the incre-
mental and one-shot setups, versus the other SUM
models), and partially for the snowballing interfer-
ence of the high learning rate (compare the perfor-
mance of the N2V CWI alpha model in Table 1 be-
tween the incremental and one-shot setups, versus
the other N2V models). Performances of our SUM
CWI and N2V CWI alpha models in incremental
setup approach those of the one-shot setting. On
the chimera dataset in Table 2, which proves only
sensitive to the snowball effect, we also observe
that our N2V CWI alpha model is able to mitigate
this effect, although performances of the model in

incremental setup remain below those of the one-
shot setup, as well as those of the additive models
in incremental setup.

6 Conclusion

We have proposed an improvement of the orig-
inal N2V model which incorporates a notion of
informativeness in the nonce learning process.
We showed that our informativeness function was
very beneficial to a vector addition baseline, and
could be usefully integrated into the original N2V
approach, both at initialisation stage and during
learning, achieving state-of-the-art results on the
chimera dataset and on the definitional dataset in
an incremental evaluation setup. Although our
proposed notion of informativeness proved to be
mostly beneficial to incremental learning, noth-
ing prevents it from being incorporated to other
non-incremental models of nonce learning, pro-
vided that those models make use of contextual
information. On top of the performance improve-
ments observed, our proposed definition of infor-
mativeness benefits from being intuitive, debug-
gable at each step of the learning process, and
of relying on no external resource. We make
our code freely available at https://github.
com/minimalparts/nonce2vec.
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Abstract

We review the current schemes of text-image
matching models and propose improvements
for both training and inference. First, we em-
pirically show limitations of two popular loss
(sum and max-margin loss) widely used in
training text-image embeddings and propose
a trade-off: a kNN-margin loss which 1) uti-
lizes information from hard negatives and 2)
is robust to noise as all K-most hardest sam-
ples are taken into account, tolerating pseudo
negatives and outliers. Second, we advocate
the use of Inverted Softmax (IS) and Cross-
modal Local Scaling (CSLS) during inference
to mitigate the so-called hubness problem in
high-dimensional embedding space, enhanc-
ing scores of all metrics by a large margin.

1 Introduction

In recent years, deep eural models have gained a
significant edge over shallow1 models in cross-
modal matching tasks. Text-image matching has
been one of the most popular ones among them.
Most methods involve two phases: 1) training:
two neural networks (one image encoder and one
text encoder) are learned end-to-end, mapping
texts and images into a joint space, where vectors
(either texts or images) with similar meanings are
close to each other; 2) inference: for a query in
modality A, after being encoded into a vector, a
nearest neighbor search is performed to match the
vector against all vector representations of items2

in modality B. As the embedding space is learned
through jointly modeling vision and language, it is
often referred to as Visual Semantic Embeddings
(VSE).

While the state-of-the-art architectures being
consistently advanced (Nam et al., 2017; You

1shallow means non-neural methods.
2In this paper, we refer to vectors used for searching as

“queries” and vectors in the searched space as “items”.

et al., 2018; Wehrmann et al., 2018; Wu et al.,
2019), few works have focused on the more fun-
damental problem of text-image matching - that
is, the optimization objectives during training and
inference. And that is what this paper focuses
on. In the following of the paper, we will dis-
cuss 1) the optimization objective during training,
i.e., loss function, and 2) the objective used in in-
ference (how should a text-image correspondence
graph be predicted).

Loss function. Faghri et al. (2018) brought the
most notable improvement on loss function used
for training VSE. They proposed a max-margin
triplet ranking loss that emphasizes on the hard-
est negative sample within a min-batch. The max-
margin loss has gained significant popularity and
is used by a big set of recent works (Engilberge
et al., 2018; Faghri et al., 2018; Lee et al., 2018;
Wu et al., 2019). We, however, point out that the
max-margin loss is very sensitive to label noise
and encoder performance, and also easily over-
fits. Through experiments, we show that it only
achieves the best performance under a careful se-
lection of model architecture and dataset. Before
Faghri et al. (2018), a pairwise ranking loss has
been usually adopted for text-image model train-
ing. The only difference is that, instead of only
using the hardest negative sample, it sums over all
negative samples (we thus refer to it as the sum-
margin loss). Though sum-margin loss yields sta-
ble and consistent performance under all dataset
and architecture conditions, it does not make use
information from hard samples but treats all sam-
ples equally by summing the margins up. Both
Faghri et al. (2018) and our own experiments point
to a clear trend that, more and cleaner data there
is, the higher quality the encoders have, the better
performance the max-margin loss has; while the
smaller and less clean the data is, the less pow-
erful the encoders are, the better sum-margin loss
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would perform (and max-margin would fail).
In this paper, we propose the use of a trade-

off: a kNN-margin loss that sums over the k hard-
est sample within a mini-batch. It 1) makes suf-
ficient use of hard samples and also 2) is robust
across different model architectures and datasets.
In experiments, the kNN-margin loss prevails in
(almost) all data and model configurations.

Inference. During text-image matching infer-
ence, a nearest-neighbor search is usually per-
formed to obtain a ranking for each of the
queries. It has been pointed out by previous
works (Radovanović et al., 2010; Dinu et al.,
2015; Zhang et al., 2017) that hubs will emerge in
such high-dimensional space and nearest neighbor
search can be problematic for this need. Qualita-
tively, the hubness problem means a small portion
of queries becoming “popular” nearest neighbor in
the search space. Hubs harm model’s performance
as we already know that the predicted text-image
correspondence should be a bipartite matching3.
In experiments, we show that the hubness prob-
lem is the primary source of error for inference.
Though has not attracted enough attention in text-
image matching, hubness problem has been ex-
tensively studied in Bilingual Lexicon Induction
(BLI) which aims to find a matching between two
sets of bilingual word vectors. We thus propose
to use similar tools during the inference phase of
text-image matching. Specifically, we experiment
with Inverted Softmax (IS) (Smith et al., 2017)
and Cross-modal Local Scaling (CSLS) (Lample
et al., 2018) to mitigate the hubness problem in
text-image embeddings.

Contributions. The major contributions of this
work are

• analyzing the shortcomings of sum and max-
margin loss, proposing a kNN-margin loss as
a trade-off (for training);

• proposing the use of Inverted Softmax and
Cross-modal Local Scaling to replace naive
nearest neighbor search (for inference).

2 Method

We first introduce the basic formulation of text-
image matching model and sum/max-margin loss
in 2.1. Then we propose our intended kNN-margin

3In Graph Theory, a set of edges is said to be a matching
if none of the edges share a common endpoint.

loss in Section 2.2 and the use of IS and CSLS for
inference in Section 2.3.

2.1 Basic Formulation
The bidirectional text-image retrieval framework
consists of a text encoder and an image en-
coder. The text encoder is composed of word
embeddings, a GRU (Chung et al., 2014) or
LSTM (Hochreiter and Schmidhuber, 1997) layer
and a temporal pooling layer. The image encoder
is a VGG19 (Simonyan and Zisserman, 2014) or
ResNet152 (He et al., 2016) pre-trained on Ima-
geNet (Deng et al., 2009) and a linear layer. We
denote them as functions f and g which map text
and image to two vectors of size d respectively.

For a text-image pair (t, i), the similarity of t
and i is measured by cosine similarity of their nor-
malized encodings:

s(i, t) =

〈
f(t)

‖f(t)‖2
,
g(i)

‖g(i)‖2

〉
: Rd × Rd → R.

(1)

During training, a margin based triplet ranking
loss is adopted to cluster positive pairs and push
negative pairs away from each other. We list the
both the sum-margin loss used in Frome et al.
(2013); Kiros et al. (2015); Nam et al. (2017); You
et al. (2018); Wehrmann et al. (2018):

min
θ

∑

i∈I

∑

t̄∈T\{t}
[α− s(i, t) + s(i, t̄)]+

+
∑

t∈T

∑

ī∈I\{i}
[α− s(t, i) + s(t, ī)]+;

(2)

and the max-margin loss used by Engilberge et al.
(2018); Faghri et al. (2018); Lee et al. (2018); Wu
et al. (2019):

min
θ

∑

i∈I
max
t̄∈T\{t}

[α− s(i, t) + s(i, t̄)]+

+
∑

t∈T
max
ī∈I\{i}

[α− s(t, i) + s(t, ī)]+,
(3)

where [·]+ = max(0, ·); α is a preset margin (we
use α = 0.2); T and I are all text and image en-
codings in a mini-batch; t is the descriptive text for
image i and vice versa; t̄ denotes non-descriptive
texts for i while ī denotes non-descriptive images
for t.

2.2 kNN-margin Loss
We propose a simple yet robust strategy for se-
lecting negative samples: instead of counting all
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(Eq. 2) or hardest (Eq. 3) sample in a mini-batch,
we take the k-hardest samples. We first define
a function kNN(x,M, k) to return the k closest
points in point set M to x. Then the kNN-margin
loss is formulated as:

min
θ

∑

i∈I

∑

t̄∈K1

[α− s(i, t) + s(i, t̄))]+

+
∑

t∈T

∑

ī∈K2

[α− s(t, i) + s(t, ī))]+
(4)

where

K1 = kNN(i, T\{t}, k),K2 = kNN(t, I\{i}, k).

In max-margin loss, when the hardest sample
is misleading or incorrectly labeled, the wrong
gradient would be imposed on the network. We
call it a pseudo hard negative. In kNN-margin
loss, though some pseudo hard negatives might
still generate false gradients, they are likely to be
canceled out by the negative samples with cor-
rect information. As only the k hardest negatives
are considered, the selected samples are still hard
enough to provide meaningful supervision to the
model. In experiments, we show that kNN-margin
loss indeed demonstrates such characteristics.

2.3 Hubness Problem During Inference
The standard procedure for inference is perform-
ing a naive nearest neighbor search. This, how-
ever, leads to the hubness problem which is the
primary source or error as we will show in Sec-
tion 3.5. We thus leverage the prior that “one
query should not be the nearest neighbor for mul-
tiple items” to improve the text-image matching.
Specifically, we use two tools introduced in BLI:
Inverted Softmax (IS) (Smith et al., 2017) and
Cross-modal Local Scaling (CSLS) (Lample et al.,
2018).

2.3.1 Inverted Softmax (IS)
The main idea of IS is to estimate the confidence of
a prediction i → t not merely by similarity score
s(i, t), but the score reweighted by t’s similarity
with other queries:

s′(i, t) =
eβs(i,t)∑

ī∈I\{i} e
βs(̄i,t)

(5)

where β is a temperature (we use β = 30). Intu-
itively, it scales down the similarity if t is also very
close to other queries.

2.3.2 Cross-modal Local Scaling (CSLS)

CSLS aims to decrease a query vector’s similarity
to item vectors lying in dense areas while increase
similarity to isolated4 item vectors. It punishes the
occurrences of an item being the nearest neighbor
to multiple queries. Specifically, we update the
similarity scores with the formula:

s′(i, t) = 2s(i, t)− 1

k

∑

it∈K1

s(it, t)

−1

k

∑

ti∈K2

s(i, ti)
(6)

where K1 = kNN(t, I, k) and K2 = kNN(i, T, k)
(we use k = 10).

3 Experiments

In this section we introduce our experimental se-
tups (Section 3.1, 3.2, 3.3) and quantitative results
(Section 3.4, 3.5).

3.1 Dataset

dataset # train # validation # test

Flickr30k 30, 000 1, 000 1, 000
MS-COCO 1k 113, 287 5, 000 1, 000
MS-COCO 5k 113, 287 5, 000 5, 000

Table 3: Train-validation-test splits of used datasets.

We use Flickr30k (Young et al., 2014) and MS-
COCO (Lin et al., 2014) as our experimental
datasets. We list their splitting protocols in Ta-
ble 3. For MS-COCO, there has been several dif-
ferent splits used by the research community. In
convenience of comparing to a wide range of re-
sults reported by other works, we use two proto-
cols and they are referred as MS-COCO 1k and 5k
where 1k and 5k differs only in the test set used
(1k’s test set is a subset of 5k’s). Notice that MS-
COCO 5k computes the average of 5 folds of 1k
images. Also, in both Flickr30k and MS-COCO,
1 image has 5 captions - so 5 (text,image) pairs are
used for every image.

3.2 Evaluation Metrics

We use R@Ks (recall at K), Med r and Mean r to
evaluate the results:

4Dense and isolated are in terms of query.
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image→text text→image

# architecture loss R@1 R@5 R@10 Med r Mean r R@1 R@5 R@10 Med r Mean r

1.1

GRU+VGG19

sum-margin 30.2 58.7 70.4 4.0 33.0 22.9 50.6 61.4 5.0 49.5
1.2 max-margin 30.7 58.7 69.6 4.0 30.3 22.4 48.4 59.3 6.0 39.0
1.3 kNN-margin (k = 3) 34.1 61.7 69.9 3.0 24.7 25.1 52.5 64.6 5.0 34.3
1.4 kNN-margin (k = 5) 33.4 61.6 71.1 3.0 26.7 24.2 51.8 64.8 5.0 32.7
1.5 kNN-margin (k = 10) 33.3 59.4 69.4 3.0 28.4 23.4 50.6 63.5 5.0 33.8

Table 1: Quantitative results on Flickr30k (Young et al., 2014).

image→text text→image

# architecture loss R@1 R@5 R@10 Med r Mean r R@1 R@5 R@10 Med r Mean r

2.1
GRU+VGG19

sum-margin 48.9 79.9 89.0 1.8 5.6 38.3 73.5 85.3 2.0 8.4
2.2 max-margin 51.8 81.1 90.5 1.0 5.5 39.0 73.9 84.7 2.0 12.0
2.3 kNN-margin 50.6 81.1 90.6 1.4 5.5 38.7 74.0 85.5 2.0 11.8

2.4
GRU+ResNet152

sum-margin 53.2 85.0 93.0 1.0 3.9 41.9 77.2 88.0 2.0 8.7
2.5 max-margin 58.7 88.2 94.0 1.0 3.2 45.0 78.9 88.6 2.0 8.6
2.6 kNN-margin 57.8 87.6 94.4 1.0 3.4 43.9 79.0 88.8 2.0 8.1

Table 2: Quantitative results on MS-COCO (Lin et al., 2014). Using the 5k test set.

• R@K: the ratio of “# of queries that the
ground-truth item is ranked in top K” to “to-
tal # of queries” (we use K = {1, 5, 10}; the
higher the better);
• Med r: the median of the ground-truth rank-

ing (the lower the better);
• Mean r: the mean of the ground-truth ranking

(the lower the better).

We compute all metrics for both text→image
retrieval and image→text matching. We follow
the convention of taking the model with maximum
R@Ks sum (both text→image and image→text)
on the validation set as the best model for testing.

3.3 Hyperparameters
Training. For max-margin models, we follow the
configuration specified in Faghri et al. (2018). For
all other models, we start with a learning rate of
0.001 and decay it by 10 times after every 10
epochs. We train all models for 30 epochs with a
batch size of 128. All models are optimized using
an Adam optimizer (Kingma and Ba, 2015).

Model. We use 300-d word embeddings and
1024 internal states for GRU text encoders (all
randomly initialized with Xavier init. (Glorot and
Bengio, 2010); d = 1024 for both text and image
embeddings. All image encoders are fixed (with
no finetuning) for fair comparison.

3.4 Loss Function Performance
Table 1 and 2 show quantitative results on
Flickr30k and MS-COCO respectively.

Flickr30k. kNN-margin loss achieves signifi-
cantly better performance on all metrics than all
other loss. It is worth noticing that max-margin
loss fails on this dataset (even much worse than
sum-margin). kNN-margin loss with k = {3, 5}
get the highest scores. We use k = 3 for the fol-
lowing experiments unless explicitly specified.

MS-COCO. Max-margin loss performs much
better on MS-COCO, especially on R@1 - it has
the best R@1 across both configurations. kNN-
margin is comparable to max-margin. Specifi-
cally, it produces slightly worse R@1s, almost
identical R@5s, and slightly better R@10s. Sum-
margin, however, performs poorly on MS-COCO.
It is worth noting that here we are using the 5k test
set, which is a superset of the widely adopted 1k
test set. We will compare with quantitative results
reported on the 1k test set in the next section.

3.5 Hubs during Inference

To show hubness is indeed a major source of er-
ror, we select one of the text-image embeddings
to do statistics. We use the model on Table 2
line 2.1 to generate embeddings on MS-COCO’s
test set. Among the 25, 000 (query, item) pairs,
only 1, 027 (4.1%) items are the nearest neighbor
(NN) of solely 1 query; there are, however, 19, 805
(79.2%) items that are NN to 0 query and 3, 007
(12.0%) items that are NN to ≥ 5 queries, indicat-
ing wide existence of hubs. Moreover, the most
“popular” item is NN to 51 queries. We know
that one item ought to be NN to only one query
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image→text text→image

# dataset model inference R@1 R@5 R@10 Med r Mean r R@1 R@5 R@10 Med r Mean r

3.1
Flickr30k GRU+VGG19

kNN-margin

naive 34.1 61.7 69.9 3.0 24.7 25.1 52.5 64.6 5.0 34.3
3.2 IS 36.0 64.5 72.9 3.0 20.1 25.2 52.6 64.4 5.0 31.1
3.3 CSLS 36.0 64.4 72.5 3.0 20.3 26.7 54.3 65.7 4.0 30.8

3.4 MS-COCO
5k

GRU+ResNet152
kNN-margin

naive 57.8 87.6 94.4 1.0 3.4 43.9 79.0 88.8 2.0 8.1
3.5 IS 64.2 89.4 95.0 1.0 3.2 46.7 80.1 89.3 2.0 7.8
3.6 CSLS 62.4 89.3 95.4 1.0 3.0 47.2 80.7 89.9 2.0 7.7

3.7

MS-COCO
1k

(Kiros et al., 2015) (ours5) 49.9 79.4 90.1 2.0 5.2 37.3 74.3 85.9 2.0 10.8
3.8 (Vendrov et al., 2016) 46.7 - 88.9 2.0 5.7 37.9 - 85.9 2.0 8.1
3.9 (Huang et al., 2017) 53.2 83.1 91.5 1.0 - 40.7 75.8 87.4 2.0 -

3.10 (Liu et al., 2017) 56.4 85.3 91.5 - - 43.9 78.1 88.6 - -
3.11 (You et al., 2018) 56.3 84.4 92.2 1.0 - 45.7 81.2 90.6 2.0 -
3.12 (Faghri et al., 2018) 58.3 86.1 93.3 1.0 - 43.6 77.6 87.8 2.0
3.13 (Faghri et al., 2018) (ours) 60.5 89.6 94.9 1.0 3.1 46.1 79.5 88.7 2.0 8.5
3.14 (Wu et al., 2019) 64.3 89.2 94.8 1.0 - 48.3 81.7 91.2 2.0 -
3.15 GRU+ResNet152

kNN-margin

naive 58.3 89.2 95.4 1.0 3.1 45.0 80.4 89.6 2.0 7.2
3.16 IS 66.4 91.8 96.1 1.0 2.7 48.6 81.5 90.3 2.0 7.3
3.17 CSLS 65.4 91.9 97.1 1.0 2.5 49.6 82.7 91.2 2.0 6.5

Table 4: Quantitative results of different inference methods across different datasets and models. Line 3.1-3.3 are
using the model from Table 1 line 1.3 and line 3.4-3.6, 3.15-3.17 are using the model from Table 2 line 2.9. Line
3.7-3.14 are results reported by previous works which all adopted naive nearest neighbor search for inference.

in the ground-truth query-item matching. So, we
can spot errors even before ground-truth labels are
revealed - for instance, the most “popular” item
with 51 NNs must be the false NN for at least 50
queries. Table 5 shows the brief statistics.

k = 0 k = 1 k ≥ 2 k ≥ 5 k ≥ 10

# 19,805 1,026 4,169 3,007 500
percentage 79.2% 4.1% 16.7% 12.0% 2.0%

Table 5: Statistics of # items being NN to k queries
in the embeddings of Table 2, line 2.1, text→image.
There are in total 25,000 (text,image) paris in this em-
bedding.

Both IS and CSLS demonstrate compelling em-
pirical performance in mitigating the hubness
problem. Table 4 shows the quantitative results.
R@Ks and also Med r, Mean r are improved by
a large margin with both methods. In most con-
figurations, CSLS is slightly better than IS on im-
proving text→image inference while IS is better
at image→text. The best results (line 3.8, 3.9) are
even better than the recently reported state-of-the-
art (Wu et al., 2019) (Table 4 line 3.14), which
performs a naive nearest neighbor search. This
suggests that the hubness problem deserves much
more attention and careful selection of inference
methods is vital for text-image matching.

5“ours” means our implementation.

4 Limitations and Future Work

This paper brings up a baseline with excellent
empirical performance. We plan to contribute
more theoretical and technical novelty in follow
up works for both the training and inference phase
of text-image matching models.

Loss function. Though the kNN-margin loss
has superior empirical performance, it is lever-
aging the prior knowledge we hardcoded in it -
it relies on a suitable k to maximize its power.
Flickr30k and MS-COCO are relatively clean and
high-quality datasets while the real world data is
usually not. With the kNN-margin loss being a
strong baseline, we plan to bring a certain form
of self-adaptiveness into the loss function to help
it automatically decide what to learn based on the
distribution of data points.

Also, to further validate the robustness of loss
functions, we plan to experiment models on more
noisy data. The reason for max-margin’s failure
on Flikr30k is more likely that the training set is
too small - so the model easily overfits. However,
the dataset (Flikr30k) itself is rather clean and ac-
curate. It makes more sense to experiment with
a noisy dataset with weak text-image correspon-
dence or even false labels. We have two types
of candidates for this need: 1) academic datasets
that contain “foil” (Shekhar et al., 2017) or adver-
sarial samples (Shi et al., 2018); 2) a real-world
text-image dataset such as a news article-image
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dataset (Elliott and Kleppe, 2016; Biten et al.,
2019).

Inference. Both IS and CSLS are soft criteria.
If we do have the strong prior that the final text-
image correspondence is a bipartite matching, we
might as well make use of that information and im-
pose a hard constraint on it. The task of text-image
matching, after all, is also a form of assignment
problem in Combinatorial Optimization (CO). We
thus plan to investigate tools from the CO lit-
erature such as the Hungarian Algorithm (Kuhn,
1955), which is the best-known algorithm for pro-
ducing a maximum weight bipartite matching; the
Murty’s Algorithm (Murty, 1968), which general-
izes the Hungarian Algorithm into producing the
K-best matching - so that rankings are available
for computing R@K scores.

5 Related Work

In this section, we introduce works from two
fields which are highly-related to our work: 1)
text-image matching and VSE; 2) Bilingual Lexi-
con Induction (BLI) in the context of cross-modal
matching.

5.1 Text-image Matching

Since the dawn of deep learning, works have
emerged using a two-branch structure to connect
both language and vision. Frome et al. (2013)
brought up the idea of VSE, which is to embed
pairs of (text, image) data and compare them in
a joint space. Later works extended VSE for the
task of text-image matching (Hodosh et al., 2013;
Kiros et al., 2015; Gong et al., 2014; Vendrov
et al., 2016; Hubert Tsai et al., 2017; Faghri et al.,
2018; Wang et al., 2019), which is also our task of
interest. It is worth noting that there are other lines
of works which also jointly model language and
vision. The closest one might be image captioning
(Lebret et al., 2015; Karpathy and Fei-Fei, 2015).
But image captioning aims to generate novel cap-
tions while text-image matching retrieves existing
descriptive texts or images in a database.

5.2 Bilingual Lexicon Induction (BLI)

We specifically talk about BLI as the tools we
used to improve inference performance come from
this literature. BLI is the task of inducing word
translations from monolingual corpora in two lan-
guages (Irvine and Callison-Burch, 2017). Words
are usually represented by vectors trained from

Distributional Semantics, eg. Mikolov et al.
(2013). So, the word translation problem converts
to finding the appropriate matching among two
sets of vectors which makes it similar to our task of
interest. Smith et al. (2017); Lample et al. (2018)
proposed to first conduct a direct Procrustes Anal-
ysis (Schönemann, 1966) between two sets of vec-
tors, then use criteria that heavily punish hubs dur-
ing inference to avoid the hubness problem. We
experimented with both methods in our task.

6 Conclusion

We discuss the pros and cons of prevalent loss
functions used in text-image matching and pro-
pose a kNN-margin loss as a trade-off which
yields strong and robust performance across dif-
ferent model architectures and datasets. Instead of
using naive nearest neighbor search, we advocate
to adopt more polished inference strategies such
as Inverted Softmax (IS) and Cross-modal Local
Scaling (CSLS), which can significantly improve
scores of all metrics.

We also analyze the limitations of this work and
indicate the next step for improving both the loss
function and the inference method.
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jana Ivanović. 2010. Hubs in space: Popular nearest
neighbors in high-dimensional data. Journal of Ma-
chine Learning Research, 11(Sep):2487–2531.

175



Peter H Schönemann. 1966. A generalized solution of
the orthogonal procrustes problem. Psychometrika,
31(1):1–10.

Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich,
Aurelie Herbelot, Moin Nabi, Enver Sangineto, and
Raffaella Bernardi. 2017. ”foil it! find one mis-
match between image and language caption”. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (ACL) (Vol-
ume 1: Long Papers), pages 255–265.

Haoyue Shi, Jiayuan Mao, Tete Xiao, Yuning Jiang,
and Jian Sun. 2018. Learning visually-grounded
semantics from contrastive adversarial samples. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 3715–3727.

K. Simonyan and A. Zisserman. 2014. Very deep con-
volutional networks for large-scale image recogni-
tion. CoRR, abs/1409.1556.

Samuel L Smith, David HP Turban, Steven Hamblin,
and Nils Y Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax. ICLR.

I. Vendrov, R. Kiros, S. Fidler, and R/ Urtasun. 2016.
Order-embeddings of images and language. ICLR.

Liwei Wang, Yin Li, Jing Huang, and Svetlana Lazeb-
nik. 2019. Learning two-branch neural networks
for image-text matching tasks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
41(2):394–407.
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Abstract

Several recent studies have shown that textual
information of user posts and user behaviors
such as liking and sharing the specific posts
are useful for predicting the personality of so-
cial media users. However, less attention has
been paid to the textual information derived
from the user behaviors. In this paper, we in-
vestigate the effect of textual information on
user behaviors for personality prediction. Our
experiments on the personality prediction of
Twitter users show that the textual information
of user behaviors is more useful than the co-
occurrence information of the user behaviors.
They also show that taking user behaviors into
account is crucial for predicting the personal-
ity of users who do not post frequently.

1 Introduction

Personality information of social media users can
be used for various situations such as analyzing
crowd behaviors (Guy et al., 2011) and building
recommender systems (Wu et al., 2013). Many re-
searchers have focused on developing techniques
for predicting personalities and reported that mod-
els that use the textual information of target
user’s posts achieved relatively high performance
(Luyckx and Daelemans, 2008; Iacobelli et al.,
2011; Liu et al., 2017; Arnoux et al., 2017). How-
ever, some social media users frequently read oth-
ers’ posts but rarely post their own messages. Pre-
dicting the personalities of such users is generally
difficult, but a substantial portion of them often
express their opinion or preference through social
media activities such as liking and sharing.

Figure 1 shows tweet examples related to Hal-
loween. The upper tweet was posted by a user
who is hosting a Halloween party and thus this
user is considered to be extraverted. In contrast,
the lower tweet is a post consisting of Halloween
illustrations, which is considered to be posted by

Figure 1: Tweet examples. The upper tweet is about
a Halloween party and the lower tweet is about Hal-
loween illustrations.

an introverted user. In this way, user personalities
can be predicted from their posts. Moreover, users
who like or share such tweets are expected to have
a similar personality to the user who posted the
tweet. Henceforth, we collectively refer to likes
and shares as behaviors.

Several studies have leveraged the information
derived from the user behaviors for personality
prediction (Azucar et al., 2018). For example,
Kosinski et al. (2013) and Youyou et al. (2015)
proposed personality prediction models for Face-
book users that leveraged a user-like matrix, the
entries of which were set to 1 if there existed an
association between a user and a like and 0 oth-
erwise. Shen et al. (2015) considered the types of
the posts (e.g., photos, videos, or status updates)
that a target user likes or shares. However, these
studies do not take into account the textual in-
formation related to user behaviors. We consider
that the textual information of tweets that target
users have liked/retweeted (shared) contains use-
ful information for predicting their personalities.
Therefore, in this paper, we investigate the effect
of the textual information of the tweets that target
users liked/retweeted.
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2 Related Work

Many studies on personality prediction for social
media users utilize the textual information derived
from the user’s posts. Luyckx and Daelemans
(2008) extract syntactic features like part-of-
speech n-grams to predict personality of es-
say authors. Iacobelli et al. (2011) test differ-
ent extraction settings with stop words and in-
verse document frequency for predicting per-
sonality in a large corpus of blogs using sup-
port vector machines (SVM) as a classifier.
Liu et al. (2017) use Twitter user posts and pro-
pose a deep-learning-based model utilizing a
character-level bi-directional recurrent neural net-
work. Arnoux et al. (2017) build a personal-
ity prediction model for Twitter users that uti-
lizes word embedding with Gaussian processes
(Rasmussen and Williams, 2005). Reasonably
good performance can be achieved by taking only
25 tweets into consideration.

Several studies have shown that user behaviors
such as likes and shares are also useful to pre-
dict user personalities. Kosinski et al. (2013) and
Youyou et al. (2015) used page likes on Facebook
to create a user-like matrix and proposed personal-
ity prediction models based on the matrix. While
Kosinski et al. (2013) and Youyou et al. (2015)
only use the binary information related to user
behaviors, Shen et al. (2015) proposed a person-
ality prediction model that considers the number
of likes and shares. Farnadi et al. (2013) focus on
network properties such as network size, density,
and transitivity, and time factors such as the fre-
quency of status updates per day and the number
of tweets per hour in addition to user posts.

For tasks other than personality prediction,
several studies leverage the textual informa-
tion derived from user behaviors in social me-
dia. Ding et al. (2017) applied texts that users
liked and posted to predict substance users such
as people who drink alcohol. They showed
that the distributed bag-of-words (DBOW) mod-
els (Le and Mikolov, 2014) achieve good perfor-
mance. Perdana and Pinandito (2018) used texts
that users liked, shared, and posted for sentiment
analysis. They convert them into weighted fea-
tures using tf-idf and applied Naı̈ve Bayes. They
reported that texts posted by a user lead to a better
performance than texts that the user liked/shared,
but that the best performance can be realized by
combining them.

Figure 2: An example tweet including MBTI analysis
by 16Personalities.

3 Dataset

In this study, we predict the personalities of
Twitter users. As the personality model, we
use the Myers-Briggs Type Indicator (MBTI)
(Myers et al., 1990), one of the most widely
used personality models, as well as the Big Five
(Goldberg, 1990).

3.1 Myers-Briggs Type Indicator

The MBTI recognizes 16 personality types
spanned by four dimensions. Extraverted and
Introverted (E/I) describe the preference of ap-
proaching the outer world of people and things
vs. the inner world of ideas; iNtuition and Sensing
(N/S) describe the preference of the intuition and
the possibilities in the future vs. the perception
of things of the present moment; Thinking and
Feeling (T/F) describe the preference of rational
decision making based on logic vs. subjective val-
ues; and Judging and Perceiving (J/P) describe
the preference for the control of external events
vs. the observation of these events.

The MBTI is often identified through a person-
ality analysis test that consists of selective ques-
tions. Several Web sites offer such personality
analysis tests, such as 16Personalities1 is one of
such websites, where users can determine their
MBTI type by answering 60 questions. The re-
sults are represented by 16 roles, such as Mediator
for INFP and Executive for ESTJ—one for each
combination of the four MBTI dimensions (e.g., I,
N, F, and P). The Web site has a function that lets
users post their results to Twitter with the hashtag
#16Personalities. Figure 2 shows an example of
such tweets. In this example, the user is analyzed
to be “Protagonist”, which corresponds to ENFJ
in the MBTI. We collected the tweets that contain
the hashtag #16Personalities and use them in the
experiments.

1https://www.16personalities.com/
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Users
E / I 4,483 / 15,881
N / S 13,733 / 6,631
T / F 6,498 / 13,866
J / P 7,008 / 13,356
Total 20,364

Table 1: The number of users in each dimension.

No. of collected tweets Likes Retweets
0 157 162
1–255 2,076 6,836
256–511 1,331 4,903
512–1,023 2,065 5,326
1,024 14,735 3,137

Table 2: Distribution of users based on number of likes
or retweets.

3.2 Data Collection from Twitter

We collected tweets written in Japanese. Twit-
ter Premium search APIs2 were used to find the
tweets containing the hashtag #16personalities and
listed 72,847 users who posted such tweets in 2017
and 2018. We refer to a tweet with #16personali-
ties as the gold standard tweet. Next, we collected
the latest 3,200 tweets for each user and then dis-
carded the tweets that were posted after the gold
standard tweet. Only the users with 1,024 or more
tweets were used in this study. The number of
such users was 20,364. Table 1 lists the statis-
tics of users for each personality dimension. We
can confirm that there are biases in the number of
users for all dimensions and that the bias for the
E/I dimension is particularly noticeable.

To build a model based on the text related
to user behaviors such as like and retweet, we
collected up to 1,024 liked tweets and 1,024
retweeted tweets for each user. Table 2 shows
the distribution of users based on the number of
likes or retweets. 14,735 out of 20,364 users liked
more than 1,023 tweets and 157 users liked no
tweets. Only 3,137 users retweeted more than
1,023 tweets and 162 users retweeted no tweets.

4 Personality Prediction Models

We treat personality prediction as a set of binary
classification tasks and build four binary classifiers
independently for each dimension of the MBTI.
We regard the personality of the users shown in

2https://developer.twitter.com/en/docs/tweets/search/api-
reference/premium-search.html
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Figure 3: Overview of the personality prediction
model.

the tweets with #16personalities as the gold stan-
dard personality and attempt to predict it using the
SVM classifier. Figure 3 shows an overview of
the model. Specifically, we use linear SVM for
classification with two types of features: those de-
rived from the tweets that the target user likes or
retweets and those derived from the tweets that the
target user posts.

4.1 Features derived from User Behaviors

Use of co-occurrence information We build a
model similar to Kosinski et al. (2013). They
leveraged a co-occurrence matrix of users and
likes, the entries of which were set to 1 if there ex-
isted an association between a user and a like and
0 otherwise. Similarly, we create the binary matrix
of users and behaviors, the entries of which were
set to 1 if the user liked/retweeted a tweet, 0 oth-
erwise. For the sake of computational efficiency,
we consider tweets that are liked or retweeted by
at least ten users. Then, we apply singular value
decomposition (SVD) to the matrix and use the
dimension-reduced vectors as the features of the
SVM classifier.

Use of textual information We propose three
models that consider the textual information on
user behavior. All three models use MeCab3

with the IPA dictionary4 to perform morpholog-

3http://taku910.github.io/mecab/
4mecab-ipadic-2.7.0-20070801

179



ical analysis. The first and second models use
the 10,000 most frequent words. The first model
uses them as BOW features of the SVM classifier
and the second model further applies SVD. The
third model is a model using DBOW proposed by
Ding et al. (2017). This model uses words that
have appeared ten or more times. Henceforth, we
refer to these models as BOW, BOW w/ SVD, and
DBOW, respectively.

4.2 Features derived from User Posts

We apply a similar procedure to generate features
derived from user’s posts as BOW w/ SVD. We
first extract the 10,000 most frequent words and
make a user-word matrix. We then apply SVD to
the matrix and use the dimension-reduced vectors
as the features of SVM.

5 Experiments

5.1 Experimental Settings

We randomly split the users in our Twitter dataset
into three parts: training, development, and test
sets. Specifically, we used 5,000 users as the test
set, 5,000 users as the development set, and the
other 10,364 users as the training set. We adopted
the area under the curve (AUC) of the receiver
operating characteristic (ROC) to evaluate each
model.

5.2 Textual vs. Co-occurrence Information of
User Behaviors

We first compared the performance of the mod-
els using the textual information of user behav-
iors and the performance of the models using the
co-occurrence information of the user behaviors.
We built the BOW models, BOW w/ SVD, and
DBOW as the models using the textual informa-
tion. We report results on three settings: 1) con-
sidering only likes, 2) considering only retweets,
and 3) considering both likes and retweets for each
model. We varied the number of dimensions in the
reduced space of SVD with 50, 100, 200, 300, and
500, and the vector sizes for DBOW with 50, 100,
200, 300, and 500 and tuned them on the develop-
ment set. We also optimized SVM parameter C on
the development set.

Table 3 shows the experimental results. We
found that the models using the textual informa-
tion of user behaviors performed better than the
models using the co-occurrence information of

Models Likes Retweets L & R
BOW 0.6366 0.6348 0.6478
BOW w/ SVD 0.6453 0.6442 0.6576
DBOW 0.6412 0.6433 0.6534
Co-occurrence 0.5950 0.5956 0.6137

Table 3: Average AUC scores of user behavior-based
models.

user behaviors. Among the textual information-
based models, BOW w/ SVD achieved the best
AUC scores. We thus adopt the BOW w/ SVD
model as the textual information model in the fol-
lowing subsections.

As for the types of behavior, the models
based on likes and the models based on retweets
achieved almost the same performance, and the
models that combine both of the features achieved
the best performance.

5.3 Effect of the Number of User Behaviors

We are interested in the relation between the per-
formance of the personality prediction and the
number of behaviors that the model takes into ac-
count. Thus, we performed experiments with vari-
ous sizes of user behaviors. We used the BOW w/
SVD model for this experiment.

Table 4 shows the experimental results for each
dimension. We can see that there is a strong corre-
lation between the performance and the number of
user behaviors taken into account. However, be-
cause the performance improvement between 256
and 1,024 was considerably small, we assume that
the performance of the models will not be largely
improved even if the models consider more be-
haviors. For each feature, as in the previous ex-
periment, the models of likes and the models of
retweets had almost the same performance, and
the models that combine both features achieved
the best performance.

5.4 Incorporating Textual Information of
User Posts and Behaviors

We compare the performance of the models based
only on the textual information of user posts and
the models that also leverage the textual informa-
tion of user behaviors. Specifically, we examined
the effect of the textual information derived from
user behaviors by changing the number of user
posts. The number of texts varied from 1 to 1,024
in multiples of four. We selected the same SVD
dimension for posts, likes, and retweets from 50,
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1 4 16 64 256 1024
EI 0.5491 0.5655 0.6167 0.6401 0.6512 0.6649
NS 0.5186 0.5353 0.5816 0.6334 0.6715 0.6786

Likes TF 0.5208 0.5379 0.5750 0.6324 0.6561 0.6626
JP 0.5084 0.5288 0.5316 0.5473 0.5713 0.5752

Avg. 0.5242 0.5419 0.5762 0.6133 0.6375 0.6453
EI 0.5188 0.5432 0.6085 0.6365 0.6590 0.6661
NS 0.5182 0.5211 0.5717 0.6235 0.6543 0.6600

Retweets TF 0.5307 0.5467 0.6090 0.6413 0.6650 0.6678
JP 0.5236 0.5122 0.5321 0.5595 0.5779 0.5830

Avg. 0.5228 0.5308 0.5803 0.6152 0.6391 0.6442
EI 0.5506 0.5774 0.6336 0.6449 0.6702 0.6797

Likes &
NS 0.5174 0.5372 0.5938 0.6462 0.6782 0.6849

Retweets
TF 0.5362 0.5588 0.6187 0.6655 0.6732 0.6797
JP 0.5231 0.5257 0.5397 0.5656 0.5836 0.5859

Avg. 0.5318 0.5498 0.5965 0.6281 0.6513 0.6576

Table 4: AUC scores of user behavior-based model (BOW w/ SVD) for different number of user behaviors.

1 4 16 64 256 1024
EI 0.5666 0.5931 0.6188 0.6678 0.7090 0.7318
NS 0.5261 0.5641 0.6039 0.6400 0.6765 0.6989

Posts TF 0.5430 0.5848 0.6344 0.6662 0.6959 0.7096
JP 0.5243 0.5374 0.5680 0.5878 0.6032 0.6210

Avg. 0.5400 0.5699 0.6063 0.6405 0.6712 0.6903
EI 0.6829 0.6880 0.6894 0.6995 0.7126 0.7272

+ Likes &
NS 0.6801 0.6779 0.6840 0.6894 0.6930 0.7042

Retweets
TF 0.6760 0.6800 0.6850 0.6898 0.7048 0.7082
JP 0.5863 0.5909 0.5906 0.5998 0.6111 0.6176

Avg. 0.6563 0.6592 0.6623 0.6696 0.6804 0.6893

Table 5: AUC scores of models with features derived from user posts with different number of user posts
with/without behavior-based features.

100, 200, 300, and 500 and tuned the vector di-
mensions and SVM parameter C on the develop-
ment set. Note that we used all 1,024 behaviors to
make the features derived from user behaviors in
this experiment.

Table 5 shows the experimental results. We can
confirm that there is a strong correlation between
performance and the number of user posts taken
into account. When we used only a small amount
of a user’s posts, the performance was signifi-
cantly improved by taking the user behaviors into
account. However, when we used 1,024 of user’s
posts, we could not confirm any improvement by
taking the user behaviors into account. Therefore,
we conclude that utilizing user behavior is crucial
for predicting the personality of users who do not
post frequently—say, users who posted fewer than
256 tweets—but it is not useful when we can col-
lect a large number of tweets posted by the target

user.
When we focus on the performance of each di-

mension, we can find that the importance of the in-
formation derived from user behaviors, especially
likes, is relatively large for the N/S dimension. For
example, in the case of the N/S dimension, the
AUC score taking 1,024 liked tweets into account
(0.6786) was higher than that achieved by taking
256 user tweets into account (0.6765), unlike the
other dimensions.

6 Conclusion and Future Work

In this paper, we investigated the effects of con-
sidering user behaviors such as likes and retweets
for personality prediction. Through experiments
using Twitter data, we found that the textual in-
formation of user behaviors is beneficial to predict
the user’s personality and that utilizing user be-
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haviors is crucial for predicting the personality of
users who do not post many tweets, e.g., less than
256, but that the effect of taking user behaviors
into account is very limited when we can collect
many tweets posted by the target user.

In the future, we plan to explore other use-
ful textual information for personality prediction,
such as text in a web page to which the target user
linked and public comments directed to the user
(as reported by Jurgens et al. (2017)). We can also
include replies to the target user’s tweets to see if
we can improve personality prediction.
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Abstract

Named Entity Recognition(NER) is one of the
important tasks in Natural Language Process-
ing(NLP) and also is a sub task of Informa-
tion Extraction. In this paper we present our
work on NER in Telugu-English code-mixed
social media data. Code-Mixing, a progeny
of multilingualism is a way in which multi-
lingual people express themselves on social
media by using linguistics units from differ-
ent languages within a sentence or speech con-
text. Entity Extraction from social media data
such as tweets(twitter)1 is in general difficult
due to its informal nature, code-mixed data
further complicates the problem due to its in-
formal, unstructured and incomplete informa-
tion. We present a Telugu-English code-mixed
corpus with the corresponding named entity
tags. The named entities used to tag data are
Person(‘Per’), Organization(‘Org’) and Loca-
tion(‘Loc’). We experimented with the ma-
chine learning models Conditional Random
Fields(CRFs), Decision Trees and Bidirec-
tional LSTMs on our corpus which resulted in
a F1-score of 0.96, 0.94 and 0.95 respectively.

1 Introduction

People from Multilingual societies often tend to
switch between languages while speaking or writ-
ing. This phenomenon of interchanging languages
is commonly described by two terms “code-
mixing” and “code-switching”. Code-Mixing
refers to the placing or mixing of various linguistic
units such as affixes, words, phrases and clauses
from two different grammatical systems within
the same sentence and speech context. Code-
Switching refers to the placing or mixing of units
such as words, phrases and sentences from two
codes within the same speech context. The struc-
tural difference between code-mixing and code-

1https://twitter.com/

switching can be understood in terms of the po-
sition of altered elements. Intersentential modi-
fication of codes occurs in code-switching where
as the modification of codes is intrasentential
in code-mixing. Bokamba (1988). Both code-
mixing and code-switching can be observed in so-
cial media platforms like Twitter and Facebook, In
this paper, we focus on the code-mixing aspect be-
tween Telugu and English Languages. Telugu is a
Dravidian language spoken majorly in the Indian
states of Andhra Pradesh and Telangana. A signif-
icant amount of linguistic minorities are present in
the neighbouring states. It is one of six languages
designated as a classical language of India by the
Indian government

The following is an instance taken from Twitter
depicting Telugu-English code-mixing, each word
in the example is annotated with its respective
Named Entity and Language Tags (‘Eng’ for
English and ‘Tel’ for Telugu).

T1 : “Sir/other/Eng Rajanna/Person/Tel
Siricilla/Location/Tel district/other/Eng
loni/other/Tel ee/other/Tel government/other/Eng
school/other/Eng ki/other/Tel comput-
ers/other/Eng fans/other/Eng vochi/other/Tel
samvastharam/other/Tel avthunna/other/Tel
Inka/other/Tel permanent/other/Eng electric-
ity/other/Eng raledu/other/Tel Could/other/Eng
you/other/Eng please/other/Eng re-
spond/other/Eng @KTRTRS/person/Tel @Collec-
tor RSL/other/Eng”

Translation: “Sir it has been a year that
this government school in Rajanna Siricilla
district has got computers and fans still there is no
permanent electricity, Could you please respond
@KTRTRS @Collector RSL ”
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2 Background and Related work

There has been a significant amount of research
done in Named Entity Recognition(NER) of re-
source rich languages Finkel et al. (2005), En-
glish Sarkar (2015), German Tjong Kim Sang and
De Meulder (2003), French Azpeitia et al. (2014)
and Spanish Zea et al. (2016) while the same is
not true for code-mixed Indian languages. The
FIRE(Forum for Information Retrieval and Ex-
traction)2 tasks have shed light on NER in Indian
languages as well as code-mixed data. The fol-
lowing are some works in code-mixed Indian lan-
guages. Bhargava et al. (2016) proposed an algo-
rithm which uses a hybrid approach of a dictionary
cum supervised classification approach for identi-
fying entities in Code Mixed Text of Indian Lan-
guages such as Hindi- English and Tamil-English.

Nelakuditi et al. (2016) reported work on anno-
tating code mixed English-Telugu data collected
from social media site Facebook and creating
automatic POS Taggers for this corpus, Singh
et al. (2018a) presented an exploration of auto-
matic NER of Hindi-English code-mixed data,
Singh et al. (2018b) presented a corpus for NER
in Hindi-English Code-Mixed along with experi-
ments on their machine learning models. To the
best of our knowledge the corpus we created is
the first Telugu-English code-mixed corpus with
named entity tags.

3 Corpus and Annotation

The corpus created consists of code-mixed
Telugu-English tweets from Twitter. The tweets
were scrapped from Twitter using the Twitter
Python API3 which uses the advanced search op-
tion of Twitter. The mined tweets are from the
past 2 years and belong to topics such as politics,
movies, sports, social events etc.. The Hashtags
used for tweet mining are shown in the appendi-
cies section. Extensive Pre-processing of tweets
is done. The tweets which are noisy and useless
i.e contain only URL’s and hash-tags are removed.
Tokenization of tweets is done using Tweet Tok-
enizer. Tweets which are written only in English
or in Telugu Script are removed too. Finally the
tweets which contain linguistic units from both
Telugu and English language are considered. This
way we made sure that the tweets are Telugu-
English code-mixed. We have retrieved a total of

2http://fire.irsi.res.in/fire/2018/home
3https://pypi.python.org/pypi/twitterscraper/0.2.7

2,16,800 tweets using the python twitter API and
after the extensive cleaning we are left with 3968
code-mixed Telugu-English Tweets. The corpus
will be made available online soon. The following
explains the mapping of tokens with their respec-
tive tags.

3.1 Annotation: Named Entity Tagging

We used the following three Named Entities(NE)
tags “Person”, “Organization“ and “Location”
to tag the data. The Annotation of the corpus
for Named Entity tags was manually done by
two persons with linguistic background who
are well proficient in both Telugu and English.
Each of three tags(“Person”, “Organization“ and
“Location”) is divided into B-tag (Beginner tag)
and I-tag (Intermediate tag) according to the BIO
standard. Thus we have now a total of six tags
and an ’Other’ tag to indicate if it does not belong
to any of the six tags. The B-tag is used to tag
a word which is the Beginning word of a Named
Entity. I-tag is used if a Named Entity is split
into multiple continuous and I-tag is assigned to
the words which follow the Beginning word. The
following explains each of the six tags used for
annotation.

The ‘Per’ tag refers to the ‘Person’ entity
which is the name of the Person, twitter handles
and nicknames of people. The ‘B-Per’ tag is given
to the Beginning word of a Person name and
‘I-Per’ tag is given to the Intermediate word if the
Person name is split into multiple continuous.

The ‘Org’ tag refers to ‘Organization’ entity
which is the name of the social and political or-
ganizations like ‘Hindus’, ‘Muslims’, ‘Bharatiya
Janatha Party’, ‘BJP’, ‘TRS’ and government
institutions like ‘Reserve Bank of India’. Social
media organizations and companies like ‘Twitter’,
‘facebook’, ‘Google’. The ‘B-Org’ tag is given to
the beginning word of a Organization name and
the ‘I-Org’ tag is given to the Intermediate word
of the Organization name, if the Organization
name is split into multiple continuous.

The ‘Loc’ tag refers to ‘Location’ entity which is
the name of the places like ‘Hyderabad’, ‘USA’,
‘Telangana’, ‘India’. The ‘B-Loc’ tag is given to
the Beginning word of the Location name and
‘I-Loc’ tag is given to the Intermediate word of a
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Cohen Kappa
B-Loc 0.97
B-Org 0.95
B-Per 0.94
I-Loc 0.97
I-Org 0.92
I-Per 0.93

Table 1: Inter Annotator Agreement.

Location name, if the Location name is split into
multiple continuous.
The following is an instance of annotation.

T2 : “repu/other Hyderabad/B-Loc velli/other
canara/B-Org bank/I-Org main/other office/other
lo/other mahesh/B-Per babu/I-per ni/other
meet/other avudham/other ”

Translation: “we will meet mahesh babu
tomorrow at the canara bank main office in
Hyderabad”

3.2 Inter Annotator Agreement

The Annotation of the corpus for NE tags was
done by two persons with linguistic background
who are well proficient in both Telugu and En-
glish. The quality of the annotation is validated us-
ing inter annotator agreement(IAA) between two
annotation sets of 3968 tweets and 115772 tokens
using Cohen’s Kappa coefficient Hallgren (2012).
The agreement is significantly high. The agree-
ment between the ‘Location’ tokens is high while
that of ‘Organization’ and ‘Person’ tokens is com-
paratively low due to unclear context and the pres-
ence of uncommon or confusing person and orga-
nization names. Table 1 shows the Inter annotator
agreement.

4 Data statistics

We have retrieved 2,16,800 tweets using the
python twitter API. we are left with 3968 code-
mixed Telugu-English Tweets after the exten-
sive cleaning. As part of the annotation using
six named entity tags and ‘other’ tag we tagged
115772 tokens. The average length of each tweet
is about 29 words. Table 9 shows the distribution
of tags.

Tag Count of Tokens
B-Loc 5429
B-Org 2257
B-Per 4888
I-Loc 352
I-Org 201
I-Per 782

Total NE tokens 13909

Table 2: Tags and their Count in Corpus

5 Experiments

In this section we present the experiments using
different combinations of features and systems.
In order to determine the effect of each feature
and parameters of the model we performed sev-
eral experiments using some set of features at once
and all at a time simultaneously changing the pa-
rameters of the model, like criterion (‘Informa-
tion gain’, ‘gini’) and maximum depth of the tree
for decision tree model, regularization parameters
and algorithms of optimization like ‘L2 regular-
ization’4, ‘Avg. Perceptron’ and ‘Passive Aggres-
sive’ for CRF. Optimization algorithms and loss
functions in LSTM. We used 5 fold cross valida-
tion in order to validate our classification models.
We used ‘scikit-learn’ and ‘keras’ libraries for the
implementation of the above algorithms.
Conditional Random Field (CRF) : Conditional
Random Fields (CRF’s) are a class of statistical
modelling methods applied in machine learning
and often used for structured prediction tasks. In
sequence labelling tasks like POS Tagging, adjec-
tive is more likely to be followed by a noun than
a verb. In NER using the BIO standard anno-
tation, I-ORG cannot follow I-PER. We wish to
look at sentence level rather than just word level
as looking at the correlations between the labels in
sentence is beneficial, so we chose to work with
CRF’s in this problem of named entity tagging.
We have experimented with regularization param-
eters and algorithms of optimization like ‘L2 reg-
ularization’, ‘Avg. Perceptron’ and ‘Passive Ag-
gressive’ for CRF.
Decision Tree : Decision Trees use tree like
structure to solve classification problems where
the leaf nodes represent the class labels and the
internal nodes of the tree represent attributes. We

4https://towardsdatascience.com/l1-and-l2-
regularization-methods-ce25e7fc831c
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have experimented with parameters like criterion
(‘Information gain’, ‘gini’) and maximum depth
of the tree. Pedregosa et al. (2011)
BiLSTMs : Long short term memory is a Recur-
rent Neural Network architecture used in the field
of deep learning. LSTM networks were first intro-
duced by Hochreiter and Schmidhuber (1997) and
then they were popularized by significant amount
of work done by many other authors. LSTMs are
capable of learning the long term dependencies
which help us in getting better results by captur-
ing the previous context. We have BiLSTMs in our
experiments, a BiLSTM is a Bi-directional LSTM
in which the signal propagates both backward as
well as forward in time. We have experimented
with Optimization algorithms and loss functions
in LSTM.

5.1 Features

The features to our machine learning models con-
sists of character, lexical and word level features
such as char N-Grams of size 2 and 3 in order to
capture the information from suffixes, emoticons,
social special mentions like ‘#’, ‘@’ patterns of
punctuation, numbers, numbers in the string and
also previous tag information, the same all features
from previous and next tokens are used as contex-
tual features.

1. Character N-Grams: N-gram is a con-
tiguous sequence of n items from a given
sample of text or speech, here the items are
characters. N-Grams are simple and scalable
and can help capture the contextual informa-
tion. Character N-Grams are language in-
dependent Majumder et al. (2002) and have
proven to be efficient in the task of text clas-
sification. They are helpful when the text
suffers from problems such as misspellings
Cavnar et al. (1994); Huffman (1995); Lodhi
et al. (2002). Group of chars can help in
capturing the semantic information and es-
pecially helpful in cases like ours of code-
mixed language where there is an informal
use of words, which vary significantly from
the standard Telugu-English words.

2. Word N-Grams: We use word N-Grams,
where we used the previous and the next
word as a feature vector to train our model
which serve as contextual features. Jahangir
et al. (2012)

3. Capitalization: In social media people tend
to use capital letters to refer to the names of
the persons, locations and orgs, at times they
write the entire name in capitals von Däniken
and Cieliebak (2017) to give special impor-
tance or to denote aggression. This gives rise
to a couple of binary features. One feature is
to indicate if the beginning letter of a word is
capital and the other to indicate if the entire
word is capitalized.

4. Mentions and Hashtags: In social me-
dia organizations like twitter, people use ‘@’
mentions to refer to persons or organizations,
they use ‘#’ hash tags in order to make some-
thing notable or to make a topic trending.
Thus the presence of these two gives a good
probability for the word being a named entity.

5. Numbers in String: In social media, we can
see people using alphanumeric characters,
generally to save the typing effort, shorten
the message length or to showcase their style.
When observed in our corpus, words contain-
ing alphanumeric are generally not named
entities. Thus the presence of alphanumeric
in words helps us in identifying the negative
samples.

6. Previous Word Tag: Contextual features
play an important role in predicting the tag
for the current word. Thus the tag of the pre-
vious word is also taken into account while
predicting the tag of the current word. All
the I-tags come after the B-tags.

7. Common Symbols: It is observed that
currency symbols, brackets like ‘(’, ‘[’, etc
and other symbols are followed by numeric
or some mention not of much importance.
Hence the presence of these symbols is a
good indicator for the words before or after
them for not to be a named entity.

5.2 Results and Discussion

Table 3 shows the results of the CRF model with
‘l2sgd’(Stochastic Gradient Descent with L2 reg-
ularization term) algorithm for 100 iterations. The
c2 value corresponds to the ‘L2 regression’ which
is used to restrict our estimation of w*. Exper-
iments using the algorithms ‘ap’(Averaged Per-
ceptron) and ‘pa’(Passive Aggressive) yielded al-
most similar F1-scores of 0.96. Table 5 shows

186



Tag Precision Recall F1-score
B-Loc 0.958 0.890 0.922
I-Loc 0.867 0.619 0.722
B-Org 0.802 0.600 0.687
I-Org 0.385 0.100 0.159
B-Per 0.908 0.832 0.869
I-Per 0.715 0.617 0.663

OTHER 0.974 0.992 0.983
weighted avg 0.963 0.966 0.964

Table 3: CRF Model with ‘c2=0.1’ and ‘l2sgd’ algo.

Tag Precision Recall F1-score
B-Org 0.55 0.61 0.58
I-Per 0.43 0.50 0.47
B-Per 0.76 0.76 0.76
I-Loc 0.50 0.59 0.54

OTHER 0.98 0.97 0.97
B-Loc 0.83 0.84 0.84
I-Org 0.09 0.13 0.11

weighted avg 0.94 0.94 0.94

Table 4: Decision Tree Model with ‘max-depth=32’

the weighted average feature specific results for
the CRF model where the results are calculated
excluding the ‘OTHER’ tag. Table 4 shows the
results for the decision tree model. The maxi-
mum depth of the model is 32. The F1-score is
0.94. Figure 1 shows the results of a Decision
tree with max depth = 32. Table 6 shows the
weighted average feature specific results for the
Decision tree model where the results are calcu-
lated excluding the ‘OTHER’ tag. In the exper-
iments with BiLSTM we experimented with the
optimizer, activation functions, no of units and no
of epochs. After several experiment, the best result
we came through was using ‘softmax’ as activa-
tion function, ‘adam’ as optimizer and ‘categori-
cal cross entropy’ as our loss function. The table 7
shows the results of BiLSTM on our corpus using
a dropout of 0.3, 15 epochs and random initializa-
tion of embedding vectors. The F1-score is 0.95.
Figure 2 shows the BiLSTM model architecture.

Table 8 shows an example prediction by our
CRF model. This is a good example which shows
the areas in which the model suffers to learn. The
model predicted the tag of ‘@Thirumalagiri’ as
‘B-Per’ instead of ‘B-Loc’ because their are per-
son names which are lexically similar to it. The
tag of the word ‘Telangana’ is predicted as ‘B-

Feature Precision Recall F1-score
Char
N-Grams

0.73 0.56 0.62

Word N-
Grams

0.88 0.59 0.70

Capitali-
zation

0.15 0.02 0.03

Mentions,
Hashtags

0.36 0.14 0.19

Numbers
in String

0.01 0.01 0.01

Previous
Word tag

0.78 0.19 0.15

Common
Symbols

0.21 0.06 0.09

Table 5: Feature Specific Results for CRF

Feature Precision Recall F1-score
Char
N-Grams

0.42 0.72 0.51

Word N-
Grams

0.57 0.59 0.58

Capitali-
zation

0.19 0.31 0.23

Mentions,
Hashtags

0.29 0.20 0.22

Numbers
in String

0.06 0.16 0.07

Previous
Word tag

0.14 0.20 0.16

Common
Symbols

0.16 0.20 0.16

Table 6: Feature Specific Results for Decision tree

Tag Precision Recall F1-score
BL 0.94 0.86 0.89
BO 0.76 0.56 0.64
BP 0.80 0.70 0.74
IL 0.41 0.55 0.47
IO 0.04 0.09 0.056
IP 0.33 0.52 0.40

OTHER 0.97 0.98 0.97

Table 7: Bi-LSTM model with optimizer = ‘adam’ and
has a weighted f1-score of 0.95

Loc’ instead of ‘B-Org’ this is because ‘Telan-
gana’ is a ‘Location’ in most of the examples and
it is an ‘Organization’ in very few cases. We can
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Figure 1: Results from a Decision Tree

Figure 2: BiLSTM model architecture

also see ‘@MedayRajeev’ is predicted as ‘B-Org’
instead of ‘B-Per’. The model performs well for
‘OTHER’ and ‘Location’ tags. Lexically similar
words having different tags and insufficient data
makes it difficult for the model to train at times as
a result of which we can see some incorrect pre-
dictions of tags.

6 Conclusion and future work

The following are our contributions in this paper.

1. Presented an annotated code-mixed Telugu-
English corpus for named entity recognition
which is to the best of our knowledge is the
first corpus. The corpus will be made avail-
able online soon.

2. Experimented with the machine learning
models Conditional Random Fields(CRF),

Word Truth Predicted
Today OTHER OTHER
paper OTHER OTHER

clippings OTHER OTHER
manam B-Org OTHER
vartha I-Org OTHER

@Thirumalagiri B-Loc B-Per
@Nagaram B-Loc B-Per
Telangana B-Org B-Loc
Jagruthi I-Org OTHER

Thungathurthy B-Loc B-Loc
Niyojakavargam OTHER OTHER
@MedayRajeev B-Per B-Org
@JagruthiFans B-Org B-Org

Table 8: An Example Prediction of our CRF Model

Decision tree, BiLSTM on our corpus, the
F1-score for which is 0.96, 0.94 and 0.95 re-
spectively. Which is looking good consider-
ing the amount of research done in this new
domain.

3. Introducing and addressing named entity
recognition of Telugu-English code-mixed
corpus as a research problem.

As part of the future work, the corpus can be
enriched by also giving the respective POS tags
for each token. The size of the corpus can be in-
creased with more NE tags.The problem can be
extended for NER identification in code-mixed
text containing more than two languages from
multilingual societies.
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A Appendices

Category Hash Tags

Politics
#jagan, #CBN, #pk,
#ysjagan, #kcr

Sports
#kohli, #Dhoni,
#IPL #srh

Social Events
#holi, #Baahubali
#bathukamma,

Others
#hyderabad #Telan-
gana #maheshbabu

Table 9: Hashtags used for tweet mining
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Abstract

Named entity recognition (NER) and entity
linking (EL) are two fundamentally related
tasks, since in order to perform EL, first the
mentions to entities have to be detected. How-
ever, most entity linking approaches disre-
gard the mention detection part, assuming that
the correct mentions have been previously de-
tected. In this paper, we perform joint learn-
ing of NER and EL to leverage their related-
ness and obtain a more robust and generalis-
able system. For that, we introduce a model
inspired by the Stack-LSTM approach (Dyer
et al., 2015). We observe that, in fact, doing
multi-task learning of NER and EL improves
the performance in both tasks when compar-
ing with models trained with individual objec-
tives. Furthermore, we achieve results com-
petitive with the state-of-the-art in both NER
and EL.

1 Introduction

In order to build high quality systems for com-
plex natural language processing (NLP) tasks, it
is useful to leverage the output information of
lower level tasks, such as named entity recognition
(NER) and entity linking (EL). Therefore NER
and EL are two fundamental NLP tasks.

NER corresponds to the process of detecting
mentions of named entities in a text and classify-
ing them with predefined types such as person, lo-
cation and organisation. However, the majority of
the detected mentions can refer to different entities
as in the example of Table 1, in which the mention
“Leeds” can refer to “Leeds”, the city, and “Leeds
United A.F.C.”, the football club. To solve this am-
biguity EL is performed. It consists in determin-
ing to which entity a particular mention refers to,
by assigning a knowledge base entity id.

In this example, the knowledge base id of the
entity “Leeds United A.F.C.” should be selected.

Leeds’ Bowyer fined for part in fast-food fracas.

NER EL

Separate Leeds-ORG Leeds

Joint Leeds-ORG Leeds United A.F.C.

Table 1: Example showing benefits of doing joint learn-
ing. Wrong entity in red and correct in green.

In real world applications, EL systems have to
perform two tasks: mention detection or NER and
entity disambiguation. However, most approaches
have only focused on the latter, being the mentions
that have to be disambiguated given.

In this work we do joint learning of NER and
EL in order to leverage the information of both
tasks at every decision. Furthermore, by having
a flow of information between the computation of
the representations used for NER and EL we are
able to improve the model.

One example of the advantage of doing joint
learning is showed in Table 1, in which the joint
model is able to predict the correct entity, by
knowing that the type predicted by NER is Organ-
isation.

This paper introduces two main contributions:

• A system that jointly performs NER and EL,
with competitive results in both tasks.

• A empirical qualitative analysis of the advan-
tage of doing joint learning vs using separate
models and of the influence of the different
components to the result obtained.

2 Related work

The majority of NER systems treat the task has
sequence labelling and model it using conditional
random fields (CRFs) on top of hand-engineered
features (Finkel et al., 2005) or bi-directional Long
Short Term Memory Networks (LSTMs) (Lample
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Action Buffer Stack Output Entity
[Obama, met, Donald, Trump] [] []

Shift [met, Donald, Trump] [Obama] []
Reduce-PER [met, Donald, Trump] [] [(Obama)-PER] Barack Obama
Out [Donald, Trump] [] [(Obama)-PER, met] Barack Obama
Shift [Trump] [Donald] [(Obama)-PER, met] Barack Obama
Shift [] [Donald, Trump] [(Obama)-PER, met] Barack Obama
Reduce-PER [] [] [(Obama)-PER, met, Barack Obama,

(Donald Trump)-PER] Donald Trump

Table 2: Actions and stack states when processing sentence “Obama met Donald Trump”. The predicted types and
detected mentions are contained in the Output and the entities the mentions refer to in the Entity.

et al., 2016; Chiu and Nichols, 2016). Recently,
NER systems have been achieving state-of-the-art
results by using word contextual embeddings, ob-
tained with language models (Peters et al., 2018;
Devlin et al., 2018; Akbik et al., 2018).

Most EL systems discard mention detection,
performing only entity disambiguation of previ-
ously detected mentions. Thus, in these cases the
dependency between the two tasks is ignored. EL
state-of-the-art methods often correspond to local
methods which use as main features a candidate
entity representation, a mention representation,
and a representation of the mention’s context (Sun
et al., 2015; Yamada et al., 2016, 2017; Ganea and
Hofmann, 2017). Recently, there has also been
an increasing interest in attempting to improve EL
performance by leveraging knowledge base infor-
mation (Radhakrishnan et al., 2018) or by allying
local and global features, using information about
the neighbouring mentions and respective entities
(Le and Titov, 2018; Cao et al., 2018; Yang et al.,
2018). However, these approaches involve know-
ing the surrounding mentions which can be im-
practical in a real case because we might not have
information about the following sentences. It also
adds extraneous complexity that might implicate a
longer time to process.

Some works, as in this paper, perform end-
to-end EL trying to leverage the relatedness of
mention detection or NER and EL, and obtained
promising results. Kolitsas et al. (2018) proposed
a model that performs mention detection instead of
NER, not identifying the type of the detected men-
tions, as in our approach. Sil and Yates (2013),
Luo et al. (2015), and Nguyen et al. (2016) in-
troduced models that do joint learning of NER
and EL using hand-engineered features. (Durrett
and Klein, 2014) performed joint learning of en-

tity typing, EL, and coreference using a structured
CRF, also with hand-engineered features. In con-
trast, in our model we perform multi-task learning
(Caruana, 1997; Evgeniou and Pontil, 2004), us-
ing learned features.

3 Model Description

In this section firstly, we briefly explain the Stack-
LSTM (Dyer et al., 2015; Lample et al., 2016),
model that inspired our system. Then we will give
a detailed explanation of our modifications and of
how we extended it to also perform EL, as showed
in the diagram of Figure 1. An example of how
the model processes a sentence can be viewed in
Table 2.

3.1 Stack-LSTM

The Stack-LSTM corresponds to an action-based
system which is composed by LSTMs augmented
with a stack pointer. In contrast to the most com-
mon approaches which detect the entity mentions
for a whole sequence, with Stack-LSTMs the en-
tity mentions are detected and classified on the fly.
This is a fundamental property to our model, since
we perform EL when a mention is detected.

This model is composed by four stacks: the
Stack, that contains the words that are being pro-
cessed, the Output, that is filled with the com-
pleted chunks, the Action stack, which contains
the previous actions performed during the process-
ing of the current document, and the Buffer, that
contains the words to be processed.

For NER, in the Stack-LSTM there are three
possible types of actions:

• Shift, that pops a word off the Buffer and
pushes it into the Stack. It means that the last
word of the Buffer is part of a named entity.
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Figure 1: Simplified diagram of our model. The dashed arrows only occur when the action is Reduce. The blocks in
blue correspond to our extensions to the Stack-LSTM and the green blocks correspond to the model’s predictions.
The grey blocks correspond to the stack-LSTM, the blue blocks to our extensions, and the green ones to the outputs.

• Out, that pops a word off the buffer and in-
serts it into the Output. It means that the last
word of the Buffer is not part of a named en-
tity.

• Reduce, that pops all the words in the Stack
and pushes them into the Output. There
is one action Reduce for each possible type
of named entities, e.g. Reduce-PER and
Reduce-LOC.

Moreover, the actions that can be performed at
each step are controlled: the action Out can only
occur if the stack is empty and the actions Reduce
are only available when the Stack is not empty.

3.2 Our model
NER. To better capture the context, we comple-
ment the Stack-LSTM with a representation vt of
the sentence being processed, for each action step
t. For that the sentence x1, . . . ,x|w| is passed
through a bi-directional LSTM, being h1

w the hid-
den state of its 1st layer (bi-LSTM1 in Figure 1),
that corresponds to the word with index w:

{h1
1, . . . ,h

1
|w|} = BiLSTM1(x1, . . . ,x|w|).

We compute a representation of the words con-
tained in the Stack, qt, by doing the mean of the
hidden states of the 1st layer of the bi-LSTM that
correspond to the words contained in the stack at
action step t, set St,:

qt =

∑
k∈St

h1
k

|St|
.

This is used to compute the attention scores αt:

ztw = u>(W 1h
1
w +W 2 qt)

αt = softmax(zt),

where W 1, W 2, and u are trainable parameters.
The representation vt is then obtained by doing
the weighted average of the bi-LSTM 1st layer’s
hidden states:

vt =

|w|∑

w=1

h1
w αtw.

To predict the action to be performed, we imple-
ment an affine transformation (affineNER in Fig-
ure 1) whose input is the concatenation of the last
hidden states of the Buffer LSTM bt, Stack LSTM
st, Action LSTM at, and Output LSTM ot, as well
as the sentence representation vt.

dt = [bt; st; at; ot; vt]

Then, for each step t, we use these representations
to compute the probability distribution pt over the
set of possible actions A, and select the action
ŷtNER

with the highest probability:

pt = softmax(affine(dt))

ŷtNER
= arg max

a ∈ A
(pt(a)).
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The NER loss function is the cross entropy, with
the gold action for step t being represented by the
one-hot vector ytNER

:

LNER = −
T∑

t=1

y>tNER
log(pt).

where T is the total number of action steps for the
current document.

EL. When the action predicted is Reduce, a
mention is detected and classified. This mention is
then disambiguated by selecting its respective en-
tity knowledge base id. The disambiguation step
is performed by ranking the mention’s candidate
entities.

The candidate entities c ∈ C for the present
mention are represented by their entity embedding
ce and their prior probability cp. The prior prob-
abilities were previously computed based on the
co-occurrences between mentions and candidates
in Wikipedia.

To represent the mention detected the 2nd layer
of the sentence bi-LSTM (bi-LSTM2 in Figure 1),
is used, being the representation m obtained by
averaging the hidden states h2

w that correspond to
the words contained in the mention, setM:

{h2
1, . . . ,h

2
|w|} = BiLSTM2(h1

1, . . . ,h
1
|w|)

m =

∑
w∈M h2

w

|M| .

These features are concatenated with the represen-
tation of the sentence vt, and the last hidden state
of the Action stack-LSTM at:

ci = [cei; cpi; m; vt; at].

We compute a score for each candidate with affine
transformations (affineEL in Figure 1) that have c
as input, and select the candidate entity with the
highest score, ŷtEL

:

lt = affine(tanh(affine(ci, . . . , cn)))

rt = softmax(lt)

ŷtEL
= arg max

c ∈ C
(rt(c)).

The EL loss function is the cross entropy, with the
gold entity for step t being represented by the one-
hot vector ytEL

:

LEL = −
T∑

t=1

y>tEL
log(rt)).

where T is the total number of mention that corre-
spond to entities in the knowledge base.

Due to the fact that not every mention detected
has a corresponding entity in the knowledge base,
we first classify whether this mention contains an
entry in the knowledge base using an affine trans-
formation followed by a sigmoid. The affine’s in-
put is the stack LSTM last hidden state st:

d = sigmoid(affine(st)).

The NIL loss function, binary cross-entropy, is
given by:

LNIL =−(yNIL log(d)+(1− yNIL) log(1− d)),

where yNIL corresponds to the gold label, 1 if
mention should be linked and 0 otherwise.

During training we perform teacher forcing, i.e.
we use the gold labels for NER and the NIL classi-
fication, only performing EL when the gold action
is Reduce and the mention has a corresponding id
in the knowledge base. The multi-task learning
loss is then obtained by summing the individual
losses:

L = LNER + LEL + LNIL.

4 Experiments

4.1 Datasets and metrics
We trained and evaluated our model on the biggest
NER-EL English dataset, the AIDA/CoNLL
dataset (Hoffart et al., 2011). It is a collection of
news wire articles from Reuters, composed by a
training set of 18,448 linked mentions in 946 doc-
uments, a validation set of 4,791 mentions in 216
documents, and a test set of 4,485 mentions in 231
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documents. In this dataset, the entity mentions
are classified as person, location, organisation and
miscellaneous. It also contains the knowledge
base id of the respective entities in Wikipedia.

For the NER experiments we report the F1 score
while for the EL we report the micro and macro
F1 scores. The EL scores were obtained with the
Gerbil benchmarking platform, which offers a re-
liable evaluation and comparison with the state-
of-the-art models (Röder et al.). The results were
obtained using strong matching settings, which re-
quires exactly predicting the gold mention bound-
aries and their corresponding entity.

4.2 Training details and settings

In our work, we used 100 dimensional word em-
beddings pre-trained with structured skip-gram on
the Gigaword corpus (Ling et al., 2015). These
were concatenated with 50 dimensional charac-
ter embeddings obtained using a bi-LSTM over
the sentences. In addition, we use contextual em-
beddings obtained using a character bi-LSTM lan-
guage model by Akbik et al. (2018). The entity
embeddings are 300 dimensional and were trained
by Yamada et al. (2017) on Wikipedia. To get the
set of candidate entities to be ranked for each men-
tion, we use a pre-built dictionary (Pershina et al.,
2015).

The LSTM used to extract the sentence and
mention representations, vt and m is composed
by 2 hidden layers with a size of 100 and the ones
used in the Stack-LSTM have 1 hidden layer of
size 100. The feedforward layer used to determine
the entity id has a size of 5000. The affine layer
used to predict whether the mention is NIL has
a size of 100. A dropout ratio of 0.3 was used
throughout the model.

The model was trained using the ADAM opti-
miser (Kingma and Ba, 2014) with a decreasing
learning rate of 0.001 and a decay of 0.8 and 0.999
for the first and second momentum, respectively.

4.3 Results

Comparison with state of the art models. We
compared the results obtained using our joint
learning approach with state-of-the-art NER mod-
els, in Table 3, and state-of-the-art end-to-end EL
models, in Table 4. In the comparisons, it can be
observed that our model scores are competitive in
both tasks.

System Test F1
Flair (Akbik et al., 2018) 93.09
BERT Large (Devlin et al., 2018) 92.80
CVT + Multi (Clark et al., 2018) 92.60
BERT Base (Devlin et al., 2018) 92.40
BiLSTM-CRF+ELMo (Peters et al., 2018) 92.22
Our model 92.43

Table 3: NER results in CoNLL 2003 test set.

System Validation F1 Test F1
Macro Micro Macro Micro

Kolitsas et al. (2018) 86.6 89.4 82.6 82.4
Cao et al. (2018) 77.0 79.0 80.0 80.0
Nguyen et al. (2016) - - - 78.7
Our model 82.8 85.2 81.2 81.9

Table 4: End-to-end EL results on validation and test
sets in AIDA/CoNLL.

Comparison with individual models. To un-
derstand whether the multi-task learning approach
is advantageous for NER and EL we compare the
results obtained when using a multi-task learning
objective with the results obtained by the same
models when training with separate objectives. In
the EL case, in order to perform a fair compari-
son, the mentions that are linked by the individ-
ual system correspond to the ones detected by the
multi-task approach NER.

These comparisons results can be found in Ta-
bles 5 and 6, for NER and EL, respectively. They
show that, as expected, doing joint learning im-
proves both NER and EL results consistently. This
indicates that by leveraging the relatedness of the
tasks, we can achieve better models.

System Validation F1 Test F1
Only NER 95.46 92.34
NER + EL 95.72 92.52

Table 5: Comparison of Named Entity Recognition
multi-task results with single model results.

System Validation F1 Test F1
Macro Micro Macro Micro

Only EL 81.3 83.5 79.9 80.2
NER + EL 82.6 85.2 81.1 81.8

Table 6: Comparison of Entity Linking results multi-
task results with single model results.

Ablation tests. In order to comprehend which
components had the greatest contribution to the
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obtained scores, we performed an ablation test for
each task, which can be seen in Tables 7 and 8,
for NER and EL, respectively. These experiments
show that the use of contextual embeddings (Flair)
is responsible for a big boost in the NER perfor-
mance and, consequently, in EL due to the bet-
ter detection of mentions. We can also see that
the addition of the sentence representation (sent
rep vt) improves the NER performance slightly.
Interestingly, the use of a mention representation
(ment rep m) for EL that is computed by the sen-
tence LSTM, not only yields a big improvement
on the EL task but also contributes to the improve-
ment of the NER scores. The results also indi-
cate that having a simple affine transformation se-
lecting whether the mention should be linked, im-
proves the EL results.

System Validation F1 Test F1
Stack-LSTM 93.54 90.47
+ Flair 95.40 92.16
+ sent rep 95.55 92.22
+ ment rep 95.72 92.52
+ NIL 95.68 92.43

Table 7: Ablation test for Named Entity Recognition.

System Validation F1 Test F1
Macro Micro Macro Micro

Stack-LSTM 81.95 84.76 80.37 80.12
+ Flair 82.59 85.75 80.86 81.05
+ sent rep 82.31 85.43 80.49 80.62
+ ment rep 82.64 85.17 81.07 81.76
+ NIL 82.78 85.23 81.19 81.94

Table 8: Ablation test for Entity Linking.

5 Conclusions and Future Work

We proposed doing joint learning of NER and EL,
in order to improve their performance. Results
show that our model achieves results competitive
with the state-of-the-art. Moreover, we verified
that the models trained with the multi-task ob-
jective have a better performance than individual
ones. There is, however, further work that can be
done to improve our system, such as training en-
tity contextual embeddings and extending it to be
cross-lingual.
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Abstract

Sequence-to-sequence models are a common
approach to develop a chatbot. They can train
a conversational model in an end-to-end man-
ner. One significant drawback of such a neural
network based approach is that the response
generation process is a black-box, and how a
specific response is generated is unclear. To
tackle this problem, an interpretable response
generation mechanism is desired. As a step to-
ward this direction, we focus on dialogue-acts
(DAs) that may provide insight to understand
the response generation process. In particular,
we propose a method to predict a DA of the
next response based on the history of previ-
ous utterances and their DAs. Experiments us-
ing a Switch Board Dialogue Act corpus show
that compared to the baseline considering only
a single utterance, our model achieves 10.8%
higher F1-score and 3.0% higher accuracy on
DA prediction.

1 Introduction

Dialogue systems adopt neural networks (NNs)
(Vinyals and Le, 2015) because they allow a model
to be developed in an end-to-end manner with-
out manually designed rules and patterns for re-
sponse generation. However, in a NN-based ap-
proach, the response generation process is hidden
in the model, which makes it difficult to under-
stand why the model generates a specific response.
This is a significant problem in commercially pro-
duced chatbots because the model outputs cannot
be controlled. To tackle this problem, Zhao et al.
(2018) argued that interpretable response genera-
tion models are important. As the first step toward
this direction, we focus on dialogue-acts (DAs) as
clues to understand the response generation pro-
cess. We speculate that the predicted DAs indi-
cates which types of response the model tries to
generate.

Utterance (DA)
1 Oh, I’ve only, I’ve only skied in Utah once.

(Statement)
2 Oh, really? (Question)
3 I only skied once my whole life. (State-

ment)
4 Uh-huh. (Uninterpretable)
5 But, do you do a lot of skiing there? (Ques-

tion)

Table 1: Example of utterances and their DAs (in
parenthesis) sampled from the SwDA corpus.

Specifically, we propose a method to predict the
DA of the next response. This problem was pro-
posed by Reithinger et al. (1996). A conversa-
tion consists of a sequence of utterances and re-
sponses, where the next response depends on the
history of utterances and responses. Table 1 shows
an example of a conversation with utterances and
their DAs sampled from the Switch Board Dia-
logue Act (SwDA) corpus. The DA of the last
response, “But, do you do a lot of skiing there?
(Question)” is not predictable using the previous
utterance of “Uh-huh.” nor using its DA of “Unin-
terpretable”. To correctly predict the DA, we need
to refer to the entire sequence starting from first
utterance of “Oh, I’ve only skied in Utah once.”
when the speaker is talking about skiing experi-
ence.

Our model considers the conversation history
for DA prediction. It independently encodes se-
quences of text surfaces and DAs of utterances
using a recurrent neural network (RNN). Then it
predicts the most likely DA of the next response
based on the outputs of RNNs. Cervone et al.
(2018) showed that a DA is useful to improve the
coherency of response. The predicted DAs can
be used to generate a future response, which adds
controllability and interpretability into a neural di-
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alogue system.
We used a SwDA corpus for the evaluation, in

which telephone conversations are transcribed and
annotated with DAs. The macro Precision, Re-
call, F1, and overall Accuracy measure the perfor-
mance compared the baseline. The results show
that our model, which considers the history of ut-
terances and their DAs, outperforms the baseline,
which only considers the input utterance by 10.8%
F1 and 3.0% Accuracy.

2 Related Works

Previous studies on DA prediction aimed to pre-
dict the current DA from the corresponding utter-
ance text. Kalchbrenner and Blunsom (2013) pro-
posed a method using Convolutional Neural Net-
work (CNN) to obtain a representation capturing
the local features of utterance and RNN to obtain
the context representation of the utterance. Ex-
periments using the SwDA corpus showed that
their method outperformed previous methods for
DA prediction using non-neural machine learn-
ing models. Khanpour et al. (2016) proposed a
method based on multi-layer RNN that uses an
utterance as an input. Their method achieved an
80.1% prediction accuracy of the SwDA corpus,
and is the current state-of-the-art method.

Unlike these previous studies, we focus on DA
prediction of the next (i.e., unseen) response. Rei-
thinger et al. (1996) proposed a statistical method
using a Markov chain. Using their original corpus,
their method achieved of the 76.1% top 3 accu-
racy. We tackled the problem of DA prediction of
the next utterance considering the history of utter-
ances and previous DAs using a NN. We anticipate
that the predicted DA is useful for understanding
the response generation process and improving the
quality of the response generation.

3 Proposed Model

Figure 1 illustrates the design of our model, which
consists of three encoders with different purposes.
The Utterance Encoder encodes the utterance text
into a vector, which is then inputted into the Con-
text Encoder that handles the history of utterance
texts. The Dialogue-act (DA) Encoder encodes
and handles the sequence of DAs. Finally, outputs
of the Context and DA Encoders are concatenated
and input to a classifier that predicts the DA of the
next response. Note that our model does not peek
into the text of next response to predict the DA.

GRU
!",$ !",%!",& !"'$,&!"'$,$ !"'$,%

()" ()"'$

()"'$ ()"'&

GRU

GRU

GRU

GRU

GRU

GRU

GRU

GRU

GRU

speaker change tag speaker change tag

NN NN

Utterance Encoder

DA Encoder

Context Encoder

Figure 1: Design of our model consisting of three en-
coders that encode 1) text surfaces, 2) DAs, and 3) ut-
terance history. (⊗ concatenates vectors)

Consequently, the predicted DA is used to gener-
ate the response text in the future.

3.1 Utterance Encoder & Context Encoder

The Utterance Encoder vectorizes an input utter-
ance. It is an RNN that takes each word in the ut-
terance in a forward direction by applying padding
in order to realize a uniform input size. Then, the
Context Encoder, which is another RNN, takes the
final output of the Utterance Encoder to generate
a context vector that handles the history of utter-
ances. While our model takes a single sentence
as an input to the Utterance Encoder, the speakers
do not necessarily change at every single sentence
in a natural conversation. Hence, our model al-
lows cases where the same speaker continuously
speaks. Specifically, a speaker change tag, which
is inputted into the Context Encoder, is used to in-
dicate when the speaker changes.

3.2 Dialogue-act (DA) Encoder

The DA Encoder plays the role of handling the his-
tory of DAs. A DA is represented as a one-hot
vector and encoded by RNN. During the training,
we use teacher forcing to avoid error propagation.
That is, the gold DA of the current utterance is in-
putted into the model instead of the predicted one.

3.3 Dialogue-act Prediction

Finally, the classifier determines the DA of the
next response. It is a single fully-connected layer
culminating in the soft-max layer. Given a con-
catenation of outputs from the Context Encoder
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Tag # of tags in the corpus
Statement 576, 005
Uninterpretable 93, 238
Understanding 241, 008
Agreement 55, 375
Directive 3, 685
Greeting 6, 618
Question 54, 498
Apology 11, 446
Other 19, 882

Table 2: Distribution of DA tags in the preprocessed
SwDA corpus.

and DA Encoder, the classifier conducts a multi-
class classification and identifies the most likely
DA of the next response.

4 Experiment

4.1 Switch Board Dialogue Act Corpus
(SwDA)

We evaluate the accuracy of our model to pre-
dict the DA of the next response using the SwDA
corpus, which transcribes telephone conversation
and annotates DAs of utterances. The SwDA cor-
pus conforms to the damsl tag schema.1 We as-
sembled the tag sets referring to easy damsl (Iso-
mura et al., 2009) into 9 tags (Table 2) in order
to consolidate tags with a significantly low fre-
quency. The SwDA corpus provides transcriptions
of 1, 155 conversations with 219, 297 utterances.
One conversation contains 189 utterances on aver-
age. Because the average length of utterance se-
quences is large, we use a sliding window with a
size of 5 to cut a sequence into several conversa-
tions.

The number of conversations increases to
212, 367 with 1, 061, 835 utterances. Table 2
shows the distribution of DAs in the processed cor-
pus. We randomly divide the conversations in the
corpus into 80%, 10%, and 10% for training, de-
velopment, and testing, respectively.

4.2 Model Settings

We apply a Gated Recurrent Unit (GRU) (Cho
et al., 2014) to each RNN in our model. We set the
dimensions of word embedding to 300 and those
of the DA embedding to 100. The dimensions of
the GRU hidden unit of the Utterance Encoder are

1https://web.stanford.edu/˜jurafsky/
ws97/manual.august1.html

Figure 2: Conditional Probabilities of DA transitions.
“Greeting” has a clear pattern, which is followed by a
“Greeting”. Other DAs tend to be followed by a “State-
ment”.

set to 512, while those the Context Encoder are
set to 513 (one element is for the speaker change
tag) and those of the DA Encoder are set to 128.
Hence, the dimensions of an input into the clas-
sifier are 641. The dimensions of the hidden unit
of the fully-connected layer are set to 100. The
cross-entropy error is used for the loss function,
and the Adam (Kingma and Ba, 2014) optimizer
with a learning rate of 5e− 5 is used for optimiza-
tion. The number of epochs is set to 30. We use the
model with the lowest development loss for test-
ing.

We use teacher forcing for training and simi-
lar setting for testing by inputting the gold DA of
the previous time step into the DA Encoder. This
means that the evaluation results here show the
performance when the predictions of the previous
time steps are all correct.

As Table 2 shows, the numbers of DAs are
highly diverse. To avoid frequent tags dominating
the results, we measure the macro averages of pre-
cision, recall, and F1-score of each DA. We also
measure the overall accuracy.

4.3 Baselines

To investigate the effects of each encoder in our
model, we compare our model to the baseline (Ta-
ble 3). The second and third rows are simple meth-
ods. Max-Probability is another non-neural base-
line that outputs the DA with highest conditional
probability from the input DA. Figure 2 shows
the conditional probability of DA transitions com-
puted in our training set. “Greeting” has a no-
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Utterance Encoder Context Encoder DA Encoder Precision Recall F1-score Accuracy
Proposed model ✓ ✓ ✓ 52.7 32.5 32.4 69.7
Max-Probability 15.9 19.6 16.9 54.8

Utterance-only ✓ 24.4 21.6 21.6 66.7
Utterance-seq ✓ ✓ 30.9 25.1 23.8 68.5
DA+Utterance-seq ✓ ✓ ✓(single-turn) 53.1 29.9 30.3 68.7
DAseq-only ✓ 44.7 28.7 27.9 67.1
DAseq+Utterance ✓ ✓ 45.8 29.0 29.3 68.2

Table 3: Macro averages of precision, recall, F1-score, and overall accuracy

ticeable pattern in which it is followed by “Greet-
ing”. This is natural considering human commu-
nication. On the other hand, other DAs are mostly
followed by “Statement”. This implies that only a
previous DA is insufficient to predict the next DA.

The rest of Table 3 shows NN-based baselines.
The Utterance-only is the model that only has the
Utterance Encoder (i.e., it predicts the DA of the
next response based only on the input utterance).
The Utterance-seq, which has the Utterance En-
coder and Context Encoder, predicts the DA based
on a sequence of utterances. On the other hand,
the DAseq-only has only the DA Encoder and pre-
dicts the DA of the next response based on the se-
quence of previous DAs. The DAseq+Utterance
has the Utterance Encoder and DA Encoder, which
considers the sequence of DAs and the single ut-
terance. The DA+Utterance-seq contains the Ut-
terance Encoder and Context Encoder. It consid-
ers only the DA of the input utterance and not the
sequence.

4.4 Results

Table 3 shows the macro averages of the preci-
sion, recall, and F1-score, as well as overall ac-
curacies for each model. For all evaluation model,
our model exhibits the best performances; recall,
F1, and accuracy 32.5%, 32.4%, and 69.7%, re-
spectively. As discussed in Section 1, Khanpour
et al. (2016) achieved 80.1% prediction accuracy
for the same SwDA corpus. Their method predicts
the DAs of the current utterance given in text. Al-
though their accuracy is not directly comparable
to ours due to differences in data splits, 80.1% can
be regarded as the upper-bounds of our task. Our
method achieves 87.0% of this upper-bound. Be-
low we investigate which encoders contribute to
prediction.

Max-Probability performs quite poorly rather
than other neural network based model. This may
be because of the imbalanced transition patterns
of DAs as shown in Figure 2, which shows that

Tag # of tags Proposed Utterance-seq
in the corpus model

Statement 576, 005 80.8 80.4
Uninterpretable 93, 238 4.7 2.6
Understanding 241, 008 69.5 67.6
Agreement 55, 375 23.1 15.3
Directive 3, 685 2.7 0.0
Greeting 6, 618 81.3 46.7
Question 54, 498 8.1 2.0
Apology 11, 446 22.7 11.3
Other 19, 882 3.6 0.0

Table 4: F1-score per DA

the next DA prediction requires more features to
achieve precise prediction.

Utterance-seq achieves 1.8% higher accuracy
than Utterance-only, demonstrating the effective-
ness of considering the history of utterances rather
than a single utterance.

The DA+Utterance-seq outperforms Utterance-
seq on F1 by 6.5%. This result implies that
a previous DA is an effective hint for DA pre-
diction of next responses. In addition, the se-
quence of DAs is also effective for the next DA
prediction, which is shown by the superior per-
formance of the DAseq-only to the Utterance-
seq. Specifically, DAseq-only performs 4.1%
higher macro-F1 than Utterance-seq, but has 1.4%
lower accuracy than Utterance-seq. Similarly,
DAseq+Utterance achieves 5.5% higher F1 than
Utterance-seq. Overall, DAs of either single-turn
or a sequence largely boost precision, recall, and
F1. On the other hand, a sequence of utterances
contributes to accuracy. These results imply that
the sequence of DAs is effective to predict infre-
quent DAs and the sequence of utterances is ef-
fective to predict common DAs. This may be be-
cause the DA Encoder is more robust against the
data sparseness issue due to its much smaller vo-
cabulary size compared to that of the Utterance
Encoder. These analyses show that our model
achieves the best performance considering both
sequence of utterances and DAs.

Table 4 shows the F1-scores per DA of the
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Utterance (DA) Gold DA Proposed model Utterance-seq
1 What are they , (Uninterpretable) Statement Statement Statement
2 the , (Statement) Statement Statement Statement
3 I know , (Statement) Statement Statement Statement
4 a Rabbit ’s one , diesel (Statement) Agreement Understanding Understanding
5 Uh-huh , (Agreement) Agreement Agreement Statement
1 I hope so too . (Statement) Statement Statement Statement
2 You know . Right now there ’s a lot on the

market for sale because of people having
lost Yes . (Statement)

Understanding Understanding Understanding

3 Yes . (Understanding) Statement Statement Statement
4 and everything (Statement) Statement Statement Statement
5 so that ’s , you know , that keeps prices

down (Statement)
Understanding Understanding Understanding

1 It does n’t seem like , (Statement) Statement Statement Statement
2 but I guess when you think of it everybody

has some sort of aerosol in their home
(Statement)

Understanding Understanding Understanding

3 Yeah . (Understanding) Statement Statement Statement
4 You know , (Statement) Statement Statement Statement
5 and it ’s kind of dangerous . (Statement) Agreement Understanding Understanding

Table 5: Examples of predicted DAs by the proposed model and Utterance-seq. DA in a parenthesis shows that
of the input utterance, while “Gold DA” shows the DAs of the next responses. The column of “Proposed Model”
column shows the predicted DAs of the next responses by the proposed model, and the column of “Utterance-seq”
shows the predicted DAs of the next responses by Utterance-seq.

proposed model and Utterance-seq. The pro-
posed model outperforms Utterance-seq on all the
DAs. In particular, infrequent tags of “Agree-
ment”, “Greeting”, “Question” and “Apology”
show significant improvements between 6.1%
and 34.6%. Furthermore, the proposed model
correctly predicts “Directive” and “Other” even
though Utterance-seq does not predict any of these
correctly.

4.5 Examples of Predicted DAs

Table 5 shows examples of the predicted DAs by
the proposed model and Utterance-seq. The first
example shows that the proposed model correctly
predicts “Agreement”, which only has 5.2% oc-
currence in the training set, whereas Utterance-seq
most frequently predicts it as “Statement”.

The second and third examples demonstrate
the difficulty of DA prediction of the next re-
sponse. The input utterances of these examples
have the same DA sequences, but the DAs of
the final responses differ (“Understanding” and
“Agreement”). While both the proposed model
and Utterance-seq correctly predict the final DA of
the second example, both fail in the third example.

The third conversation is about an aerosol, and the
response to the final utterance of “and it’s kind of
dangerous.” depends on if one of the speakers un-
derstands the danger of the aerosol. To correctly
predict DAs in such a case, a much longer con-
versation sequence and/or personalize the predic-
tion model must be considered based on profiles
or knowledge of speakers. This is the direction of
our future work.

5 Conclusion

We propose a method to predict a DA of the next
response considering the sequences of utterances
and DAs. The evaluation results using the SwDA
corpus show that the proposed model achieves
69.7% accuracy and 32.4% macro-F1. Addition-
ally, the results show that the sequence of DAs sig-
nificantly helps the prediction of infrequent DAs.

In the future, we plan to develop a response gen-
eration model using the predicted DAs.

Acknowledgements

This project is funded by Microsoft Research
Asia, Microsoft Japan Co., Ltd., and JSPS KAK-
ENHI Grant Number JP18K11435.

201



References
Alessandra Cervone, Evgeny Stepanov, and Giuseppe

Riccardi. 2018. Coherence models for dialogue. In
Proceedings of the Interspeech, pages 1011–1015.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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Abstract

Fallacies like the personal attack—also known
as the ad hominem attack—are introduced in
debates as an easy win, even though they pro-
vide no rhetorical contribution. Although their
importance in argumentation mining is ac-
knowledged, automated mining and analysis is
still lacking. We show TF-IDF approaches are
insufficient to detect the ad hominem attack.
Therefore we present a machine learning ap-
proach for information extraction, which has a
recall of 80% for a social media data source.
We also demonstrate our approach with an ap-
plication that uses online learning.

1 Introduction

Debates are shaping our world, with them happen-
ing online more than ever. But for these debates—
and their offline variants as well—to be valuable,
their argumentation needs to be solid. As Stede
and Schneider (2018, Sec. 1.3) recognize, study-
ing fallacies is crucial for the understanding of ar-
guments and their validity. The ad hominem fal-
lacy, the personal attack, is one of the more preva-
lent fallacies. Despite its common occurrence, a
personal attack can be quite effective and might
shape the course of debates.

In online discussion fora, these attacks are often
unwanted for their low rhetorical quality. These
debates are watched by dedicated members of
those fora, so-called moderators. They follow
entire discussion threads and flag any unwanted
posts; which can take up a lot of their time and the
discussion might have already panned out. Au-
tomated flagging could significantly improve the
quality of debates and save moderators a lot of
time.

When developing such an automated system,
the variety and ambiguity of ad hominem attacks
can be difficult to cope with. These attacks range
from simple name calling (i.e. “You’re stupid”),
abusive attacks (i.e. “He’s dishonest”) to more

complex circumstantial attacks (i.e. “You smoke
yourself!”) (Walton, 1998). Detecting all these va-
rieties is quite challenging, since there can even be
discussion about some of those labels amongst hu-
mans.

We hereby focus in this paper on detecting
mainly two variants of the ad hominem fallacy:
name calling and abusive attacks. To realize this
automated system, we present a recurrent neural
model to detect ad hominem attack in a paragraph,
and we experiment with various other models to
compare them. Finally, we look into the issues re-
lated to crowd sourcing of additional labeled para-
graphs through an application as a web demo.

This article is structured as follows: Section 2
covers related work on ad hominem fallacies, de-
tecting those fallacies, and crowd sourcing data
sets. Section 3 will then review the components
used in our approach, which is then further dis-
cussed in Section 4. Section 5 outlines the used
data set, the training setup, and baseline mod-
els; afterwards the results are discussed in Sub-
section 5.3. Finally, Section 6 concludes this work
and discusses future improvements.

2 Related work

The study of argumentations has a long history,
with Rethoric by Aristotle being one of the more
traditional works. In the second book, he dis-
cussed the concept of Logos, the argument or rea-
soning pattern in a debate. More recently, reason-
ing and argumentations are studied in the field of
natural language processing (NLP). The subfield
of argumentation mining focusses on extracting
arguments and their relations (i.e. graphs) from
texts (Stede and Schneider, 2018).

Ad hominem attacks The work of Walton
(1998) describes at the structure of ad hominem
attacks in great depth, from a non-computational
view. In addition to this, the work also analyzes
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different subtypes of ad hominem attacks. The
simplest form is the direct ad hominem, and an
example of a more complex attack is guilt by as-
sociation. Similarly, programmer and venture cap-
italist Paul Graham introduces a hierarchical view
of discussions, with name-calling and ad hominem
attacks as the lowest layers (Graham, 2008). Al-
though both discussions of ad hominem fallacies
and debating in general are an important aspect to
keep in mind, neither of them discuss automated
detection of ad hominem fallacies.

Mining ad hominem fallacies Habernal et al.
(2018) discusses methods to detect name calling,
a subset of ad hominem attacks. Their work is
focussed on how and where these fallacies oc-
cur in so-called discussion trees, of which online
fora and social media are examples. But they also
look into two models for identifying these falla-
cies: firstly, a two-stacked bi-directional LSTM
network, and secondly, a convolutional neural net-
work. Their analysis on the occurrence of those
fallacies is an important contribution, and their
brief attempt at classifying the fallacies is an im-
portant baseline for our work.

Sourcing data Sourcing data from public fora,
such as Reddit, is used by other works in the field
of NLP, like for hateful speech detection (Saleem
et al., 2017) or agreement amongst participants
in a discussion on a community on Reddit called
ChangeMyView (Musi, 2018). Habernal et al.
(2018) also collect their data from this community,
since each post is expected to be relevant to the
discussion. Moderators dedicate their time to flag
and remove those posts. One of those flags is that
a post attacks another person, which is included in
the data set assembled by Habernal et al. (2018).

Crowdsourcing the labeling is another option;
either by paying the participants (Hube and Fe-
tahu, 2018) or by providing a service in return, like
a game (Habernal et al., 2017).

3 Components of the classifier

This section will review current techniques for
sentence representation in Subsection 3.1. Recur-
rent neural networks, which are used for the clas-
sifier in this paper, are covered in Subsection 3.2.

3.1 Sentence representation

Word2vec Word2Vec (Mikolov et al., 2013;
Goldberg and Levy, 2014) offers a way to vector-

ize words whilst also encoding meaning into the
vectors. The vector representation of the word
“cats” would be similar—measured for example
by the cosine similarity—to the vector represen-
tation of the word “dogs” but different than the
vector representation of the word “knowledge”.
This also allows arithmetic operations to take
place (Mikolov et al., 2013). For example:

~w (“king”)− ~w (“man”)

+ ~w (“woman”) ≈ ~w (“queen”)

(1)

The vectors are obtained by maximizing the
likelihood of predicting a determined word (or
term), given other surrounding ones. Thus, a vec-
torized paragraph yields a matrix of l × w, where
l is the length of each vector for a particular word
(arbitrarily chosen) and w are the number of words
for that paragraph. The first input of our model is
a vectorized version of each paragraph from our
dataset, where every element of the vector repre-
sents each word on that paragraph. This vector
is mapped to a pre-trained Word2Vec model from
GoogleNews, which has vector representations of
300 values for 3 million words, names, slang and
bi-grams. Even though the paragraphs do not have
the same length, the amount of words is equal for
all of them and the empty values of shorter para-
graphs are masked.

Par2vec Doc2vec or par2vec is extremely sim-
ilar to Word2Vec. The difference is that a sen-
tence or paragraph is represented as a vector, in-
stead of a single word. The vector values are
adjusted by maximizing the likelihood of a word
(or term), given the surrounding words (or terms)
with an adjustment for the discrepancy between
the likelihood and actual value. Doc2Vec gener-
ates a vector of size l, which can be arbitrarily
chosen. The second input of our model generates
a vector representation of the paragraph itself (Le
and Mikolov, 2014)

POS tagging Part-Of-Speech (POS) tagging ap-
plies a tag to each word in a particular sentence.
For example, words can be tagged as “noun”, “ad-
jective”, or “verb”. For verbs, the tags can also
encode the tense, and further information can be
contained. These labels have been used success-
fully in NLP tasks (Hube and Fetahu, 2018). In
this work, the POS tagging is done by the Python
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Figure 1: Graph of the combined neural network which
gave the best results.

library NLTK (Bird et al., 2009), which uses the
Penn Treebank tagset.

3.2 RNN sentence encoding

Recurrent neural networks (RNNs) have suc-
cessfully been used in sequence learning prob-
lems (Lipton et al., 2015), for example machine
translation (Sutskever et al., 2014; Luong et al.,
2015), and language modeling (Kim et al., 2015).
RNNs extend feedforward neural networks by in-
troducing a connection to adjacent time steps. So
recurrent nodes are not only dependent on the cur-
rent input x(t), but also on the previous hidden
states h(t−1) at a time t.

h(t) = σ
(
Wx(t) +W ′h(t−1) + b

)
(2)

Some applications, for instance sentence mod-
eling, can benefit not only from past, but from fu-
ture input as well. For this reason, bidirectional
recurrent neural networks were developed (Schus-
ter and Paliwal, 1997).

The recurrent nodes can also be adapted by
introducing memory cells. This forms the
foundation for long short-term memory (LSTM)
nodes (Hochreiter and Schmidhuber, 1997). By
leaving out the memory cell, but maintaining the
introduced gating mechanism, a gated recurrent
unit (GRU) is created.

4 Model architecture

In this section, our approach will be discussed in
detail. Subsection 4.1 will go in depth about our
approach and its architecture. Finally, Subsec-
tion 4.2 illustrates how the classifier can be used
in a web demo with online training.

Figure 2: Screenshot of the web app with some exam-
ple sentences.

4.1 Approach
Our approach is based on an RNN, as is illus-
trated in Figure 1. The Word2Vec vectorization
is sent into a Bidirectional GRU. The POS tag-
ging vectorization is also sent into a Bidirectional
GRU. Both GRU layers consist of 100 recurrent
cells each, with a ReLU activation. Lastly, the
Doc2Vec vectorization output is already a vector,
so we don’t need to manipulate it to concatenate
it with the other 2 vectors. Consequently, we con-
catenate the 3 previously mentioned output vectors
in one single vector.

This vector is fed into 2 consecutive fully con-
nected layers with a ReLU activation function.
The last layer is also a fully connected layer but
with a sigmoid activation that represents the prob-
ability that the input paragraph includes an ad
hominem attack.

Even though the network uses masking on the
inputs, an upper word limit L is introduced. Para-
graphs with more words are restrained to the this
limit L. The following section will also analyze
how different limits affect the performance. These
networks are then trained with the AdaDelta opti-
mizer (Zeiler, 2012) with the default learning rate
lr = 1.0 and binary cross entropy as the loss func-
tion. Each of them was trained on a NVIDIA K80
GPU in one hour. In addition, class weights were
used to tackle the imbalanced data.

4.2 Web demo
To demonstrate the classifier, a web application is
built. It uses the same implementation of the clas-
sifier in Keras (Chollet and others, 2015), which
is made available through a REST API with Flask.
The front end is a Vue.js application.
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Table 1: Illustration of how fallacies in the middle of a paragraph are contributing less to the overall output of the
model, even though the attack itself is the same.

Sentence Confidence

Augmented recurrent neural networks, and the underlying technique of attention, are in-
credibly exciting. You’re so wrong and a f*cking idiot! We look forward to seeing what
happens next.

0.39

You’re so wrong and a f*cking idiot! Augmented recurrent neural networks, and the un-
derlying technique of attention, are incredibly exciting. We look forward to seeing what
happens next.

0.79

The web application also supports online learn-
ing and labeling of paragraphs. Each queried para-
graph has two buttons to label the input, after
which the backend saves the feedback and option-
ally retrains the network. However, as will be dis-
cussed in Section 5.3, this approach can actually
worsen the accuracy of the classifier.

5 Evaluation

To correctly compare different models, the data
set is split into a training and test set. All mod-
els are evaluated on a withheld test set (Flach,
2012). In this case, the test set contains over 8k
labeled paragraphs. In two instances, memory is-
sues forced us to train and evaluate on a smaller
data set. These issues can be mitigated by stream-
ing smaller batches of data, but this was made less
of a priority since the provisional results were in
favor of the RNN network. A further breakdown
of the data collection and processing is discussed
in Subsection 5.1.

Our model is compared to different baselines,
which are reviewed in Subsection 5.2.

5.1 Data set

Our models were trained on a data set that was ini-
tially collected by Habernal et al. (2018). This data
set is in essence a database dump of a Reddit com-
munity called Change My View, which focusses
on online debating. In this context, ad hominem
attacks are unwelcome and thus removed by mod-
erators. The data set contains these labels amongst
other things. The authors analyzed this data set
extensively to make sure the labels were correct,
in part by relabeling a subset by crowd-sourced
workers.

However, our goal is different than that
of Habernal et al. (2018): we classify each post
individually, without taking any context about the

discussion into account. Habernal et al. (2018) fo-
cusses on what this context—which they call a dis-
cussion tree—means for the occurrence of an at-
tack. For this reason, we decided to not use the
filtered dataset with only discussing trees that end
up in ad hominem attacks. Instead we used the
database dump and applied our own data cleaning.

Reddit allows the use of text formatting with
Markdown (i.e. *bold* or italics ). These were
filtered, and more complex tags like links were re-
moved, while still preserving the text associated
with the link. Finally, the Markdown format also
allows citations, which were commonly used to
quote sentences of other posts. Since these cita-
tions could contain ad hominem attacks, they are
removed as well.

5.2 Baselines
We compare our approach to multiple baselines.
One of them is a CNN approach by Habernal et al.
(2018), whilst the others are baselines we consider
without recurrent layers.

1. SVMa: our first model is based on a TF-
IDF vectorizer and an SVM classifier (Flach,
2012). The TF-IDF vectorizer uses the top
3000 words from the test set. The SVM clas-
sifier is a linear SVM.

2. SVMb: this model also uses a linear clas-
sifier, but the features are based on word
representations. Instead of the TF-IDF vec-
tors for a paragraph, the 300 most occurring
words from the training set are used. For
each of these 300 words, the TF-IDF value
is replaced by a weighted word embedding.
So for words that don’t occur in a sentence
or paragraph, all elements of this vector are
zero. Otherwise the word representation is
scaled by the TF-IDF value of that word. In
total, this yields an array of 300 words by 300

206



Figure 3: ROC curve of the best performing model,
based on the test set.

vector values. This approach is an extension
of Kenter et al. (2016), which used a bag-of-
words approach.

Other approaches—like as averaging all
vectors—don’t perform as well (Le and
Mikolov, 2014).

3. NN: the NN approach continues with the
above described vectorizing and uses a neu-
ral network for classification instead of an
SVM. The output is formed by two sigmoid-
activated neurons after one fully connected
layer.

5.3 Results
Table 2 compares the models discussed in Sec-
tion 3. The models are compared based on several
metrics on a test set of 8531 paragraphs with 726
ad homimems. (Haghighi et al., 2018). Figure 3
show the ROC curve for the RNN model.

The best performing model is the RNN with
word2vec, doc2vec, and POS tag features. This
model scored best on recall R, the Gini coefficient
GI , and the F1 score. The accuracy is slightly
higher for the SVM model with word2vec fea-
tures, due to the class imbalance.

These results—and in particular the difference
between the our RNN model and both SVMa and
SVMb—show that a TF-IDF approach is insuffi-
cient to distinguish most ad hominems from neu-
tral comments, as the Gini coefficients indicate.
The recurrent neural network incorporates sequen-
tial information, which has a positive effect on all
metrics. Using longer input lengths L might al-
low to classify longer paragraphs at once, but this
has a negative impact on the classification results.
A possible reason of this is discussed in Subse-
cion 5.4.
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Figure 4: Influence of online training on three metrics.
The dashed line is the best performing model before
any additional online learning.

5.4 Limitations
An issue is that the output of the model, which can
be interpreted as a confidence scale between 0 and
1, is strongly influenced by the position of an ad
hominem attack. This is illustrated in Table 1.

The web demo features a feedback button to la-
bel the input, and also allows to train the model
directly with this new input. Since only the input
sentence is used, this can cause an issue, namely
catastrophic forgetting (McCloskey and Cohen,
1989). In this case, the model forgets all previ-
ously learned weights and instead of the intended
increase in accuracy, it decreases.

Figure 4 illustrates how the online training of 10
paragraphs affects three metrics. This experiment
is executed on the same test set and the baseline—
the original model—is indicated as well. This
clearly illustrates that when all parameters are
taken into account, the model slowly degenerates,
so it clearly highlights an issue with online learn-
ing.

6 Conclusion and further work

In this paper, we presented a machine learning
approach to classify ad hominem fallacies. This
model is based on two sequence models: a bidirec-
tional GRU neural network for a sequence of word
representations and another similar network for
POS tags. The outputs of these two networks are
combined with an additional feature, a paragraph
representation, and fed into a fully connected neu-
ral network. This approach yields better results
than a TF-IDF approach, which doesn’t take any
sequence information into account.

During the writing of this paper, a novel
representation model based on transformers is
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Table 2: Comparison of different models. All models are trained on 70% of the dataset and evaluated on the
remaining 30%, unless annotated with an asterisk (*). In this case, 3k paragraphs of the dataset were used.

Model L ACC R GI F1

CNN (Habernal et al., 2018) 0.810
SVMa 0.88819 0.29967 0.28208 0.42519
SVMb 0.90044 0.34519 0.29812 0.37455
NN (word2vec)* 0.81667 0.52066 0.38331 0.43299
NN (word2vec and doc2vec)* 0.71222 0.69421 0.40923 0.39344

RNN (word2vec, doc2vec, POS tags)

150 0.83523 0.72853 0.57371 0.43006
200 0.85647 0.80256 0.66406 0.48854
300 0.81755 0.74614 0.57034 0.41049
400 0.84480 0.69284 0.55177 0.35214

published (Devlin et al., 2018). This multi-
lingual model could be used as an alternative for
Word2vec, which has been critiqued for gender
bias (Bolukbasi et al., 2016). Another posibility is
ELMo (Peters et al., 2018), which takes the entire
sentence into account before assigning an embed-
ding to each word.

Finally we also discussed the issue of how the
position of an attack changes the output. A possi-
ble solution would be to add attention to the RNN
layer. This attention mechanism grants the net-
work access to historical hidden states, so not all
information has to be encoded in a single fixed-
length vector (Bahdanau et al., 2014; Hermann
et al., 2015). Continuing in this direction, it would
also be possible to use hierarchical attention on
both the word and sentence level (Yang et al.,
2016).
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Abstract

Chinese word segmentation (CWS) is often re-
garded as a character-based sequence label-
ing task in most current works which have
achieved great success with the help of pow-
erful neural networks. However, these works
neglect an important clue: Chinese characters
incorporate both semantic and phonetic mean-
ings. In this paper, we introduce multiple char-
acter embeddings including Pinyin Romaniza-
tion and Wubi Input, both of which are easily
accessible and effective in depicting semantics
of characters. We propose a novel shared Bi-
LSTM-CRF model to fuse linguistic features
efficiently by sharing the LSTM network dur-
ing the training procedure. Extensive experi-
ments on five corpora show that extra embed-
dings help obtain a significant improvement in
labeling accuracy. Specifically, we achieve the
state-of-the-art performance in AS and CityU
corpora with F1 scores of 96.9 and 97.3, re-
spectively without leveraging any external lex-
ical resources.

1 Introduction

Chinese is written without explicit word delim-
iters so word segmentation (CWS) is a preliminary
and essential pre-processing step for most natural
language processing (NLP) tasks in Chinese, such
as part-of-speech tagging (POS) and named-entity
recognition (NER). The representative approaches
are treating CWS as a character-based sequence
labeling task following Xu (2003) and Peng et al.
(2004).

Although not relying on hand-crafted features,
most of the neural network models rely heavily on
the embeddings of characters. Since Mikolov et al.
(2013) proposed word2vec technique, the vector
representation of words or characters has become

∗ Equal contribution (alphabetical order).
† Corresponding author.

a prerequisite for neural networks to solve NLP
tasks in different languages.

However, existing approaches neglect an im-
portant fact that Chinese characters contain both
semantic and phonetic meanings - there are vari-
ous representations of characters designed for cap-
turing these features. The most intuitive one is
Pinyin Romanization (拼音) that keeps many-to-
one relationship with Chinese characters - for one
character, different meanings in specific context
may lead to different pronunciations. This phe-
nomenon called Polyphony (and Polysemy) in lin-
guistics is very common and crucial to word seg-
mentation task. Apart from Pinyin Romanization,
Wubi Input (五笔) is another effective represen-
tation which absorbs semantic meanings of Chi-
nese characters. Compared to Radical (偏旁) (Sun
et al., 2014; Dong et al., 2016; Shao et al., 2017),
Wubi includes more comprehensive graphical and
structural information that is highly relevant to the
semantic meanings and word boundaries, due to
plentiful pictographic characters in Chinese and
effectiveness of Wubi in embedding the structures.

This paper will thoroughly study how impor-
tant the extra embeddings are and what schol-
ars can achieve by combining extra embeddings
with representative models. To leverage extra pho-
netic and semantic information efficiently, we pro-
pose a shared Bi-LSTMs-CRF model, which feeds
embeddings into three stacked LSTM layers with
shared parameters and finally scores with CRF
layer. We evaluate the proposed approach on five
corpora and demonstrate that our method produces
state-of-the-art results and is highly efficient as
previous single-embedding scheme.

Our contributions are summarized as follows:
1) We firstly propose to leverage both seman-
tic and phonetic features of Chinese characters
in NLP tasks by introducing Pinyin Romaniza-
tion and Wubi Input embeddings, which are easily
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和 便
[he]  1 peaceful (adj)

2 with (conj / adv)

[huo] 3 stir or join (v)

[hu]  4 success in game

(interjection)

[bian] 1 convenient (adj)

[pian] 2 cheap (adj)

乐
[le]  1 happy (adj)

[yue] 2 music (n)

(a) (b) (c)

Figure 1: Examples of phono-semantic compound
characters and polyphone characters.

Character

R J G H

R S H /

R A T /

R H Y /

R C K G

Wubi Input Code

Verb.（hands related）

（Carry）
提

打
（Hit）

找
（Find）

扑
（Leap）

抬
（Lift）

Character

W X B

A A H T

Wubi Input Code

Noun. （plants related）

（Flower）
花

草
（Grass）

芽
（Bud）

莲
（Lotus）

芦
（Reed）

J /

A

A

A

L P U

A

I

Y N R

(a) (b)

Figure 2: Potential semantic relationships between
Chinese characters and Wubi Input. Gray area indi-
cates that these characters have the same first letter in
the Wubi Input representation.

accessible and effective in representing semantic
and phonetic features; 2) We put forward a shared
Bi-LSTM-CRF model for efficiently integrating
multiple embeddings and sharing useful linguis-
tic features; 3) We evaluate the proposed multi-
embedding scheme on Bakeoff2005 and CTB6
corpora. Extensive experiments show that auxil-
iary embeddings help achieve state-of-the-art per-
formance without external lexical resources.

2 Multiple Embeddings

To fully leverage various properties of Chinese
characters, we propose to split the character-level
embeddings into three parts: character embed-
dings for textual features, Pinyin Romanization
embeddings for phonetic features and Wubi Input
embeddings for structure-level features.

2.1 Chinese Characters

CWS is often regarded as a character-based se-
quence labeling task, which aims to label ev-
ery character with {B, M, E, S} tagging scheme.
Recent studies show that character embeddings
are the most fundamental inputs for neural net-
works (Chen et al., 2015; Cai and Zhao, 2016; Cai

et al., 2017). However, Chinese characters are de-
veloped to absorb and fuse phonetics, semantics,
and hieroglyphology. In this paper, we would like
to explore other linguistic features so the charac-
ters are the basic inputs with two other presenta-
tions (Pinyin and Wubi) introduced as auxiliary.

2.2 Pinyin Romanization
Pinyin Romanization (拼音) is the official ro-
manization system for standard Chinese charac-
ters (ISO 7098:2015, E), representing the pronun-
ciation of Chinese characters like phonogram in
English. Moreover, Pinyin is highly relevant to
semantics - one character may correspond var-
ied Pinyin code that indicates different semantic
meanings. This phenomenon is very common in
Asian languages and termed as polyphone.

Figure 1 shows several examples of polyphone
characters. For instance, the character ‘乐’ in Fig-
ure 1 (a) has two different pronunciations (Pinyin
code). When pronounced as ‘yue’, it means ’mu-
sic’, as a noun. However, with the pronunciation
of ’le’, it refers to ’happiness’. Similarly, the char-
acter ‘和’ in Figure 1 (b) even has four meanings
with three varied Pinyin code.

Through Pinyin code, a natural bridge is con-
structed between the words and their semantics.
Now that human could understand the different
meanings of characters according to varied pro-
nunciations, the neural networks are also likely
to learn the mappings between semantic meanings
and Pinyin code automatically.

Obviously, Pinyin provides extra phonetic and
semantic information required by some basic tasks
such as CWS. It is worthy to notice that Pinyin
is a dominant computer input method of Chinese
characters, and it is easy to represent characters
with Pinyin code as supplementary inputs.

2.3 Wubi Input
Wubi Input (五笔) is based on the structure of
characters rather than the pronunciation. Since
plentiful Chinese characters are hieroglyphic,
Wubi Input can be used to find out the poten-
tial semantic relationships as well as the word
boundaries. It is beneficial to CWS task mainly in
two aspects: 1) Wubi encodes high-level semantic
meanings of characters; 2) characters with similar
structures (e.g., radicals) are more likely to make
up a word, which effects the word boundaries.

To understand its effectiveness in structure de-
scription, one has to go through the rules of Wubi
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FC Layer

Bi-LSTM

CRF

Tag

Bi-LSTM1

CRF CRF

Pinyin Wubi

TagTag

Bi-LSTM

Bi-LSTM

Bi-LSTM

Char Pinyin Wubi Char Pinyin Wubi

Bi-LSTM2 Bi-LSTM3

Char

Shared Parameters

(a) Model-I

FC Layer

Bi-LSTM

CRF

Tag

Bi-LSTM1

CRF CRF

Pinyin Wubi

TagTag

Bi-LSTM

Bi-LSTM

Bi-LSTM

Char Pinyin Wubi Char Pinyin Wubi

Bi-LSTM2 Bi-LSTM3

Char

Shared Parameters

(b) Model-II

FC Layer

Bi-LSTM

CRF

Tag

Bi-LSTM1

CRF CRF

Pinyin Wubi

TagTag

Bi-LSTM

Bi-LSTM

Bi-LSTM

Char Pinyin Wubi Char Pinyin Wubi

Bi-LSTM2 Bi-LSTM3

Char

Shared Parameters

(c) Model-III

Figure 3: Network architecture of three multi-embedding models. (a) Model-I: Multi-Bi-LSTMs-CRF Model. (b)
Model-II: FC-Layer Bi-LSTMs-CRF Model. (c) Model-III: Shared Bi-LSTMs-CRF Model.

Input method. It is an efficient encoding system
which represents each Chinese character with at
most four English letters. Specifically, these let-
ters are divided into five regions, each of which
represents a type of structure (stroke, 笔画) in
Chinese characters.

Figure 2 provides some examples of Chinese
characters and their corresponding Wubi code
(four letters). For instance, ‘提’ (carry), ‘打’ (hit)
and ‘抬’ (lift) in Figure 2 (a) are all verbs related
to hands and correspond different spellings in En-
glish. On the contrary, in Chinese, these characters
are all left-right symbols and have the same radical
(‘R’ in Wubi code). That is to say, Chinese char-
acters that are highly semantically relevant usually
have similar structures which could be perfectly
captured by Wubi. Besides, characters with simi-
lar structures are more likely to make up a word.
For example, ‘花’ (flower), ‘草’ (grass) and ‘芽’
(bud) in Figure 2 (b) are nouns and represent dif-
ferent plants. Whereas, they are all up-down sym-
bols and have the same radical (‘A’ in Wubi code).
These words usually make up new words such as
‘花草’ (flowers and grasses) and ‘花芽’ (the buds
of flowers).

In addition, the sequence in Wubi code is one
approach to interpret the relationships between
Chinese characters. In Figure 2, it is easy to find
some interesting component rules. For instance,
we can conclude: 1) the sequence order implies
the order of character components (e.g., ‘IA’ vs
‘AI’ and ‘IY’ vs ‘YI’); 2) some code has practical
meanings (e.g., ‘I’ denotes water). Consequently,
Wubi is an efficient encoding of Chinese charac-
ters so incorporated as a supplementary input like
Pinyin in our multi-embedding model.

2.4 Multiple Embeddings

To fully utilize various properties of Chinese char-
acters, we construct the Pinyin and Wubi embed-
dings as two supplementary character-level fea-
tures. We firstly pre-process the characters and
obtain the basic character embedding following
the strategy in Lample et al. (2016); Shao et al.
(2017). Then we use the Pypinyin Library1 to
annotate Pinyin code, and an official transforma-
tion table2 to translate characters to Wubi code.
Finally, we retrieve multiple embeddings using
word2vec tool (Mikolov et al., 2013).

For simplicity, we treat Pinyin and Wubi code
as units like characters processed by canonical
word2vec, which may discard some semantic
affinities. It is worth noticing that the sequence
order in Wubi code is an intriguing property con-
sidering the fact that structures of characters are
encoded by the order of letters (see Sec 2.3). This
point merits further study. Finally, we remark that
generating Pinyin code relies on the external re-
sources (statistics prior). Nontheless, Wubi code
is converted under a transformation table so does
not introduce any external resources.

3 Multi-Embedding Model Architecture

We adopt the popular Bi-LSTMs-CRF as our base-
line model (Figure 4 without Pinyin and Wubi in-
put), similar to the architectures proposed by Lam-
ple et al. (2016) and Dong et al. (2016). To ob-
tain an efficient fusion and sharing mechanism for
multiple features, we design three varied architec-
tures (see Figure 3). In what follows, we will pro-
vide detailed explanations and analysis.

1https://pypi.python.org/pypi/pypinyin
2http://wubi.free.fr/index_en.html
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Figure 4: The architecture of Bi-LSTM-CRF network.
PY and WB represent Pinyin Romanization and Wubi
Input introduced in this paper.

3.1 Model-I: Multi-Bi-LSTMs-CRF Model
In Model-I (Figure 3a), the input vectors of char-
acter, pinyin and wubi embeddings are fed into
three independent stacked Bi-LSTMs networks
and the output high-level features are fused via ad-
dition:

h
(t)
3,c = Bi-LSTMs1(x(t)

c , θc),

h
(t)
3,p = Bi-LSTMs2(x(t)

p , θp),

h
(t)
3,w = Bi-LSTMs3(x(t)

w , θw),

h(t) = h
(t)
3,c + h

(t)
3,p + h

(t)
3,w,

(1)

where θc, θp and θw denote parameters in three
Bi-LSTMs networks respectively. The outputs of
three-layer Bi-LSTMs are h

(t)
3,c, h

(t)
3,p and h

(t)
3,w,

which form the input of the CRF layer h(t). Here
three LSTM networks maintain independent pa-
rameters for multiple features thus leading to a
large computation cost during training.

3.2 Model-II: FC-Layer Bi-LSTMs-CRF
Model

On the contrary, Model-II (Figure 3b) incorpo-
rates multiple raw features directly by inserting
one fully-connected (FC) layer to learn a mapping
between fused linguistic features and concatenated
raw input embeddings. Then the output of this FC
layer is fed into the LSTM network:

x
(t)
in = [x(t)

c ;x(t)
p ;x(t)

w ],

x(t) = σ(Wfcx
(t)
in + bfc),

(2)

where σ is the logistic sigmoid function; Wfc and
bfc are trainable parameters of fully connected
layer; x(t)

c , x(t)
p and x

(t)
w are the input vectors of

character, pinyin and wubi embeddings. The out-
put of the fully connected layer x(t) forms the in-
put sequence of the Bi-LSTMs-CRF. This archi-
tecture benefits from its low computation cost but
suffers from insufficient extraction from raw code.
Meanwhile, Model-I and Model-II ignore the in-
teractions between different embeddings.

3.3 Model-III: Shared Bi-LSTMs-CRF
Model

To address feature dependency while maintaining
training efficiency, Model-III (Figure 3c) intro-
duces a sharing mechanism - rather than employ-
ing independent Bi-LSTMs networks for Pinyin
and Wubi, we let them share the same LSTMs with
character embeddings.

In Model-III, we feed character, Pinyin and
Wubi embeddings sequentially into a stacked Bi-
LSTMs network shared with the same parameters:




h
(t)
3,c

h
(t)
3,p

h
(t)
3,w


 = Bi-LSTMs(




w
(t)
c

w
(t)
p

w
(t)
w


 , θ),

ht = h
(t)
3,c + h

(t)
3,p + h

(t)
3,w,

(3)

where θ denotes the shared parameters of Bi-
LSTMs. Different from Eqn (1), there is only
one shared Bi-LSTMs rather than three indepen-
dent LSTM networks with more trainable param-
eters. In consequence, the shared Bi-LSTMs-CRF
model can be trained more efficiently compared to
Model-I and Model-II (extra FC-Layer expense).

Specifically, at each epoch, the parameters of
three networks are updated based on unified se-
quential character, Pinyin and Wubi embeddings.
The second LSTM network will share (or synchro-
nize) the parameters with the first network before
it begins the training procedure with Pinyin as in-
puts. In this way, the second network will take
fewer efforts in refining the parameters based on
the former correlated embeddings. So does the
third network (taking Wubi embedding as inputs).

4 Experimental Evaluations

In this section, we provide empirical results to ver-
ify the effectiveness of multiple embeddings for
CWS. Besides, our proposed Model-III can be
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Models
CTB6 PKU MSR AS CityU

P R F P R F P R F P R F P R F
baseline 94.1 94.0 94.1 95.8 95.9 95.8 95.3 95.7 95.5 95.6 95.5 95.6 95.9 96.0 96.0
Model-I 94.9 95.0 94.9 95.7 95.7 95.7 96.8 96.6 96.7 96.6 96.5 96.5 96.7 96.5 96.6
Model-II 95.4 95.3 95.4 96.3 95.7 96.0 96.6 96.5 96.6 96.8 96.5 96.7 97.2 97.0 97.1
Model-III 95.4 95.0 95.2 96.3 96.1 96.2 97.0 96.9 97.0 96.9 96.8 96.9 97.1 97.0 97.1

Table 1: Comparison of different architectures on five corpora. Bold font signifies the best performance in all
given models. Our proposed multiple-embedding models result in a significant improvement compared to vanilla
character-embedding baseline model.

trained efficiently (slightly costly than baseline)
and obtain the state-of-the-art performance.

4.1 Experimental Setup
To make the results comparable and convincing,
we evaluate our models on SIGHAN 2005 (Emer-
son, 2005) and Chinese Treebank 6.0 (CTB6)
(Xue et al., 2005) datasets, which are widely
used in previous works. We leverage standard
word2vec tool to train multiple embeddings. In
experiments, we tuned the embedding size follow-
ing Yao and Huang (2016) and assigned equal size
(256) for three types of embedding. The number
of Bi-LSTM layers is set as 3.

4.2 Experimental Results
Performance under Different Architectures
We comprehensively conduct the analysis of three
architecture proposed in Section 3. As illus-
trated in Table 1, considerable improvements are
obtained by three multi-embedding models com-
pared with our baseline model which only takes
character embeddings as inputs. Overall, Model-
III (shared Bi-LSTMs-CRF) achieves better per-
formance even with fewer trainable parameters.

Competitive Performance
To demonstrate the effectiveness of supplemen-
tary embeddings for CWS, we compare our mod-
els with previous state-of-the-art models.

Table 2 shows the comprehensive comparison
of performance on all Bakeoff2005 corpora. To
the best of our knowledge, we have achieved the
best performance on AS and CityU datasets (with
F1 score 96.9 and 97.3 respectively) and com-
petitive performance on PKU and MSR even if
not leveraging external resources (e.g. pre-trained
char/word embeddings, extra dictionaries, labeled
or unlabeled corpora). It is worthy to notice that
AS and CityU datasets are considered more diffi-
cult by researchers due to its larger capacity and

Model PKU MSR AS CityU

(Sun and Wan, 2012) 95.4 97.4 - -
(Chen et al., 2015) 94.8 95.6 - -
(Chen et al., 2017) 94.3 96.0 - 94.8
(Ma et al., 2018) 96.1 97.4 96.2 97.2

(Zhang et al., 2013)* 96.1 97.4 - -
(Chen et al., 2015)* 96.5 97.4 - -
(Cai et al., 2017)* 95.8 97.1 95.6 95.3

(Wang and Xu, 2017)* 96.5 98.0 - -
(Sun et al., 2017)* 96.0 97.9 96.1 96.9

baseline 95.8 95.5 95.6 96.0
ours (+PY)* 96.0 96.8 96.7 97.0
ours (+WB) 96.3 97.2 96.5 97.3

ours (+PY+WB)* 96.2 97.0 96.9 97.1

Table 2: Comparison with previous state-of-the-art
models on all four Bakeoff2005 datasets. The second
block (*) represents allowing the use of external re-
sources such as lexicon dictionary or trained embed-
dings on large-scale external corpora. Note that our
WB approach does not leverage any external resources.

higher out of vocabulary rate. It again verifies that
Pinyin and Wubi embeddings are capable of de-
creasing mis-segmentation rate in large-scale data.

Embedding Ablation
We conduct embedding ablation experiments on
CTB6 and CityU to explore the effectiveness of
Pinyin and Wubi embeddings individually. As
shown in Table 3, Pinyin and Wubi result in a con-
siderable improvement on F1-score compared to
vanilla single character-embedding model (base-
line). Moreover, Wubi-aided model usually leads
to a larger improvement than Pinyin-aided one.

Convergence Speed
To further study the additional expense after in-
corporating Pinyin and Wubi, we record the train-
ing time (batch time and convergence time in Ta-
ble 4) of proposed models on MSR. Compared to
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Models
CTB6 CityU

P R F P R F
baseline 94.1 94.0 94.1 95.9 96.0 96.0
IO + PY 94.6 94.9 94.8 96.8 96.4 96.6
IO + WB 95.3 95.4 95.3 97.3 97.3 97.3
Model-II 95.4 95.3 95.4 97.2 97.0 97.1

Table 3: Feature ablation on CTB6 and CityU. IO +
PY and IO + WB denote injecting Pinyin and Wubi
embeddings separately under Model-II.

Model Time (batch) Time (P-95%)
baseline 1 × 1 ×
Model-I 2.61 × 2.51 ×
Model-II 1.03 × 1.50 ×
Model-III 1.07 × 1.04 ×

Table 4: Relative training time on MSR. (a) averaged
training time per batch; (b) convergence time, where
above 95% precision is considered as convergence.

the baseline model, it almost takes the same train-
ing time (1.07×) per batch and convergence time
(1.04×) for Model-III. By contrast, Model-II leads
to slower convergence (1.50×) in spite of its lower
batch-training cost. In consequence, we recom-
mend Model-III in practice for its high efficiency.

5 Related Work

Since Xu (2003), researchers have mostly treated
CWS as a sequence labeling problem. Following
this idea, great achievements have been reached in
the past few years with the effective embeddings
introduced and powerful neural networks armed.

In recent years, there are plentiful works ex-
ploiting different neural network architectures in
CWS. Among these architectures, there are sev-
eral models most similar to our model: Bi-LSTM-
CRF (Huang et al., 2015), Bi-LSTM-CRF (Lam-
ple et al., 2016; Dong et al., 2016), and Bi-LSTM-
CNNs-CRF (Ma and Hovy, 2016).

Huang et al. (2015) was the first to adopt Bi-
LSTM network for character representations and
CRF for label decoding. Lample et al. (2016)
and Dong et al. (2016) exploited the Bi-LSTM-
CRF model for named entity recognition in west-
ern languages and Chinese, respectively. More-
over, Dong et al. (2016) introduced radical-level
information that can be regarded as a special case
of Wubi code in our model.

Ma and Hovy (2016) proposed to combine Bi-
LSTM, CNN and CRF, which results in faster con-
vergence speed and better performance on POS

and NER tasks. In addition, their model leverages
both the character-level and word-level informa-
tion.

Our work distinguishes itself by utilizing multi-
ple dimensions of features in Chinese characters.
With phonetic and semantic meanings taken into
consideration, three proposed models achieve bet-
ter performance on CWS and can be also adapted
to POS and NER tasks. In particular, compared
to radical-level information in (Dong et al., 2016),
Wubi Input encodes richer structure details and
potentially semantic relationships.

Recently, researchers propose to treat CWS as
a word-based sequence labeling problem, which
also achieves competitive performance (Zhang
et al., 2016; Cai and Zhao, 2016; Cai et al., 2017;
Yang et al., 2017). Other works try to introduce
very deep networks (Wang and Xu, 2017) or treat
CWS as a gap-filling problem (Sun et al., 2017).
We believe that proposed linguistic features can
also be transferred into word-level sequence la-
beling and correct the error. In a nutshell, multi-
ple embeddings are generic and easily accessible,
which can be applied and studied further in these
works.

6 Conclusion

In this paper, we firstly propose to leverage pho-
netic, structured and semantic features of Chinese
characters by introducing multiple character em-
beddings (Pinyin and Wubi). We conduct a com-
prehensive analysis on why Pinyin and Wubi em-
beddings are so essential in CWS task and could
be translated to other NLP tasks such as POS
and NER. Besides, we design three generic mod-
els to fuse the multi-embedding and produce the
start-of-the-art performance in five public corpora.
In particular, the shared Bi-LSTM-CRF models
(Model III in Figure 3) could be trained effi-
ciently and produce the best performance on AS
and CityU corpora. In future, the effective ways of
leveraging hierarchical linguistic features to other
languages, NLP tasks (e.g., POS and NER) and
refining mis-labeled sentences merit further study.

Acknowledgement

This research work has been partially funded by
the National Natural Science Foundation of China
(Grant No.61772337, U1736207), and the Na-
tional Key Research and Development Program of
China NO.2016QY03D0604.

215



References
Deng Cai and Hai Zhao. 2016. Neural word segmen-

tation learning for chinese. In ACL (1), Berlin, Ger-
many. The Association for Computer Linguistics.

Deng Cai, Hai Zhao, Zhisong Zhang, Yuan Xin,
Yongjian Wu, and Feiyue Huang. 2017. Fast and
accurate neural word segmentation for chinese. In
ACL (2), pages 608–615. Association for Computa-
tional Linguistics.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Pengfei Liu,
and Xuanjing Huang. 2015. Long short-term mem-
ory neural networks for chinese word segmentation.
In EMNLP, pages 1197–1206. The Association for
Computational Linguistics.

Xinchi Chen, Zhan Shi, Xipeng Qiu, and Xuanjing
Huang. 2017. Adversarial multi-criteria learning
for chinese word segmentation. In ACL (1), pages
1193–1203. Association for Computational Linguis-
tics.

Chuanhai Dong, Jiajun Zhang, Chengqing Zong,
Masanori Hattori, and Hui Di. 2016. Character-
based LSTM-CRF with radical-level features
for chinese named entity recognition. In
NLPCC/ICCPOL, volume 10102 of Lecture Notes
in Computer Science, pages 239–250. Springer.

Thomas Emerson. 2005. The second international chi-
nese word segmentation bakeoff. In Proceedings of
the Fourth SIGHAN Workshop on Chinese Language
Processing, SIGHAN@IJCNLP 2005, Jeju Island,
Korea, 14-15, 2005.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
CoRR, abs/1508.01991.

ISO 7098:2015(E). 2015. Information and documen-
tation – Romanization of Chinese. Standard, Inter-
national Organization for Standardization, Geneva,
CH.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In HLT-NAACL, pages 260–270. The Association
for Computational Linguistics.

Ji Ma, Kuzman Ganchev, and David Weiss. 2018.
State-of-the-art chinese word segmentation with bi-
lstms. In EMNLP, pages 4902–4908. Association
for Computational Linguistics.

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
ACL (1). The Association for Computer Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. CoRR, abs/1310.4546.

Fuchun Peng, Fangfang Feng, and Andrew McCallum.
2004. Chinese segmentation and new word detec-
tion using conditional random fields. In Proceedings
of the 20th International Conference on Computa-
tional Linguistics, COLING ’04, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Yan Shao, Christian Hardmeier, Jörg Tiedemann, and
Joakim Nivre. 2017. Character-based joint segmen-
tation and POS tagging for chinese using bidirec-
tional RNN-CRF. In IJCNLP(1), pages 173–183.
Asian Federation of Natural Language Processing.

Weiwei Sun and Xiaojun Wan. 2012. Reducing ap-
proximation and estimation errors for chinese lexical
processing with heterogeneous annotations. In ACL
(1), pages 232–241. The Association for Computer
Linguistics.

Yaming Sun, Lei Lin, Nan Yang, Zhenzhou Ji, and
Xiaolong Wang. 2014. Radical-enhanced chinese
character embedding. In ICONIP (2), volume 8835
of Lecture Notes in Computer Science, pages 279–
286. Springer.

Zhiqing Sun, Gehui Shen, and Zhi-Hong Deng. 2017.
A gap-based framework for chinese word segmenta-
tion via very deep convolutional networks. CoRR,
abs/1712.09509.

Chunqi Wang and Bo Xu. 2017. Convolutional neu-
ral network with word embeddings for chinese word
segmentation. In IJCNLP(1), pages 163–172. Asian
Federation of Natural Language Processing.

Nianwen Xu. 2003. Chinese word segmentation as
character tagging. Computational Linguistics and
Chinese Language Processing, 8(1):29–48.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Natural Lan-
guage Engineering, 11(2):207–238.

Jie Yang, Yue Zhang, and Fei Dong. 2017. Neural
word segmentation with rich pretraining. In ACL
(1), pages 839–849. Association for Computational
Linguistics.

Yushi Yao and Zheng Huang. 2016. Bi-directional
LSTM recurrent neural network for chinese word
segmentation. In ICONIP (4), volume 9950 of Lec-
ture Notes in Computer Science, pages 345–353.

Longkai Zhang, Houfeng Wang, Xu Sun, and Mairgup
Mansur. 2013. Exploring representations from un-
labeled data with co-training for chinese word seg-
mentation. In EMNLP, pages 311–321. ACL.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2016.
Transition-based neural word segmentation. In Pro-
ceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2016, Au-
gust 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers.

216



Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 217–222
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

Attention over Heads:
A Multi-Hop Attention for Neural Machine Translation

Shohei Iida†, Ryuichiro Kimura†, Hongyi Cui†, Po-Hsuan Hung†,
Takehito Utsuro† and Masaaki Nagata‡

†Graduate School of Systems and Information Engineering, University of Tsukuba, Japan
‡NTT Communication Science Laboratories, NTT Corporation, Japan

Abstract

In this paper, we propose a multi-hop attention
for the Transformer. It refines the attention for
an output symbol by integrating that of each
head, and consists of two hops. The first hop
attention is the scaled dot-product attention
which is the same attention mechanism used in
the original Transformer. The second hop at-
tention is a combination of multi-layer percep-
tron (MLP) attention and head gate, which ef-
ficiently increases the complexity of the model
by adding dependencies between heads. We
demonstrate that the translation accuracy of
the proposed multi-hop attention outperforms
the baseline Transformer significantly, +0.85
BLEU point for the IWSLT-2017 German-to-
English task and +2.58 BLEU point for the
WMT-2017 German-to-English task. We also
find that the number of parameters required for
a multi-hop attention is smaller than that for
stacking another self-attention layer and the
proposed model converges significantly faster
than the original Transformer.

1 Introduction

Multi-hop attention was first proposed in end-to-
end memory networks (Sukhbaatar et al., 2015)
for machine comprehension. In this paper, we de-
fine a hop as a computational step which could
be performed for an output symbol many times.
By “multi-hop attention”, we mean that some
kind of attention is calculated many times for
generating an output symbol. Previous multi-
hop attention can be classified into “recurrent at-
tention” (Sukhbaatar et al., 2015) and “hierarchi-
cal attention” (Libovický and Helcl, 2017). The
former repeats the calculation of attention many
times to refine the attention itself while the latter
integrates attentions for multiple input information
sources. The proposed multi-hop attention for the
Transformer is different from previous recurrent
attentions because the mechanism for the first hop
attention and that for the second hop attention is

different. It is also different from previous hierar-
chical attention because it is designed to integrate
attentions from different heads for the same infor-
mation source.

In neural machine translation, hier-
archical attention (Bawden et al., 2018;
Libovický and Helcl, 2017) can be thought
of a multi-hop attention because it repeats atten-
tion calculation to integrate the information from
multiple source encoders. On the other hand, in
the Transformer (Vaswani et al., 2017), the state-
of-the-art model for neural machine translation,
feed-forward neural network (FFNN) integrates
information from multiple heads. In this paper,
we propose a multi-hop attention mechanism as a
possible alternative to integrate information from
multi-head attention in the Transformer.

We find that the proposed Transformer with
multi-hop attention converges faster than the orig-
inal Transformer. This is likely because all heads
learn to influence each other, through a head gate
mechanism, in the second hop attention (Fig-
ure 1). Recently, many Transformer-based pre-
trained language models such as BERT have been
proposed and take about a month for training. The
speed at which the proposed model converges may
be even more important than the fact that its accu-
racy is slightly better.

2 Multi-Hop Multi-Head Attention for
the Transformer

2.1 Multi-Head Attention
One of the Transformer’s major successes is multi-
head attention, which allows each head to capture
different features and achieve better results com-
pared to a single-head case.

a(h) = softmax(
Q(h)K(h)T

√
d

)V (h) (1)

m = Concat(a(1), ..., a(h))WO (2)
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Figure 1: Multi-hop attention

Given the query Q, the key K, and the value
V , they are divided into each head. Here, h (=
1, . . . ,H) denotes the index of the head, where a
is the output of scaled dot-product attention, WO

is a parameter for a linear transformation, and d is
a scaling factor. Finally, the output of multi-head
attention, m, is input to the next layer. The calcu-
lation of attention using scaled dot-product atten-
tion is defined as the first hop (Figure 1).

2.2 Multi-Hop Attention

In the original Transformer (Vaswani et al., 2017),
information from each head is integrated by sim-
ple concatenation followed by a linear transforma-
tion. Attention is refined by stacking the combina-
tion of self-attention sub-layer and position-wise
feed-forward neural network sub-layer. However,
as layers are stacked, convergence becomes unsta-
ble. Consequently, there is a limit to the iterative
approach by layering. Therefore, we propose a
mechanism to repeat the calculation of attention
based on a mechanism other than stacking layers.

The original Transformer is considered to con-
sist of six single-hop attention layers. On the con-
trary, in the proposed method, some layers have

IWSLT2017
Model 2nd hop de→en en→de
Baseline - 33.46 27.21
Multi-hop 1 33.52 27.75†
Multi-hop 2 33.86† 27.98†
Multi-hop 3 33.74‡ 27.98†
Multi-hop 4 34.31† 28.08†
Multi-hop 5 33.81† 27.81†
Multi-hop 6 33.83† 27.96†
Multi-hop 1,2 33.77‡ 27.73†
Multi-hop 1,2,3 33.71‡ 27.90†
Multi-hop 1,2,3,4 33.58 27.88†
Multi-hop 1,2,3,4,5 33.30 27.60†
Multi-hop 1,2,3,4,5,6 32.53 27.30
Multi-hop 2,3,4,5,6 32.80 27.54‡
Multi-hop 3,4,5,6 33.22 27.75†
Multi-hop 4,5,6 33.40 27.74†
Multi-hop 5,6 33.60 27.92†

†(p ≤ 0.01) and ‡(p ≤ 0.05) indicate that the proposed
methods significantly outperform the Transformer baseline.

The encoder and the decoder each had six layers,

respectively.

Table 1: Best position for multi-hop

a multi-hop (two-hop) attention. By experiments,
we have established the appropriate position of
the proposed multi-hop attention in the neural ma-
chine translation system. If the number of layers
for encoders and decoders are six, then there are
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IWSLT2017 WMT17
Model de→en en→de de→en en→de

Baseline 33.46 27.21 21.33 18.15
Multi-hop 34.31† 28.08† 23.91† 19.88†

†(p ≤ 0.01) indicates that the proposed methods

significantly outperform the Transformer baseline.

Table 2: Evaluation Result

IWSLT2017
Model Layers de→en en→de
Vanilla 4 30.02 27.60

Multi-hop 4 30.09 27.63
Vanilla 5 33.80 28.00

Multi-hop 5 33.78 28.15
Vanilla 6 33.46 27.21

Multi-hop 6 34.31† 28.08†
Vanilla 7 31.80 26.58

Multi-hop 7 32.55† 27.36†

Table 3: Difference between 6-layer Transformer with
multi-hop and 7-layer stacked vanilla Transformer

six self-attention layers in both the encoder and
the decoder, respectively, and six source-to-target
attention layers in the decoder.

The first hop attention of the multi-hop at-
tention is equivalent to the calculation of scaled
dot-product attention (Equation 1) in the original
Transformer. The second hop attention consists of
multi-layer perceptron (MLP) attention and head
gate, as shown in Figure 1 and the following equa-
tions.

e
(h)
i = vT

b tanh(WbQ
(h) + U

(h)
b a

(h)
i ) (3)

β
(h)
i =

exp(e
(h)
i )

∑N
n=1 exp(e

(h)
i )

(4)

a
′(h)
i = β

(h)
i U (h)

c a
(h)
i (5)

First, MLP attention between the output of the
first hop, a

(h)
i , and the query, Q, is calculated. At-

tention is considered as the calculation of a re-
lationship between the query and the key/value.
Therefore, in the second hop, attention is calcu-
lated again by using the output of the first hop,
rather than the key/value.

Equations 4 and 5 are head gate in Figure 1.
The head gate normalizes the attention score of
each head to β

(h)
i , using the softmax function,

where h ranges over all heads. In hierarchical at-
tention (Bawden et al., 2018), the softmax func-
tion is used to select a single source from multi-
ple sources. Here, the proposed head gate uses
the softmax function to select a head from multi-

IWSLT2017
Model Layers de→en en→de
Vanilla 4 40,747K 41,882K

Multi-hop 4 40,763K 41,898K
Vanilla 5 48,103K 49,238K

Multi-hop 5 48,120K 49,254K
Vanilla 6 55,459K 56,594K

Multi-hop 6 55,492K 56.627K
Vanilla 7 62,816K 63,951K

Multi-hop 7 62,833K 63,967K

Table 4: Model Parameters

ple heads. Finally, the head gate calculates new at-
tention, a′(h)

i , using the learnable parameters U
(h)
c ,

β
(h)
i , and a

(h)
i . The second hop MLP attention

learns the optimal parameters for integration under
the influence of the head gate. Although Vaswani
et al. (2017) reported that dot-product attention is
superior to MLP attention, we used MLP atten-
tion in the second hop of the proposed multi-hop
attention because it can learn the dependence be-
tween heads by appropriately tuning the MLP pa-
rameters. We conclude that we can increase the
expressive power of the network more efficiently
by adding the second hop attention layer, rather
than by stacking another single-hop multi-head at-
tention layer.

3 Experiment

3.1 Data
We used German-English parallel data obtained
from the IWSLT2017 1 and the WMT17 2 shared
tasks.

The IWSLT2017 training, validation, and test
sets contain approximately 160K, 7.3K, and 6.7K
sentence pairs, respectively. There are approxi-
mately 5.9M sentence pairs in the WMT17 train-
ing dataset. For the WMT17 corpus, we used new-
stest2013 as the validation set and newstest2014
and newstest2017 as the test sets.

For tokenization, we used the subword-nmt
tool (Sennrich et al., 2016) to set a vocabulary size
of 32,000 for both German and English.

3.2 Experimental Setup
In our experiments, the baseline was the Trans-
former (Vaswani et al., 2017) model. We used

1https://sites.google.com/site/
iwsltevaluation2017/

2http://www.statmt.org/wmt17/
translation-task.html
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(a) All learning curve view (b) Enlarged view (loss 3.9 to 4.4)

Figure 2: Validation loss by each epoch for IWSLT2017 de-en - second hop in layer n to 6

fairseq (Gehring et al., 2017) 3 toolkit and the
source code will be available at our github reposi-
tory 4. For training, we used the Adam optimizer
with a learning rate of 0.0003. The embedding
size was 512, the hidden size was 2048, and the
number of heads was 8. The encoder and the
decoder each had six layers. The number of to-
kens per batch was 2,000. The number of train-
ing epochs for IWSLT2017 and WMT17 were 50
and 10, respectively. In all experiments using the
IWSLT2017, models were trained on an Nvidia
GeForce RTX 2080 Ti GPU, while in all experi-
ments using the WMT17, models were trained on
an Nvidia Tesla P100 GPU.

3.3 Results

Results of the evaluation are presented in Tables 1
and 2. In Table 2, the proposed multi-hop atten-
tion is used only at the fourth layer in the encoder.
In the evaluation of German-to-English translation
for IWSLT2017, the proposed method achieved
a BLEU score of 34.31, which indicates that it
significantly outperforms the Transformer base-
line, which returned a BLEU score of 33.46. For
WMT17, the proposed method achieved a BLEU
score of 23.91, indicating that it also significantly
outperformed the Transformer baseline, which re-
turned a BLEU score of 21.33.

In IWSLT2017 German-to-English and
English-to-German translation tasks, various
conditions were investigated, as shown in Table 1.

3https://github.com/pytorch/fairseq
4https://github.com/siida36/
fairseq_mhda

The best models are shown in Figure 2.
The baseline training time was 1143.2s per

epoch in IWSLT2017 German-to-English transla-
tion, and the training time for the proposed method
is 1145.6s per epoch. We found that increasing the
number of parameters did not affect training time.

4 Analysis

4.1 Difference between Multi-Hop and
7-layer Stacked Transformer

We compared the proposed method with the origi-
nal Transformer. Table 3 shows the translation ac-
curacies when the number of layers was changed
from 4 to 7, encoder and decoder, respectively.
Here,“Vanilla”refers to the original Transformer
and“Multi-hop”refers to the proposed method
where the multi-hop attention layer is used at the
fourth layer in the encoder. As shown in Table 3,
the 7-layer model BLEU score is lower than that
of the 6-layer model. In the experiments, the num-
ber of parameters required by the 6- and 7-layer
models was 55,459K, and 62,816K, respectively,
and the number of parameters for the multi-hop
method was 55,492K. The proposed method only
increases the number of parameters by one percent
compared to simply stacking one multi-head layer.
Thus, it is evident that simply increasing the num-
ber of parameters and repeating the attention cal-
culation doesn’t necessarily improve performance.
On the other hand, the proposed method does not
improve the BLEU score when the number of lay-
ers is four and five. This is probably because the
parameters of each head in the baseline Trans-
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Second hop
Epoch Baseline Layer 1,2,3,4,5,6 Layer 2,3,4,5,6 Layer 3,4,5,6 Layer 4,5,6 Layer 5,6 Layer 6

1 7.87 7.49 7.49 7.53 7.56 7.70 7.82
10 4.80 4.21 4.18 4.17 4.17 4.17 4.21
20 4.15 4.04 4.00 3.99 3.98 3.97 3.97
30 4.01 4.04 4.00 3.97 3.96 3.95 3.93
40 3.97 4.05 4.02 4.00 3.98 3.97 3.94
50 3.98 4.09 4.05 4.03 4.02 4.00 3.98

Table 5: Validation loss by epoch for IWSLT2017 de-en

Figure 3: Validation loss by each epoch for
IWSLT2017 de-en - second hop in only n layer

former are likely to converge properly when there
are relatively few parameters. Another interpreta-
tion is that the normalization among heads forced
by the proposed method works as noise.

As a conclusion, the proposed method demon-
strates that appropriate connection can be obtained
by recalculating attention in the layer where the
head has a dependency.

Table 1 shows the effect of introducing second
hop attention to various positions in the encoder.
The second column shows the positions where the
second hop attention is used. The best result was
obtained when the second hop attention was used
only for the fourth layer in the encoder. Perfor-
mance decreased as the second hop attention was
introduced to more layers, i.e., the worst result was
obtained when using the second hop in all layers
(second hop in layer 1,2,3,4,5,6). Further studies
are needed to elucidate the relationship between
performance and position of the second hop atten-
tion.

4.2 Effect on Learning Speed

Table 5 shows the validation loss of models for the
IWSLT2017 German-to-English translation task
with the second hop layers whose dropout rate is

30%. All models have 6 layers and the positions
of the second hop layers have narrowed from all 6
layers to only 6th layers. It should be noted that,
in the first epoch (row 1, Table 5), the model with
the second hop in all layers has the lowest valida-
tion loss, while the baseline model has the highest
validation loss.

Figure 2(a) shows the learning curve based on
the same data shown in Table 5, It is apparent that
the models with the second hop converge faster
than the baseline model. Figure 2(b) is an enlarged
view of Figure 2(a), focused on the lowest valida-
tion loss for different models. We find that the val-
idation loss is lower when there are fewer second
hop attentions.

Figure 3 shows the learning curves for the mod-
els with multi-hop attention used only once any-
where in layer 1 to 6. We find the model with
second hop attention in layer 6 converges fastest.
In terms of convergence, as opposed to accuracy,
it seems appropriate to use second hop attention
only in the last (6th) layer in the encoder.

5 Related Work

The mechanism of the proposed multi-hop at-
tention for the Transformer was inspired by the
hierarchical attention in multi-source sequence-
to-sequence model (Libovický and Helcl, 2017).
The term “multi-hop” is borrowed from the
end-to-end memory network (Sukhbaatar et al.,
2015) and the title “attention over heads” is in-
spired by Attention-over-Attention neural network
(Cui et al., 2017), respectively.

Ahmed et al. (2018) proposed Weighted Trans-
former which replaces multi-head attention by
multiple self-attention branches that learn to com-
bine during the training process. They reported
that it slightly outperformed the baseline Trans-
former (0.5 BLEU points on the WMT 2014
English-to-German translation task) and con-
verges 15-40% faster. They linearly combined
the multiple sources of attention, while we com-
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bined multiple attention non-linearly using soft-
max function in the second hop.

It is well known that the Transformer is diffi-
cult to train (Popel and Bojar, 2018). As it has a
large number of parameters, it takes time to con-
verge and sometimes it does not do so at all with-
out appropriate hyper parameter tuning. Consid-
ering the experimental results of our multi-hop at-
tention experiments, and that of the Weight Trans-
former, an appropriate design of the network to
combine multi-head attention could result in faster
and more stable convergence of the Transformer.
As the Transformer is used as a building block for
the recently proposed pre-trained language models
such as BERT (Devlin et al., 2019) which takes
about a month for training, we think it is worth-
while to pursue this line of research including the
proposed multi-hop attention.

Universal Transformer (Dehghani et al., 2019)
can be thought of variable-depth recurrent at-
tention. It obtained Turing-complete expressive
power in exchange for a vast increase in the num-
ber of parameters and training time. As shown in
Table 4, we have proposed an efficient method to
increase the depth of recurrence in terms of the
number of parameters and training time. Recently,
Voita et al. (2019) and Michel et al. (2019) inde-
pendently reported that only a certain subset of the
heads plays an important role in the Transformer.
They performed analyses by pruning heads from
an already trained model, while we have proposed
a method to assign weights to heads automati-
cally. We assume our method (multi-hop attention
or attention-over-heads) selects important heads in
the early stage of training, which results in faster
convergence than the original Transformer.

6 Conclusion

In this paper, we have proposed a multi-hop atten-
tion mechanism for a Transformer model in which
all heads depend on each other repeatedly. We
found that the proposed method significantly out-
performs the original Transformer in accuracy and
converges faster with little increase in the number
of parameters. In future work, we would like to
implement a multi-hop attention mechanism to the
decoder side and investigate other language pairs.
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Abstract

Gender bias exists in natural language datasets
which neural language models tend to learn,
resulting in biased text generation. In this
research, we propose a debiasing approach
based on the loss function modification. We
introduce a new term to the loss function
which attempts to equalize the probabilities of
male and female words in the output. Using
an array of bias evaluation metrics, we provide
empirical evidence that our approach success-
fully mitigates gender bias in language mod-
els without increasing perplexity by much. In
comparison to existing debiasing strategies,
data augmentation, and word embedding de-
biasing, our method performs better in sev-
eral aspects, especially in reducing gender bias
in occupation words. Finally, we introduce a
combination of data augmentation and our ap-
proach, and show that it outperforms existing
strategies in all bias evaluation metrics.

1 Introduction

Natural Language Processing (NLP) models are
shown to capture unwanted biases and stereotypes
found in the training data which raise concerns
about socioeconomic, ethnic and gender discrimi-
nation when these models are deployed for public
use (Lu et al., 2018; Zhao et al., 2018).

There are numerous studies that identify al-
gorithmic bias in NLP applications. Lapowsky
(2018) showed ethnic bias in Google autocom-
plete suggestions whereas Lambrecht and Tucker
(2018) found gender bias in advertisement deliv-
ery systems. Additionally, Zhao et al. (2018)
demonstrated that coreference resolution systems
exhibit gender bias.

Language modelling is a pivotal task in NLP
with important downstream applications such as
text generation (Sutskever et al., 2011). Recent

∗Yusu Qian and Urwa Muaz contributed equally to the
paper.

studies by Lu et al. (2018) and Bordia and Bow-
man (2019) have shown that this task is vulnerable
to gender bias in the training corpus. Two prior
works focused on reducing bias in language mod-
elling by data preprocessing (Lu et al., 2018) and
word embedding debiasing (Bordia and Bowman,
2019). In this study, we investigate the efficacy
of bias reduction during training by introducing a
new loss function which encourages the language
model to equalize the probabilities of predicting
gendered word pairs like he and she. Although we
recognize that gender is non-binary, for the pur-
pose of this study, we focus on female and male
words.

Our main contributions are summarized as fol-
lows: i) to our best knowledge, this study is the
first one to investigate bias alleviation in text gen-
eration by direct modification of the loss func-
tion; ii) our new loss function effectively reduces
gender bias in the language models during train-
ing by equalizing the probabilities of male and
female words in the output; iii) we show that
end-to-end debiasing of the language model can
achieve word embedding debiasing; iv) we pro-
vide an interpretation of our results and draw a
comparison to other existing debiasing methods.
We show that our method, combined with an ex-
isting method, counterfactual data augmentation,
achieves the best result and outperforms all exist-
ing methods.

2 Related Work

Recently, the study of bias in NLP applications
has received increasing attention from researchers.
Most relevant work in this domain can be broadly
divided into two categories: word embedding de-
biasing and data debiasing by preprocessing.

Word Embedding Debiasing Bolukbasi et al.
(2016) introduced the idea of gender subspace as
low dimensional space in an embedding that cap-
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tures the gender information. Bolukbasi et al.
(2016) and Zhao et al. (2017) defined gender bias
as a projection of gender-neutral words on a gen-
der subspace and removed bias by minimizing this
projection. Gonen and Goldberg (2019) proved
that bias removal techniques based on minimiz-
ing projection onto the gender space are insuffi-
cient. They showed that male and female stereo-
typed words cluster together even after such debi-
asing treatments. Thus, gender bias still remains
in the embeddings and is easily recoverable.

Bordia and Bowman (2019) introduced a co-
occurrence based metric to measure gender bias
in texts and showed that the standard datasets used
for language model training exhibit strong gender
bias. They also showed that the models trained
on these datasets amplify bias measured on the
model-generated texts. Using the same defini-
tion of embedding gender bias as Bolukbasi et al.
(2016), Bordia and Bowman (2019) introduced a
regularization term that aims to minimize the pro-
jection of neutral words onto the gender subspace.
Throughout this paper,we refer to this approach as
REG. They found that REG reduces bias in the
generated texts for some regularization coefficient
values. But, this bias definition is shown to be in-
complete by Gonen and Goldberg (2019). Instead
of explicit geometric debiasing of the word em-
bedding, we implement a loss function that mini-
mizes bias in the output and thus adjust the whole
network accordingly. For each model, we analyze
the generated word embedding to understand how
it is affected by output debiasing.

Data Debiasing Lu et al. (2018) showed that
gender bias in coreference resolution and language
modelling can be mitigated through a data aug-
mentation technique that expands the corpus by
swapping the gender pairs like he and she, or fa-
ther and mother. They called this Counterfactual
Data Augmentation (CDA) and concluded that it
outperforms the word embedding debiasing strat-
egy proposed by Bolukbasi et al. (2016). CDA
doubles the size of the training data and increases
time needed to train language models. In this
study, we intend to reduce bias during training
without requiring an additional data preprocessing
step.

3 Methodology

3.1 Dataset
For the training data, we use Daily Mail news ar-
ticles released by Hermann et al. (2015). This
dataset is composed of 219,506 articles covering a
diverse range of topics including business, sports,
travel, etc., and is claimed to be biased and sen-
sational (Bordia and Bowman, 2019). For man-
ageability, we randomly subsample 5% of the text.
The subsample has around 8.25 million tokens in
total.

3.2 Language Model
We use a pre-trained 300-dimensional word em-
bedding, GloVe, by Pennington et al. (2014). We
apply random search to the hyperparameter tuning
of the LSTM language model. The best hyperpa-
rameters are as follows: 2 hidden layers each with
300 units, a sequence length of 35, a learning rate
of 20 with an annealing schedule of decay start-
ing from 0.25 to 0.95, a dropout rate of 0.25 and
a gradient clip of 0.25. We train our models for
150 epochs, use a batch size of 48, and set early
stopping with a patience of 5.

3.3 Loss Function
Language models are usually trained using cross-
entropy loss. Cross-entropy loss at time step t is

LCE(t) = −
∑

w∈V
yw,t log (ŷw,t) ,

where V is the vocabulary, y is the one hot vector
of ground truth and ŷ indicates the output softmax
probability of the model.

We introduce a loss term LB , which aims to
equalize the predicted probabilities of gender pairs
such as woman and man.

LB(t) =
1

G

G∑

i

∣∣∣∣log
ŷfi,t
ŷmi,t

∣∣∣∣

f andm are a set of corresponding gender pairs,G
is the size of the gender pairs set, and ŷ indicates
the output softmax probability. We use gender
pairs provided by Zhao et al. (2017). By consider-
ing only gender pairs we ensure that only gender
information is neutralized and distribution over se-
mantic concepts is not altered. For example, it
will try to equalize the probabilities of congress-
man with congresswoman and actor with actress
but distribution of congressman, congresswoman
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versus actor, actress will not be affected. Overall
loss can be written as

L =
1

T

T∑

t=1

LCE(t) + λLB(t) ,

where λ is a hyperparameter and T is the corpus
size. We observe that among the similar minima
of the loss function, LB encourages the model
to converge towards a minimum that exhibits the
lowest gender bias.

3.4 Model Evaluation

Language models are evaluated using perplexity,
which is a standard measure of performance for
unseen data. For bias evaluation, we use an array
of metrics to provide a holistic diagnosis of the
model behavior under debiasing treatment. These
metrics are discussed in detail below. In all the
evaluation metrics requiring gender pairs, we use
gender pairs provided by Zhao et al. (2017). This
list contains 223 pairs, all other words are consid-
ered gender-neutral.

3.4.1 Co-occurrence Bias
Co-occurrence bias is computed from the model-
generated texts by comparing the occurrences of
all gender-neutral words with female and male
words. A word is considered to be biased towards
a certain gender if it occurs more frequently with
words of that gender. This definition was first used
by Zhao et al. (2017) and later adapted by Bor-
dia and Bowman (2019). Using the definition of
gender bias similar to the one used by Bordia and
Bowman (2019), we define gender bias as

BN =
1

N

∑

w∈N

∣∣∣∣log
c(w,m)

c(w, f)

∣∣∣∣ ,

where N is a set of gender-neutral words, and
c(w, g) is the occurrences of a word w with words
of gender g in the same window. This score
is designed to capture unequal co-occurrences of
neutral words with male and female words. Co-
occurrences are computed using a sliding window
of size 10 extending equally in both directions.
Furthermore, we only consider words that occur
more than 20 times with gendered words to ex-
clude random effects.

We also evaluate a normalized version of BN

which we denote by conditional co-occurrence
bias, BN

c . This is defined as

BN
c =

1

N

∑

w∈N

∣∣∣∣log
P (w|m)

P (w|f)

∣∣∣∣ ,

where

P (w|g) = c(w, g)

c(g)
.

BN
c is less affected by the disparity in the general

distribution of male and female words in the text.
The disparity between the occurrences of the two
genders means that text is more inclined to men-
tion one over the other, so it can also be considered
a form of bias. We report the ratio of occurrence
of male and female words in the model generated
text, GR, as

GR =
c(m)

c(f)
.

3.4.2 Causal Bias
Another way of quantifying bias in NLP models is
based on the idea of causal testing. The model is
exposed to paired samples which differ only in one
attribute (e.g. gender) and the disparity in the out-
put is interpreted as bias related to that attribute.
Zhao et al. (2018) and Lu et al. (2018) applied this
method to measure bias in coreference resolution
and Lu et al. (2018) also used it for evaluating gen-
der bias in language modelling.

Following the approach similar to Lu et al.
(2018), we limit this bias evaluation to a set of
gender-neutral occupations. We create a list of
sentences based on a set of templates. There are
two sets of templates used for evaluating causal
occupation bias (Table 1). The first set of tem-
plates is designed to measure how the probabilities
of occupation words depend on the gender infor-
mation in the seed. Below is an example of the
first set of templates:

[Genderedword] is a | [occupation] .

Here, the vertical bar separates the seed sequence
that is fed into the language models from the target
occupation, for which we observe the output soft-
max probability. We measure causal occupation
bias conditioned on gender as

CB|g =
1

|O|
1

G

∑

o∈O

G∑

i

∣∣∣∣log
p(o|fi)
p(o|mi)

∣∣∣∣ ,

whereO is a set of gender-neutral occupations and
G is the size of the gender pairs set. For exam-
ple, P (doctor|he) is the softmax probability of
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He is a |
doctor log P (t|s1)

P (t|s2)
She is a |

s1

s2

t

(a) Occupation bias conditioned on gendered words

The doctor is a |
man

log P (t1|s)
P (t2|s)

woman

s
t1

t2

(b) Occupation bias conditioned on occupations

Table 1: Example templates of two types of occupation bias

the word doctor where the seed sequence is He
is a. The second set of templates like below, aims
to capture how the probabilities of gendered words
depend on the occupation words in the seed.

The [occupation] is a | [genderedword] .

Causal occupation bias conditioned on occupation
is represented as

CB|o = 1

|O|
1

G

∑

o∈O

G∑

i

∣∣∣∣log
p(fi|o)
p(mi|o)

∣∣∣∣ ,

whereO is a set of gender-neutral occupations and
G is the size of the gender pairs set. For example,
P (man|doctor) is the softmax probability of man
where the seed sequence is The doctor is a.

We believe that bothCB|g andCB|o contribute
to gender bias in the model-generated texts. We
also note that CB|o is more easily influenced by
the general disparity in male and female word
probabilities.

3.4.3 Word Embedding Bias
Our debiasing approach does not explicitly ad-
dress the bias in the embedding layer. Therefore,
we use gender-neutral occupations to measure the
embedding bias to observe if debiasing the output
layer also decreases the bias in the embedding. We
define the embedding bias, EBd, as the difference
between the Euclidean distance of an occupation
word to male words and the distance of the occu-
pation word to the female counterparts. This defi-
nition is equivalent to bias by projection described
by Bolukbasi et al. (2016). We define EBd as

EBd =
∑

o∈O

G∑

i

|‖E(o)− E(mi)‖2

−‖E(o)− E(fi)‖2| ,

where O is a set of gender-neutral occupations,
G is the size of the gender pairs set and E is the
word-to-vector dictionary.

3.5 Existing Approaches

We apply CDA where we swap all the gendered
words using a bidirectional dictionary of gender
pairs described by Lu et al. (2018). This creates
a dataset twice the size of the original data, with
exactly the same contextual distributions for both
genders and we use it to train the language models.

We also implement the bias regularization
method of Bordia and Bowman (2019) which
debiases the word embedding during language
model training by minimizing the projection of
neutral words on the gender axis. We use hyper-
parameter tuning to find the best regularization co-
efficient and report results from the model trained
with this coefficient. We later refer to this strategy
as REG.

4 Experiments

Initially, we measure the co-occurrence bias in the
training data. After training the baseline model,
we implement our loss function and tune for the
λ hyperparameter. We test the existing debias-
ing approaches, CDA and REG, as well but since
Bordia and Bowman (2019) reported that results
fluctuate substantially with different REG regu-
larization coefficients, we perform hyperparame-
ter tuning and report the best results in Table 2.
Additionally, we implement a combination of our
loss function and CDA and tune for λ. Finally,
bias evaluation is performed for all the trained
models. Causal occupation bias is measured di-
rectly from the models using template datasets dis-
cussed above and co-occurrence bias is measured
from the model-generated texts, which consist of
10,000 documents of 500 words each.

4.1 Results

Results for the experiments are listed in Table 2.
It is interesting to observe that the baseline model
amplifies the bias in the training data set as mea-
sured by BNand BN

c . From measurements us-
ing the described bias metrics, our method effec-
tively mitigates bias in language modelling with-
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Model BN BN
c GR Ppl. CB|o CB|g EBd

Dataset 0.340 0.213 - - - -
Baseline 0.531 0.282 1.415 117.845 1.447 97.762 0.528

REG 0.381 0.329 1.028 114.438 1.861 108.740 0.373
CDA 0.208 0.149 1.037 117.976 0.703 56.82 0.268
λ0.01 0.492 0.245 1.445 118.585 0.111 9.306 0.077
λ0.1 0.459 0.208 1.463 118.713 0.013 2.326 0.018
λ0.5 0.312 0.173 1.252 120.344 0.000 1.159 0.006
λ0.8 0.226 0.151 1.096 119.792 0.001 1.448 0.002
λ1 0.218 0.153 1.049 120.973 0.000 0.999 0.002
λ2 0.221 0.157 1.020 123.248 0.000 0.471 0.000

λ0.5 + CDA 0.205 0.145 1.012 117.971 0.000 0.153 0.000

Table 2: Evaluation results for models trained on Daily Mail and their generated texts

out a significant increase in perplexity. At λ value
of 1, it reduces BN by 58.95%, BN

c by 45.74%,
CB|o by 100%, CB|g by 98.52% and EBd by
98.98%. Compared to the results of CDA and
REG, it achieves the best results in both occupa-
tion biases, CB|g and CB|o, and EBd. We notice
that all methods result in GR around 1, indicat-
ing that there are near equal amounts of female
and male words in the generated texts. In our ex-
periments we note that with increasing λ, the bias
steadily decreases and perplexity tends to slightly
increase. This indicates that there is a trade-off
between bias and perplexity.

REG is not very effective in mitigating bias
when compared to other methods, and fails to
achieve the best result in any of the bias metrics
that we used. But REG results in the best perplex-
ity and even does better than the baseline model in
this respect. This indicates that REG has a slight
regularization effect. Additionally, it is interesting
to note that our loss function outperforms REG
in EBd even though REG explicitly aims to re-
duce gender bias in the embeddings. Although our
method does not explicitly attempt geometric de-
biasing of the word embedding, the results show
that it results in the most debiased embedding as
compared to other methods. Furthermore, Gonen
and Goldberg (2019) emphasizes that geometric
gender bias in word embeddings is not completely
understood and existing word embedding debias-
ing strategies are insufficient. Our approach pro-
vides an appealing end-to-end solution for model
debiasing without relying on any measure of bias
in the word embedding. We believe this concept is
generalizable to other NLP applications.

Our method outperforms CDA in CB|g, CB|o,

and EBd. While CDA achieves slightly better re-
sults for co-occurrence biases, BNand BN

c , and
results in a better perplexity. With a marginal
differences, our results are comparable to those
of CDA and both models seem to have similar
bias mitigation effects. However, our method does
not require a data augmentation step and allows
training of an unbiased model directly from bi-
ased datasets. For this reason, it also requires less
time to train than CDA since its training data has
a smaller size without data augmentation. Fur-
thermore, CDA fails to effectively mitigate occu-
pation bias when compared to our approach. Al-
though the training data for CDA does not con-
tain gender bias, the model still exhibits some gen-
der bias when measured with our causal occupa-
tion bias metrics. This reinforces the concept that
some model-level constraints are essential to debi-
asing a model and dataset debiasing alone cannot
be trusted.

Finally, we note that the combination of CDA
and our loss function outperforms all the methods
in all measures of biases without compromising
perplexity. Therefore, it can be argued that a cas-
cade of these approaches can be used to optimally
debias the language models.

5 Conclusion and Discussion

In this research, we propose a new approach for
mitigating gender bias in neural language models
and empirically show its effectiveness in reducing
bias as measured with different evaluation metrics.
Our research also highlights the fact that debias-
ing the model with bias penalties in the loss func-
tion is an effective method. We emphasize that
loss function based debiasing is powerful and gen-
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eralizable to other downstream NLP applications.
The research also reinforces the idea that geomet-
ric debiasing of the word embedding is not a com-
plete solution for debiasing the downstream appli-
cations but encourages end-to-end approaches to
debiasing.

All the debiasing techniques experimented in
this paper rely on a predefined set of gender pairs
in some way. CDA used gender pairs for flipping,
REG uses it for gender space definition and our
technique uses them for computing loss. This re-
liance on pre-defined set of gender pairs can be
considered a limitation of these methods. It also
results in another concern. There are gender asso-
ciated words which do not have pairs, like preg-
nant. These words are not treated properly by
techniques relying on gender pairs.

Future work includes designing a context-aware
version of our loss function which can distinguish
between the unbiased and biased mentions of the
gendered words and only penalize the biased ver-
sion. Another interesting direction is exploring the
application of this method in mitigating racial bias
which brings more challenges.
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Abstract

Comments on social media are very diverse, in
terms of content, style and vocabulary, which
make generating comments much more chal-
lenging than other existing natural language
generation (NLG) tasks. Besides, since dif-
ferent user has different expression habits, it
is necessary to take the user’s profile into con-
sideration when generating comments. In this
paper, we introduce the task of automatic gen-
eration of personalized comment (AGPC) for
social media. Based on tens of thousands of
users’ real comments and corresponding user
profiles on weibo, we propose Personalized
Comment Generation Network (PCGN) for
AGPC. The model utilizes user feature embed-
ding with a gated memory and attends to user
description to model personality of users. In
addition, external user representation is taken
into consideration during the decoding to en-
hance the comments generation. Experimental
results show that our model can generate natu-
ral, human-like and personalized comments.1

1 Introduction

Nowadays, social media is gradually becoming a
mainstream communication tool. People tend to
share their ideas with others by commenting, re-
posting or clicking like on posts in social media.
Among these behaviors, comment plays a signif-
icant role in the communication between posters
and readers. Automatically generate personalized
comments (AGPC) can be useful due to the fol-
lowing reasons. First, AGPC helps readers express
their ideas more easily, thus make them engage
more actively in the platform. Second, bloggers
can capture different attitudes to the event from
multiple users with diverse backgrounds. Lastly,

∗Equal Contribution.
1Source codes of this paper are available at

https://github.com/Walleclipse/AGPC

the platform can also benefit from the increasing
interactive rate.

Despite its great applicability, the AGPC task
faces two important problems: whether can we
achieve it and how to implement it? The Social
Differentiation Theory proposed by Riley and Ri-
ley (1959) proved the feasibility of building a uni-
versal model to automatically generate personal-
ized comments based on part of users’ data. The
Individual Differences Theory pointed by Hovland
et al. (1953) answers the second question by in-
troducing the significance of users’ background,
which inspires us to incorporating user profile
into comments generation process. More specifi-
cally, the user profile consists of demographic fea-
tures (for example, where does the user live), in-
dividual description and the common word dic-
tionary extracted from user’s comment history.
There are few works exploring the comments gen-
eration problem. Zheng et al. (2017) first paid
attention to generating comments for news arti-
cles by proposing a gated attention neural net-
work model (GANN) to address the contextual rel-
evance and the diversity of comments. Similarly,
Qin et al. (2018) introduced the task of automatic
news article commenting and released a large scale
Chinese corpus. Nevertheless, AGPC is a more
challenging task, since it not only requires gener-
ating relevant comments given the blog text, but
also needs the consideration of the diverse users’
background.

In this paper, we propose a novel task, automat-
ically generating personalized comment based on
user profile. We build the bridge between user
profiles and social media comments based on a
large-scale and high-quality Chinese dataset. We
elaborately design a generative model based on
sequence-to-sequence (Seq2Seq) framework. A
gated memory module is utilized to model the user
personality. Besides, during the decoding process,
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the model attends to user description to enhance
the comments generation process. In addition,
the vocabulary distribution of generated word is
adapted by considering the external user represen-
tation.

Our main contributions are as follows:

• We propose the task of automatic generating
personalized comment with exploiting user
profile.

• We design a novel model to incorporate the
personalized style in large-scale comment
generation. The model has three novel mech-
anisms: user feature embedding with gated
memory, blog-user co-attention, and an ex-
ternal personality expression.

• Experimental results show that the pro-
posed method outperforms various competi-
tive baselines by a large margin. With novel
mechanisms to exploit user information, the
generated comments are more diverse and in-
formative. We believe that our work can ben-
efit future work on developing personalized
and human-like NLG model.

2 Personalized Comments Dataset

We introduce the dataset as follows:

Data Preparation We collect short text posts
from Weibo, one of the most popular social me-
dia platform in China, which has hundreds of mil-
lions of active users. Each instance in the dataset
has province, city, gender, age, marital status, in-
dividual description of user’s, comment added by
user and homologous blog content. Figure 1 vi-
sually shows a sample instance. We tokenized
all text like individual description, comment and
blog content into words, using a popular python
library Jieba2. To facilitate the model to learn
valid information from the dataset, we removed
@, url, expressions in the text, and unified Chinese
into simplified characters. Discrete variables such
as province, city, gender and marital status were
treated uniformly by one-hot coding. To ensure
the quality of text, we filtered out samples with
less than two words in the variable of comment
and blog content. Besides, in order to learn user-
specific expression habits, we retain users with 50
or more records. The resulting dataset contains

2https://github.com/fxsjy/jieba

UID:
215803

Age:
24

Birthday:
1994-01-21

Gender:
� Female

Province:
�� Shanghai

City:
�� NULL

Individual Description:
�%��$
Practice makes prefect

Blog:
	���� &
��������!�����
�#����
The doctor prescribed the new medicine which let my
stomach uncomfortable. If only everything were a 
dream.

Comment:
��#��"��
Everything will be ok.

Figure 1: A data example in personalized comment
dataset. Corresponding English translation is provided.

Statistic User Comment Microblog
Train 32,719 2,659,870 1,450,948
Dev 24,739 69,659 27,822
Test 20,157 43,866 17,052
Total 32,719 4,463,767 1,495,822

Table 1: Sample size of three datasets

4,463,767 comments on 1,495,822 blog posts by
32,719 users.

Data Statistics We split the corpus into train-
ing, validation and testing set according to the mi-
croblog. To avoid overfitting, the records of the
same microblog will not appear in the above three
sets simultaneously. Table 1 displays the detail
sample size of user, comment and blog about train-
ing set, validation set and testing set. Each user
in the resulting dataset has an average of 56 sam-
ples. The average lengths of blog post, comment
and individual description are 50, 11 and 9 words,
respectively. The particular statistics of each ex-
perimental dataset are shown in Table 2.

Average length Train Dev Test Total
ID 8.84 9.04 8.83 8.85
Comment 11.28 11.32 11.86 11.28
Microblog 49.67 47.95 50.30 49.65

Table 2: Statistics of text variables. Individual descrip-
tion, abbreviated ID.
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Figure 2: Personalized comment generation network

3 Personalized Comment Generation
Network

Given a blog X = (x1, x2, · · · , xn) and a user
profile U = {F,D}, where F = (f1, f2, · · · , fk)
denotes the user’s numeric feature (for example,
age, city, gender) and D = (d1, d2, · · · , dl) de-
notes the user’s individual description, the AGPC
aims at generating comment Y = (y1, y2, · · · , ym)
that is coherent with blog X and user U . Fig-
ure 2 presents an overview of our proposed model,
which is elaborated on in detail as follows.

3.1 Encoder-Decoder Framework

Our model is based on the encoder-decoder
framework of the general sequence-to-sequence
(Seq2Seq) model (Sutskever et al., 2014). The
encoder converts the blog sequence X =
(x1, x2, · · · , xn) to hidden representations hX =
(hX1 , h

X
2 , · · · , hXn ) by a bi-directional Long Short-

Term Memory (LSTM) cell (Hochreiter and
Schmidhuber, 1997):

hXt = LSTMX
enc(h

X
t−1, xt) (1)

The decoder takes the embedding of a previously
decoded word e(yt−1) and a blog context vector
cXt as input to update its state st:

st = LSTMdec(st−1, [c
X
t ; e(yt−1)]) (2)

where [·; ·] denotes vector concatenation. The con-
text vector cXt is a weighted sum of encoder’s hid-
den states, which carries key information of the
input post (Bahdanau et al., 2014). Finally, the
decoder samples a word yt from the output proba-
bility distribution as follows

yt ∼ softmax(Wost) (3)

where Wo is a weight matrix to be learned. The
model is trained via maximizing the log-likelihood
of ground-truth Y ∗ = (y∗1, · · · , y∗n) and the objec-
tive function is defined as

L = −
n∑

t=1

log
(
p(y∗t |y∗<t, X, U)

)
(4)

3.2 User Feature Embedding with Gated
Memory

To encode the information in user profile, we map
user’s numeric feature F to a dense vector vu
through a fully-connected layer. Intuitively, vu can
be treated as a user feature embedding denotes the
character of the user. However, if the user feature
embedding is static during decoding, the gram-
matical correctness of sentences generated may be
sacrificed as argued in Ghosh et al. (2017). To
tackle this problem, we design an gated memory
module to dynamically express personality during
decoding, inspired by Zhou et al. (2018). Specifi-
cally, we maintain a internal personality state dur-
ing the generation process. At each time step, the
personality state decays by a certain amount. Once
the decoding process is completed, the personality
state is supposed to decay to zero, which indicates
that the personality is completely expressed. For-
mally, at each time step t, the model computes an
update gate gut according to the current state of
the decoder st. The initial personality state M0 is
set as user feature embedding vu. Hence, the per-
sonality stateMt is erased by a certain amount (by
gut ) at each step. This process is described as

gut = sigmoid(Wu
gst) (5)

M0 = vu (6)

Mt = gut ⊗Mt−1, t > 0 (7)

where⊗ denotes element-wise multiplication. Be-
sides, the model should decide how much atten-
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tion should be paid to the personality state at each
time step. Thus, output gate got is introduced to
control the information flow by considering the
previous decoder state st−1, previous target word
e(yt−1) and the current context vector cXt

got = sigmoid(Wo
g[st−1; e(yt−1); c

X
t ]). (8)

By an element-wise multiplication of got and Mt,
we can obtain adequate personality information
Mo

t for current decoding step

Mo
t = got ⊗Mt. (9)

3.3 Blog-User Co-Attention

Individual description is another important infor-
mation source when generating personalized com-
ments. For example, a user with individual de-
scription “只爱朱一龙” (I only love Yilong Zhu3),
tends to writes a positive and adoring comments
on the microblog related to Zhu. Motivated by
this, we propose Blog-user co-attention to model
the interactions between user description and blog
content. More specifically, we encode the user’s
individual descriptionD = (d1, d2, · · · , dl) to hid-
den states (hD1 , h

D
2 , · · · , hDl ) via another LSTM

hDt = LSTMD
enc(h

D
t−1, dt) (10)

We can obtain a description context vector cDt by
attentively reading the hidden states of user de-
scription,

cDt =
∑

j

αtjh
D
j (11)

αtj = softmax(etj) (12)

etj = st−1Wah
D
j (13)

where etj is a alignment score (Bahdanau et al.,
2014). Similarly, we can get the blog content vec-
tor cXt . Finally, the context vector ct is a concate-
nation of cXt and cDt , in order provide more com-
prehensive information of user’s personality

ct = [cXt ; cDt ] (14)

Therefore, the state update mechanism in Eq.(2) is
modified to

st = LSTMdec(st−1, [ct; e(yt−1);M
o
t ]) (15)

3A famous Chinese star.

3.4 External Personality Expression

In the gated memory module, the correlation be-
tween the change of the internal personality state
and selection of a word is implicit. To fully ex-
ploit the user information when selecting words
for generation, we first compute a user representa-
tion rut with user feature embedding and user de-
scription context.

rut = Wr[vu; c
D
t ] (16)

where Wr is a weight matrix to align user repre-
sentation dimention.

The final word is then sampled from output dis-
tribution based on the concatenation of decoder
state st and rut as

ỹt ∼ softmax(Wõt [st; r
u
t ]) (17)

where Wõt is a learnable weight matrix.

4 Experiments

4.1 Implementation

The blog content encoder and comment decoder
are both 2-layer bi-LSTM with 512 hidden units
for each layer. The user’s personality description
encoder is a single layer bi-LSTM with 200 hidden
units. The word embedding size is set to 300 and
vocabulary size is set to 40,000. The embedding
size of user’s numeric feature is set to 100.

We adopted beam search and set beam size to 10
to promote diversity of generated comments. We
used SGD optimizer with batch size set to 128 and
the learning rate is 0.001.

To further enrich the information provided by
user description, we collected most common k
words in user historical comments (k = 20 in our
experiment). We concatenate the common words
with the user individual description. Therefore,
we can obtain more information about users’ ex-
pression style. The model using concatenated user
description is named PCGN with common words
(PCGN+ComWord).

4.2 Baseline

We implemented a general Seq2Seq model
(Sutskever et al., 2014) and a user embedding
model (Seq2Seq+Emb) proposed by Li et al.
(2016) as our baselines. The latter model embeds
user numeric features into a dense vector and feeds
it as extra input into decoder at every time step.
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Method PPL B-2 METEOR

Seq2Seq 32.47 0.071 0.070
Seq2Seq+Emb 31.13 0.084 0.079

PCGN 27.94 0.162 0.132
PCGN+ComWord 24.48 0.193 0.151

Table 3: Automatic evaluation results of different
methods. PPL denotes perplexity and B-2 denotes
BLEU-2. Best results are shown in bold.

Method PPL B-2

Seq2Seq 32.47 0.071
+ Mem 30.73 (-1.74) 0.099 (+0.028)
+ CoAtt 27.12 (-3.61) 0.147 (+0.078)
+ External 27.94 (+0.82) 0.162 (+0.015)

Table 4: Incremental experiment results of proposed
model. Performance on METEOR is similar to B-2.
Mem denotes gated memory, CoAtt denotes blog-user
co-attention and External denotes external personality
expression

4.3 Evaluation Result

Metrics: We use BLEU-2 (Papineni et al.,
2002) and METEOR (Banerjee and Lavie, 2005)
to evaluate overlap between outputs and refer-
ences. Besides, perplexity is also provided.

Results: The results are shown in Table 3.
As can be seen, PCGN model with common
words obtains the best performance on perplex-
ity, BLEU-2 and METEOR. Note that the per-
formance of Seq2Seq is extremely low, since the
user profile is not taken into consideration during
the generation, resulting repetitive responses. In
contrast, with the help of three proposed mecha-
nism (gated memory, blog-user co-attention and
external personality expression), our model can
utilize user information effectively, thus is capable
of generating diverse and relevant comments for
the same blog. Further, we conducted incremental
experiments to study the effect of proposed mech-
anisms by adding them incrementally, as shown in
Table 4. It can be found that all three mechanism
help generate more diverse comments, while blog-
user co-attention mechanism contributes most im-
provements. An interesting finding is that external
personality expression mechanism causes the de-
cay on perplexity. We speculate that the modifica-
tion on word distribution by personality influence
the fluency of generated comments.

5 Related Work

This paper focuses on comments generation task,
which can be further divided into generating a
comment according to the structure data (Mei
et al., 2015), text data (Qin et al., 2018), im-
age (Vinyal et al., 2015) and video (Ma et al.,
2018a), separately.

There are many works exploring the problem
of text-based comment generation. Qin et al.
(2018) contributed a high-quality corpus for ar-
ticle comment generation problem. Zheng et al.
(2017) proposed a gated attention neural network
model (GANN) to generate comments for news
article, which addressed the contextual relevance
and the diversity of comments. To alleviate the
dependence on large parallel corpus, Ma et al.
(2018b) designed an unsupervised neural topic
model based on retrieval technique. However,
these works focus on generating comments on
news text, while comments on social media are
much more diverse and personal-specific.

In terms of the technique for modeling user
character, the existing works on machine com-
menting only utilized part of users’ information.
Ni and McAuley (2018) proposed to learn a latent
representation of users by utilizing history infor-
mation. Lin et al. (2018) acquired readers’ gen-
eral attitude to event mentioned by article through
its upvote count. Compared to the indirection in-
formation obtained from history or indicator, user
features in user profile, like demographic factors,
can provide more comprehensive and specific in-
formation, and thus should be paid more attention
to when generating comments. Sharing the same
idea that user personality counts, Luo et al. (2018)
proposed personalized MemN2N to explore per-
sonalized goal-oriented dialog systems. Equipped
with a profile model to learn user representation
and a preference model learning user preferences,
the model is capable of generating high quality re-
sponses. In this paper, we focus on modeling per-
sonality in a different scenario, where the gener-
ated comments is supposed to be general and di-
verse.

6 Conclusion

In this paper, we introduce the task of auto-
matic generating personalized comment. We also
propose Personality Comment Generation Net-
work (PCGN) to model the personality influence
in comment generation. The PCGN model utilized
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gated memory for user feature embedding, blog-
user co-attention, and external personality repre-
sentation to generate comments in personalized
style. Evaluation results show that PCGN outpe-
forms baseline models by a large margin. With the
help of three proposed mechanisms, the generated
comments are more fluent and diverse.
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A Case Study

We present some generated cases in Figure 4, 5.
There are multiple users (corresponding profiles
are shown in Figure 3) that are suitable for gen-
erating comments. Seq2Seq generates same com-
ments for the same blog, while PCGN can gen-
erate personalized comment conditioned on given
user. According to the user profile, U1 adores Yi-
long Zhu very much. Therefore, U1 tends to ex-
press her affection in comments when responses
to blogs related to Yilong Zhu. For users whose
individual descriptions can not offer helpful infor-
mation or there is missing value for individual de-
scription, the PCGN model pays more attention
to numeric features and learns representation from
similar seen users.
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User Age Gender Province City Individual Description

U1 24 女
Female

其他
Others

NULL 只爱朱一龙
I only love Yilong Zhu

U2 23 女
Female

黑龙江
Heilong Jiang

NULL 努力成为更好的自己
Become a better me

U3 20 女
Female

浙江
Zhejiang

宁波
Ningbo

NULL

Figure 3: Part of user profile of case study users. In order to protect user privacy, the birthday variable is not shown
here.

Blog
# ���PLY�x [ nm ] # [ 0�+ ] # ���4��h # ui��E�wY~zr7=�E\{Yzr_��9?�������
O�YF|���Y'a�o�Yg,�JKY[�������
Yilong Zhu Gentle power [super topic]# walking side by side with Yilong Zhu#The moment I met you seems like the wind of the wilderness, 
breaking into my heart. The moment I met you seems like the snow between the eyebrows, blending into the eyes. I want to share everything 
with you, the warm sun in the morning, the vast night sky, the beauty of the past and the companion in the future.

Comments
Seq2Seq:
# *�F3+7�C [ A? ] # # *�F�:�= #
#Yilong Zhu Gentle power [super topic]# #Yilong Zhu, move forward together#

PCGN U1:
������G 100 `A5�"d�qGN) 99 MY9��
There is one hunderd ways of sweetness, have a candy and miss you 99 times a day.

PCGN U2:
#���PLY�x OInm PI# J���4��h JI��� QINML
#Yilong Zhu Gentle power [super topic]# #Yilong Zhu, move forward together# Yilong Zhu| ZYL

PCGN U3:
�����:��Z-13�2�fc7.�]s�g,�[�g,
I hope that you are always young, with a clean and pure heart, always believing something beautiful

Figure 4: Generated comments based on blog of different users. Since Seq2Seq model does not take user profile
into consideration, it generates same comments for the same blog.

Blog
# <Y^H #pWB�$RXYy*�����U�b�>tjk(S�/��QY��
T�e#V%jk(Sv�l�%@
C����8! Angelababy!&/�}	 Angelababy��/D����!/��;����!/���
#My true friend # Using the lens of Japanese TV dramas and comics, Bazaar specially plans to create visual blockbusters, and present the 
relationship among the three main characters in the photo, which will give you a sneak of the movie before its showing! Angelababy Hairstyle / 
Liu Xueliang Angelababy Makeup / Chun Nan Lun Deng makeup hair / Jiancheng Li Yilong Zhu makeup hair / Pengkun Li

Comments
Seq2Seq:
# angelababy [ A? ] #
# angelababy [super topic] #

PCGN U1:
# *�F[ A? ] # # *�F�4 # ) �4��
Yilong Zhu[super topic]# #*�F�4# Looking forward to Jingan brother

PCGN U2:
I6I6
looking forward to

PCGN U3:
I6��
looking forward to Lun Deng

Figure 5: Generated comments based on blog of different users.
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Abstract

Multilingual Neural Machine Translation ap-
proaches are based on the use of task-specific
models and the addition of one more lan-
guage can only be done by retraining the
whole system. In this work, we propose a
new training schedule that allows the system
to scale to more languages without modifi-
cation of the previous components based on
joint training and language-independent en-
coder/decoder modules allowing for zero-shot
translation. This work in progress shows close
results to the state-of-the-art in the WMT task.

1 Introduction

In recent years, neural machine translation (NMT)
has had an important improvement in perfor-
mance. Among the different neural architectures,
most approaches are based in an encoder-decoder
structure and the use of attention-based mecha-
nisms (Cho et al., 2014; Bahdanau et al., 2014;
Vaswani et al., 2017). The main objective is com-
puting a representation of the source sentence that
is weighted with attention-based mechanisms to
compute the conditional probability of the tokens
of the target sentence and the previously decoded
target tokens. Same principles have been success-
fully applied to multilingual NMT, where the sys-
tem is able to translate to and from several differ-
ent languages.

Two main approaches have been proposed
for this task, language independent or shared
encoder-decoders. Language independent archi-
tectures(Firat et al., 2016a,b; Schwenk and Douze,
2017) in which each language has its own encoder
and some additional mechanism is added to pro-
duce shared representations, as averaging of the
context vectors or sharing the attention mecha-
nism. These architectures have the flexibility that
each language can be trained with its own vocab-

ulary all languages are trained in parallel. Re-
cent work (Lu et al., 2018) show how to per-
form many to many translations with indepen-
dent encoders and decoders just by sharing ad-
ditional language-specific layers that transformed
the language-specific representations into a shared
one without the need of a pivot language,

On the other hand, architectures that share pa-
rameters between all languages (Johnson et al.,
2017) by using a single encoder and decoder
trained to be able to translate from and to any
of the languages of the system. This approach
presents the advantage that no further mechanisms
are required to produced shared representation of
the languages as they all share the same vocabu-
lary and parameters, and by training all languages
without distinction they allow low resources lan-
guages to take benefit of other languages in the
system improving their performance. Even though
by sharing vocabulary between all languages the
number of required tokens grows as more lan-
guages are included in the system, especially when
languages employ different scripts in the system,
such as Chinese or Russian. Recent work pro-
poses a new approach to add new languages to a
system by adapting the vocabulary (Lakew et al.,
2018), relying on the shared tokens between the
languages to share model parameters, showing
that the amount of shared tokens between the lan-
guages had an impact in the model performance.
This could limit the capability of the system to
adapt to languages with a different script.

These approaches can be further explored into
unsupervised machine translation where the sys-
tem learns to translate between languages without
parallel data just by enforcing the generation and
representation of the tokens to be similar (Artetxe
et al., 2017; Lample et al., 2018).

Also related to our method, recent work has
explored transfer learning for NMT (Zoph et al.,
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2016; Kim et al., 2019) to improve the perfor-
mance of new translation directions by taking ben-
efit of the information of a previous model. These
approaches are particularly useful in low resources
scenarios when a previous model trained with or-
ders of magnitude more examples is available.

This paper proposes a proof of concept of a
new multilingual NMT approach. The current ap-
proach is based on joint training without parame-
ter or vocabulary sharing by enforcing a compati-
ble representation between the jointly trained lan-
guages and using multitask learning (Dong et al.,
2015). This approach is shown to offer a scalable
strategy to new languages without retraining any
of the previous languages in the system and en-
abling zero-shot translation. Also it sets up a flex-
ible framework to future work on the usage of pre-
trained compatible modules for different tasks.

2 Definitions

Before explaining our proposed model we intro-
duce the annotation and background that will be
assumed through the paper. Languages will be re-
ferred as capital letters X,Y, Z while sentences
will be referred in lower case x, y, z given that
x ∈ X , y ∈ Y and z ∈ Z.

We consider as an encoder (ex, ey, ez) the layers
of the network that given an input sentence pro-
duce a sentence representation (h(x), h(y), h(z))
in a space. Analogously, a decoder (dx, dy, dz)
is the layers of the network that given the sen-
tence representation of the source sentence is able
to produce the tokens of the target sentence. En-
coders and decoders will be always considered
as independent modules that can be arranged and
combined individually as no parameter is shared
between them. Each language and module has
its own weights independent from all the others
present in the system.

3 Joint Training

In this section, we are going to describe the
training schedule of our language independent
decoder-encoder system. The motivation to
choose this architecture is the flexibility to add
new languages to the system without modification
of shared components and the possibility to add
new modalities in the future as the only require-
ment of the architecture is that encodings are pro-
jected in the same space. Sharing network param-
eters may seem a more efficient approach to the

task, but it would not support modality specific
modules while

Given two languages X and Y , our objective
is to train independent encoders and decoders for
each language, ex, dx and ey, dy that produce com-
patible sentence representations h(x), h(y). For
instance, given a sentence x in language X , we
can obtain a representation h(x) from that the en-
coder ex that can be used to either generate a sen-
tence reconstruction using decoder dx or a transla-
tion using decoder dy. With this objective in mind,
we propose a training schedule that combines two
tasks (auto-encoding and translation) and the two
translation directions simultaneously by optimiz-
ing the following loss:

L = LXX + LY Y + LXY + LY X + d (1)

where LXX and LY Y correspond to the recon-
struction losses of both language X and Y (de-
fined as the cross-entropy of the generated tokens
and the source sentence for each language); LXY

and LY X correspond to the translation terms of the
loss measuring token generation of each decoder
given a sentence representation generated by the
other language encoder (using the cross-entropy
between the generated tokens and the translation
reference); and d corresponds to the distance met-
ric between the representation computed by the
encoders. This last term forces the representations
to be similar without sharing parameters while
providing a measure of similarity between the gen-
erated spaces. We have tested different distance
metrics such as L1, L2 or the discriminator addi-
tion (that tried to predict from which language the
representation was generated). For all these alter-
natives, we experienced a space collapse in which
all sentences tend to be located in the same spatial
region. This closeness between the sentences of
the same languages makes them non-informative
for decoding. As a consequence, the decoder per-
forms as a language model, producing an output
only based on the information provided by the pre-
viously decoded tokens. Weighting the distance
loss term in the loss did not improve the perfor-
mance due to the fact that for the small values re-
quired to prevent the collapse the architecture did
not learn a useful representation of both languages
to work with both decoders. To prevent this col-
lapse, we propose a less restrictive measure based
on correlation distance (Chandar et al., 2016) com-
puted as in equations 2 and 3. The rationale behind
this loss is maximizing the correlation between the
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representations produced by each language while
not enforcing the distance over the individual val-
ues of the representations.

d = 1− c(h(X), h(Y )) (2)

c(h(X), h(Y )) =
∑n

i=1(h(xi − h(X)))(h(yi − h(Y )))√∑n
i (h(xi)− h(X))2

∑n
i (h(yi)− h(Y ))2

(3)

where X and Y correspond to the data sources
we are trying to represent; h(xi) and h(yi) corre-
spond to the intermediate representations learned
by the network for a given observation; and h(X)
and h(Y ) are, for a given batch, the intermediate
representation mean of X and Y , respectively.

4 Incremental training

Given the jointly trained model between languages
X and Y , the following step is to add new lan-
guages in order to use our architecture as a mul-
tilingual system. Since parameters are not shared
between the independent encoders and decoders,
our architecture enables to add new languages
without the need to retrain the current languages in
the system. Let’s say we want to add language Z.
To do so, we require to have parallel data between
Z and any language in the system. So, assuming
that we have trained X and Y , we need to have ei-
ther Z−X or Z−Y parallel data. For illustration,
let’s fix that we have Z−X parallel data. Then, we
can set up a new bilingual system with language
Z as source and language X as target. To ensure
that the representation produced by this new pair
is compatible with the previously jointly trained
system, we use the previous X decoder (dx) as
the decoder of the new ZX system and we freeze
it. During training, we optimize the cross-entropy
between the generated tokens and the language X
reference data but only updating the layers belong-
ing to the language Z encoder (ez). Doing this, we
train ez not only to produce good quality transla-
tions but also to produce similar representations to
the already trained languages. No additional dis-
tance is added during this step. The language Z
sentence representation h(z) is only enforced by
the loss of the translation to work with the already
trained module as it would be trained in a bilingual
NMT system.

Our training schedule enforces the generation of
a compatible representation, which means that the

Figure 1: Language addition and zero shoot training
scheme

newly trained encoder ez can be used as input of
the decoder dy from the jointly trained system to
produce zero-shot Z to Y translations. See Figure
1 for illustration.

The fact that the system enables zero-shot trans-
lation shows that the representations produced by
our training schedule contain useful information
and that this can be preserved and shared to new
languages just by enforcing the new modules to
train with the previous one, without any modifica-
tion of the architecture. Another important aspect
is that no pivot language is required to perform the
translation, once the added modules are trained the
zero-shot translation is performed without gener-
ating the language used for training as the sentence
representations in the shared space are compatible
with all the modules in the system.

A current limitation is the need to use the same
vocabulary for the shared language (X) in both
training steps. The use of subwords (Sennrich
et al., 2015) mitigates the impact of this constraint.

5 Data and Implementation

Experiments are conducted using data extracted
from the UN (Ziemski et al., 2016) and EPPS
datasets (Koehn, 2005) that provide 15 million
parallel sentences between English and Spanish,
German and French. newstest2012 and new-
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System ES-EN EN-ES FR-EN DE-EN
Baseline 32.60 32.90 31.81 28.96
Joint 29.70 30.74 - -
Added lang - - 30.93 27.63

Table 1: Experiment results measured in BLEU score.
All blank positions are not tested or not viable combi-
nations with our data.

System FR-ES DE-ES
Pivot 29.09 21.74
Zero-shot 19.10 10.92

Table 2: Zero-shot results measured in BLEU score

stest2013 were used as validation and test sets,
respectively. These sets provide parallel data be-
tween the four languages that allow for zero-shot
evaluation. Preprocessing consisted of a pipeline
of punctuation normalization, tokenization, cor-
pus filtering of longer sentences than 80 words
and true-casing. These steps were performed us-
ing the scripts available from Moses (Koehn et al.,
2007). Preprocessed data is later tokenized into
BPE subwords (Sennrich et al., 2015) with a vo-
cabulary size of 32000 tokens. We ensure that the
vocabularies are independent and reusable when
new languages were added by creating vocabular-
ies monolingually, i.e. without having access to
other languages during the code generation.

6 Experiments

Our first experiment consists in comparing the per-
formance of the jointly trained system to the stan-
dard Transformer. As explained in previous sec-
tions, this joint model is trained to perform two
different tasks, auto-encoding and translation in
both directions. In our experiments, these direc-
tions are Spanish-English and English-Spanish. In
auto-encoding, both languages provide good re-
sults at 98.21 and 97.44 BLEU points for English
and Spanish, respectively. In translation, we ob-
serve a decrease in performance. Table 1 shows
that for both directions the new training performs
more than 2 BLEU points below the baseline sys-
tem. This difference suggests that even though the
encoders and decoders of the system are compati-
ble they still present some differences in the inter-
nal representation.

Note that the languages chosen for the joint
training seem relevant to the final system perfor-
mance because they are used to define the repre-
sentations of additional languages. Further exper-
imentation is required to understand such impact.

Our second experiment consists of incremen-
tally adding different languages to the system, in
this case, German and French. Note that, since we
freeze the weights while adding the new language,
the order in which we add new languages does not
have any impact on performance. Table 1 shows
that French-English performs 0.9 BLEU points be-
low the baseline and German-English performs
1.33 points below the baseline. French-English is
closer to the baseline performance and this may
be due to its similarity to Spanish, one of the lan-
guages of the initial system languages.

The added languages have better performance
than the jointly trained languages (Spanish-
English from the previous section). This may be
to the fact that the auto-encoding task may have a
negative impact on the translation task.

Finally, another relevant aspect of the proposed
architecture is enabling zero-shot translation. To
evaluate it, we compare the performance of each
of the added languages compared to a pivot sys-
tem based on cascade. Such a system consists of
translating from French (German) to English and
from English to Spanish with the standard Trans-
former. Results show that the zero shot translation
provides a consistent decrease in performance for
both cases of zero-shot translation.

7 Visualization

Our training schedule is based on training modules
to produce compatible representations, in this sec-
tion we want to analyze this similarity at the last
attention block of encoders, where we are forcing
the similarity. In order to graphically show the pre-
sentation a UMAP (McInnes et al., 2018) model
was trained to combine the representations of all
languages. Figures show 130 sentences extracted
from the test set. These sentences have been se-
lected to have a similar length to minimize the
amount of padding required.

Figure 2 (A) shows the representations of all
languages created by their encoders. Languages
are represented in clusters and no overlapping be-
tween languages occurs, similarly to what (Lu
et al., 2018) reported in their multilingual ap-
proach, the language dependent features of the
sentences have a great impact in their representa-
tions.

However, since our encoder/decoders are com-
patible and produce competitive translations, we
decided to explore the representations generated
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Figure 2: Plot A shows the source sentence representation of each of the encoder modules(ES,EN,DE,FR). Plots B
and C show the representation of the target sentence generated by English(B) and Spanish(C) decoders given the
sentence encodings of parallel sentences generated for all four language encoder modules.

at the last attention block of the English decoder,
and are shown in Figure 2 (B). We can observe
much more similarity between English, French,
and German, (except for a small German clus-
ter) and separated clusters for Spanish. The rea-
son behind these different behaviors may be due
to the fact that French and German have directly
been trained with the frozen English decoder and
being adjusted to produce representations for this
decoder. Finally, figure 2 (C) shows the represen-
tations of the Spanish decoder. Some sentences
have the same representation for all languages,
whereas others no. Looking at the specific sen-
tences that are plotted, we found that close repre-
sentations do not correlate with better translations
or better BLEU. Sentence examples are shown in
the appendix. More research is required to ana-
lyze which layer in the decoder is responsible for
approaching languages in a common space. This
information could be used in the future to train en-
coders of new languages by wisely sharing param-
eters with the decoder as in previous works (He
et al., 2018).

8 Conclusions

This work proposes a proof of concept of a bilin-
gual system NMT which can be extended to a mul-
tilingual NMT system by incremental training. We
have analyzed how the model performs for dif-
ferent languages. Even though the model does
not outperform current bilingual systems, we show
first steps towards achieving competitive transla-
tions with a flexible architecture that enables scal-
ing to new languages (achieving multilingual and
zero-shot translation) without retraining languages
in the system.
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A Examples

This appendix shows some examples of sentences
visualized in Figure 2 in order to further analyse
the visualization. Table 1 reports outputs produced
by the Spanish decoder given encoding represen-
tations produced by the Spanish, English, French
and German encoder. The first two sentences have
similar representations between the languages in
Figure 2 (right) (in the Spanish decoder visualiza-
tion). While the first one keeps the meaning of
the sentence, the second one produces meaning-
less translations. The third sentence produces dis-
joint representations but the meaning is preserved
in the translations. Therefore, since close repre-
sentations may imply different translation perfor-
mance, further research is required to understand
the correlation between representations and trans-
lation quality.

Table 2 shows outputs produced by the English
decoder given encoding representations produced
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System Sentence
Reference ponemos todo nuestro empeo en participar en este proyecto .
ES ponemos todo nuestro empeo en participar en este proyecto .
EN participamos con esfuerzo en estos proyctos .
FR nos esfuerzos por lograr que los participantes intensivamente en estos proyectos.
DE nuestro objetivo es incorporar estas personas de manera intensiva en nuestro proyecto.
Reference Caja Libre!
ES Caja Libre—
EN Free chash points!
FR librecorrespondinte.
DE cisiguinente
Reference Cómo aplica esta definición en su vida cotidiana y en las redes sociales?
ES Cómo aplica esta definición en su vida cotidiana y en las redes sociales?
EN Cómo se aplica esta definición a su vida diaria?
FR Cómo aplicar esta definición en la vida diaria y sobre los red sociales?
DE Qué es aplicar este definición a su dadadato y las redes sociales?

Table 3: Outputs produced by the Spanish decoder given encoding representations produced by the Spanish, En-
glish, French and German encoder.

System Sentence
Reference it was a terrific season.
ES we had a strong season .
EN it was a terrific season.
FR we made a very big season .
DE we have finished the season with a very strong performance.
Reference in London and Madrid it is completely natural for people with serious handicaps to be indepen-

dently out in public, and they can use the toilets, go to the museum, or wherever ...
ES in London and Madrid , it is very normal for people with severe disability to be left to the public

and be able to serve , to the museum , where ...
EN in London and Madrid it is completely natural for people with serious handicaps to be indepen-

dently out in public, and they can use the toilets, go to the museum, or wherever ...
FR in London and Madrid, it is quite common for people with a heavy disability to travel on their

own in public spaces; they can go to the toilets, to the museum, anywhere ...
DE in London and Madrid, it is absolutely common for people with severe disabilities to be able to

move freely in public spaces, go to the museum, use lets, etc.
Reference from the Czech viewpoint, it seems they tend to put me to the left.
ES from a Czech point of view, I have the impression that people see me more than on the left.
EN from the Czech viewpoint, it seems they tend to put me to the left.
FR from a Czech point of view , I have the impression that people are putting me on the left .
DE from a Czech point of view, it seems to me that people see me rather on the left.

Table 4: Outputs produced by the English decoder given encoding representations produced by the Spanish, En-
glish, French and German encoder.

by the Spanish, English, French and German en-
coder. All examples appear to be close in Figure
2 (center) between German, French and English.
We see that the German and French outputs pre-
serve the general meaning of the sentence. Also
and differently from previous Table 1, the outputs

do not present errors in the attention, repeating
several times tokens or non unintelligible transla-
tions. There are no sentences from French that ap-
pear distant in the visualization, so again, we need
further exploration to understand the information
of this representation.
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Abstract

This paper introduces STRASS: Summariza-
tion by TRAnsformation Selection and Scor-
ing. It is an extractive text summarization
method which leverages the semantic infor-
mation in existing sentence embedding spaces.
Our method creates an extractive summary by
selecting the sentences with the closest embed-
dings to the document embedding. The model
learns a transformation of the document em-
bedding to minimize the similarity between
the extractive summary and the ground truth
summary. As the transformation is only com-
posed of a dense layer, the training can be
done on CPU, therefore, inexpensive. More-
over, inference time is short and linear ac-
cording to the number of sentences. As a
second contribution, we introduce the French
CASS dataset, composed of judgments from
the French Court of cassation and their corre-
sponding summaries. On this dataset, our re-
sults show that our method performs similarly
to the state of the art extractive methods with
effective training and inferring time.

1 Introduction

Summarization remains a field of interest as
numerous industries are faced with a growing
amount of textual data that they need to process.
Creating summary by hand is a costly and time-
demanding task, thus automatic methods to gen-
erate them are necessary. There are two ways of
summarizing a document: abstractive and extrac-
tive summarization.

In abstractive summarization, the goal is to cre-
ate new textual elements to summarize the text.
Summarization can be modeled as a sequence-
to-sequence problem. For instance, Rush et al.
(2015) tried to generate a headline from an article.
However, when the system generates longer sum-
maries, redundancy can be a problem. See et al.

(2017) introduce a pointer-generator model (PGN)
that generates summaries by copying words from
the text or generating new words. Moreover, they
added a coverage loss as they noticed that other
models made repetitions on long summaries. Even
if it provides state of the art results, the PGN is
slow to learn and generate. Paulus et al. (2017)
added a layer of reinforcement learning on an
encoder-decoder architecture but their results can
present fluency issues.

In extractive summarization, the goal is to ex-
tract part of the text to create a summary. There
are two standard ways to do that: a sequence la-
beling task, where the goal is to select the sen-
tences labeled as being part of the summary, and
a ranking task, where the most salient sentences
are ranked first. It is hard to find datasets for
these tasks as most summaries written by humans
are abstractive.Nallapati et al. (2016a) introduce
a way to train an extractive summarization model
without labels by applying a Recurrent Neural
Network (RNN) and using a greedy matching ap-
proach based on ROUGE. Recently, Narayan et al.
(2018b) combined reinforcement learning (to ex-
tract sentences) and an encoder-decoder architec-
ture (to select the sentences).

Some models combine extractive and abstrac-
tive summarization, using an extractor to select
sentences and then an abstractor to rewrite them
(Chen and Bansal, 2018; Cao et al., 2018; Hsu
et al., 2018). They are generally faster than models
using only abstractors as they filter the input while
maintaining or even improving the quality of the
summaries.

This paper presents two main contributions.
First, we propose an inexpensive, scalable, CPU-
trainable and efficient method of extractive text
summarization based on the use of sentence em-
beddings. Our idea is that similar embeddings
are semantically similar, and so by looking at the
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Figure 1: Training of the model. The blocks present steps of the analysis. All the elements above the blocks are
inputs (document embedding, sentences embeddings, threshold, real summary embedding, trade-off).

proximity of the embeddings it is possible to rank
the sentences. Secondly, we introduce the French
CASS dataset (section 4.1), composed of 129,445
judgments with their corresponding summaries.

2 Related Work

In our model, STRASS, it is possible to use an
embedding function 1 trained with state of the art
methods.

Word2vec is a classical method used to trans-
form a word into a vector (Mikolov et al., 2013a).
Methods like word2vec keep information about
semantics (Mikolov et al., 2013b). Sent2vec
(Pagliardini et al., 2017) create embedding of sen-
tences. It has state-of-the-art results on datasets
for unsupervised sentence similarity evaluation.

EmbedRank (Bennani-Smires et al., 2018) ap-
plies sent2vec to extract keyphrases from a docu-
ment in an unsupervised fashion. It hypothesizes
that keyphrases that have an embedding close to
the embedding of the entire document should rep-
resent this document well.

We adapt this idea to select sentences for sum-
maries (section 4.2). We suppose that sentences
close to the document share some meaning with
the document and are sentences that summarize
well the text. We go further by proposing a su-
pervised method where we learn a transformation
of the document embedding to an embedding of
the same dimension, but closer to sentences that
summarize the text.

1In this paper, ‘embedding function’, ‘embedding space’
and ‘embedding’ will refer to the function that takes a textual
element as input and outputs a vector, the vector space, and
the vectors.

3 Model

The aim is to construct an extractive summary.
Our approach, STRASS, uses embeddings to se-
lect a subset of sentences from a document.

We apply sent2vec to the document, to the sen-
tences of the document, and to the summary. We
suppose that, if we have a document with an em-
bedding2 d and a set S with all the embeddings
of the sentences of the document, and a reference
summary with an embedding ref sum, there is a
subset of sentences ES ⊂ S forming the reference
summary. Our target is to find an affine function
f(·): IRn −→ IRn , such that:

{
sim(s, f(d)) ≥ t if s ∈ ES

sim(s, f(d)) < t, otherwise

Where t is a threshold, and sim is a similarity
function between two embeddings.

The training of the model is based on four main
steps (shown in Figure 1):

• (1) Transform the document embedding by
applying an affine function learned by a neu-
ral network (section 3.1);

• (2) Extract a subset of sentences to form a
summary (section 3.2);

• (3) Approximate the embedding of the ex-
tractive summary formed by the selected sen-
tences (section 3.3);

2Scalars are lowercased, vectors/embeddings are lower-
cased and in bold, sets are uppercased and matrices are up-
percased and in bold.
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• (4) Score the embedding of the resulting sum-
mary approximation with respect to the em-
bedding of the real summary (section 3.4).

To generate the summary, only the first two
steps are used. The selected sentences are the
output. Approximation and scoring are only nec-
essary during the training phase when computing
loss function.

3.1 Transformation
To learn an affine function in the embedding space,
the model uses a simple neural network. A single
fully-connected feed-forward layer. f(·): IRn −→
IRn :

f(d) = W × d+ b

with W the weight matrix of the hidden layer and
b the bias vector. Optimization is only conducted
on these two elements.

3.2 Sentence Extraction
Inspired by EmbedRank (Bennani-Smires et al.,
2018) our proposed approach is based on embed-
dings similarities. Instead of selecting the top n
elements, our approach uses a threshold. All the
sentences with a score above this threshold are se-
lected. As in Pagliardini et al. (2017), our simi-
larity score is the cosine similarity. Selection of
sentences is the first element:

sel(s,d, S, t) =

sigmoid(ncos+(s, f(d), S)− t)

with sigmoid the sigmoid function and ncos+ a
normalized cosine similarity explained in section
3.5. A sigmoid function is used instead of a hard
threshold as all the functions need to be differen-
tiable to make the back-propagation. Sel outputs
a number between 0 and 1. 1 indicates that a sen-
tence should be selected and 0 that it should not.
With this function, we select a subset of sentences
from the text that forms our generated summary.

3.3 Approximation
As we want to compare the embedding of our gen-
erated extractive summary and the embedding of
the reference summary, the model approximates
the embedding of the proposed summary. As the
system uses sent2vec, the approximation is the av-
erage of the sentences weighted by the number of
words in each sentence. We have to apply this ap-
proximation to the sentences extracted with sel,

which compose our generated summary. The ap-
proximation is:

app(d, S, t) =
∑

s∈S
s× nb w(s)× sel(s,d, S, t)

where, nb w(s) is the number of words in the sen-
tence corresponding to the embedding s.

3.4 Scoring

The quality of our generated summary is scored by
comparing its embedding with the reference sum-
mary embedding. Here, the compression ratio is
added to the score in order to force the model to
output shorter summaries. The compression ratio
is the number of words in the summary divided by
the number of words in the document.

loss = λ× nb w(gen sum)

nb w(d)
+

(1− λ)× cos sim(gen sum, ref sum)

with λ a trade-off between the similarity and the
compression ratio, cos sim(x,y), x,y ∈ IRn the
cosine similarity and gen sum = app(d, S, t).
The user should note that λ is also useful to change
the trade-off between the proximity of the sum-
maries and the length of the generated one. A
higher λ results in a shorter summary.

3.5 Normalization

To use a single selection threshold on all our doc-
uments, a normalization is applied on the similar-
ities to have the same distribution for the similari-
ties on all the documents. First, we transform the
cosine similarity from (IRn, IRn) −→ [−1, 1] to
(IRn, IRn) −→ [0, 1]:

cos+(x,y) =
cos sim(x,y) + 1

2

Then as in Mori and Sasaki (2002) the function
is reduced and centered in 0.5:

rcos+(x,y, X) =

0.5 +

cos+(x,y)− µ
xk∈X

(cos+(xk,y))

σ
xk∈X

(cos+(xk,y))

where y is an embedding, X is a set of embed-
dings, x ∈ X , µ and σ are the mean and standard
deviation.
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A threshold is applied to select the closest sen-
tences on this normalized cosine similarity. In or-
der to always select at least one sentence, we re-
stricted our similarity measure in (−∞, 1], where,
for each document, the closest sentence has a sim-
ilarity of 1:

ncos+(x,y, X) =
rcos+(x,y, X)

max
xk∈X

(rcos+(xk,y, X))

4 Experiments

4.1 Datasets

To evaluate our approach, two datasets were used
with different intrinsic document and summary
structures which are presented in this section.
More detailed information is available in the ap-
pendices (table 3, figure 3 and figure 4).

We introduce a new dataset for text summa-
rization, the CASS dataset3. This dataset is com-
posed of 129,445 judgments given by the French
Court of cassation between 1842 and 2016 and
their summaries (one summary by original docu-
ment). Those summaries are written by lawyers
and explain in a short way the main points of
the judgments. As multiple lawyers have writ-
ten summaries, there are different types of sum-
mary ranging from purely extractive to purely ab-
stractive. This dataset is maintained up-to-date by
the French Government and new data are regularly
added. Our version of the dataset is composed of
129,445 judgements.

The CNN/DailyMail dataset (Hermann et al.,
2015; Nallapati et al., 2016b) is composed of
312,084 couples containing a news article and its
highlights. The highlights show the key points of
an article. We use the split created by Nallapati
et al. (2016b) and refined by See et al. (2017).

4.2 Baseline

An unsupervised version of our approach is to use
the document embedding as an approximation for
the position in the embedding space used to select
the sentences of the summary. It is the application
of EmbedRank (Bennani-Smires et al., 2018) on
the extractive summarization task. This approach
is used as a baseline for our model

3The dataset is available here: https://github.
com/euranova/CASS-dataset

4.3 Oracles

We introduce two oracles. Even if these models do
not output the best possible results for extractive
summarization, they show good results.

The first model, called Oracle, is the same as
the baseline, but instead of taking the document
embedding, the model takes the embedding of the
summary and then extracts the closest sentences.

The second model, called Oraclesent, extracts
the closest sentence to each sentence of the sum-
mary. This is an adaptation of the idea that Nallap-
ati et al. (2016a) and Chen and Bansal (2018) used
to create their reference extractive summaries.

4.4 Evaluation details

ROUGE (Lin, 2004) is a widely used set of metrics
to evaluate summaries. The three main metrics in
this set are ROUGE-1 and ROUGE-2, which com-
pare the 1-grams and 2-grams of the generated and
reference summaries, and ROUGE-L, which mea-
sures the longest sub-sequence between the two
summaries. ROUGE is the standard measure for
summarization, especially because more sophisti-
cated ones like METEOR (Denkowski and Lavie,
2014) require resources not available for many
languages.

Our results are compared with the unsupervised
system TextRank (Mihalcea and Tarau, 2004; Bar-
rios et al., 2016) and with the supervised systems
Pointer-Generator Network (See et al., 2017) and
rnn− ext (Chen and Bansal, 2018). The Pointer-
Generator Network is an abstractive model and
rnn− ext is extractive.

For all datasets, a sent2vec embedding of di-
mension 700 was trained on the training split. To
choose the hyperparameters, a grid search was
computed on the validation set. Then the set of
hyperparameters with the highest ROUGE-L were
used on the test set. The selected hyperparameters
are available in appendix A.3.

5 Results

Tables 1 and 2 present the results for the CASS and
the CNN/DailyMail datasets. As expected, the su-
pervised model performs better than the unsuper-
vised one. On the three datasets, the supervision
has improved the score in terms of ROUGE-2 and
ROUGE-L. In the same way, our oracles are al-
ways better than the learned models, proving that
there is still room for improvements. Information
concerning the length of the generated summaries
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R1 F1 R2 F1 RL F1
Baseline 39.57 22.11 29.71
TextRank 39.30 23.49 31.45

PGN 53.25 40.25 45.58
rnn-ext 53.05 38.21 44.62

STRASS 52.68 38.87 44.72
Oracle 62.79 50.10 55.03

Oracle sent 63.90 50.56 55.75

Table 1: Results of different models on the French
CASS dataset using ROUGE with 95% confidence.
The models of the first block are unsupervised, the
models of the second block are supervised and the
models of the last block are the oracles. F1 is the
F-measure. R1, R2 and RL stand for ROUGE1,
ROUGE2, and ROUGE-L.

R1 F1 R2 F1 RL F1
Baseline 34.02 12.48 28.27
TextRank 30.83 13.02 27.39

PGN* 39.53 17.28 36.38
rnn-ext* 40.17 18.11 36.41
STRASS 33.99 14.18 30.04

Oracle 43.55 22.43 38.47
Oracle sent 46.21 25.81 42.47

Lead3 40.00 17.56 36.33
Lead3 - PGN* 40.34 17.70 36.57

Table 2: Results of different models on the
CNN/DailyMail. The Lead3 - PGN is the lead 3 score
as reported in (See et al., 2017). The scores with *
are taken from the corresponding publications. F1 is
the F-measure. R1, R2 and RL stand for ROUGE1,
ROUGE2, and ROUGE-L.
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Figure 2: Processing time of the summarization func-
tion (y-axis) by the number of lines of the text as input
(x-axis). Results computed on an i7-8550U.

and the position of the sentences taken are avail-
able in the appendices A.4.2.

On the French CASS dataset, our method per-
forms similarly to the rnn − ext. The PGN
performs a bit better (+0.13 ROUGE-1, +0.38
ROUGE-2, + 0.81 ROUGE-L compared to the
other models), which could be linked to the fact
that it can select elements smaller than sentences.

On the CNN/DailyMail dataset, our supervised
model performs poorly. We observe a significant
difference (+2.66 ROUGE-1, +3.38 ROUGE-2,
and +4.00 ROUGE-L) between the two oracles. It
could be explained by the fact that the summaries
are multi-topic and our models do not handle such
case. Therefore, as our loss doesn’t look at the
diversity, STRASS may miss some topics in the
generated summary.

A second limitation of our approach is that our
model doesn’t consider the position of the sen-
tences in the summary, information which presents
a high relevance in the CNN-Dailymail dataset.

STRASS has some advantages. First, it is train-
able on CPU and thus light to train and run. In-
deed, the neural network in our model is only com-
posed of one dense layer. The most recent ad-
vances in text summarization with neural networks
are all based on deep neural networks requiring
GPU to be learned efficiently. Second, the method
is scalable. The processing time is linear with the
number of lines of the documents (Figure 2). The
model is fast at inference time as sent2vec embed-
dings are fast to generate. Our model generated
the 13,095 summaries of the CASS dataset in less
than 3 minutes on an i7-8550U CPU.

6 Conclusion and Perspectives

To conclude, we proposed here a simple, cost-
effective and scalable extractive summarization
method. STRASS creates an extractive summary
by selecting the sentences with the closest em-
beddings to the projected document embedding.
The model learns a transformation of the docu-
ment embedding to maximize the similarity be-
tween the extractive summary and the ground truth
summary. We showed that our approach obtains
similar results than other extractive methods in an
effective way.

There are several perspectives to our work.
First, we would like to use the sentence embed-
dings as an input of our model, as this should in-
crease the accuracy. Additionally, we want to in-
vestigate the effect of using other sent2vec embed-
ding spaces (especially more generalist ones) or
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other embedding functions like doc2vec (Le and
Mikolov, 2014) or BERT (Devlin et al., 2019).

For now, we have only worked on sentences but
this model can use any embeddings, so we could
try to build summaries with smaller textual ele-
ments than sentences such as key-phrases, noun
phrases... Likewise, to apply our model on multi-
topic texts, we could try to create clusters of sen-
tences, where each cluster is a topic, and then ex-
tract one sentence by cluster.

Moreover, currently, the loss of the system is
only composed of the proximity and the compres-
sion ratio. Other meaningful metrics for document
summarization such as diversity and representa-
tivity could be added into the loss. Especially,
submodular functions could (1) allow to obtain
near-optimal results and (2) allow to include ele-
ments like diversity (Lin and Bilmes, 2011). An-
other information we could add is the position of
the sentences in the documents like Narayan et al.
(2018a).

Finally, the approach could be extended to
query-based summarization (V.V.MuraliKrishna
et al., 2013). One could use the embedding func-
tion on the query and take the sentences that are
the closest to the embedding of the query.
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A Appendices

A.1 Datasets
The composition of the datasets and the splits are
available in table 3.

A.2 Preprocessing
On the French CASS dataset, we have deleted all
the accents of the texts and we have lower-cased
all the texts as some of them where entirely upper-
cased without any accent. To create the sum-
maries, all the ANA parts of the XML files pro-
vided in the original dataset where taken and con-
catenate to form a single summary for each doc-
ument. These summaries explain different key
points of the judgment. On the CNN/DailyMail,
the preprocessing of See et al. (2017) was used. As
an extra cleaning step, we deleted the documents
that had an empty story.

A.3 Hyperparameters
To obtain the embeddings functions for both
datasets we trained a sent2vec model of dimension
700 with unigrams on the train splits.

For the CASS dataset, the baseline model has
a threshold at 0.8, the oracle at 0.8 and STRASS
has a threshold at 0.8 and a λ at 0.3. TextRank
was used with a ratio of 0.2. The PGN For the
CNN/DailyMail dataset, the baseline model has a
threshold at 1.0, the oracle at 0.9 and STRASS has
a threshold at 0.8 and a λ at 0.4. TextRank was
used with a ratio of 0.15.

A.4 Results
A.4.1 ROUGE Score
More detailed results are available in tables 4 and
5. High recall with low precision is generally syn-
onym of long summary.
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Dataset sd ss td ts train val test
CASS 19.4 1.6 894 114 103,434 12,916 13,095

CNN/DailyMail 28.9 3.8 786 53 287,112 13,367 11,489

Table 3: Size information for the datasets, sd and ss are respectively the average number of sentences in the
document and in the summary, td and tt are respectively the number of tokens in the document and in the summary.
train, val and test are respectively the number of documents in the train, validation and test sets.

R1 P R1 R R1 F1 R2 P R2 R R2 F1 RL P RL R RL F1
Baseline 32.27 65.81 39.55 17.98 36.88 22.09 24.13 50.11 29.69
TextRank 32.62 68.58 39.30 19.47 41.95 23.49 25.98 56.16 31.45

PGN 69.70 49.01 53.25 53.46 36.67 40.25 60.31 41.65 45.58
rnn-ext 49.54 69.62 53.12 35.94 50.00 38.30 42.03 58.43 44.77

STRASS 56.23 62.55 52.68 41.97 45.71 38.87 48.05 52.93 44.72
Oracle 66.40 68.41 62.79 53.80 53.40 50.10 58.73 59.20 55.03

Oracle sent 69.50 64.82 63.90 55.36 50.91 50.56 60.77 56.34 55.75

Table 4: Full results of different models on the French CASS dataset using ROUGE with 95% confidence. The
models in the first part are unsupervised models, then supervised models and the last part is the oracle. P is
precision, R is recall and F1 is the F-measure. R1, R2 and RL stand for ROUGE1, ROUGE2, and ROUGE-L.

R1 P R1 R R1 F1 R2 P R2 R R2 F1 RL P RL R RL F1
Baseline 32.67 40.09 34.02 12.07 14.65 12.48 27.29 33.14 28.27
TextRank 23.44 59.29 30.83 9.95 25.02 13.02 20.77 53.02 27.39

PGN* 39.53 17.28 36.38
rnn-ext* 40.17 18.11 36.41
STRASS 28.56 53.53 33.99 11.89 22.62 14.18 25.21 47.46 30.04

Oracle 44.92 50.93 43.55 24.14 25.47 22.43 39.98 44.75 38.47
Oracle sent 35.17 74.30 46.21 19.84 40.83 25.81 32.37 68.12 42.47

Lead3 33.89 53.35 40.00 14.84 23.59 17.56 30.80 48.43 36.33
Lead - PGN* 40.34 17.70 36.57

Table 5: Full results of different models on the CNN/DailyMail. The Lead3 - PGN is the lead 3 score as reported
in (See et al., 2017). The scores with * are taken from the corresponding publications. P is precision, R is recall
and F1 is the F-measure. R1, R2 and RL stand for ROUGE1, ROUGE2, and ROUGE-L.
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Model s w w/s

Reference 1.6 117 73.1
STRASS 2.0 151 75.5

Oracle 1.7 138 81.2
Oracle sent 1.5 112 74.7

(a) Size information for the generated summary on the
test split of the CASS dataset, s, w, w/s are respectively
the average number of sentences, the average number of
words and the average number of words per sentences.
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(b) Percentage of times that a sentence is taken in a gen-
erated summary in function of their position in the docu-
ment on the CASS dataset.
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(c) Density of the number of sentences in the generated
summaries for several models and the reference on the
CASS dataset.
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(d) Density of the number of words in the generated sum-
maries for several models and the reference on the CASS
dataset.

Figure 3: Information about the length of the generated summaries for the CASS dataset.

A.4.2 Words and sentences

On the French CASS dataset the summaries gen-
erated by the models are generally close in terms
of length (number of words, number of sentences
and number of words per sentences (figure 3a, 3c,
3d)). All the tested extractive methods tend to se-
lect sentences at the beginning of the documents.
The first sentence make an exception to that rule
(figure 3b). We observe that this sentence can have
the list of the lawyers and judges that were present
at the case. STRASS tends to generate longer
summaries with more sentences. The discrepancy
in the average number of sentences between the
reference and Oraclesent is due to sentences that
are extracted multiple times.

On the CNN/DailyMail dataset, STRASS tends
to extract less sentences but longer ones compar-
ing to the Oraclesent (figure 4a, 4c, 4d). On
the figure 4b we can see that the three models
tend to extract different sentences. Oraclesent
which is the best performing model tends to ex-
tract the 4 first sentences,Oracle extracts more of-

ten the fourth sentences than the first three and still
have better results than the Lead3, which means
that the fourth sentences could have some interest.
With STRASS the first three sentences have a dif-
ferent tendency than the rest of the text, showing
that the first three sentences may have a different
structure than the rest. Then, the farther a sentence
is in the text, the lower the probability to take it.
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Model s w w/s

Reference 3.9 55 14.1
STRASS 2.7 135 50

Oracle 1.5 84 56
Oracle sent 3.5 137 39.1

(a) Size information for the generated summary on the
test split of the CNN/DM dataset, s, w, w/s are respec-
tively the average number of sentences, the average num-
ber of words and the average number of words per sen-
tences.
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(b) Percentage of times that a sentence is taken in a gen-
erated summary in function of their position in the docu-
ment on the CNN/DM dataset.
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(c) Density of the number of sentences in the generated
summaries for several models and the reference on the
CNN/DM dataset.
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(d) Density of the number of words in the generated
summaries for several models and the reference on the
CNN/DM dataset.

Figure 4: Information about the length of the generated summaries for the CNN/DM dataset.
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Abstract
Attention based deep learning systems have
been demonstrated to be the state of the art
approach for aspect-level sentiment analysis,
however, end-to-end deep neural networks
lack flexibility as one can not easily adjust the
network to fix an obvious problem, especially
when more training data is not available: e.g.
when it always predicts positive when seeing
the word disappointed. Meanwhile, it is less
stressed that attention mechanism is likely to
“over-focus” on particular parts of a sentence,
while ignoring positions which provide key
information for judging the polarity. In this
paper, we describe a simple yet effective ap-
proach to leverage lexicon information so that
the model becomes more flexible and robust.
We also explore the effect of regularizing at-
tention vectors to allow the network to have a
broader “focus” on different parts of the sen-
tence. The experimental results demonstrate
the effectiveness of our approach.

1 Introduction

Sentiment analysis (also called opinion mining)
has been one of the most active fields in NLP due
to its important value to business and society. It
is the field of study that tries to extract opinion
(positive, neutral, negative) expressed in natural
languages. Most sentiment analysis works have
been carried out at document level (Pang et al.,
2002; Turney, 2002) and sentence level (Wilson
et al., 2004), but as opinion expressed by words is
highly context dependent, one word may express
opposite sentiment under different circumstances.
Thus aspect-level sentiment analysis (ABSA) was
proposed to address this problem. It finds the po-
larity of an opinion associated with a certain as-
pect, such as food, ambiance, service, or price in a
restaurant domain.

Although deep neural networks yield significant
improvement across a variety of tasks compared to

previous state of the art methods, end-to-end deep
learning systems lack flexibility as one cannot eas-
ily adjust the network to fix an obvious problem:
e.g. when the network always predicts positive
when seeing the word disappointed, or when the
network is not able to recognize the word dun-
geon as an indication of negative polarity. It could
be even trickier in a low-resource scenario where
more labeled training data is simply not avail-
able. Moreover, it is less stressed that attention
mechanism is likely to over-fit and force the net-
work to “focus” too much on a particular part of
a sentence, while in some cases ignoring positions
which provide key information for judging the po-
larity. In recent studies, both Niculae and Blon-
del (2017) and Zhang et al. (2019) proposed ap-
proaches to make the attention vector more sparse,
however, it would only encourage the over-fitting
effect in such scenario.

In this paper, we describe a simple yet effec-
tive approach to merge lexicon information with
an attention LSTM model for ABSA in order to
leverage both the power of deep neural networks
and existing linguistic resources, so that the frame-
work becomes more flexible and robust without
requiring additional labeled data. We also explore
the effect of regularizing attention vectors by in-
troducing an attention regularizer to allow the net-
work to have a broader “focus” on different parts
of the sentence.

2 Related works

ABSA is a fine-grained task which requires the
model to be able to produce accurate prediction
given different aspects. As it is common that
one sentence may contain opposite polarities as-
sociated to different aspects at the same time,
attention-based LSTM (Wang et al., 2016) was
first proposed to allow the network to be able to as-
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sign higher weights to more relevant words given
different aspects. Following this idea, a number of
researches have been carried out to keep improv-
ing the attention network for ABSA (Ma et al.,
2017; Tay et al., 2017; Cheng et al., 2017; He et al.,
2018; Zhu and Qian, 2018).

On the other hand, a lot of works have been
done focusing on leveraging existing linguistic re-
sources such as sentiment to enhance the perfor-
mance; however, most works are performed at
document and sentence level. For instance, at
document level, Teng et al. (2016) proposed a
weighted-sum model which consists of represent-
ing the final prediction as a weighted sum of the
network prediction and the polarities provided by
the lexicon. Zou et al. (2018) described a frame-
work to assign higher weights to opinion words
found in the lexicon by transforming lexicon po-
larity to sentiment degree.

At sentence level, Shin et al. (2017) used two
convolutional neural networks to separately pro-
cess sentence and lexicon inputs. Lei et al. (2018)
described a multi-head attention network where
the attention weights are jointly learned with lexi-
con inputs. Wu et al. (2018) proposed a new label-
ing strategy which breaks a sentence into clauses
by punctuation to produce more lower-level ex-
amples, inputs are then processed at different lev-
els with linguistic information such as lexicon and
POS, and finally merged back to perform sentence
level prediction. Meanwhile, some other similar
works that incorporate linguistic resources for sen-
timent analysis have been carried out (Rouvier and
Favre, 2016; Qian et al., 2017).

Regarding the attention regularization, instead
of using softmax and sparesmax, Niculae and
Blondel (2017) proposed fusemax as a regularized
attention framework to learn the attention weights;
Zhang et al. (2019) introducedLmax andEntropy
as regularization terms to be jointly optimized
with the loss. However, both approaches share the
same idea of shaping the attention weights to be
sharper and more sparse so that the advantage of
the attention mechanism is maximized.

In our work, different from the previously men-
tioned approaches, we incorporate polarities ob-
tained from lexicons directly into the attention-
based LSTM network to perform aspect-level sen-
timent analysis, so that the model improves in
terms of robustness without requiring extra train-
ing examples. Additionally, we find that the at-

tention vector is likely to over-fit which forces the
network to “focus” on particular words while ig-
noring positions that provide key information for
judging the polarity; and that by adding lexical
features, it is possible to reduce this effect. Fol-
lowing this idea, we also experimented reducing
the over-fitting effect by introducing an attention
regularizer. Unlike previously mentioned ideas,
we want the attention weights to be less sparse.
Details of our approach are in following sections.

3 Methodology

3.1 Baseline AT-LSTM
In our experiments, we replicate AT-LSTM pro-
posed by Wang et al. (2016) as our baseline sys-
tem. Comparing with a traditional LSTM network
(Hochreiter and Schmidhuber, 1997), AT-LSTM is
able to learn the attention vector and at the same
time to take into account the aspect embeddings.
Thus the network is able to assign higher weights
to more relevant parts of a given sentence with re-
spect to a specific aspect.

Formally, given a sentence S, let
{w1, w2, ..., wN} be the word vectors of each
word where N is the length of the sentence;
va ∈ Rda represents the aspect embeddings where
da is its dimension; let H ∈ Rd×N be a matrix of
the hidden states {h1, h2, ..., hN ∈ Rd} produced
by LSTM where d is the number of neurons of
the LSTM cell. Thus the attention vector α is
computed as follows:

M = tanh(

[
WhH

Wvva ⊗ eN

]
)

α = softmax(wTM)

r = HαT

where, M ∈ R(d+da)×N , α ∈ RN , r ∈ Rd,Wh ∈
Rd×d,Wv ∈ Rda×da , w ∈ Rd+da . α is a vector
consisting of attention weights and r is a weighted
representation of the input sentence with respect
to the input aspect. va⊗ eN = [va, va, ..., va], that
is, the operator repeatedly concatenates va for N
times. Then, the final representation is obtained
and fed to the output layer as below:

h∗ = tanh(Wpr +WxhN )

ŷ = softmax(Wsh
∗ + bs)

where, h∗ ∈ Rd, Wp and Wx are projection pa-
rameters to be learned during training; Ws and bs
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are weights and biases in the output layer. The
prediction ŷ is then plugged into the cross-entropy
loss function for training, and L2 regularization is
applied.

loss = −
∑

i

yilog(ŷi) + λ‖Θ‖22 (1)

where i is the number of classes (three way clas-
sification in our experiments); λ is the hyper-
parameter for L2 regularization; Θ is the regular-
ized parameter set in the network.

3.2 ATLX
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Figure 1: ATLX model diagram

3.2.1 Lexicon Build
Similar to Shin et al. (2017), but in a different way,
we build our lexicon by merging 4 existing lex-
icons to one: MPQA, Opinion Lexicon, Opener
and Vader. SentiWordNet was in the initial design
but was removed from the experiments as unnec-
essary noise was introduced, e.g. highly is an-
notated as negative. For categorical labels such as
negative, weakneg, neutral, both, positive, we con-
vert them to values in {−1.0,−0.5, 0.0, 0.0, 1.0}
respectively. Regarding lexicons with real value
annotations, for each lexicon, we adopt the an-
notated value standardized by the maximum po-
larity in that lexicon. Finally, the union U of
all lexicons is taken where each word wl ∈ U
has an associated vector vl ∈ Rn that repre-
sents the polarity given by each lexicon. n here
is the number of lexicons; average values across

all available lexicons are taken for missing values.
e.g. the lexical feature for word adorable is rep-
resented by [1.0, 1.0, 1.0, 0.55], which are taken
from MPQA(1.0), Opener(1.0), Opinion Lexi-
con(1.0) and Vader(0.55) respectively. For words
outside U , a zero vector of dimension n is sup-
plied.

3.2.2 Lexicon Integration
To merge the lexical features obtained from U into
the baseline, we first perform a linear transforma-
tion to the lexical features in order to preserve the
original sentiment distribution and have compat-
ible dimensions for further computations. Later,
the attention vector learned as in the baseline is
applied to the transformed lexical features. In the
end, all information is added together to perform
the final prediction.

Formally, let Vl ∈ Rn×N be the lexical matrix
for the sentence, Vl then is transformed linearly:

L = Wl · Vl

where L ∈ Rd×N ,Wl ∈ Rd×n. Later, the atten-
tion vector learned from the concatenation of H
and va ⊗ eN is applied to L:

l = L · αT

where l ∈ Rd, α ∈ RN . Finally h∗ is updated and
passed to output layer for prediction:

h∗ = tanh(Wpr +WxhN +Wll)

where Wl ∈ Rd×d is a projection parameter as
Wp and Wx. The model architecture is shown in
Figure 1.

3.3 Attention Regularization
As observed in both Figure 2 and Figure 3, the at-
tention weights in ATLX seem less sparse across
the sentence, while the ones in the baseline are fo-
cusing only on the final part of the sentence. It is
reasonable to think that the attention vector might
be over-fitting in some cases, causing the network
to ignore other relevant positions, since the atten-
tion vector is learned purely on training examples.
Thus we propose a simple attention regularizer to
further validate our hypothesis, which consists of
adding into the loss function a parameterized stan-
dard deviation or negative entropy term for the at-
tention weights. The idea is to avoid the attention
vector to have heavy weights in few positions, in-
stead, it is preferred to have higher weights for
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more positions. Formally, the attention regular-
ized loss is computed as:

loss = −
∑

i

yilog(ŷi) + λ‖Θ‖22 + ε ·R(α) (2)

compared to equation (1), a second regularization
term is added, where ε is the hyper-parameter for
the attention regularizer; R stands for the regular-
ization term defined in (3) or (4); and α is the dis-
tribution of attention weights. Note that during
implementation, the attention weights for batch
padding positions are excluded from α.

We experiment two different regularizers, one
uses standard deviation of α defined in equation
(3); the other one uses the negative entropy of α
defined in equation (4).

R(α) = σ(α) (3)

R(α) = −[−
N∑

i

αi · log(αi)] (4)

4 Experiments

Figure 2: Comparison of attention weights between
baseline and ATLX; The rows annotated as ”Lexicon”
indicates the average polarity per word given by U .

4.1 Dataset
Same as Wang et al. (2016), we experiment on
SemEval 2014 Task 4, restaurant domain dataset.
The data consists of reviews of restaurants with
aspects: {food, price, service, ambience, miscel-
laneous} and associated polarities: {positive, neu-
tral, negative}. The objective is to predict the po-
larity given a sentence and an aspect. There are

Pos Neu Neg In Corpus
MPQA 2298 440 4148 908
OL 2004 3 4780 732
Opener 2298 440 4147 908
Vader 3333 0 4170 656
Merged U 5129 404 7764 1234

Table 1: Lexicon statistics of positive, neutral, negative
words and number of words covered in corpus.

3,518 training examples and 973 test examples in
the corpus. To initialize word vectors with pre-
trained word embeddings, the 300 dimensional
Glove vectors trained on 840b tokens are used, as
described in the original paper.

4.2 Lexicons

As shown in Table 1, we merge four existing and
online available lexicons into one. The merged
lexicon U as described in section 3.2.1 is used
for our experiments. After the union, the fol-
lowing postprocess is carried out: {bar, try, too}
are removed from U since they are unreason-
ably annotated as negative by MPQA and Opener;
{n′t, not} are added to U with −1 polarity for
negation.

4.3 Evaluation

Cross validation is applied to measure the perfor-
mance of each model. In all experiments, the train-
ing set is randomly shuffled and split into 6 folds
with a fixed random seed. According to the code
released by Wang et al. (2016), a development set
containing 528 examples is used, which is roughly
1
6 of the training corpus. In order to remain faithful
to the original implementation, we thus evaluate
our model with a cross validation of 6 folds.

As shown in Table 2, compared to the baseline
system, ATLX is not only able to improve in terms
of accuracy, but also the variance of the perfor-
mance across different sets gets significantly re-
duced. On the other hand, by adding attention
regularization to the baseline system without in-
troducing lexical features, both the standard devi-
ation regularizer (basestd) and the negative entropy
regularizer (baseent) are able to contribute posi-
tively; where baseent yields largest improvement.
By combining attention regularization and lexical
features together, although the model is able to fur-
ther improve, the difference is too small to draw
strong conclusion.
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Figure 3: Comparison of attention weights between baseline, basestd, baseent and ATLX.

CV σCV TEST σTEST

base 75.27 1.420 81.48 1.157
basestd 74.67 1.688 81.57 0.915
baseent 75.93 1.467 82.24 0.863
ATLX 75.64 1.275 82.62 0.498
ATLXstd 75.64 1.275 82.68 0.559
ATLXent 75.53 1.265 82.86 1.115
ATLX* 74.99 1.638 82.03 1.409
baseLX 71.98 1.588 79.24 2.322

Table 2: Mean accuracy and standard deviation of cross
validation results on 6 folds of development sets and
one test set. Note that in our replicated baseline sys-
tem, test accuracy ranges from 80.06 to 83.45; 83.1 was
reported in the original paper.

5 Discussion

5.1 ATLX
As described in previously, the overall perfor-
mance of the baseline gets enhanced by leverag-
ing lexical features independent from the training
data, which makes the model more robust and flex-
ible. The example in Figure 2, although the base-
line is able to pay relatively high attention to the
word disappointed and dungeon, it is not able to
recognize these words as clear indicators of nega-
tive polarity; while ATLX is able to correctly pre-
dict positive for both examples. On the other hand,
it is worth mentioning that the computation of the
attention vector α does not take lexical features Vl
into account. Although it is natural to think that
adding Vl as input for computing α would be a
good option, the results of ATLX* in Table 2 sug-
gest otherwise.

In order to understand where does the improve-
ment of ATLX come from, lexical features or the
way we introduce lexical features to the system?
We conduct a support experiment to verify its im-
pact (baseLX), which consists of naively concate-

nating input word vector with its associated lexi-
cal vector and feed the extended embedding to the
baseline. As demonstrated in Table 2, by compar-
ing baseline with baseLX, we see that the simple
merge of lexical features with the network without
carefully designed mechanism, the model is not
able to leverage new information; and in contrast,
the overall performance gets decreased.

5.2 Attention Regularization

As shown in Figure 3, when comparing ATLX
with the baseline, we find that although the lexicon
only provides non-neutral polarity information for
three words, the attention weights of ATLX are
less sparse and less spread out than in the base-
line. Also, this effect is general as the standard de-
viation of the attention weights distribution for the
test set in ATLX (0.0219) are significantly lower
than in the baseline (0.0354).

Thus it makes us think that the attention weights
might be over-fitting in some cases as it is purely
learned on training examples. This could cause
that by giving too much weight to particular words
in a sentence, the network ignores other positions
which could provide key information for classify-
ing the polarity. For instance, the example in Fig-
ure 3 shows that the baseline which predicts posi-
tive is “focusing” on the final part of the sentence,
mostly the word easy; while ignoring the bad man-
ners coming before, which is key for judging the
polarity of the sentence given the aspect service.
In contrast, the same baseline model trained with
attention regularized by standard deviation is able
to correctly predict negative just by “focusing” a
little bit more on the ”bad manners” part.

However, the hard regularization by standard
deviation might not be ideal as the optimal min-
imum value of the regularizer will imply that all
words in the sentence have homogeneous weight,
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Parameter name Value
ε basestd 1e-3
ε baseent 0.5
ε ATLXstd 1e-4
ε ATLXent 0.006

Table 3: Attention regularization parameter settings

which is the opposite of what the attention mech-
anism is able to gain.

Regarding the negative entropy regularizer, tak-
ing into account that the attention weights are out-
put of softmax which is normalized to sum up
to 1, although the minimum value of this term
would also imply homogeneous weight of 1

N , it
is interesting to see that with almost evenly dis-
tributed α, the model remains sensitive to few po-
sitions with relatively higher weights; e.g. in Fig-
ure 3, the same sentence with entropy regulariza-
tion demonstrates that although most positions are
closely weighted, the model is still able to differ-
entiate key positions even with a weight difference
of 0.01 and predict correctly.

6 Parameter Settings

In our experiments, apart from newly introduced
parameter ε for attention regularization, we follow
Wang et al. (2016) and their released code.

More specifically, we set batch size as 25; as-
pect embedding dimension da equals to 300, same
as Glove vector dimension; number of LSTM cell
d as 300; number of LSTM layers as 1; dropout
with 0.5 keep probability is applied to h∗; Ada-
Grad optimizer is used with initial accumulate
value equals to 1e-10; learning rate is set to 0.01;
L2 regularization parameter λ is set to 0.001; net-
work parameters are initialized from a random
uniform distribution with min and max values as -
0.01 and 0.01; all network parameters except word
embeddings are included in the L2 regularizer.
The hyperparmerter ε for attention regularization
is shown in Table 3.

7 Conclusion and Future Works

In this paper, we describe our approach of di-
rectly leveraging numerical polarity features pro-
vided by existing lexicon resources in an aspect-
based sentiment analysis environment with an at-
tention LSTM neural network. Meanwhile, we
stress that the attention mechanism may over-fit
on particular positions, blinding the model from

other relevant positions. We also explore two reg-
ularizers to reduce this overfitting effect. The ex-
perimental results demonstrate the effectiveness of
our approach.

For future works, since the lexical features can
be leveraged directly by the network to boost per-
formance, a fine-grained lexicon which is domain
and aspect specific in principle could further im-
prove similar models. On the other hand, although
the negative entropy regularizer is able to reduce
the overfitting effect, a better attention framework
could be researched, so that the attention distribu-
tion would be sharp and spare but at the same time,
being able to “focus” on more positions.
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A Supplemental Material

A.1 Resource Details
Lexical resources: MPQA1, Opinion Lexicon2,
Opener3, and Vader4. Glove vectors5. Code6 re-
leased by Wang et al. (2016). Experiments de-
scribed in this paper are implemented with Ten-
sorFlow7.

1http://mpqa.cs.pitt.edu/#subj lexicon
2https://www.cs.uic.edu/l̃iub/FBS/sentiment-

analysis.html#lexicon
3https://github.com/opener-project/VU-sentiment-

lexicon/tree/master/VUSentimentLexicon/EN-lexicon
4https://github.com/cjhutto/vaderSentiment
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Abstract

We propose a method to control the level of
a sentence in a text simplification task. Text
simplification is a monolingual translation task
translating a complex sentence into a sim-
pler and easier to understand the alternative.
In this study, we use the grade level of the
US education system as the level of the sen-
tence. Our text simplification method suc-
ceeds in translating an input into a specific
grade level by considering levels of both sen-
tences and words. Sentence level is consid-
ered by adding the target grade level as in-
put. By contrast, the word level is consid-
ered by adding weights to the training loss
based on words that frequently appear in sen-
tences of the desired grade level. Although
existing models that consider only the sen-
tence level may control the syntactic complex-
ity, they tend to generate words beyond the tar-
get level. Our approach can control both the
lexical and syntactic complexity and achieve
an aggressive rewriting. Experiment results in-
dicate that the proposed method improves the
metrics of both BLEU and SARI.

1 Introduction

Text simplification (Shardlow, 2014) is the task
of rewriting a complex text into a simpler form
while preserving its meaning. Its applications in-
clude reading comprehension assistance and lan-
guage education support. Because each target user
has different reading abilities and/or knowledge,
we need a text simplification system that translates
an input sentence into a sentence of an appropriate
difficulty level for each user. According to the in-
put hypothesis (Krashen, 1985), educational mate-
rials slightly beyond the learner’s level effectively
improve their reading abilities. On the contrary,
materials that are too difficult for learners dete-
riorate their learning motivation. In the context
of language education, teachers manually simplify

Grade Examples

12 According to the Pentagon , 152 fe-
male troops have been killed while
serving in Iraq and Afghanistan .

7 The Pentagon says 152 female troops
have been killed while serving in Iraq
and Afghanistan .

5 The military says 152 female have
died .

Table 1: Example sentences with different grade lev-
els. To control the sentence level, syntactic (underline)
and/or lexical (bold) paraphrasing is performed.

sentences for each learner. To reduce the burden
on teachers, automatic text simplification systems
are desired (Petersen and Ostendorf, 2007).

As mentioned, text simplification translates
a complex sentence into a simpler alternative.
The transformation allows entailment and omis-
sion/replacement of phrases and words. Table 1
shows sentences in different grade levels. Sen-
tence level depends on both the syntactic and lex-
ical complexities. When simplifying a sentence
of grade level 12 into grade level 71, paraphrasing
“According to ∼ ,” to “∼ says” reduces the syntac-
tic complexity. In addition, when simplifying the
sentence from the grade levels 12 to 5, paraphras-
ing “Pentagon” to “military” reduces the lexical
complexity. Assuming an application to language
education, we aim at automatically rewriting the
input sentence to accommodate the level of diffi-
culty appropriate for each grade level, as shown in
Table 1.

Many previous studies (Specia, 2010;
Wubben et al., 2012; Xu et al., 2016; Nisioi et al.,
2017; Zhang and Lapata, 2017; Vu et al., 2018;

1In this study, we use grades K-12.
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Guo et al., 2018; Zhao et al., 2018) in text sim-
plification have trained machine translators on
a monolingual parallel corpus consisting of
complex-simple sentence pairs without consider-
ing the level of each sentence. Therefore, these
text simplification models are ignorant regarding
the sentence level. Scarton and Specia (2018)
developed a pioneering text simplification model
that can control the sentence level. They trained a
text simplification model on a parallel corpus by
attaching tags specifying 11 grade levels to each
sentence (Xu et al., 2015). The trained model
allows the generation of a sentence of a desired
level specified by a tag attached to the input.
This model may control the syntactic complexity
such as the sentence length; however, it often
outputs overly difficult words beyond the target
grade level. To control the lexical complexity in
text simplification, we propose a method for add
weights to a training loss according to levels of
words on top of (Scarton and Specia, 2018), and
thus output only words under the desired level.

Experiment results indicate that the proposed
method improves the BLEU and SARI scores by
1.04 and 0.15 compared to Scarton and Specia
(2018). Moreover, our detailed analysis indicates
that our method controls both the lexical and syn-
tactic complexities and promotes an aggressive
rewriting.

2 Related Work

2.1 Text Simplification

Text simplification can be regarded as a mono-
lingual machine translation problem. Previ-
ous studies have trained a model to trans-
late complex sentences into simpler sentences
on parallel corpora between Wikipedia and
Simple Wikipedia (W-SW) (Zhu et al., 2010;
Coster and Kauchak, 2011). As in the field
of machine translation, early studies (Specia,
2010; Wubben et al., 2012; Xu et al., 2016) were
mainly based on a statistical machine trans-
lation (Koehn et al., 2007; Post et al., 2013).
Inspired by the success of neural machine
translation (Bahdanau et al., 2015), recent stud-
ies (Nisioi et al., 2017; Zhang and Lapata, 2017;
Vu et al., 2018; Guo et al., 2018; Zhao et al.,
2018) use the encoder-decoder model with the at-
tention mechanism. These studies do not consider
the level of each sentence.

Source

Reference

Target

Loss

sequence-to-
sequence 
modelTarget grade 

level

Figure 1: Our method adds a weight to the training loss
based on levels of words w and target level l..

2.2 Controllable Text Simplification
In addition to W-SW, Newsela (Xu et al., 2015)
is a famous dataset available for text simplifica-
tion. Newsela is a parallel corpus with 11 grade
levels. Scarton and Specia (2018) trained a level-
controllable text simplification model on Newsela.
Although their model is a standard attentional
encoder-decoder model similar to (Nisioi et al.,
2017), a special token <grade> indicating the
grade level of the target sentence is attached to
the beginning of the input sentence. This is
a promising approach that has been successful
in similar tasks (Johnson et al., 2017; Niu et al.,
2018). As expected regarding the task of text
simplification, this approach has improved both
BLEU (Papineni et al., 2002) and SARI (Xu et al.,
2016) compared to a baseline model (Nisioi et al.,
2017) that does not consider the target level at all.
This model allows the syntactic complexity to be
controlled; however, it tends to output overly dif-
ficult words beyond the target grade level.

3 Loss Function with Word Level

To control the lexical complexity, our model
weighs a training loss of a text simplification
model considering words that frequently appear in
the sentences of a specific grade level, as shown in
Figure 1. Here, the weight f(w, l) corresponds to
the relevance of the word w at grade level l.

A sequence-to-sequence model commonly uses
the cross-entropy loss. When a model outputs
o = [o1, · · · , oN ] (where N is the size of the vo-
cabulary) at a certain time step, the cross-entropy
loss is as follows:

L(o, y) = −y log o⊤ = − log oc (1)

where y = [y1, · · · , yN ] is a one-hot vector in
which only the c-th element of a correct word is
1 and others are all 0. Our model adds weights to
the loss function (Equation 1) based on the level of
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words such that the model learns to output words
of the desired level:

L′(o, y, w, l) = −f(w, l) · log oc. (2)

As f(·, ·), we use TFIDF or PPMI assuming that
words frequently appear in sentences of level l also
have the same level l.

TFIDF We compute the TFIDF regarding sen-
tences of the same level as a document:

TFIDF(w, l) = P (w | l) · log
D

DF(w)
(3)

where P (w | l) is a probability that word w
appears in a set of sentences of grade level l,
D is the number of grade levels2, and DF(w)
is the number of grade levels in which w ap-
pears. By so doing, TFIDF provides more
weights to words that uniquely appear in the
sentences of a specific level.

PPMI Pointwise mutual information (PMI) al-
lows estimating the strength of a co-
occurrence between w and l:

PMI(w, l) = log
P (w | l)

P (w)
. (4)

where P (w) is a probability of word w be-
ing within the entire training corpus, whereas
P (w | l) is the same as Equation 3. Words
with negative PMI scores have a negative cor-
relation against l that means w tends to ap-
pear across different sentence levels. Hence,
we ignore w with a negative PMI using a
positive-PMI (PPMI) function:

PPMI(w, l) = max(PMI(w, l), 0). (5)

Both TFIDF and PPMI have a range of [0, ∞),
and thus we apply the Laplace smoothing:

f(w, l) = Func(w, l) + 1 (6)

Func ∈ {PPMI, TFIDF} (7)

4 Experiment

4.1 Dataset
We evaluated whether our method can control
the grade levels in a text simplification using the
Newsela corpus. The Newsela corpus provides

2Here, D = 11 because we use grade levels 2 to 12.

Grade #Sentences #Words S-length

2 953 9, 882 10.37
3 3, 865 47, 211 12.22
4 43, 971 618, 184 14.06
5 31, 918 526, 769 16.50
6 19, 535 367, 319 18.80
7 17, 322 356, 307 20.57
8 15, 446 376, 678 24.39
9 7, 897 200, 242 25.36
10 1, 018 30, 693 30.15
11 104 2, 844 27.35
12 50, 799 1, 484, 625 29.23

All 192, 828 4, 020, 754 20.85

Table 2: Statistics for the Newsela corpus, where S-
length shows the average number of words in a sen-
tence.

news articles of different levels, which have been
manually rewritten by human experts. It conforms
to the grade levels in the US education system,
where the levels range from 2 to 12.

We use the publicly available version of the
Newsela corpus3 that has been sentence-aligned
by Xu et al. (2015) and divided into 94k, 1k, and
1k sentences for the training, development, and
test, respectively, by Zhang and Lapata (2017).
As in previous studies, we regard each sen-
tence in an article as sharing the same level
as the entire article. Zhang and Lapata (2017)
first divided the set of articles and then ex-
tracted sentence pairs to avoid the same sen-
tences appearing in both the training and test
sets. Note that the Newsela corpus used in
(Scarton and Specia, 2018) is different from the
present corpus, and is preprocessed differently.
Due to these differences, the training, develop-
ment, and test sets used in (Scarton and Specia,
2018) are unreproducible. Therefore, we reimple-
mented (Scarton and Specia, 2018) and compared
it to our method using our public corpus.

Table 2 shows statistics for the Newsela cor-
pus, which clearly present the tendency that lower
grade sentences are significantly shorter than those
of higher grades. This indicates that aggressive
omission of phrases is required to simplify sen-
tences of grade 8 to 12 into those of grade 2 to 7.

3https://newsela.com/data/
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BLEU ↑ SARI ↑ BLEUST ↓ MAELEN ↓ MPMI ↑
source 21.37 2.82 100.0 10.73 0.08
reference 100.0 70.13 18.30 0.00 0.23

s2s 20.43 28.21 37.60 4.38 0.12
s2s+grade 20.82 29.44 31.96 3.77 0.15
s2s+grade+TFIDF 21.00 29.58 31.56 3.75 0.15
s2s+grade+PPMI 21.86 29.59 31.38 3.69 0.19

Table 3: Results on the Newsela test set.

4.2 Methods for Comparison
During this experiment, the following four meth-
ods were compared.

1. s2s is a baseline, plain sequence-to-sequence
model based on the attention mechanism.

2. s2s+grade is our re-implementation of
Scarton and Specia (2018), which is a state-
of-the-art controllable text simplification.

3. s2s+grade+TFIDF is our model (Sec. 3) im-
plemented on s2s+grade, which adds TFIDF-
based word weighing to the loss function.
TFIDF scores were pre-computed using the
training data.

4. s2s+grade+PPMI is our other model (Sec. 3)
implemented on s2s+grade, which adds
PPMI-based word weighing in the loss func-
tion. PPMI scores were pre-computed using
the training data.

4.3 Implementation Details
In this study, we implemented our model using
Marian (Junczys-Dowmunt et al., 2018).4 Both
the encoder and decoder consist of 2 layers of Bi-
LSTM with the 1, 024-dimensions of hidden lay-
ers and 512-dimensions of the embedding layer
shared by the encoder and decoder including its
output layer. Word embedding was randomly ini-
tialized. A dropout rate of 0.2 was applied to the
hidden layer, and a dropout rate of 0.1 was applied
to the embedding layer. Adam was used as an op-
timizer. Training was stopped when the perplexity
measured on the development set stopped improv-
ing for 8 epochs.5 All scores reported in this ex-
periment are the averages of 3 trials with random
initialization.

4https://github.com/marian-nmt/marian/commit/02f4af4
548.7 epochs on average to train s2s+grade+PPMI.

4.4 Automatic Evaluation Metrics
Following previous studies on text simplifica-
tion, e.g., Scarton and Specia (2018), BLEU6

(Papineni et al., 2002) and SARI7 (Xu et al.,
2016) were used to evaluate the overall perfor-
mance.

In addition, we investigate the scores of
BLEUST, mean absolute error (MAE) of sentence
length (MAELEN), and mean PMI (MPMI) for a
detailed analysis. BLEUST computes a BLEU
score by taking the source and output sentences
as input, which allows evaluating the degree of
rewrites made by a model. The lower BLEUST
is, the more actively the model rewrites the source
sentence.

In addition, MAELEN approximately evaluates
the syntactic complexity of the output based on its
length:

MAELen =
1

N

∑

sR∈Reference
sT ∈Target

|Len(sR) − Len(sT )| ,

(8)
where N is the number of sentences in the test set,
and Len(·) provides the number of words in a sen-
tence. The lower the MAELEN is, the more appro-
priate the length of the output.

MPMI evaluates to what extent the levels of the
output words match with the target level:

MPMI =
1

W

∑

s∈Target

∑

w∈s

PMI(w, ls), (9)

where W is the number of words appearing in the
output and ls is the grade level of sentence s. PMI
scores were pre-computed using the training data.
The higher the MPMI is, the more words of the
target level are generated by the model.

6We use the multi-bleu-detok.perl script from https://
github.com/moses-smt/mosesdecoder

7https://github.com/cocoxu/simplification
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Grade Examples

Source
12

In its original incarnation during the ‘ 60s , African-American ” freedom songs ” aimed
to motivate protesters to march into harm ’s way and , on a broader scale , spread news
of the struggle to a mainstream audience .

7

s2s+grade: In the 1960s , African-American ” freedom songs are aimed to motivate
protesters to march into harm ’s way .
s2s+grade+PPMI: In its original people in the 1960s , African-American ” freedom
songs are aimed to inspire protesters to march into harm ’s way .

4

s2s+grade: In the 1960s , African-American ” freedom songs are aimed to motivate
protesters to march into harm ’s way .
s2s+grade+PPMI: African-American ” freedom songs are aimed to inspire protesters
to march into harm ’s way .

Table 4: Example of model outputs. Here, s2s+grade+PPMI successfully simplified some complex words (high-
lighted in bold) and deleted the underlined phrases.

5 Results and Analysis

5.1 Overall Results
Table 3 shows the experiment results. The first two
rows show the performances when the source sen-
tence itself or the reference sentence is regarded as
the model output, which sets the standard to inter-
pret the scores.

Our method outperforms the state-of-the-art
baseline in both the BLEU and SARI metrics. In
particular, s2s+grade+PPMI improved the BLEU
and SARI scores by 1.04 and 0.15 compared to
s2s+grade, respectively.

An evaluation in BLEUST shows that our pro-
posed models conduct an aggressive rewriting. In
addition, s2s+grade+PPMI, which has the highest
performance in both the BLEU and BLEUST met-
rics, conducts many appropriate rewrites that are
far from the source and close to the reference. The
s2s baseline, which does not consider the target
level, applies conservative rewriting, whereas the
proposed model, which considers it more properly
conducts more aggressive rewriting.

The evaluations of MAELEN and MPMI show
that s2s+grade+PPMI can best the control both
syntactic and lexical complexities. From these re-
sults, we confirmed the effectiveness of the text
simplification model that takes the word level into
account.

Table 4 shows examples of the model outputs.
Here, s2s+grade+PPMI paraphrases a complex
word “incarnation” into “people” for grade level
7. In addition, the complex word “motivate” is
simplified to “inspire” for grade level 4. Although

Grade
FKGL MPMI

prev. prop. diff. prev. prop.

<8> 4.92 5.33 +0.41 0.11 0.12
<7> 4.87 5.25 +0.38 0.10 0.12
<6> 4.47 4.56 +0.09 0.12 0.14
<5> 3.51 3.71 +0.20 0.13 0.15
<4> 2.68 2.69 +0.01 0.16 0.19
<3> 2.06 1.89 −0.17 0.18 0.23
<2> 1.81 1.44 −0.37 0.20 0.24

MAE 1.52 1.45 − − −

Table 5: FKGL and MPMI of s2s+grade (prev.) and
s2s+grade+PPMI (prop.) for each grade level. Models
suitable for the target level are highlighted in bold.

both models can remove unimportant phrases “and
, on ∼”, s2s+grade+PPMI successfully summa-
rized shorter sentences for grade level 4.

5.2 Analysis for Each Grade Level
To analyze the level control in detail, we simpli-
fied each source sentence in the test set to all sim-
pler grade levels8. This analysis does not allow an
evaluation based on references such as BLEU be-
cause references are only given for some levels for
each source sentence.

Table 5 shows FKGL (Kincaid et al., 1975) and
MPMI for each target grade level for s2s+grade
(prev.) and s2s+grade+PPMI (prop.). FKGL is

8We omitted grade levels <9>-<12> because the sen-
tences with these grade levels do not exist in the reference
sentences of the training set.
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an automatic evaluation metric that estimates the
textual readability. The FKGL scores correspond
to grade levels of K-12.

An analysis of the FKGL revealed that both
models were oversimplified. However, MAE with
the target grade level shows that the proposed
model is superior to the baseline model. Focus-
ing on the FKGL differences, the proposed model
generates simpler sentences for the simpler tar-
get grade levels than the baseline model, and vice
versa. These results show that incorporating word
levels into the model contributes to a level control
in text simplification.

In the evaluation of MPMI, the proposed
method consistently outperforms the state-of-the-
art baseline at all target levels. As expected, we
confirmed that the proposed method for weighting
the cross-entropy losses based on PPMI encour-
ages the use of words suitable for the target grade
level.

6 Conclusion

We proposed a text simplification method that
controls not only the sentence level but also
the word level. Our method controls the word
level by weighing words in the loss function,
which frequently appear in text of a specific
grade level. The evaluation results confirmed that
our method improved both the BLEU and SARI
scores, and achieved an aggressive rewriting com-
pared to Scarton and Specia (2018). A detailed
analysis indicated that our method achieved an ac-
curate control of the level in converting the sen-
tences into those of the target level.

In this study, we regard a document and
the sentences contained within it to have the
same grade level as in previous studies. In
practice, however, this assumption may not
hold. Although the readability and level in
the units of document (Kincaid et al., 1975)
and phrase (Pavlick and Callison-Burch, 2016;
Maddela and Xu, 2018) have been studied, there
have been no previous works focusing on the level
of the sentences. This direction is an area of our
future work.
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Abstract
With the growth of the social web, user-
generated text data has reached unprecedented
sizes. Non-canonical text normalization pro-
vides a way to exploit this as a practical
source of training data for language process-
ing systems. The state of the art in Turk-
ish text normalization is composed of a token-
level pipeline of modules, heavily dependent
on external linguistic resources and manually-
defined rules. Instead, we propose a fully-
automated, context-aware machine translation
approach with fewer stages of processing. Ex-
periments with various implementations of our
approach show that we are able to surpass the
current best-performing system by a large mar-
gin.

1 Introduction

Supervised machine learning methods such as
CRFs, SVMs, and neural networks have come to
define standard solutions for a wide variety of lan-
guage processing tasks. These methods are typ-
ically data-driven, and require training on a sub-
stantial amount of data to reach their potential.
This kind of data often has to be manually anno-
tated, which constitutes a bottleneck in develop-
ment. This is especially marked in some tasks,
where quality or structural requirements for the
data are more constraining. Among the exam-
ples are text normalization and machine transla-
tion (MT), as both tasks require parallel data with
limited natural availability.

The success achieved by data-driven learn-
ing methods brought about an interest in user-
generated data. Collaborative online platforms
such as social media are a great source of large
amounts of text data. However, these texts typi-
cally contain non-canonical usages, making them
hard to leverage for systems sensitive to training

data bias. Non-canonical text normalization is the
task of processing such texts into a canonical for-
mat. As such, normalizing user-generated data has
the capability of producing large amounts of ser-
viceable data for training data-driven systems.

As a denoising task, text normalization can be
regarded as a translation problem between closely
related languages. Statistical machine translation
(SMT) methods dominated the field of MT for a
while, until neural machine translation (NMT) be-
came more popular. The modular composition of
an SMT system makes it less susceptible to data
scarcity, and allows it to better exploit unaligned
data. In contrast, NMT is more data-hungry, with a
superior capacity for learning from data, but often
faring worse when data is scarce. Both translation
methods are very powerful in generalization.

In this study, we investigate the potential of
using MT methods to normalize non-canonical
texts in Turkish, a morphologically-rich, aggluti-
native language, allowing for a very large number
of common word forms. Following in the foot-
steps of unsupervised MT approaches, we auto-
matically generate synthetic parallel data from un-
aligned sources of “monolingual” canonical and
non-canonical texts. Afterwards, we use these
datasets to train character-based translation sys-
tems to normalize non-canonical texts1. We de-
scribe our methodology in contrast with the state
of the art in Section 3, outline our data and empir-
ical results in Sections 4 and 5, and finally present
our conclusions in Section 6.

2 Related Work

Non-canonical text normalization has been rela-
tively slow to catch up with purely data-driven

1We have released the source code of the project at
https://github.com/talha252/tur-text-norm
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learning methods, which have defined the state
of the art in many language processing tasks.
In the case of Turkish, the conventional solu-
tions to many normalization problems involve
rule-based methods and morphological process-
ing via manually-constructed automata. The
best-performing system (Eryiğit and Torunoğlu-
Selamet, 2017) uses a cascaded approach with
several consecutive steps, mixing rule-based pro-
cesses and supervised machine learning, as first
introduced in Torunoğlu and Eryiğit (2014). The
only work since then, to the best of our knowl-
edge, is a recent study (Göker and Can, 2018) re-
viewing neural methods in Turkish non-canonical
text normalization. However, the reported systems
still underperformed against the state of the art. To
normalize noisy Uyghur text, Tursun and Cakici
(2017) uses a noisy channel model and a neural
encoder-decoder architecture which is similar to
our NMT model. While our approaches are sim-
ilar, they utilize a naive artificial data generation
method which is a simple stochastic replacement
rule of characters. In Matthews (2007), character-
based SMT was originally used for transliteration,
but later proposed as a possibly viable method
for normalization. Since then, a number of stud-
ies have used character-based SMT for texts with
high similarity, such as in translating between
closely related languages (Nakov and Tiedemann,
2012; Pettersson et al., 2013), and non-canonical
text normalization (Li and Liu, 2012; Ikeda et al.,
2016). This study is the first to investigate the per-
formance of character-based SMT in normalizing
non-canonical Turkish texts.

3 Methodology

Our guiding principle is to establish a simple MT
recipe that is capable of fully covering the con-
ventional scope of normalizing Turkish. To pro-
mote a better understanding of this scope, we first
briefly present the modules of the cascaded ap-
proach that has defined the state of the art (Eryiğit
and Torunoğlu-Selamet, 2017). Afterwards, we
introduce our translation approach that allows im-
plementation as a lightweight and robust data-
driven system.

3.1 Cascaded approach

The cascaded approach was first introduced
by Torunoğlu and Eryiğit (2014), dividing the task
into seven consecutive modules. Every token is

processed by these modules sequentially (hence
cascaded) as long as it still needs further normal-
ization. A transducer-based morphological ana-
lyzer (Eryiğit, 2014) is used to generate morpho-
logical analyses for the tokens as they are being
processed. A token for which a morphological
analysis can be generated is considered fully nor-
malized. We explain the modules of the cascaded
approach below, and provide relevant examples.

Letter case transformation. Checks for valid
non-lowercase tokens (e.g. “ACL”, “Jane”, “iOS”),
and converts everything else to lowercase.

Replacement rules / Lexicon lookup. Re-
places non-standard characters (e.g. ‘ß’→‘b’), ex-
pands shorthand (e.g. “slm”→“selam”), and sim-
plifies repetition (e.g. “yaaaaa”→“ya”).

Proper noun detection. Detects proper nouns
by comparing unigram occurrence ratios of proper
and common nouns, and truecases detected proper
nouns (e.g. “umut”→“Umut”).

Diacritic restoration. Restores missing diacrit-
ics (e.g. “yogurt”→“yoğurt”).

Vowel restoration. Restores omit-
ted vowels between adjacent conso-
nants (e.g. “olck”→“olacak”).

Accent normalization. Converts con-
tracted, stylized, or phonetically tran-
scribed suffixes to their canonical written
forms (e.g. “yapcem”→“yapacağım”)

Spelling correction. Corrects any remaining
typing and spelling mistakes that are not covered
by the previous modules.

While the cascaded approach demonstrates
good performance, there are certain drawbacks as-
sociated with it. The risk of error propagation
down the cascade is limited only by the accuracy
of the ill-formed word detection phase. The mod-
ules themselves have dependencies to external lin-
guistic resources, and some of them require rig-
orous manual definition of rules. As a result, im-
plementations of the approach are prone to human
error, and have a limited ability to generalize to
different domains. Furthermore, the cascade only
works on the token level, disregarding larger con-
text.

3.2 Translation approach

In contrast to the cascaded approach, our
translation approach can appropriately consider
sentence-level context, as machine translation is a
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ISTNßUUUL
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Norm.

Trans-
lation

L. Case
Rest. İstanbulistnbuuul istanbul

Figure 1: A flow diagram of the pipeline of components in our translation approach, showing
the intermediate stages of a token from non-canonical input to normalized output.

sequence-to-sequence transformation. Though not
as fragmented or conceptually organized as in the
cascaded approach, our translation approach in-
volves a pipeline of its own. First, we apply an
orthographic normalization procedure on the in-
put data, which also converts all characters to low-
ercase. Afterwards, we run the data through the
translation model, and then use a recaser to restore
letter cases. We illustrate the pipeline formed by
these components in Figure 1, and explain each
component below.

Orthographic normalization. Sometimes users
prefer to use non-Turkish characters resembling
Turkish ones, such as µ→u. In order to reduce
the vocabulary size, this component performs low-
ercase conversion as well as automatic normaliza-
tion of certain non-Turkish characters, similarly to
the replacement rules module in the cascaded ap-
proach.

Translation. This component performs a lower-
case normalization on the pre-processed data us-
ing a translation system (see Section 5 for the
translation models we propose). The translation
component is rather abstract, and its performance
depends entirely on the translation system used.

Letter case restoration. As emphasized earlier,
our approach leaves truecasing to the letter case
restoration component that processes the transla-
tion output. This component could be optional in
case normalization is only a single step in a down-
stream pipeline that processes lowercased data.

4 Datasets

As mentioned earlier, our translation approach is
highly data-driven. Training translation and lan-
guage models for machine translation, and per-
forming an adequate performance evaluation com-
parable to previous works each require datasets of
different qualities. We describe all datasets that we
use in this study in the following subsections.

4.1 Training data

OpenSubsFiltered As a freely available large
text corpus, we extract all Turkish data from the
OpenSubtitles20182 (Lison and Tiedemann, 2016)
collection of the OPUS repository (Tiedemann,
2012). Since OpenSubtitles data is rather noisy
(e.g. typos and colloquial language), and our idea
is to use it as a collection of well-formed data, we
first filter it offline through the morphological an-
alyzer described in Oflazer (1994). We only keep
subtitles with a valid morphological analysis for
each of their tokens, leaving a total of∼105M sen-
tences, or ∼535M tokens.

TrainParaTok In order to test our translation ap-
proach, we automatically generate a parallel cor-
pus to be used as training sets for our transla-
tion models. To obtain a realistic parallel cor-
pus, we opt for mapping real noisy words to their
clean counterparts rather than noising clean words
by probabilistically adding, deleting and changing
characters. For that purpose, we develop a custom
weighted edit distance algorithm which has a cou-
ple of new operations. Additional to usual inser-
tion, deletion and substitution operations, we have
defined duplication and constrained-insertion op-
erations. Duplication operation is used to handle
multiple repeating characters which are intention-
ally used to stress a word, such as geliyoooooo-
rum. Also, to model keyboard errors, we have de-
fined a constrained-insertion operation that allows
to assign different weights of a character insertion
with different adjacent characters.

To build a parallel corpus of clean and ill-
formed words, firstly we scrape a set of ∼25M
Turkish tweets which constitutes our noisy words
source. The tweets in this set are tokenized, and
non-word tokens like hashtags and URLs are elim-
inated, resulting∼5M unique words. The words in
OpenSubsFiltered are used as clean words source.
To obtain an ill-formed word candidate list for
each clean word, the clean words are matched with
the noisy words by using our custom weighted edit

2http://www.opensubtitles.org/
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Datasets # Tokens # Non-canonical tokens
TestIWT 38,917 5,639 (14.5%)
Test2019 7,948 2,856 (35.9%)

TestSmall 6,507 1,171 (17.9%)

Table 1: Sizes of each test datasets

distance algorithm, Since the lists do not always
contain relevant ill-formed words, it would’ve
been mistake to use the list directly to create word
pairs. To overcome this, we perform tournament
selection on candidate lists based on word similar-
ity scores.

Finally, we construct TrainParaTok from the re-
sulting ∼5.7M clean-noisy word pairs, as well as
some artificial transformations modeling tokeniza-
tion errors (e.g. “birşey”→“bir şey”).

HuaweiMonoTR As a supplementary collec-
tion of canonical texts, we use the large Turkish
text corpus from Yildiz et al. (2016). This re-
source contains ∼54M sentences, or ∼968M to-
kens, scraped from a diverse set of sources, such
as e-books, and online platforms with curated con-
tent, such as news stories and movie reviews. We
use this dataset for language modeling.

4.2 Test and development data

TestIWT Described in Pamay et al. (2015), the
ITU Web Treebank contains 4,842 manually nor-
malized and tagged sentences, or 38,917 tokens.
For comparability with Eryiğit and Torunoğlu-
Selamet (2017), we use the raw text from this cor-
pus as a test set.

TestSmall We report results of our evaluation
on this test set of 509 sentences, or 6,507 to-
kens, introduced in Torunoğlu and Eryiğit (2014)
and later used as a test set in more recent stud-
ies (Eryiğit and Torunoğlu-Selamet, 2017; Göker
and Can, 2018).

Test2019 This is a test set of a small num-
ber of samples taken from Twitter, containing 713
tweets, or 7,948 tokens. We manually annotated
this set in order to have a test set that is in the same
domain and follows the same distribution of non-
canonical occurrences as our primary training set.

ValSmall We use this development set of 600 sen-
tences, or 7,061 tokens, introduced in Torunoğlu
and Eryiğit (2014), as a validation set for our NMT
and SMT experiments.

Table 1 shows all token and non-canonical to-
ken count of each test dataset as well as the ratio
of non-canonical token count over all tokens.

5 Experiments and results

The first component of our system (i.e. Ortho-
graphic Normalization) is a simple character re-
placement module. We gather unique characters
that appear in Twitter corpus which we scrape
to generate TrainParaTok. Due to non-Turkish
tweets, there are some Arabic, Persian, Japanese
and Hangul characters that cannot be orthograph-
ically converted to Turkish characters. We filter
out those characters using their unicode charac-
ter name leaving only characters belonging Latin,
Greek and Cyrillic alphabets. Then, the remain-
ing characters are mapped to their Turkish coun-
terparts with the help of a library3. After man-
ual review and correction of these characters map-
pings, we have 701 character replacement rules in
this module.

We experiment with both SMT and NMT
implementations as contrastive methods. For
our SMT pipeline, we employ a fairly stan-
dard array of tools, and set their parame-
ters similarly to Scherrer and Erjavec (2013)
and Scherrer and Ljubešić (2016). For align-
ment, we use MGIZA (Gao and Vogel, 2008)
with grow-diag-final-and symmetrization. For
language modeling, we use KenLM (Heafield,
2011) to train 6-gram character-level language
models on OpenSubsFiltered and HuaweiMonoTR.
For phrase extraction and decoding, we use
Moses (Koehn et al., 2007) to train a model
on TrainParaTok. Although there is a small pos-
sibility of transposition between adjacent char-
acters, we disable distortion in translation. We
use ValSmall for minimum error rate training, op-
timizing our model for word error rate.

We train our NMT model using the OpenNMT
toolkit (Klein et al., 2017) on TrainParaTok with-
out any parameter tuning. Each model uses an
attentional encoder-decoder architecture, with 2-
layer LSTM encoders and decoders. The input
embeddings, the LSTM layers of the encoder, and
the inner layer of the decoder all have a dimen-
sionality of 500. The outer layer of the decoder
has a dimensionality of 1,000. Both encoder and
decoder LSTMs have a dropout probability of 0.3.

3The library name is Unidecode which can be found at
https://pypi.org/project/Unidecode/
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Model TestIWT Test2019 TestSmall

Eryiğit et al.
(2017)

95.78%
93.57%

80.25%
75.39%

92.97%
86.20%

SMT
96.98%
95.21%

85.23%
78.10%

93.52%
89.59%

NMT
93.90%
92.20%

74.04%
67.87%

89.52%
85.77%

Table 2: Case-insensitive (top) and case-sensitive
(bottom) accuracy over all tokens.

Model TestIWT Test2019 TestSmall

Eryiğit et al.
(2017)

79.16%
70.54%

66.18%
56.44%

74.72%
53.80%

SMT
87.43%
84.70%

74.02%
66.35%

76.00%
68.40%

NMT
71.34%
68.91%

50.84%
45.03%

58.67%
51.84%

Table 3: Case-insensitive (top) and case-sensitive
(bottom) accuracy scores over non-canonical tokens.

In our experimental setup, we apply a naı̈ve
tokenization on our data. Due to this, align-
ment errors could be caused by non-standard token
boundaries (e.g. “A E S T H E T I C”). Similarly, it
is possible that, in some cases, the orthography
normalization step may be impairing our perfor-
mances by reducing the entropy of our input data.
Regardless, both components are frozen for our
translation experiments, and we do not analyze
the impact of errors from these components in this
study.

For the last component, we train a case restora-
tion model on HuaweiMonoTR using the Moses
recaser (Koehn et al., 2007). We do not assess
the performance of this individual component, but
rather optionally apply it on the output of the trans-
lation component to generate a recased output.

We compare the lowercased and fully-cased
translation outputs with the corresponding ground
truth, respectively calculating the case-insensitive
and case-sensitive scores shown in Tables 2 and 3.
We detect tokens that correspond to URLs, hash-
tags, mentions, keywords, and emoticons, and do
not normalize them4. The scores we report are
token-based accuracy scores, reflecting the per-
centages of correctly normalized tokens in each
test set. These tables display performance evalua-
tions on our own test set as well as other test sets
used in the best-performing system so far Eryiğit
and Torunoğlu-Selamet (2017), except the Big
Twitter Set (BTS), which is not an open-access
dataset.

The results show that, while our NMT model
seem to have performed relatively poorly, our
character-based SMT model outperforms Eryiğit
and Torunoğlu-Selamet (2017) by a fairly large

4The discrepancy between the reproduced scores and
those originally reported in Eryiğit and Torunoğlu-Selamet
(2017) is partly because we also exclude these from eval-
uation, and partly because the original study excludes all-
uppercase tokens from theirs.

margin. The SMT system demonstrates that our
unsupervised parallel data bootstrapping method
and translation approach to non-canonical text
normalization both work quite well in the case of
Turkish. The reason for the dramatic underperfor-
mance of our NMT model remains to be investi-
gated, though we believe that the language model
we trained on large amounts of data is likely an
important contributor to the success of our SMT
model.

6 Conclusion and future work

In this study, we proposed a machine translation
approach as an alternative to the cascaded ap-
proach that has so far defined the state of the art
in Turkish non-canonical text normalization. Our
approach is simpler with fewer stages of process-
ing, able to consider context beyond individual to-
kens, less susceptible to human error, and not re-
liant on external linguistic resources or manually-
defined transformation rules. We show that, by
implementing our translation approach with basic
pre-processing tools and a character-based SMT
model, we were able to outperform the state of the
art by a fairly large margin.

A quick examination of the outputs from our
best-performing system shows that it has often
failed on abbreviations, certain accent normaliza-
tion issues, and proper noun suffixation. We are
working on a more detailed error analysis to be
able to identify particular drawbacks in our sys-
tems, and implement corresponding measures, in-
cluding using a more sophisticated tokenizer. We
also plan to experiment with character embed-
dings and character-based composite word em-
beddings in our NMT model to see if that would
boost its performance. Finally, we are aiming for a
closer look at out-of-domain text normalization in
order to investigate ways to perform domain adap-
tation using our translation approach.
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Abstract
The rapid widespread of social media has led
to some undesirable consequences like the
rapid increase of hateful content and offen-
sive language. Religious Hate Speech, in par-
ticular, often leads to unrest and sometimes
aggravates to violence against people on the
basis of their religious affiliations. The rich-
ness of the Arabic morphology and the lim-
ited available resources makes this task espe-
cially challenging. The current state-of-the-
art approaches to detect hate speech in Ara-
bic rely entirely on textual (lexical and seman-
tic) cues. Our proposed methodology con-
tends that leveraging Community-Interaction
can better help us profile hate speech con-
tent on social media. Our proposed ARHNet
(Arabic Religious Hate Speech Net) model in-
corporates both Arabic Word Embeddings and
Social Network Graphs for the detection of re-
ligious hate speech.

1 Introduction

Hate speech was a major tool employed to pro-
mote slavery in Colonial America, to aggravate
tensions in Bosnia and in the rise of the Third Re-
ich. The aim of such speech is to ridicule victims,
to humiliate them and represent their grievances
as less serious (Gelashvili, 2018). The relation-
ship between religion and hate speech is com-
plex and has been central to recent discussions
of hate speech directed at religious people, espe-
cially members of religious minorities (Bonotti,
2017). This makes it important to develop auto-
mated tools to detect messages that use inflamma-
tory sectarian language to promote hatred and vi-
olence against people.

Our work extends on the work done by (Al-
badi et al., 2018) in terms of exploring the mer-

its of introducing community interaction as a fea-
ture in the detection of religious hate speech in
Arabic. Most previous work in the area of hate
speech detection has targeted mainly English con-
tent (Davidson et al., 2017) (Djuric et al., 2015)
(Badjatiya et al., 2017). Author profiling using
community graphs has been explored by (Mishra
et al., 2018) for abuse detection on Twitter. We
propose a novel Cyber Hate Detection approach
using multiple twitter graphs and traditional word
embeddings.

Social network graphs are increasingly being
used as a powerful tool for NLP applications
(Mahata et al., 2018; Shah et al., 2016b), lead-
ing to substantial improvement in performance for
tasks like text categorization, sentiment analysis,
and author attribute identification ((Hovy, 2015);
(Yang and Eisenstein, 2015); (Yang et al., 2016).
The idea of using this type of information is best
explained by the concept of homophily, i.e., the
phenomenon that people, both in real life as well
as on the Internet, tend to associate more with
those who appear similar. Here, similarity can be
defined based on various parameters like location,
age, language, etc. The basic idea behind leverag-
ing community interaction is that if we have infor-
mation about members of a community defined by
some similarity measure, then we can infer infor-
mation about a person based on which community
they belong to. For our study, knowing that mem-
bers of a particular community are prone to prolif-
erating religious hate speech content, and know-
ing that the user is connected to this community,
we can use this information beyond linguistic cues
and more accurately predict the use of hateful/non-
hateful language. Our work seeks to address two
main questions:
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• Is one community more prone to spreading
hateful content than the other?

• Can such information be effectively lever-
aged to improve the performance of the cur-
rent state of the art in the detection of re-
ligious hate speech within Arabic speaking
users?

In this paper, we do an in-depth analysis of how
adding community features may enhance the per-
formance of classification models that detect reli-
gious hate speech in Arabic.

2 Related Work

Hate speech research has been conducted exten-
sively for the English language. Amongst the
first ones to apply supervised learning to the task
of hate speech detection were (Yin and Davison,
2009) who used a linear SVM classifier to iden-
tify posts containing harassment based on local,
contextual and sentiment-based (e.g., presence of
expletives) features. Their best results were with
all of these features combined. Notably, (Waseem
and Hovy, 2016) created a dataset for detection of
Hate Speech on Twitter. They noted that character
n-grams are better predictive features than word
n-grams for recognizing racist and sexist tweets.
Their n-gram-based classification model was out-
performed using Gradient Boosted Decision Trees
classifier trained on word embeddings learned us-
ing LSTMs (Waseem and Hovy, 2016). There
has been limited literature on the problem of Hate
Speech detection on Arabic social media. (Magdy
et al., 2015) trained an SVM classifier to predict
whether a user is more likely to be an ISIS sup-
porter or opposer based on features of the users
tweets.

Social Network graphs have been leveraged in
several ways for a variety of purposes in NLP.
Given the graph representing the social network,
such methods create low-dimensional representa-
tions for each node, which are optimized to predict
the nodes close to it in the network. Among those
that implement this idea are (Yang et al., 2016),
who used representations derived from a social
graph to achieve better performance in entity link-
ing tasks, and Chen and Ku (Yang and Eisenstein,
2015), who used them for stance classification. A
considerable amount of literature has also been de-
voted to sentiment analysis with representations
built from demographic factors ((Yang and Eisen-

stein, 2015); (Chen and Ku, 2016)). Other tasks
that have benefited from social representations are
sarcasm detection (Amir et al., 2016) and political
opinion prediction (Tlmcel and Leon, 2017).

To our knowledge, so far there has been no sub-
stantial research on using social network graphs as
features to analyze and categorize tweets in Ara-
bic. Our work proposes a novel architecture that
builds on the current state of the art and improves
its performance using community graph features.

3 Data

We conduct our experiments with the dataset pro-
vided by (Albadi et al., 2018). The authors col-
lected the tweets referring to different religious
groups and labeled them using crowdsourced
workers. In November 2017, using Twitters search
API 2, the authors collected 6000 Arabic tweets,
1000 for each of the six religious groups. They
used this collection of tweets as their training
dataset. Due to the unavailability of a hate lex-
icon and to ensure unbiased data collection pro-
cess; they included in their query only impartial
terms that refer to a religion name or the people
practicing that religion. In January 2018, they col-
lected another set of 600 tweets, 100 for each of
the six religious groups, for their testing dataset.
After an inter-annotator agreement of 81% , 2526
tweets were labeled as Hate.

The dataset was released as a list of 5570 tweet
IDs along with their corresponding annotations.
Using the python Twarc library, we could only re-
trieve 3950 of the tweets since some of them have
now been deleted or their visibility limited. Of
the ones retrieved, 1,685 (42.6%) are labelled as
hate, and the remaining 2,265 (57.4%) as Non-
Hate; this distribution follows the original dataset
very closely (45.1%, 54.9%).

3.1 Preprocessing

We followed some of the Arabic-specific normal-
ization steps proposed in (Albadi et al., 2018)
along with some other Twitter-specific preprocess-
ing techniques.

• Normalization of Hamza with alef seat to
bare alef.

• Normalization of dotless yeh (alef maksura)
to yeh.

• Normalization of teh marbuta to heh.
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Hate
Õæ
jm.Ì'@ Xñ�̄ð Ñë 	áK


	YË@ éK
Y«A�Ó úÎ«ð 	àA¢J
 ��Ë@ ZA 	JK.

@ Ñë 	áK


	YË@ XñîD
Ë @ úÎ« é<Ë @ �é 	JªË ZA�KC�JË @ ÐñJ
Ë @
TuesdayMorning curse of god on the jews who are the sons of the satan and on their helpers
who are the fuel of hell

ÑêªJ. ��K
 	áÓð 	á�
�® 	̄ A 	JÖÏ @ �éªJ
 ��Ë@ 	áÓ 	�P

B@ Qê£ ÑêÊË @

Oh god purify the land from the rawafid hypocrite Shia and those who follow them
ø
 PA�	JË @ð XñîD
Ë @ é 	JªË A 	®�JJ
 	̄ 	áªÊK
 é<Ë @
God cursed Vittafa cursed Jews and Christians
é�®J
�®k ÕÂ�JK. ðQªË AJ. �K ZA«YËAK. ø
 XñîD
Ë @ É�J�̄ ÈðAm�'
ð hC�ËAK. ÕÎ�ÖÏ @ è A 	g@ É�J�®K
 ÕÎ�ÖÏ @ éÖÏ ñÓ
Muslim Muslim kills his Muslim brother and tries to kill the Jew by praying to the Arabs

Table 1: Examples for Hate Speech.

Non-Hate
�éK. PA 	ªÖÏ @ Â XñîD
Ë @ �èQ» @ 	X 	á« ��KA�Kð ÕÎ����K H. Q 	ªÖÏ @ 	J
 ��P


@ �é�� ñÓ

The Moroccan Archives Foundation receives documents on the memory of Moroccan Jews
éJ
�JË @ ú


	̄ (Qå��J. Ë @ É¿ ú
Î« 	àñÊ 	� 	®ÖÏ @) XñîD
Ë @ ú
Î« é�JË 	Q 	K @ AÒ» ø
 ñÊ�Ë@ð 	áÖÏ @ È 	Q 	K @ é<ËAK

God sent down the Manna and the Salafi as it sent down on the Jews (the favored of all human
beings) in Hell

 AK. QËAK. Â ÉJ. �®ÖÏ @ ��
Ò	mÌ'@ �éK. PA 	ªÖÏ @ XñîD
Ë @ �èQ» @ 	X 	á« ��KA�Kð ÕÎ����K H. Q 	ªÖÏ @ 	J
 ��P

@ �é�� ñÓ

Morocco’s Shiv receives documents on the memory of Moroccan Jews next Thursday in Rabat
éJ
 	K A�	�B@ ÐQ��m� 	' Yª	K ÕË ��. é 	JK
AîD� XñîE
 	á�
jJ
�Ó 	á�
ÒÊ�Ó ÐX@ XBð@ A 	JÊ¿
We are all Adam’s children, Muslims, Christian Jews, Zionists, but we no longer respect hu-
manity

Table 2: Examples for Non-Hate Speech.

• Normalizing links, user mentions, and num-
bers to somelink, someuser, and somenum-
ber, respectively.

• Normalizing hashtags by deleting under-
scores and the # symbol.

• Removing diacritics (the harakat), tatweel
(stretching character), punctuations, emojis,
non-Arabic characters, and one-letter words.

• Repeated characters were removed if the rep-
etition was of count three or more.

• We used the list of 356 stopwords created by
(Albadi et al., 2018). This list did not have
negation words as they usually represent im-
portant sentiments.

• Stemming: We used the ISRI Arabic Stem-
mer provided by NLTK to handle inflected
words and reduce them to a common reduced
form.

4 Methodology

4.1 Community and Social Interaction
Network

To leverage information about community inter-
action, we create an undirected unlabeled social
network graph wherein nodes are the authors and
edges are the connections between them.

We use two social network graphs in our study :

• Follower Graph : This is an unweighted
undirected graph G with nodes v represent-
ing authors, with edges e such that for each
e ∈ E, there exists u, v ∈ the set of authors
such that u follows v or vice versa.

• Retweet Graph : This is an unweighted
undirected graph G with nodes v represent-
ing authors, with edges e such that for each
e ∈ E, there exists u, v ∈ the set of authors
such that u has retweeted v or vice versa.
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From these social network graphs, we ob-
tain a vector representation, i.e., an embedding
that we refer to as an Interaction, for each au-
thor using the Node2Vec framework (Grover and
Leskovec, 2016). Node2Vec uses a skip-gram
model (Mikolov et al., 2013) on a graph to cre-
ate a representation for each of its nodes based on
their positions and their neighbors. Given a graph
with nodes V = v1, v2, ..., vn, Node2Vec seeks to
maximize the following log probability:

∑
v∈V LogPr(Ns(v)|v)

where Ns(v)denotes the network neighborhood
of node v generated through sampling strategy
s. The framework can learn low-dimensional em-
beddings for nodes in the graph. These embed-
dings can emphasize either their structural role or
the local community they are a part of. This de-
pends on the sampling strategies used to generate
the neighborhood: if breadth-first sampling (BFS)
is adopted, the model focuses on the immediate
neighbors of a node; when depth-first sampling
(DFS) is used, the model explores farther regions
in the network, which results in embeddings that
encode more information about structural role of a
particular node . The balance between these two
ways of sampling the neighbors is directly con-
trolled by two node2vec parameters, namely p and
q. The default value for these is 1, which ensures
a node representation that gives equal weight to
both structural and community-oriented informa-
tion. In our work, we use the default value for
both p and q. Additionally, since Node2Vec does
not produce embeddings for single users without
a community, these have been mapped to a single
zero embedding. The dimensions of these embed-
dings were 64.

Figure 1 shows an example of a community.
The nodes represent users and the edges represent
an Interaction between them.

4.2 Classification
For every tweet ti ∈ D, in the dataset, a binary
valued value variable yi is used, which can either
be 0 or 1. The value 0 indicates that the text be-
longs to the Non-Hate category while 1 indicates
Hate Speech.

The following steps are executed for every tweet
ti ∈ D :

1. Word Embeddings. All the words in our
vocabulary are encoded to form 600-
dimensional word embeddings obtained

Figure 1: A community interaction snippet from
gretweet

Figure 2: The ARHNet Architecture

by concatenating Twitter-CBOW 300-
dimensional embedding with our trained
embedding.

2. Sentence Representation. This is obtained
by passing the word embeddings through the
corresponding deep learning model.

3. Node Embeddings. The node embedding for
the author of ti is concatenated with the sen-
tence representation to get the final represen-
tation.

4. Dense Layer. The final representation is
passed through a dense layer which outputs
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Architecture Accuracy Precision Recall F1 AUROC
AraHate-LR 0.75 0.72 0.74 0.73 0.82
AraHate-SVM 0.75 0.72 0.72 0.72 0.81
AraHate-GRU 0.77 0.65 0.89 0.75 0.84
GRU + self-attention 0.78 0.71 0.78 0.74 0.83
GRU + CNN 0.79 0.69 0.86 0.77 0.86
LSTM 0.76 0.65 0.86 0.74 0.82
LSTM + self-attention 0.78 0.68 0.82 0.75 0.86
LSTM + CNN 0.80 0.71 0.83 0.77 0.86
Bidirectional GRU 0.79 0.70 0.85 0.77 0.85
Bidirectional GRU + self-attention 0.80 0.74 0.80 0.77 0.87
Bidirectional GRU + CNN 0.79 0.71 0.81 0.76 0.85
Bidirectional LSTM 0.80 0.73 0.79 0.76 0.86
Bidirectional LSTM + self-attention 0.77 0.66 0.86 0.75 0.87
Bidirectional LSTM + CNN 0.81 0.74 0.81 0.77 0.86

Table 3: Performance of various deep learning models.

Architecture Accuracy Precision Recall F1 AUROC
GRU + NODE2VEC 0.79 0.74 0.76 0.75 0.85
GRU + self-attention + NODE2VEC 0.78 0.67 0.87 0.75 0.84
GRU + CNN + NODE2VEC 0.80 0.68 0.87 0.77 0.85
LSTM + NODE2VEC 0.75 0.63 0.86 0.73 0.81
LSTM + self-attention + NODE2VEC 0.78 0.70 0.79 0.74 0.84
LSTM + CNN + NODE2VEC (ARHNet) 0.79 0.69 0.89 0.78 0.86
Bi-GRU + NODE2VEC 0.79 0.67 0.86 0.75 0.85
Bi-GRU + self-attention + NODE2VEC 0.79 0.70 0.82 0.76 0.86
Bi-GRU + CNN + NODE2VEC 0.81 0.72 0.84 0.77 0.86
Bi-LSTM + NODE2VEC 0.80 0.73 0.81 0.77 0.86
Bi-LSTM + self-attention + NODE2VEC 0.78 0.68 0.82 0.75 0.85
Bi-LSTM + CNN + NODE2VEC 0.80 0.73 0.81 0.77 0.86

Table 4: Performance of various deep learning models with community features.

a score that is converted to a probability dis-
tribution using a sigmoid activation.

4.3 Baselines

An extensive comparison with state-of-the-art
generic and specific models the case for our pro-
posed methodology. To make a fair compari-
son between all the methodologies, the experi-
ments are conducted concerning the baselines in
(Albadi et al., 2018) have used a simple GRU
model as their best performing model. Their
GRU model uses 240 hidden features. They have
also compared results with Logistic Regression
and Support Vector Machine Models. The Lo-
gistic regression classifier was trained using char-
acter n-gram features (n =1-4) with L2 regular-
ization. The SVM classifier was also trained us-

ing character n-gram features (n = 1-4) with lin-
ear kernel and L2 regularization, similar to (Al-
badi et al., 2018). For the GRU model, they have
used the Twitter-CBOW 300-dimensional embed-
ding model(Soliman et al., 2017) for obtaining
word embeddings. The output of the embedding
layer was fed into a dropout layer with probabil-
ity 0.5. They used batches of size 32 and Adam
as their optimizer. We refer the models trained by
(Albadi et al., 2018) as the AraHate baselines. We
conduct our experiments with LSTM (Liu et al.,
2016) and CNN-LSTM (Zhou et al., 2015) mod-
els. LSTMs can capture long term dependencies
better than RNNs and GRUs, and a CNN-LSTM
network utilizes the ability of a CNN to extract
higher-level phrase representations, which are fed
into an LSTM. We did not increase the complexity
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of the baselines beyond this to not risk overfitting
on a small dataset.

4.4 Models and Hyperparameters

First, we prepared the vocabulary by assigning
integer indexes to unique words in our dataset.
Tweets were then converted into sequences of in-
teger indexes. These sequences were padded with
zeros so that the tweets in each batch have the
same length during training. They were then fed
into an embedding layer which maps word in-
dexes to word embeddings. We trained our word
embeddings using GenSim 1. We also used the
Twitter-CBOW 300-dimension embedding model
provided by AraVec (Soliman et al., 2017) which
contains over 331k word vectors that have been
trained on about 67M Arabic tweets. We concate-
nated our own trained embeddings with the Ar-
aVec embeddings to obtain 600-dimensional em-
beddings Similar to (Albadi et al., 2018), The out-
put of the embedding layer was fed into a dropout
layer with a rate of 0.5 to prevent overfitting.

For both LSTM and GRU, the word embed-
dings were passed to both unidirectional and bidi-
rectional LSTM with 240 features each. In the
GRU-CNN/LSTM-CNN models, we used 2 Con-
volutional Layers with a Kernel Size of 3 and Relu
Activation in the middle. We obtained the final
representation by taking the maximum along the
temporal dimension. For self-attention, the output
of the GRU/LSTM was passed to a self-attention
layer. For the self-attention models, we used 240
features.

We compared each of these models with their
counterparts obtained by concatenating Node2Vec
embeddings to the representations obtained by the
above deep learning models. The final represen-
tation was then passed into a Sigmoid Layer. We
performed training in batches of size 32, and we
used Adam as our optimizer for all experiments.

5 Results And Discussion

In our experiments, we have beaten the scores
of (Albadi et al., 2018) in all 5 metrics. We
obtained a highest f1-score of 0.78 as com-
pared to 0.77 in (Albadi et al., 2018). This is
achieved in our LSTM + CNN + CISNet model.
The ARHNet model outperforms baselines in
terms of Recall, F1 and AUROC metrics while

1radimrehurek.com/gensim/models/word2vec.html

GRU-NODE2VEC demonstrates the highest pre-
cision, and the Bi-GRU-CNN-NODE2VEC model
achieves the highest accuracy. Our methodol-
ogy effectively improves upon the current state of
the art and is successful in demonstration of how
community interaction can be leveraged to tackle
downstream NLP tasks like detection of religious
hate speech. Albadi et al. (2018) reached an 0.81
agreement score between annotators. Our method-
ology, therefore, matches human performance in
terms of unambiguously categorizing texts that
contain religious hate speech from texts that don’t.

To summarize, our approach highlights the va-
lidity of using Community Interaction Graphs as
features of classification in Arabic. Despite hav-
ing a sparse representation of users, our proposed
methodology has shown improvements on Accu-
racy and F1 over previously state of the art models
on a reduced dataset.

6 Conclusion

In this paper, we explored the effectiveness of
community-interaction information about authors
for the purpose of categorizing religious hate
speech in the Arabic Twittersphere and build upon
existing work in the linguistic aspects of social
media (Shah et al., 2016c,a; Mahata et al., 2015).
Working with a dataset of 3950 tweets annotated
for Hate and Non-Hate, we first comprehensively
replicated three established and currently best-
performing hate speech detection methods based
on character n-grams and GRUs as our baselines.
We then constructed a graph of all the authors of
tweets in our dataset and extracted community-
based information in the form of dense low-
dimensional embeddings for each of them using
Node2Vec. We showed that the inclusion of com-
munity graph embeddings significantly improves
system performance over the baselines and ad-
vances the state of the art in this task. Users prone
to proliferate hate do tend to form social groups
online, and this stresses the importance of utilizing
community-based information for automatic reli-
gious hate speech detection.
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Abstract

Analyzing polarities and sentiments inherent
in political speeches and debates poses an im-
portant problem today. This experiment aims
to address this issue by analyzing publicly-
available Hansard transcripts of the debates
conducted in the UK Parliament. Our pro-
posed approach, which uses community-based
graph information to augment hand-crafted
features based on topic modeling and emo-
tion detection on debate transcripts currently
surpasses the benchmark results on the same
dataset. Such sentiment classification systems
could prove to be of great use in today’s po-
litically turbulent times, for public knowledge
of politicians stands on various relevant is-
sues proves vital for good governance and cit-
izenship. The experiments also demonstrate
that continuous feature representations learned
from graphs can improve performance on sen-
timent classification tasks significantly.

1 Introduction

One of the key aspects of a functional, free soci-
ety is being presented with comprehensive options
in electing government representatives. The deci-
sion is aided by the positions politicians take on
relevant issues like water, housing, etc. Hence,
it becomes important to relay political standings
to the general public in a comprehensible manner.
The Hansard transcripts of speeches delivered in
the UK Parliament are one such source of informa-
tion. However, owing to the voluminous quantity,

* Indicates equal contribution.

esoteric language and opaque procedural jargon of
Parliament, it is tougher for the non-expert citizen
to assess the standings of their elected represen-
tative. Therefore, conducting stance classification
studies on such data is a challenging task with po-
tential benefits. However, the documents tend to
be highly tedious and difficult to comprehend, and
thus become a barrier to information about politi-
cal issues and leanings.

Sentiment analysis of data from various relevant
sources (social media, newspapers, transcripts,
etc.) has often given several insights about public
opinion, issues of contention, general trends
and so on (Carvalho et al., 2011; Loukis et al.,
2014). Such techniques have even been used for
purposes like predicting election outcomes and
the reception of newly-launched products. Since
these insights have wide-ranging consequences, it
becomes imperative to develop rigorous standards
and state-of-the-art techniques for them.
One aspect that helps with analyzing such patterns
and sentiments is studying about the inter-
connections and networks underlying such data.
Homophily, or the tendency of people to associate
with like-minded individuals, is the fundamental
aspect of depicting relationships between users
of a social network (for instance). Constructing
graphs to map such complex relationships and
attributes in data could help one arrive at ready
insights and conclusions. This comes particularly
useful when studying parliamentary debates
and sessions; connecting speakers according to
factors like party or position affiliations pro-
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vides information on how a speaker is likely to
respond to an issue being presented. Attempts
to analyze social media data based on such ap-
proaches have been made (Deitrick and Hu, 2013).

2 Related Work

The analysis of political content and parliamentary
debates have opened an exciting line of research
in recent years and has shown promising results in
tasks of stance classification (Hasan and Ng, 2013)
and opinion mining (Karami et al., 2018). A large
part of the work initially concentrated on legisla-
tive speeches, but the focus has shifted to social
media content analysis in recent times. This shift
in focus has been particularly rapid with the pro-
liferation of social media data and research (?Shah
and Zimmermann, 2017; Shah et al., 2016b; Ma-
hata et al., 2018; Shah et al., 2016c,a).

Lauderdale and Herzog (2016) presented their
method of determining political positions from
legislative speech. The datasets were sourced
from Irish and US Senate debates. Rheault et al.
(2016) examined the emotional polarity variations
in speeches delivered in the British parliament
over a hundred years. They observed a correlation
between the variations in emotional states of
a particular period of time and the national
economic situation. Thomas et al. (2006) studied
the relationships between segments of speeches
delivered in the Congress and the overall tone:
of opposition or support. A significant amount
of research exists on the political temperament
across social media websites like Facebook and
Twitter. Stieglitz and Dang-Xuan (2012) studied
the relationship between the inherent sentiment
of politically relevant tweets and the retweet
activity. Ceron et al. (2014) proposed methods for
determining the political alignments of citizens
and tested them on French and Italian-context
datasets. Many new findings based on the con-
temporary political landscape continue to be
developed and presented. Wang and Liu (2018)
analyzed US President Donald Trump’s speeches
delivered during his 2016 election campaign.
Rudkowsky et al. (2018) proposed the usage of
word embeddings in the place of the traditional
Bag-of-Words (BOW) approach for text analy-
sis, and demonstrated experiments on Austrian
parliamentary speeches. There have been some
approaches to model interactions among members

of a network to help in the task of sentiment
analysis. Moreover, there have been applications
that extract information about each user by rep-
resenting them as a node in the social graph and
creating low dimensional representation usually
induced by neural architectures (Grover and
Leskovec, 2016). Mishra et al. (2018) and Qian
et al. (2018) use such social graph-based features
to gain considerable improvement in the task of
abuse detection in social media. However there
has been no work done to model the interaction
between the members of the Parliament for the
task of stance classification.
For studying transcripts of speeches delivered in
the House of Commons in the UK Parliament,
Abercrombie and Batista-Navarro (2018b) curated
a dataset consisting of parliamentary motions and
debates as provided in the Hansard transcripts,
along with other information like party affiliations
and polarities of the motions being discussed.
This was followed by carrying out studies on the
dataset and developing a sentiment analysis model
which also demonstrated the results of motion-
independent (one-step) and motion-dependent
classification of polarities Abercrombie and
Batista-Navarro (2018a). This dataset is used for
further analysis in our experiments.

3 Dataset

In the UK, transcripts of parliamentary debates are
publicly available along with information related
to division votes as well as manually annotated
sentiment labels. To investigate the effectiveness
of our pipeline, experiments were conducted us-
ing the HanDeSeT dataset as created by (Aber-
crombie and Batista-Navarro, 2018b). The dataset
consists of 607 politicians and their speeches over
various motions, with a total of 1251 samples. The
speeches are divided into five utterances, and other
features such as Debate ID, Debate title, Motion
subject with polarities: manual annotation and
ruling-opposing-based, Motion and Speaker party
affiliations, Speech Polarities: manual and vote-
based, Rebellion percentage.

Sentiment polarity is present in both speeches
and motions. Hence labels are provided for mo-
tion polarities as well. Two label types are pro-
vided for motions: a manually-annotated one pre-
dicting positive or negative polarity, and a gov-
ernment/opposition one decided as follows: if the
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speaker who proposes the motion belongs to the
ruling government, the polarity is positive; if the
speaker belongs to the opposition then the polar-
ity is negative. Two label types are provided for
speeches as well: one manually-annotated, and the
other a speaker-vote label extracted from the divi-
sion related to the corresponding debate.

4 Methodology

The models described in Abercrombie and
Batista-Navarro (2018a) extracted n-gram features
(uni-grams, bi-grams, tri-grams, and their combi-
nations) from the utterances for sentiment classi-
fication. The stance-based relationships between
the members are modeled, and their effectiveness
is analyzed. This study aims to develop on the lim-
itations of using only text-based features and by
doing so present a sound, coherent model for sen-
timent classification for parliamentary speeches.
The methodology consists of the following sub-
sections: preprocessing, to describe the initial
data preprocessing methods undertaken; feature
extraction, which discusses the feature sets used
for our model, and model description and training,
to elaborate on our model and training procedures.

4.1 Preprocessing
The dataset was preprocessed for further analysis.
This was required so unnecessary words; charac-
ters etc. could be removed and not add further
noise to the dataset. The text was lower-cased,
and all punctuation marks and other special char-
acters were removed. Following this, stopword re-
moval was done using NLTK. Finally, a few cus-
tom stopwords specific to the parliamentary pro-
cedure were removed. These were taken from
Abercrombie and Batista-Navarro (2018b). Fi-
nally, the utterances were concatenated and pre-
pared for feature extraction and model training.

4.2 Feature Extraction
4.2.1 Textual Features
Various textual features were extracted for classi-
fication and normalized using the L2 norm. These
are listed below.

• TF-IDF: Term Frequency-inverse Document
Frequency (TF-IDF) features were extracted
from n-grams (upto 3) in the text. N-gram
features are immensely useful for factoring
in contextual information surrounding the
components of a text (whether characters or

words) and are widely used for text analysis,
language processing, etc.

• LDA-based topic modeling: Topic model-
ing is used to derive information related to
the underlying ”topics” contained in a text.
In order to extract such topic-based features
from the utterances, the Latent Dirichlet Al-
location (LDA) (Blei et al., 2003) model was
used. The probability distribution over the
most commonly occurring 30 topics was used
as features for each speech.

• NRC Emotion: The NRC Emotion Lexicon
(Mohammad and Turney, 2013) is a publicly
available lexicon that contains commonly oc-
curring words along with their affect category
(anger, fear, anticipation, trust, surprise, sad-
ness, joy, or disgust) and two polarities (neg-
ative or positive). The score along these 10
features was computed for the utterances.

4.2.2 Graph-based features
For our analysis, two graphs were constructed
from the dataset. The graph consists of nodes that
represent the members who participate in the pro-
ceedings of the Parliament. The edges among the
members are conditioned upon their accord or dis-
cord on debates regarding policies. Two members
of the same or varying political parties either agree
on a policy or differ on it. Therefore, the two
graphs are constructed.

• simGraph: In order to model the similarity
on stances among members, Gsim(v, e) is
a weighted undirected graph induced on the
dataset with vertices v corresponding to the
members m of political parties where an edge
e between two vertices v and u is defined as
weight(e) =| f(v) ∩ f(u) | where f(v) is
the set of stances taken by the member that is
represented by node v.

• oppGraph: Similarly, to model the differ-
ences among the members, Gopp(v, e) is in-
duced on the dataset such that an edge e
between two vertices v and u is defined as
weight(e) =| (f(v)\f(u))∩(f(u)\f(v)) |
where f(v) is the set of stances taken by the
member that is represented by node v.

node2vec: To obtain community based em-
beddings, feature representations were generated
using node2vec (Grover and Leskovec, 2016).
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Table 1: Statistical properties of constructed graphs

Properties Values
simGraph oppGraph

Number of nodes 607 607
Number of edges 5,431 2,893
Density of graphs 0.0295 0.0157
Average weight 1.047 1.037

node2vec is similar to word2vec (Mikolov et al.,
2013b) and uses the same loss function to as-
sign similar representations to nodes that are in
the context of each other. To obtain the context
of a node, node2vec samples a neighborhood for
each of the nodes by constructing a fixed number
of random walks of constant length. The traver-
sal strategy for these random walks is determined
by the hyper-parameters Return Parameter p and
In-out Parameter q which have the ability to mod-
erate the sampling between a depth-first strategy
and a breadth-first strategy. The return parameter
p controls the likelihood of immediately revisiting
a node in the walk, while the in-out parameter q
allows the search to differentiate between inward
and outward nodes.

Formally, given a graph G = (V,E) , we learn
a function f : V → IRd that maps nodes to feature
representations where d is the dimension of the
representation. In order to do so, for every node
u ∈ V , we define a neighbourhood NS(u) ⊆ V is
generated using the sampling strategy S.

The skip-gram model (Mikolov et al., 2013a) is
then employed to maximize the following objec-
tive function:

max
f

∑
logPr(Ns(u)|f(u)). (1)

Combining Graph Embeddings: To combine
embeddings generated for each member in the two
graphs, a dense neural network was used. The em-
beddings were projected onto a linear layer and
fine-tuned upon the classification task. The penul-
timate layer of the model was used as the graph
embedding corresponding to each user.
The network consisted of two input layers for the
two embedding sets, followed by single dense lay-
ers with hidden layer size 16 and activation ReLU.
These two layers were then combined, and the re-
sultant combination passed through two dense lay-
ers (layer size 16, activation ReLU), before being
passed through a final dense softmax layer. The

network was optimized using Adam, and trained
over 20 epochs with batch size 64.

4.2.3 Other features
Of all the feature sets explored in Abercrombie
and Batista-Navarro (2018a), the feature set all
the meta-features had the best results consistently
across all the three models. Hence, we used these
in addition to our textual and community-based
graph features. The meta-features consisted of
speaker party affiliation, debate IDs and motion
party affiliation.

4.3 Baseline models
The original experiments consisted of 3 models for
classification: a one-step model and two two-step
models. We consider the two-step models as our
baselines, which are described below.

• manAnnot: a two-step model in which mo-
tion polarity classification is first performed
based on manually-annotated positive or neg-
ative sentiments, corresponding to model 2a
in the original experiments;

• govAnnot: a two-step model in which mo-
tion polarity classification is first performed
based on government or opposition labeling,
corresponding to model 2b in the original ex-
periments.

In the case of the two two-step models, the dataset
is divided into two parts based on the predicted
polarities. These two divided datasets are then
used for training and classification separately. Two
classifiers were used in both the steps: Support
Vector Machine (SVM) with the linear kernel
and Multi-Layer Perceptron (MLP) with 1 hidden
layer containing 100 neurons.

4.4 Proposed model
In the original experiment, the best results were
obtained from the two-step models with the MLP
classifier. A similar two-step approach is followed
here as well, with MLP as the chosen classifier.
The network consists of 1 hidden layer with 100
neurons.

5 Experiments

Experiments on two models are presented:

1. manAnnot: here, the dataset is divided into
two parts based on predicted motion polarity
from manually annotated labels.
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Table 2: Observations for manModel

Feature Combinations without graph-based features with graph-based features
Acc.(%) Prec. Recall F1 Acc.(%) Prec. Recall F1

TF-IDF+meta 89.38 0.897 0.887 0.884 92.26 0.920 0.917 0.917
LDA+meta 86.34 0.875 0.839 0.850 92.34 0.930 0.902 0.915
NRC+meta 86.43 0.860 0.859 0.858 92.25 0.932 0.903 0.916
TF-IDF+LDA+meta 88.59 0.885 0.867 0.874 91.70 0.915 0.910 0.912
TF-IDF+NRC+meta 88.73 0.896 0.867 0.879 91.94 0.918 0.914 0.914
LDA+NRC+meta 85.86 0.861 0.828 0.842 92.66 0.938 0.905 0.920
TF-IDF+LDA+NRC+meta 90.89 0.908 0.900 0.908 91.78 0.917 0.909 0.919

Table 3: Observations for govModel

Feature Combinations without graph-based features with graph-based features
Acc.(%) Prec. Recall F1 Acc.(%) Prec. Recall F1

TF-IDF+meta 90.25 0.902 0.900 0.898 92.72 0.927 0.924 0.923
LDA+meta 88.42 0.879 0.880 0.877 92.09 0.917 0.923 0.918
NRC+meta 86.91 0.875 0.848 0.858 92.73 0.927 0.919 0.921
TF-IDF+LDA+meta 89.06 0.887 0.882 0.883 92.33 0.920 0.925 0.920
TF-IDF+NRC+meta 88.97 0.892 0.883 0.885 92.80 0.923 0.911 0.914
LDA+NRC+meta 86.35 0.864 0.851 0.855 92.41 0.923 0.922 0.920
TF-IDF+LDA+NRC+meta 89.22 0.896 0.876 0.883 92.33 0.920 0.922 0.918

2. govAnnot: Here, the dataset is separated into
two parts based on the speaker’s affiliation: if
the speaker presenting the motion belongs to
the ruling government, then the motion polar-
ity is positive, or otherwise negative.

The hyperparameters (for each of the feature sets
and the classifier) were tuned using grid search. L-
BFGS (Liu and Nocedal, 1989) was used for op-
timization in the neural network. Model training
and evaluation was carried out using stratified 10-
fold cross-validation. Stratification was performed
to account for the slight imbalance in the dataset.
Two types of labels are presented in the dataset:
vote-based and manually-annotated. We use the
manually-annotated labels for our experiments.
For the graph-based features, a grid search was
performed which yielded the following parameters
for generating embeddings:

• simGraph: p = 10, q = 1, walk length = 15,
number of walks = 15, window size = 10. The
feature vector obtained from these parame-
ters yielded an accuracy of 79.51%.

• oppGraph: p = 0.1, q = 10, walk length = 5,
number of walks = 10, window size = 10. The
feature vector obtained from these parame-
ters yielded an accuracy of 69.53%.

6 Results and Discussion

Table 2 and Table 3 present the results on the two
models respectively. The values of accuracy, pre-

cision, recall, and F1-score are presented on fea-
ture sets with and without graph-based features.
In the case of both models, the usage of graph-
based features outperforms the results obtained
without using them. The difference is large in the
case of the feature set comprising of LDA, NRC,
and meta-features in the model with manually-
annotated labels: the F1 scores obtained with and
without graph features differ by 7.8%.
It can be observed that by using graph-based fea-
tures The baselines for both have been surpassed
by using graph-based features along with the other
textual and meta-features. Our best results for
manAnnot are obtained by using the combination
of LDA, NRC, and graph-based features along
with meta-features. The best results for gov-
Annot are obtained by using the combination of
TF-IDF and meta-features along with graph-based
features.

7 Conclusion

We presented a method for sentiment analysis of
parliamentary debate transcripts, which could go
a long way in helping determine the position an
elected representative might assume on issues of
great importance to the general public. The exper-
iments were carried out on the Hansard parliamen-
tary debates dataset (Abercrombie and Batista-
Navarro, 2018b). We performed experiments on
a variety of textual analysis methods (e.g. topic
modeling, emotion classification, n-grams), and
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combined them with community-based graph fea-
tures obtained by representational learning on the
dataset using node2vec. Our results surpass the
state-of-the-art results using both govAnnot and
manAnnot. Also, the F1 and accuracy values of
the models using graph-based features are higher
than those without graph-based features, the dif-
ference being considerable in some cases. This
gives sufficient demonstration for the ability of
representational learning to enhance performances
on tasks like sentiment analysis.

8 Future Work

Future work in this area could involve the follow-
ing aspects:

• Application of the proposed approach to
tasks other than sentiment classification, for
instance analysis of mental health and suicide
ideation on social media.

• Constructing different graphs and analyzing
other training and feature extraction methods
for enhancing performance and deriving bet-
ter inferences.

• Application of the proposed approach for an-
alyzing data in different contexts; an exam-
ple could be the analysis of the recently-
conducted elections in India.

• Extend the proposed methodology to other
problems (Mahata and Talburt, 2015; Mahata
et al., 2015a,b) based on social media.
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Abstract

Current state-of-the-art speech-based user in-
terfaces use data intense methodologies to rec-
ognize free-form speech commands. However,
this is not viable for low-resource languages,
which lack speech data. This restricts the us-
ability of such interfaces to a limited num-
ber of languages. In this paper, we propose
a methodology to develop a robust domain-
specific speech command classification system
for low-resource languages using speech data
of a high-resource language. In this transfer
learning-based approach, we used a Convolu-
tion Neural Network (CNN) to identify a fixed
set of intents using an ASR-based character
probability map. We were able to achieve sig-
nificant results for Sinhala and Tamil datasets
using an English based ASR, which attests the
robustness of the proposed approach.

.

1 Introduction

Speech command recognizable user interfaces are
becoming popular since they are more natural
for end-users to interact with. Google Assis-
tant1, and Amazon Alexa2 can be highlighted as
few such commercial services, which are rang-
ing from smartphones to home automation. These
are capable of identifying the intent of free-form
speech commands given by the user. To enable
this kind of service, Automatic Speech Recogni-
tion (ASR) systems and Natural Language Under-
standing (NLU) systems work together with a very
high level of accuracy (Ram et al., 2018).

If ASR or NLU components have suboptimal
results, it directly affects the final output (Yaman
et al., 2008; Rao et al., 2018). Hence, to get
good results in ASR systems, it is common to use

1https://assistant.google.com
2https://developer.amazon.com/alexa

very large speech corpora (Hannun et al., 2014;
Amodei et al., 2016; Chiu et al., 2018). How-
ever, low-resource languages (LRL) do not have
this luxury. Here, languages that have a lim-
ited presence on the Internet and those that lack
electronic resources for speech and/or language
processing are referred to as low-resource lan-
guages (LRLs) (Besacier et al., 2014). Because of
this reason despite the applicability, speech-based
user interfaces are limited to common languages.
For LRLs researchers have focused on narrower
scopes such as recognition of digits or keywords
(Manamperi et al., 2018; Chen et al., 2015). How-
ever, free-form commands are difficult to manage
in this way since there can be overlappings be-
tween commands.

Buddhika et al. (2018); Chen et al. (2018) show
some direct speech classification approaches to its
intents. In particular, Buddhika et al. (2018) have
given some attention for the low resource setting.
Additionally, Transfer learning is used to exploit
the issue of limited data in some of the ASR based
research (Huang et al., 2013; Kunze et al., 2017).

In this paper, we present an improved and effec-
tive methodology to classify domain-specific free-
form speech commands while utilizing this direct
classification and transfer learning approaches.
Here, we use a character probability map from an
ASR model trained on English to identify intents.
Performance of this methodology is evaluated us-
ing Sinhala (Buddhika et al., 2018) and newly col-
lected Tamil datasets. The proposed approach can
reach to a reasonable accuracy using limited train-
ing data.

Rest of the paper is organized as follows. Sec-
tion 2 presents related work, section 3 describes
methodology used. Section 4 and 5 provides de-
tails of the datasets and experiments. Section 6
presents a detailed analysis of the obtained results.
Finally Section 7 concludes the paper.
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2 Related Work

Most of the previous research has used separate
ASR and NLU components to classify speech in-
tents. In this approach, transcripts generated from
the ASR module are fed as input for a separate text
classifier (Yaman et al., 2008; Rao et al., 2018).
Here, an erroneous transcript from the ASR mod-
ule can affect the final results of this cascaded sys-
tem (Yaman et al., 2008; Rao et al., 2018). In this
approach, two separately trained subsystems are
connected to work jointly. As a solution for these
issues, Yaman et al. (2008) proposed a joint opti-
mization technique and use of the n-best list of the
ASR output. Later He and Deng (2013) extended
this work by developing a generalized framework.
However, these systems require a large amount of
speech data, corresponding transcript, and their
class labels. Further, the ASR component used
in these systems requires language models and
phoneme dictionaries to function, which are dif-
ficult to find for low-resource languages.

This cascading approach is effective when there
is a highly accurate ASR in the target language.
Rao et al. (2018) present such a system to navigate
in an entertainment platform for English. Here,
they have used a separate ASR system to convert
speech into text. More importantly, they highlight
that a lower performance of ASR affects the entire
system.

More recently, researchers have presented some
approaches that aim to go beyond cascading ASR
components. In this way, they have tried to elim-
inate the use of intermediate text representations
and have used automatically generated acoustic
level features for classification. Liu et al. (2017)
proposed topic identification in speech without
the need for manual transcriptions and phoneme
dictionaries. Here, the input features are bottle-
neck features extracted from a conventional ASR
system trained with transcribed multilingual data.
Then these features are classified through CNN
and SVM classifiers. Additionally Lee et al.
(2015) have highlighted that effectiveness of this
kind of bottleneck features of speech when com-
paring different speech queries.

Chen et al. (2018); Buddhika et al. (2018)
present two different direct classification ap-
proaches to determine the intent of a given spo-
ken utterance. Chen et al. (2018) have used a
neural network based acoustic model and a CNN
based classifier. However, this requires transcripts

of the speech data to train the acoustic model,
thus accuracy depends on the availability of a
large amount of speech data. One advantage of
this approach is that we can optimize the final
model once we combined the two models. Bud-
dhika et al. (2018) classified speech directly us-
ing MFCC (Mel-frequency Cepstral Coefficients)
of the speech signals as features. In this approach,
they have used only 10 hours of speech data to
achieve reasonable accuracy.

3 Methodology

In section 2, we showed that research work of Liu
et al. (2017); Chen et al. (2018); Buddhika et al.
(2018) has benefited from direct speech classifica-
tion approach. Additionally, as shown in the work
of Lee et al. (2015); Liu et al. (2017), it is bene-
ficial to use automatically discovered acoustic re-
lated features. Therefore our key idea is reusing
a well trained ASR neural network on high re-
source language as a feature transformation mod-
ule. This is known as transfer learning (Pan and
Yang, 2010). Here, we try to reuse the knowl-
edge learned from one task to another associated
task. Current well trained neural network based
end-to-end ASR models are capable of convert-
ing given spoken utterance into the corresponding
character sequence. Therefore these ASR models
can convert speech into some character represen-
tation. Our approach is to reuse this ability in low-
resource speech classification.

We used DeepSpeech (DS) (Hannun et al.,
2014) model as the ASR model. DS model con-
sists of 5 hidden layers including a bidirectional
recurrent layer. Input for the model is a time-
series of audio features for every timeslice. MFCC
coefficients are used as features. Model converts
this input sequence x(i) into a sequence of char-
acter probabilities y(i), with ŷt = P(ct|x), where
ct =∈ {a, b, c, .., z, space, apostrophe, blank} in
English model. These probability values are cal-
culated by a softmax layer. Finally, the corre-
sponding transcript is generated using the proba-
bilities via beam search decoding with or without
combining a language model.

Here, we selected intermediate probability val-
ues as the transfer learning features from the
model. Any feature generated after this layer is
ineffective since it is affected by the beam search
and it only outputs the best possible character se-
quence. Before the final softmax layer, there is a
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bi-directional recurrent layer, which is very critical
for detecting sequence features in speech. With-
out this layer, the model is useless (Hannun et al.,
2014; Amodei et al., 2016). Hence, the only pos-
sible way to extract features is after the softmax
layer. Additionally, this layer provides normal-
ized probability values for each time step. Figure
1 shows a visualization of this intermediate char-
acter probability map for a Sinhala speech query
containing ‘ ෙ�ෂය �යද - śēs.aya kı̄yada’.
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Figure 1: Visualization of probability output for Sin-
hala utterance

In this considering scenario, we need to identify
a fixed set of intents related to a specific domain.
Instead of converting these probability values into
a text representation, we classify these obtained
features directly in to intents as in (Liu et al.,
2017; Chen et al., 2018). We experimented with
different classifier models such as Support Vector
Machines (SVM), Feed Forward Networks (FFN),
which used in previous works. Further, in the work
of Liu et al. (2017); Chen et al. (2018), they have
shown the effectiveness of Convolutional Neural
Networks - CNN to classify intermediate features
of the speech. Because of this, we evaluated
the performance of CNN. Additionally, We exam-
ined the effectiveness of 1-dimensional(1D) and 2-
dimensional(2D) convolution for feature classifi-
cation. Figure 2 shows the architecture of the final
CNN based model. Please refer to ‘Supplementary
Material’ for the detail of model parameters.

4 Datasets

We used two different free-form speech command
datasets to measure the accuracy of the proposed
methodology. The first one is a Sinhala dataset and
contains audio clips in the banking domain (Bud-
dhika et al., 2018). Since it was difficult to find
such other datasets for low-resource languages,
we created another dataset in the Tamil language,

Frozen
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Conv 1D/2D
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Feature Map

MFCC Feature Vectors

Low-resource Classifier
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Figure 2: Architecture of the final model

which contains the same intentions as Sinhala
dataset. Both Sinhala and Tamil are morpholog-
ically different languages. Table 1 summarizes the
details.

Intent Sinhala Tamil
I S I S

1. Request Acc. balance 8 1712 7 101
2. Money deposit 7 1306 7 75
3. Money withdraw 8 1548 5 62
4. Bill payments 5 1004 4 46
5. Money transfer 7 1271 4 49
6. Credit card payments 4 795 4 67
Total 39 7624 31 400
Unique words 32 46

Table 1: Details of the data sets (I-Inflections, S-
Number of samples)

Original Sinhala dataset contained 10 hours of
speech data from 152 males and 63 females stu-
dents in the age between 20 to 25 years. We had
to revalidate the dataset since it included some
miss-classified, too lengthy and erroneous speech
queries. The final data set contained 7624 sam-
ples totaling 7.5 hours. Tamil dataset contains 0.5
hours of speech data from 40 males and females
students in the same age group. There were 400
samples in the Tamil dataset. The length of each
audio clip is less than 7 seconds.

5 Experiments

For the transfer learning task, we considered the
DeepSpeech (DS) model 1 (Hannun et al., 2014).
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Benchmark Current
Approach SVM 6L FFN TL + SVM TL + FFN TL + 1D CNN TL + 2D CNN
Features MFCC DS Intermediate
Accuracy Sinhala 48.79% 63.23% 70.04% 74.67% 93.16% 92.09%
Accuracy Tamil 29.25% 26.98% 23.77% 35.50% 37.57% 76.30%

Table 2: Summary of results with different approaches and overall accuracy values

This model and some other neural network based
ASR modes provide a probability map for each
character in each time step. Due to high compu-
tational demand for training, we adopted an al-
ready available pre-trained DS model by Mozilla3.
This model uses the first 26 MFCC features as
input. Model is trained on American English
and achieves an 11% word error rate on the Lib-
riSpeech clean test corpus.

Given the DS English model, we extract the in-
termediate probability features for a given speech
sample and then fed them into the classifier. Fur-
ther, we employed a Bayesian optimization based
algorithm for hyperparameter tuining (Bergstra
et al., 2013). Since datasets are small we used 5
fold cross-validation to evaluate the accuracy.

We selected method presented in (Buddhika
et al., 2018) as our benchmark. In their work,
they have used the first 13 MFCC features as in-
put for the SVM, FFN classifiers. Since we had
to validate the Sinhala dataset, we reevaluate the
accuracy values on the validated dataset using 5-
fold cross-validation. Additionally, we performed
the same experiments on newly collected Tamil
dataset to examine the language independence of
the proposing method. Table 2 summarizes the
outcomes of these different approaches. In all ex-
periments, class distribution among all data splits
was nearly equal.

In this work, we are concerned about the
amount of available data. Hence, we evaluated
the accuracy change of the best performing ap-
proaches with the size of training samples. We
perform this on the Sinhala dataset since it has
more than 4000 data samples. We drew multi-
ple random samples with a particular size and per-
formed 5-fold cross-validation. Here, the number
of random samples is 20. Table 3 summarizes the
experiment results.

In another experiment, we examined the end-
to-end text output of the DS English model for a
given Sinhala speech query. Table 4 presents some
of these outputs.

3https://github.com/mozilla/DeepSpeech

6 Result and Discussion

We were able to achieve 93.16% and 76.30%
overall accuracy for Sinhala and Tamil datasets
respectively using 5-fold cross-validation. Ta-
ble 2 provides a comparison of previous and our
approaches. It shows clearly that the proposed
method is more viable than the previous direct
speech feature classification approach. One possi-
ble reason can be the reduction of noise in speech
signals. In this situation, the DS model is capable
of removing these noises since it is already trained
on noisy data. Another reason is that reduction of
the feature space. Additionally, in this way, we can
have more accurate results using small dataset.

Intent Sinhala Tamil
F1 P R F1 P R

1 0.96 0.94 0.99 0.87 0.89 0.87
2 0.93 0.97 0.89 0.80 0.78 0.84
3 0.91 0.87 0.95 0.75 0.89 0.66
4 0.89 0.93 0.87 0.64 0.75 0.63
5 0.96 0.97 0.95 0.60 0.76 0.51
6 0.92 0.95 0.89 0.79 0.74 0.89
Average 0.93 0.93 0.93 0.76 0.81 0.76

Table 3: Classification results of best performing mod-
els (F1- F1-Score, P- Precision, R- Recall)

Table 3 shows the averaged precision, recall
and F1-score values for each intent class and two
datasets. In the Sinhala dataset, all classes achieve
more than 0.9 F1-score, except for type 4 intent.
Type 1 intent shows the highest F1-score among
all and, this must be because of the higher number
of data samples available for this class. Despite
that, type 6 intent also reports 0.93 f1-score even
with a lower number of data samples. Tamil data
shows a slightly different result. Intent types 4,5
report the lowest score in the Tamil dataset and
the number of speech queries from these classes
are comparatively low in the dataset. Further, we
can observe that the Tamil classifier is incapable
of accurately identifying positive intent classes 4
and 5 (since lower recall value).

Compared to Sinhala data with a sample size
of 500, Tamil dataset reports high overall accu-
racy with 400 samples. Tamil dataset contains
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codemixed speech quires since it is more natu-
ral when in speaking. These words are in En-
glish. Additionally, the feature generator model
(DS model) is also trained in English data. This
can result in more overall accuracy in Tamil data
set. Additionally, type 6 intent commands contain
English words in both datasets and this can result
for higher precision value.

Further, sentences with more overlapping words
with other sentences (different intent type) and
with limited length tend to misclassify more.
Hence classes, type 3,4 in Sinhala, type 2,4 in
Tamil dataset show lower accuracy.
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Figure 3: CNN classifier accuracy variance with the
number of samples (Sinhala dataset)

Figure 3 summarize the overall accuracy change
of best performing classifiers with samples size.
As it shows having 1000 samples is enough to
achieve nearly 80% overall accuracy. After that,
it reaches saturation. Furthermore, it reports 77%
overall accuracy for Tamil dataset with 320 train-
ing samples. This highlights the effectiveness of
the proposed transfer learning approach in limited
data situations.

Additionally, Figure 3 shows the most effective
CNN model type with the number of available data
samples to classify sequential feature maps. As it
shows, it is useful to use 2D CNN based classifiers
when there is a very limited amount of data. How-
ever, when there are relatively more data (More
than 4000 samples in Sinhala dataset) 1D CNN
based classifiers gives higher results. We can see
this effect on Tamil dataset also. As table 2 shows
1D CNN model accuracy is low compared to 2D
CNN model with 400 data samples.

Further, we examined the speech decoding ca-
pability of the English model. See Table 4. Here
‘Utterance’ is the pronounced Sinhal sentence,
‘Eng. Transcript’ is the ideal English transcript.
‘DS output’ lists the generated transcripts from the

Utterance ෙ�ෂය �යද ඉ��ය �යද

Eng. Transcript ’sheshaya keeyada’ ’ithiriya keeyada’

DS Output
’she s reci ete’ ’it cillety edet’

’sheis heki edit’ ’it tia gaviade’
’sheis ae an’ ’it lid en’

Table 4: DS transcript for some Sinhala utterances

full model. In these generated outputs, the first few
characters are decoded correctly. But, in the latter
part, this decoding is compromised by the possible
character sequences of the English language since
it is trained in English. From this, we can infer that
this character probability map is closer to text rep-
resentation than the MFCC features. Hence, this
can improve the classification accuracy.

7 Conclusion

In this study, we proposed a method to identify the
intent of free-form commands in a low-resource
language. We used an ASR model trained on the
English language to classify the Sinhala and Tamil
low-resource datasets. The proposed method out-
performs previous work and, even with a limited
number of samples, it can reach to a reasonable
accuracy.

CNN base classifiers perform well in the clas-
sification of character probability maps generated
by ASRs. Further, 1D CNN models work better
with a higher number of samples, while 2D CNN
models work better with a small amount of data. In
the future, we plan to extend this study by incor-
porating more data from different languages and
domains.
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A Supplemental Material

Table 5 present hyperparameters for low-
resourced models described in the section 3
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Sinhala Models Tamil Models
Layer 1D CNN 2D CNN 1D CNN 2D CNN

1. Conv Filters 38
Kernel Size 19

Filters 16
Kernel Size 1x8

Filters 39
Kernel Size 18

Filters 14
Kernel Size 5x1

2. Max Pooling Size 18
Stride 7

Size 6x1
Stride 5x5

Size 25
Stride 5

Size 13x1
Stride 5x1

3. Conv Filters 28
Kernel Size 22

Filters 17
Kernel Size 20x8

Filters 26
Kernel Size 19

Filters 13
Kernel Size 11x20

4. Max Pooling Size 22
Stride 10

Size 19x2
Stride 16x8

Size 20
Stride 5

Size 17x1
Stride 2x7

5. Dense Units 131 Units 118 Units 84 Units 127
6. Softmax 6 6 6 6

Table 5: Hyperparameters for CNN classifier models
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1LIMSI, CNRS, Université Paris-Saclay, Orsay, France,
2Univ. Paris-Sud,

3CEA, LIST, Gif-sur-Yvette, F-91191 France.
{elboukkouri,lavergne,pz}@limsi.fr, olivier.ferret@cea.fr

Abstract

Using pre-trained word embeddings in con-
junction with Deep Learning models has be-
come the de facto approach in Natural Lan-
guage Processing (NLP). While this usually
yields satisfactory results, off-the-shelf word
embeddings tend to perform poorly on texts
from specialized domains such as clinical re-
ports. Moreover, training specialized word
representations from scratch is often either im-
possible or ineffective due to the lack of large
enough in-domain data. In this work, we focus
on the clinical domain for which we study em-
bedding strategies that rely on general-domain
resources only. We show that by combining
off-the-shelf contextual embeddings (ELMo)
with static word2vec embeddings trained on
a small in-domain corpus built from the task
data, we manage to reach and sometimes out-
perform representations learned from a large
corpus in the medical domain.1

1 Introduction

Today, the NLP community can enjoy an ever-
growing list of embedding techniques that include
factorization methods (e.g. GloVe (Pennington
et al., 2014)), neural methods (e.g. word2vec
(Mikolov et al., 2013), fastText (Bojanowski et al.,
2017)) and more recently dynamic methods that
take into account the context (e.g. ELMo (Peters
et al., 2018), BERT (Devlin et al., 2018)).

The success of these methods can be arguably
attributed to the availability of large general-
domain corpora like Wikipedia, Gigaword (Graff
et al., 2003) or the BooksCorpus (Zhu et al., 2015).
Unfortunately, similar corpora are often unavail-
able for specialized domains, leaving the NLP
practitioner with only two choices: either using

1Python code for reproducing our experiments is
available at: https://github.com/helboukkouri/
acl_srw_2019

general-domain word embeddings that are prob-
ably not fit for the task at hand or training new
embeddings on the available in-domain corpus,
which may probably be too small and result in
poor performance.

In this paper, we focus on the clinical domain
and explore several ways to improve pre-trained
embeddings built from a small corpus in this do-
main by using different kinds of general-domain
embeddings. More specifically, we make the fol-
lowing contributions:

• we show that word embeddings trained on
a small in-domain corpus can be improved
using off-the-shelf contextual embeddings
(ELMo) from the general domain. We also
show that this combination performs better
than the contextual embeddings alone and
improves upon static embeddings trained on
a large in-domain corpus;

• we define two ways of combining contextual
and static embeddings and conclude that the
naive concatenation of vectors is consistently
outperformed by the addition of the static
representation directly into the internal linear
combination of ELMo;

• finally, we show that ELMo models can be
successfully fine-tuned on a small in-domain
corpus, bringing significant improvements to
strategies involving contextual embeddings.

2 Related Work

Former work by Roberts (2016) analyzed the
trade-off between corpus size and similarity when
training word embeddings for a clinical entity
recognition task. The author’s conclusion was that
while embeddings trained with word2vec on in-
domain texts performed generally better, a combi-
nation of both in-domain and general domain em-
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3. Echocardiogram on **DATE[Nov 6 2007] , showed ejection fraction of 55% , mild mitral
insufficiency , and 1+ tricuspid insufficiency with mild pulmonary hypertension .

DERMOPLAST TOPICAL TP Q12H PRN Pain DOCUSATE SODIUM 100 MG PO BID PRN
Constipation IBUPROFEN 400-600 MG PO Q6H PRN Pain

The patient had headache that was relieved only with oxycodone . A CT scan of the head showed
microvascular ischemic changes . A followup MRI which also showed similar changes . This was
most likely due to her multiple myeloma with hyperviscosity .

Table 1: Examples of entity mentions (Problem, Treatment, and Test) from the i2b2 2010 dataset*.
* This table is reproduced from (Roberts, 2016).

beddings worked the best. Subsequent work by
Zhu et al. (2018) obtained state-of-the-art results
on the same task using contextual embeddings
(ELMo) that were pre-trained on a large in-domain
corpus made of medical articles from Wikipedia
and clinical notes from MIMIC-III (Johnson et al.,
2016). More recently, these embeddings were out-
performed by BERT representations pre-trained
on MIMIC-III, proving once more the value of
large in-domain corpora (Si et al., 2019).2

While interesting for the clinical domain, these
strategies may not always be applicable to other
specialized fields since large in-domain corpora
like MIMIC-III will rarely be available. To
deal with this issue, we explore embedding com-
binations3. In this respect, we consider both
static forms of combination explored in (Yin and
Schütze, 2016; Muromägi et al., 2017; Bollegala
et al., 2018) and more dynamic modes of combi-
nation that can be found in (Peters et al., 2018) and
(Kiela et al., 2018). In this work, we show in par-
ticular how a combination of general-domain con-
textual embeddings, fine-tuning, and in-domain
static embeddings trained on a small corpus can
be employed to reach a similar performance using
resources that are available for any domain.

3 Evaluation Task: i2b2/VA 2010
Clinical Concept Detection

We evaluate our embedding strategies on the Clin-
ical Concept Detection task of the 2010 i2b2/VA
challenge (Uzuner et al., 2011).

2In this work, we will be focusing on contextualized em-
beddings from ELMo.

3This is more generally related to the notion of “meta-
embeddings” and ensemble of embeddings as highlighted by
Yin and Schütze (2016).

3.1 Data
The data consists of discharge summaries and
progress reports from three different institutions:
Partners Healthcare, Beth Israel Deaconess Medi-
cal Center, and the University of Pittsburgh Medi-
cal Center. These documents are labeled and split
into 394 training files and 477 test files for a total
of 30,946 + 45,404 ⇡ 76,000 sequences 4.

3.2 Task and Model
The goal of the Clinical Concept Detection task is
to extract three types of medical entities: problems
(e.g. the name of a disease), treatments (e.g. the
name of a drug) and tests (e.g. the name of a di-
agnostic procedure). Table 1 shows examples of
entity mentions and Table 2 shows the distribution
of each entity type in the training and test sets.

Entity type Train set Test set

Problem 11,967 18,550
Treatment 8,497 13,560
Test 7,365 12,899

Total 27,829 45,009

Table 2: Distribution of medical entity types.

To solve this task, we choose a bi-LSTM-CRF
as is usual in entity recognition tasks (Lample
et al., 2016; Chalapathy et al., 2016; Habibi et al.,
2017). Our particular architecture uses 3 bi-LSTM
layers with 256 units, a dropout rate of 0.5 and
is implemented using the AllenNLP framework
(Gardner et al., 2018). During training, the ex-
act span F1 score is monitored on 5,000 randomly
sampled sequences for early-stopping.

4Due to limitations introduced by the Institutional Review
Board (IRB), only part of the original 2010 data can now
be obtained for research at https://www.i2b2.org/
NLP/DataSets/. Our work uses the full original dataset.
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4 Embedding Strategies

We focus on two kinds of embedding algorithms:
static embeddings (word2vec) and contextualized
embeddings (ELMo). The first kind assigns to
each token a fixed representation (hence the name
“static”), is relatively fast to train but does not
manage out-of-vocabulary words and polysemy.
The second kind, on the other hand, produces a
contextualized representation. As a result, the
word embedding is adapted dynamically to the
context and polysemy is managed. Moreover, in
the particular case of ELMo, word embeddings
are character-level, which implies that the model
is able to produce vectors whether or not the word
is part of the training vocabulary.

Despite contextualized embeddings usually per-
forming better than static embeddings, they still
require large amounts of data to be trained suc-
cessfully. Since this data is often unavailable in
specialized domains, we explore strategies that
combine off-the-shelf contextualized embeddings
with static embeddings trained on a small in-
domain corpus.

4.1 Static Embeddings
First, we use word2vec5 to train embeddings on a
small corpus built from the task data:

i2b2 (2010) 394 documents from the training set
to which we added 826 more files from a set
of unlabeled documents. This is a small (1
million tokens) in-domain corpus. Similar
corpora will often be available in other spe-
cialized domains as it is always possible to
build a corpus from the training documents.

Then, we also train embeddings on each of two
general-domain corpora:

Wikipedia (2017) encyclopedia articles from the
01/10/2017 data dump6. This is a large (2 bil-
lion tokens) corpus from the general domain
that has limited coverage of the medical field.

Gigaword (2003) newswire text data from many
sources including the New York Times. This
is a large (2 billion tokens) corpus from the
general domain with almost no coverage of
the medical field.

5We used the following parameters: cbow=1,
size=256, window=5, min-count=5, iter=10.

6Similar dumps can be downloaded at https://
dumps.wikimedia.org/enwiki/.

4.2 Contextualized Embeddings
We use two off-the-shelf ELMo models7:

ELMo small a general-domain model trained
on the 1 Billion Word Benchmark corpus
(Chelba et al., 2013). This is the small ver-
sion of ELMo that produces 256-dimensional
embeddings.

ELMo original the original ELMo model. This
is a general-domain model trained on a mix
of Wikipedia and newswire data. It produces
1024-dimensional embeddings.

Additionally, we also build embeddings by fine-
tuning each model on the i2b2 corpus. The fine-
tuning is achieved by resuming the training of the
ELMo language model on the new data (i2b2). At
each epoch, the validation perplexity is monitored
and ultimately the best model is chosen:

ELMo smallfinetuned the result of fine-tuning
ELMo small for 10 epochs.

ELMo originalfinetuned the result of fine-tuning
ELMo original for 5 epochs.

4.3 Embedding Combinations
There are many possible ways to combine embed-
dings. In this work, we explore two methods:

Concatenation a simple concatenation of vectors
coming from two different embeddings. This
is denoted X�Y (e.g. i2b2�Wikipedia).

Mixture in the particular case where ELMo em-
beddings were combined with word2vec vec-
tors, we can directly add the word2vec em-
bedding in the linear combination of ELMo.
We denote this combination strategy X++Y
(e.g. ELMo small++i2b2).

The mixture method generalizes the way ELMo
representations are combined. Given a word w, if
we denote the three internal representations pro-
duced by ELMo (i.e. the CharCNN, 1st bi-LSTM
and 2nd bi-LSTM representations) by h1, h2, h3,
we recall that the model computes the word’s em-
bedding as:

ELMo(w) = �(↵1h1 + ↵2h2 + ↵3h3)

7All the models with their descriptions are available at
https://allennlp.org/elmo.
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Embedding Strategy X i2b2 � X i2b2 ++ X

i2b2 82.06 ± 0.32 - -
Wikipedia 83.30 ± 0.25 83.35 ± 0.62 -
Gigaword 82.54 ± 0.41 83.10 ± 0.37 -

ELMo small 80.79 ± 0.95 84.18 ± 0.26 84.94 ± 0.94

ELMo original 84.28 ± 0.66 85.25 ± 0.21 85.64 ± 0.33

ELMo smallfinetuned 83.86 ± 0.87 84.81 ± 0.40 85.93 ± 1.01

ELMo originalfinetuned 85.90 ± 0.50 86.18 ± 0.48 86.23 ± 0.58

Table 3: Performance of various strategies involving a general-domain resource and a small in-domain corpus
(i2b2). The values are Exact Span F1 scores given as Mean ± Std (bold: best result for each kind of combination).

where � and {↵i, i = 1, 2, 3} are tunable task-
specific coefficients8. Given hw2v, the word2vec
representation of the word w, we compute a “mix-
ture” representation as:

ELMomix(w) = �(↵1h1+↵2h2+↵3h3+�hw2v)

where � is a new tunable coefficient9.

5 Results and Discussion

We run each experiment with 10 different random
seeds and report performance in mean and stan-
dard deviation (std). Values are expressed in terms
of strict F1 measure that we compute using the of-
ficial script from the i2b2/VA 2010 challenge.

5.1 Using General-domain Resources
Table 3 shows the results we obtain using general-
domain resources only. The top part of the table
shows the performance of word2vec embeddings
trained on i2b2 as well as two general-domain cor-
pora: Wikipedia and Gigaword. We see that i2b2
performs the worst despite being trained on in-
domain data. This explicitly showcases the chal-
lenge faced by specialized domains and confirms
that training embeddings on small in-domain cor-
pora tends to perform poorly. As for the gen-
eral domain embeddings, we can observe that
Wikipedia is slightly better than Gigaword. This
can be explained by the fact that the former has
some medical-related articles which implies a bet-
ter coverage of the clinical vocabulary compared
to the newswire corpus Gigaword10. We can also

8In practice, the coefficients go through a softmax before
being used in the linear combination.

9In particular cases where the ELMo model pro-
duces 1024-dimensional embeddings, we duplicate the 256-
dimensional word2vec embeddings so that the dimensions
match before mixing.

10We count 14.42% out-of-vocabulary tokens in Gigaword
against 5.82% for Wikipedia.

see that combining general-domain word2vec em-
beddings with i2b2 results in weak improvements
that are slightly higher for Gigaword probably for
the same reason.

The middle part of the table shows the results
we obtain using off-the-shelf contextualized rep-
resentations. Looking at the embeddings alone,
we see that ELMo small performs worse than i2b2
while ELMo original is better than all word2vec
embeddings. Again, the reason for the small
model’s performance might be related to the dif-
ferent training corpora. In fact, ELMo original,
aside from being a larger model, was trained on
Wikipedia articles which may include some med-
ical articles. Another interesting point is that
both the mean and variance of the performance
when using off-the-shelf ELMo models improve
notably when combined with word2vec embed-
dings trained on i2b2. This improvement is even
greater for the small model, probably because it
has less coverage of the medical domain. Further-
more, we see that the performance improves again,
although to a lesser extent when the word2vec em-
bedding is mixed with ELMo instead of combined
through concatenation.

The bottom part of the table shows the results
obtained after fine-tuning both ELMo models. We
see that fine-tuning improves all the results (but to
varying extents), with the best performance being
achieved using combinations—either concatena-
tion or mixture—of i2b2’s word2vec and the larger
fine-tuned ELMo.

Two points are worth being noted. First, it
is interesting to see that we achieve good re-
sults with a model that only uses an off-the-shelf
model and a small in-domain corpus built from
the task data. This is a valuable insight since the
same strategy could be applied for any specialized
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domain. Second, we see that the smaller 256-
dimensional ELMo model, which initially per-
formed very poorly (⇡ 80 F1), improved dras-
tically (⇡ +6 F1) using our best strategy and
does not lag very far behind the original 1024-
dimensional model. This is also valuable since
many practitioners do not have the computational
resources that are required for using the larger ver-
sions of recent models like ELMo or BERT.

5.2 Using In-domain Resources
It is natural to wonder how our results fare against
models trained on large in-domain corpora. For-
tunately, there are two such corpora in the clinical
domain:

MIMIC III (2016) a collection of medical notes
from a large database of Intensive Care Unit
encounters at a large hospital (Johnson et al.,
2016)11. This is a large (1 billion tokens) in-
domain corpus.

PubMed (2018) a collection of scientific article
abstracts in the biomedical domain12. This is
a large (4 billion tokens) corpus from a close
but somewhat different domain.

Both Zhu et al. (2018) and Si et al. (2019)
trained the ELMo (original) on MIMIC, with the
former resorting to only a part of MIMIC mixed
with some curated Wikipedia articles. Table 4 re-
ports their results, to which we add the perfor-
mance of strategies using word2vec embeddings
trained on MIMIC and PubMed, and an open-
source ELMo model trained on PubMed13.

We can see yet again that word2vec embed-
dings perform less well than ELMo models trained
on the same corpora. We also see that combin-
ing the two kinds of embeddings still brings some
improvement (see ELMo (PubMed) ++ MIMIC).
And more importantly, we observe that by using
only general-domain resources, we perform very
close to the ELMo models trained on a large in-
domain corpus (MIMIC) with a maximum differ-
ence in F1 measure of ⇡ 1.5 points.

11The MIMIC-III corpus can be downloaded at https:
//mimic.physionet.org/gettingstarted/
access/.

12 The PubMed-MEDLINE corpus can be down-
loaded at https://www.nlm.nih.gov/databases/
download/pubmed_medline.html.

13Since we did not train this model ourselves, we are not
sure whether the training corpus is equivalent to the PubMed
corpus we use for training word2vec embeddings.

Embedding Strategy F1

MIMIC 84.29 ± 0.30

PubMed 84.06 ± 0.14

ELMo (PubMed) 86.29 ± 0.61

ELMo (PubMed) ++ MIMIC 87.17 ± 0.54

ELMo originalfinetuned ++ i2b2 86.23 ± 0.58

ELMo (Clinical) (Zhu et al., 2018) 86.84 ± 0.16

ELMo (MIMIC) (Si et al., 2019) 87.80

Table 4: Comparison of strategies using large in-
domain corpora with the best strategy using a small
in-domain corpus and general-domain resources. The
values are Exact Span F1 scores.

5.3 Using GloVe and fastText
In order to make sure that the observed phenomena
are not the result of using the word2vec method
in particular, we reproduce the same experiments
using GloVe and fastText14. The corresponding
results are reported in Table 5 and Table 6.

We can see that GloVe and fastText are always
outperformed by word2vec when trained on a sin-
gle corpus only. This is not true anymore when
combining these embeddings with representations
from ELMo. In fact, in this case, the results are
mostly comparable to the performance obtained
when using word2vec, with a slight improvement
when using fastText. This small improvement may
be explained by the fact that the fastText method
is able to manage Out-Of-Vocabulary tokens while
GloVe and word2vec are not.

More importantly, these additional experiments
validate the initial results obtained with word2vec:
static embeddings pre-trained on a small in-
domain corpus (i2b2) can be combined with
general domain contextual embeddings (ELMo),
through either one of the proposed methods, to
reach a performance that is comparable to the
state-of-the-art15.

5.4 Limitations
We can list the following limitations for this work:

• we tested only one specialized domain on one
task using one NER architecture. Although

14We used the following parameters: (GloVe) size=256,
window=15, min-count=5, iter=10; (fastText)
skipgram, size=256, window=5, min-count=5,
neg=5, loss=ns, minn=3, maxn=6, iter=10.

15Our single best model gets a F1 score of 87.10.
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Embedding Strategy X i2b2 � X i2b2 ++ X

i2b2 80.21 ± 0.37 - -
Wikipedia 81.82 ± 0.52 81.29 ± 0.42 -
Gigaword 81.38 ± 0.33 81.47 ± 0.18 -

ELMo small 80.79 ± 0.95 83.04 ± 1.03 84.30 ± 0.72

ELMo original 84.28 ± 0.66 85.00 ± 0.32 85.12 ± 0.26

ELMo smallfinetuned 83.86 ± 0.87 84.42 ± 0.75 85.19 ± 0.75

ELMo originalfinetuned 85.90 ± 0.50 86.05 ± 0.16 86.46 ± 0.36

Table 5: Performance of the strategies from Table 3 using GloVe instead of word2vec (bold: GloVe > word2vec)

Embedding Strategy X i2b2 � X i2b2 ++ X

i2b2 81.98 ± 0.41 - -
Wikipedia 82.32 ± 0.37 81.84 ± 1.48 -
Gigaword 81.77 ± 0.36 82.40 ± 0.32 -

ELMo small 80.79 ± 0.95 84.44 ± 0.42 85.47 ± 0.61

ELMo original 84.28 ± 0.66 85.57 ± 0.46 85.77 ± 0.47

ELMo smallfinetuned 83.86 ± 0.87 85.18 ± 0.67 86.27 ± 0.35

ELMo originalfinetuned 85.90 ± 0.50 86.49 ± 0.28 86.82 ± 0.29

Table 6: Performance of the strategies from Table 3 using fastText instead of word2vec (bold: fastText > word2vec)

the results look promising, they should be
validated by a wider set of experiments;

• our best strategies use the task corpus (i2b2)
to adapt general off-the-shelf embeddings to
the target domain, then combine two differ-
ent types of embeddings as an ensemble to
boost performance. This may not work if the
task corpus is really small (we recall that our
corpus is ⇡ 1 million tokens).

6 Conclusion and Future Work

While embedding methods are improving on a
regular basis, specialized domains still lack large
enough corpora to train these embeddings success-
fully. We address this issue and propose embed-
ding strategies that only require general-domain
resources and a small in-domain corpus. In partic-
ular, we show that using a combination of general-
domain ELMo, fine-tuning and word2vec embed-
dings trained on a small in-domain corpus, we
achieve a performance that is not very far behind
that of models trained on large in-domain corpora.
Future work may investigate other contextualized
representations such as BERT, which has proven
to be superior to ELMo—at least on our task—in
the recent work by Si et al. (2019). Another inter-

esting research direction could be exploiting exter-
nal knowledge (e.g. ontologies) that may be easier
to find in specialized fields than large corpora.
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Abstract

Alzheimer’s disease (AD) is an irreversible
brain disease that can dramatically reduce
quality of life, most commonly manifesting
in older adults and eventually leading to the
need for full-time care. Early detection is fun-
damental to slowing its progression; however,
diagnosis can be expensive, time-consuming,
and invasive. In this work we develop a neu-
ral model based on a CNN-LSTM architecture
that learns to detect AD and related dementias
using targeted and implicitly-learned features
from conversational transcripts. Our approach
establishes the new state of the art on the De-
mentiaBank dataset, achieving an F1 score of
0.929 when classifying participants into AD
and control groups.

1 Introduction

Older adults constitute a growing subset of the
population. In the United States, adults over
age 65 are expected to comprise one-fifth of
the population by 2030, and a larger proportion
of the population than those under 18 by 2035
(United States Census Bureau, 2018). In Japan—
perhaps the most extreme example of shifting age
demographics—42.4% of the population is ex-
pected to be aged 60 or over by 2050 (United Na-
tions, 2017). This will necessitate that age-related
physical and cognitive health issues become a
foremost concern not only because they will im-
pact such a large population, but because there will
be a proportionally smaller number of human care-
givers available to diagnose, monitor, and remedi-
ate those conditions. Artificial intelligence offers
the potential to fill many of these deficits, and al-
ready, elder-focused research is underway to test
intelligent systems that monitor and assist with ac-
tivities of daily living (Lotfi et al., 2012), support
mental health (Wada et al., 2004), promote physi-
cal well-being (Sarma et al., 2014), and encourage

cognitive exercise (Parde and Nielsen, 2019).
Perhaps some of the most pressing issues belea-

guering an aging population are Alzheimer’s dis-
ease (AD) and other age-related dementias. Our
interest lies in fostering early diagnosis of these
conditions. Although there are currently no cures,
with early diagnosis the symptoms can be man-
aged and their impact on quality of life may be
minimal. However, there can be many barriers to
early diagnosis, including cost, location, mobility,
and time.

Here, we present preliminary work towards au-
tomatically detecting whether individuals suffer
from AD using only conversational transcripts.
This solution addresses the above barriers by pro-
viding a diagnosis technique that could eventually
be employed free of cost and in the comfort of
one’s home, at whatever time works best. Our con-
tributions are as follows:

1. We introduce a hybrid Convolutional Neural
Network (CNN) and Long Short Term Mem-
ory Network (LSTM) approach to dementia
detection that takes advantage of both tar-
geted and implicitly learned features to per-
form classification.

2. We explore the effects of a bi-directional
LSTM and attention mechanism on both our
model and the current state-of-the-art for de-
mentia detection.

3. We empirically demonstrate that our tech-
nique outperforms the current state of the art,
and suggest directions for future work that we
expect to further improve performance.

2 Related Work

The task of automatically detecting dementia in
conversational transcripts is not new. In Fraser
et al. (2016), the authors tackled the task using
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features associated with many linguistic phenom-
ena, including part of speech tags, syntactic com-
plexity, psycholinguistic characteristics, vocabu-
lary richness, and many others. They trained a
logistic regression model to distinguish between
dementia-affected and healthy patients, achieving
an accuracy of 81%. In our work here we consider
some of the features found to be informative in this
work; in particular, psycholinguistic features.

Habash et al. (2012) studied Alzheimer’s-
related dementia (AD) specifically. The authors
selected 14 linguistic features to perform syntac-
tic, semantic, and disfluency modeling. In doing
so, they checked for the presence of filler words,
repetitions, and incomplete words, and addition-
ally incorporated counts indicating the number of
syllables used per minute. Using this feature set,
the authors trained a decision tree classifier to
make predictions for 80 conversational samples
from 31 AD and 57 non-AD patients. Their model
achieved an accuracy of 79.5%.

Orimaye et al. (2014) considered syntactic fea-
tures, computed from syntactic tree structures, and
various lexical features to evaluate four machine
learning algorithms for dementia detection. The
algorithms considered included a decision tree,
naı̈ve Bayes, SVM with a radial basis kernel, and
a neural network. On a dataset containing 242 AD
and 242 healthy individuals, they found that com-
pared to other algorithms, SVM exhibited the best
performance with an accuracy score of 74%, a re-
call of 73%, and a precision of 75%.

Yancheva and Rudzicz (2016) used
automatically-generated topic models to ex-
tract a small number of semantic features (12),
which they then used to train a random forest
classifier. Their approach achieved an F1 Score
of 0.74 in binary classification of control patients
versus dementia-affected patients. This is com-
parable to results (F1 Score=0.72) obtained with
a much larger set of lexicosyntactic and acoustic
features. Ultimately, Yancheva and Rudzicz
found that combining these varied feature types
improved their F1 Score to 0.80.

Finally, Karlekar et al. (2018) proposed a CNN-
LSTM neural language model and explored the
effectiveness of part-of-speech (POS) tagging the
conversational transcript to improve classification
accuracy for AD patients. They divided patient
interviews into single utterances, and rather than
classifying at the patient level, they made their

predictions at the utterance level. Their model
achieved an accuracy of 91%. Unfortunately, the
dataset on which their classifier was trained is im-
balanced, and no other performance metrics were
reported. This makes it difficult to fully under-
stand the capabilities of their model. Here, in ad-
dition to our other contributions, we extend their
work by considering a full-interview classification
scenario and providing more detailed classifica-
tion metrics to assess the classifier’s quality.

3 Data

We use a subset of DementiaBank (Becker et al.,
1994) for our work here. DementiaBank is a
dataset gathered as part of a protocol administered
by the Alzheimer and Related Dementias Study at
the University of Pittsburgh School of Medicine.
It contains spontaneous speech from individuals
who do (AD group) and do not (control group)
present different kinds of dementia. Participants
in the dataset performed several different tasks:

• Fluency: Participants were asked to name
words belonging to a given category or that
start with a given letter.

• Recall: Participants were asked to recall a
story from their past experience.

• Sentence: Participants were asked to con-
struct a simple sentence with a given word, or
were asked if a given sentence made sense.

• Cookie Theft: Participants were asked
to verbally describe an eventful image illus-
trating, among other elements, a child at-
tempting to steal a cookie. For this task,
the participant’s and interviewer’s speech ut-
terances were recorded and manually tran-
scribed according to the TalkBank CHAT
protocol (MacWhinney, 1992).

Of these tasks, Cookie Theft provides the
largest source of unstructured text. Thus, it is the
data subset that we use for our work here. In total,
the Cookie Theft sub-corpus consists of 1049 tran-
scripts from 208 patients suffering from dementia
(AD group) and 243 transcripts from 104 healthy
elderly patients (control, or CT, group), for a total
of 1229 transcripts. Dataset statistics are provided
in Table 1. For each participant, DementiaBank
also provides demographic information including
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Total AD CT
Number of Participants 312 208 104
Number of Transcripts 1229 1049 243
Median Interview Length 73 65 97

Table 1: Dataset statistics including the number of par-
ticipants, the number of transcripts, and the median in-
terview length. Interview length is computed as the
number of words spoken by the patient during the in-
terview.

age, gender, education, and race. We use all avail-
able transcripts, and randomly separate them into
81% training, 9% validation, and 10% testing.

4 Methods

We propose a neural network architecture de-
signed to classify patients into the two groups
mentioned previously: those suffering from de-
mentia, and those who are not. The architecture
takes as input transcriptions of the patients’ spo-
ken conversations. The transcripts are of moder-
ate length (the average participant spoke 73 words
across 16.8 utterances). We consider all partici-
pant speech in a single block rather than splitting
the interview into separate utterances, allowing the
model to consider the entire interview context in a
manner similar to a real diagnosis scenario.

4.1 Model Architecture

The model architecture proposed is a CNN-LSTM
(Zhou et al., 2015) with several modifications:

• We introduced a dense neural network at the
end of the LSTM layer to also take into con-
sideration linguistic features that have been
considered significant by previous research
(Karlekar et al., 2018; Salsbury et al., 2011).

• Rather than a classic unidirectional LSTM,
we used a bi-directional LSTM and inserted
an attention mechanism on the hidden states
of the LSTM. In this way we expect our
model to identify specific linguistic patterns
related to dementia detection. In addition,
the attention mechanism has proven to lead
to performance improvements when long se-
quences are considered (Yang et al., 2016).

• We added class weights to the loss func-
tion during training to take into account the
dataset imbalance.

Figure 1: Model architecture.

We illustrate the architecture in Figure 1. We
preprocess each full interview transcript from De-
mentiaBank by removing interviewer utterances
and truncating the length of the remaining text
to 73 words. This is done so that (a) each in-
stance is of a uniform text size, and (b) the in-
stances are of relatively substantial length, thereby
providing adequate material with which to assess
the health of the patient. Seventy-three words
represents the median (participant-only) interview
length; thus, 50% of instances include the full in-
terview (padded as needed), and 50% of instances
are truncated to their first 73 words. The inter-
views are tokenized into single word tokens, and
POS tags1 are computed for each token.

The model takes two inputs: the tokenized in-
terview, and the corresponding POS tag list. Word
embeddings for the interview text tokens are com-
puted using pre-trained 300 dimensional GloVe
embeddings trained on the Wikipedia 2014 and
Gigaword 5 dataset (Pennington et al., 2014). The
POS tag for each word is represented as a one-hot-
encoded vector. The word embeddings and POS
vectors are input to two different CNNs utilizing
the same architecture, and the output of the two
CNNs is then flattened and given as input to a bi-
directional LSTM with an attention mechanism.

The output of the bi-directional LSTM is then
given as input to a dense neural network which
also takes into consideration linguistic features
that have proven to be effective in previous liter-
ature, as well as some demographic features (see
further discussion in Section 4.2). The final out-
come of the model is obtained with a single neu-
ron at the end of the dense layer having a sigmoid

1We compute POS tags using NLTK (https://www.
nltk.org/).
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activation function. We implement the model us-
ing Keras.2 The advantage of our hybrid archi-
tecture that considers both implicitly-learned and
engineered features is that it can jointly incorpo-
rate information that may be useful but latent to
the human observer and information that directly
encodes findings from clinical and psycholinguis-
tic literature.

4.2 Targeted Features

Previous research has shown the effectiveness
of neural models trained on conversational tran-
scripts at identifying useful features for demen-
tia classification (Lyu, 2018; Karlekar et al., 2018;
Olubolu Orimaye et al., 2018). Nevertheless, other
information that has proven to be crucial to the
task cannot be derived from interview transcripts
themselves. Inspired by Karlekar et al.’s (2018)
finding that adding POS tags as features improved
the performance of their neural model, we sought
to enrich our model with other engineered features
that have proven effective in prior dementia detec-
tion work. We describe those features Table 2.

Each of the token-level (psycholinguistic or
sentiment) features was averaged across all to-
kens in the instance, allowing us to obtain a
participant-level feature vector to be coupled with
the participant-level demographic features. These
features were then concatenated with the output of
our model’s attention layer and the resulting vector
was given as input to a dense portion of the neu-
ral network that performed the final classification.
Sentiment scores were obtained using NLTK’s
sentiment library and psycholinguistic scores were
obtained from an open source repository3 based
on the work of Fraser et al. (2016). As noted ear-
lier, demographic information was included with
the DementiaBank dataset.

4.3 Class Weight Correction

Since the DementiaBank dataset is unbalanced
(more participants suffer from dementia than not),
we noticed that even when high accuracy was
achieved by previously proposed models, they re-
sulted in poor precision scores. This was because
those classifiers were prone to producing false
positive outcomes. To combat this issue, we tuned
the loss function of our model such that it more

2https://keras.io/
3https://github.com/vmasrani/dementia_

classifier

Feature Description

Psych.

Age of
Acquisition

The age at which a particu-
lar word is usually learned.

Concreteness A measure of a word’s tan-
gibility.

Familiarity
A measure of how often one
might expect to encounter a
word.

Imageability A measure of how easily a
word can be visualized.

Sent. Sentiment A measure of a word’s sen-
timent polarity.

Demo. Age The participant’s age at the
time of the visit.

Gender The participant’s gender.

Table 2: Targeted psycholinguistic, sentiment, and de-
mographic features considered by the model.

severely penalized misclassifying the less frequent
class.

5 Evaluation

5.1 Baseline Approach

We selected the C-LSTM model developed by
Karlekar et al. (2018) as our baseline approach.
This model represents the current state of the
art for dementia detection on the DementiaBank
dataset (Lyu, 2018).

5.2 Experimental Setup

We split the dataset into 81% training, 9% vali-
dation, and 10% testing. Each data sample repre-
sents a patient interview and its associated demo-
graphic characteristics. In order to have a more ro-
bust evaluation, we split the dataset multiple times.
Thus, each model has been trained, validated, and
tested using three different random shufflings of
the data with different random seeds. The results
presented are the average of the results that each
model achieved over the three test sets.

To measure performance we consider Accuracy,
Precision, Recall, F1 Score, Area Under the Curve
(AUC), and the number of True Negative (TN),
False Positive (FP), False Negative (FN), and True
Positive (TP) classifications achieved by each ap-
proach on the test set. All metrics except AUC
used a classification threshold of 0.5.

We compared six different models on the de-
scribed task: two main architectures (ours and the
state of the art approach developed by Karlekar
et al. (2018)), each with several variations. The
baseline version of Karlekar et al.’s (2018) model
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Approach Accuracy Precision Recall F1 AUC TN FP FN TP
C-LSTM 0.8384 0.8683 0.9497 0.9058 0.9057 6.3 15.6 5.3 102.6
C-LSTM-ATT 0.8333 0.8446 0.9778 0.9061 0.9126 2.6 19.3 2.3 105.6
C-LSTM-ATT-W 0.8512 0.9232 0.8949 0.9084 0.9139 14.0 8.0 11.3 96.6
OURS 0.8495 0.8508 0.9965 0.9178 0.9207 1.0 16.6 0.3 95.0
OURS-ATT 0.8466 0.8525 0.9895 0.9158 0.9503 1.3 16.3 1.0 94.3
OURS-ATT-W 0.8820 0.9312 0.9298 0.9305 0.9498 11.0 6.6 6.6 88.6

Table 3: Performance of evaluated models.

(C-LSTM) is used directly, without any modifi-
cation. Our architecture is OURS. For both archi-
tectures we then consider the effects of switching
to a bidirectional LSTM and adding an attention
mechanism (-ATT) and the effects of class weight
correction inside the loss function (-W).

5.3 Results
We report performance metrics for each model
in Table 3. As is demonstrated, our proposed
model achieves the highest performance in Accu-
racy, Precision, Recall, F1, and AUC. It outper-
forms the state of the art (C-LSTM) by 5.2%,
7.1%, 4.9%, 2.6%, and 3.7%, respectively.

5.4 Additional Findings
In addition to presenting the results above, we con-
ducted further quantitative and qualitative analy-
ses regarding the targeted features to uncover ad-
ditional insights and identify key areas for follow-
up work. We describe these analyses in the sub-
sections below.

5.4.1 Quantitative Analysis
To further assess the individual contributions of
the targeted features, we performed a follow-up
ablation study using our best-performing model.
We systematically retrained the model after re-
moving one type (psycholinguistic, sentiment, or
demographic) of targeted feature at a time, and re-
port our findings in Table 4.

Removing sentiment features left the model
mostly unchanged in terms of AUC. However, it
produced slightly fewer true negatives and slightly
more false positives. Reducing false positives is
important, particularly in light of the class im-
balance; thus, the sentiment features give rise
to a small but meaningful contribution to the
model’s overall performance. Interestingly, it ap-
pears that the demographic and psycholinguistic
features inform the model in similar and perhaps
interchangeable ways: removing one group but
retaining the other yields similar performance to

that of a model utilizing both. Future experiments
can tease apart the contributions of individual psy-
cholinguistic characteristics at a finer level. Ex-
tending the psycholinguistic resources employed
by our model such that they exhibit greater cover-
age may also result in increased performance from
those features specifically.

5.4.2 Qualitative Analysis
In Table 5 we present two samples misclassi-
fied by our model (one false positive, and one
false negative). We make note of a key dis-
tinction between the two: surprisingly, the false
positive includes many interjections indicative of
“stalling” behaviors, whereas the false negative is
quite clear. Neither of these is representative of
other (correctly predicted) samples in their respec-
tive classes; rather, participants with dementia of-
ten exhibit more stalling or pausing behaviors, ob-
servable in text as an overuse of words such as
“uh,” “um,” or “oh.” We speculate that our model
was fooled into misclassifying these samples as a
result of this style reversal. Follow-up work in-
corporating stylistic features (e.g., syntactic vari-
ation or sentence structure patterns) may reduce
errors of this nature. Finally, we note that many
prosodic distinctions between the two classes that
pass through text mostly unnoticed may be more
effectively encoded using audio features. We plan
to experiment with these as well as features from
other modalities in the future, in hopes of further
improving performance.

6 Discussion

The introduction of sentiment-based, psycholin-
guistic, and demographic features improved the
performance of the model, demonstrating that
implicitly-learned features (although impressive)
still cannot encode conversational characteristics
of dementia to the extent that other, more targeted
features can. Likewise, in both C-LSTM and
our approach, the introduction of a bi-directional
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Approach Accuracy Precision Recall F1 AUC TN FP FN TP
OURS-ATT-W NO PSYCH. 0.8790 0.8870 0.9825 0.9319 0.9499 12.0 5.6 1.6 93.6
OURS-ATT-W NO SENT. 0.8970 0.9239 0.9615 0.9321 0.9501 7.6 10.0 3.6 91.6
OURS-ATT-W NO DEMO. 0.8908 0.9005 0.9789 0.9308 0.9473 10.33 7.33 2 93.3

Table 4: Ablation study performed using our best-performing model (OURS-ATT-W).

False Positive

Uh, oh I can oh you don’t want me to memorize it.
Oh okay, the the little girl is asking for the cookie from the boy who is about to fall on his head
And she is going I guess “shush” or give me one
The mother laughs we don’t think she might be on drugs because uh laughs
she is off someplace because the sink is running over
and uh it is summer outside because the window is open
and the grasses or the bushes look healthy. And uh that’s it.

False Negative

Oh, the water is running off the sink
Mother is calmly drying a dish
The uh stool is going to fall over and the little boy is on top of it getting in the cookie jar.
And the little girl is reaching for a cookie.
She has her hands to her her finger to her lip as if she is telling the boy not to tell.
The curtains seem to be waving a bit, the water is running. that’s it.

Table 5: Samples misclassified by our model. False Positives are control patients classified as AD patients, while
False Negatives are AD-patients classified as control patients.

LSTM with an attention mechanism led to perfor-
mance improvements on classifier AUC. This im-
provement suggests that these additions allowed
the model to better focus on specific patterns in-
dicative of participants suffering from dementia.

In contrast, the benefits of adding class weights
to the model’s loss function were less clear. We in-
troduced this correction as a mechanism to encour-
age our classifier to make fewer false positive pre-
dictions, and although this worked, the model also
became less capable of identifying true positives.
Given the nature of our classification problem, this
trade-off is rather undesirable, and additionally
this correction did not improve the general qual-
ity of the classifier—the AUC for both our model
and C-LSTM remained almost unchanged. How-
ever, regardless of the inclusion of class weights
for the loss function, our measures regarding the
AUC, Precision, Recall, F1 Score, and Accuracy
show that overall our model is able to outperform
the previous state of the art (C-LSTM) at predict-
ing whether or not participants are suffering from
dementia based on their conversational transcripts.

7 Conclusion

In this work we introduced a new approach to clas-
sify conversational transcripts as belonging to in-
dividuals with or without dementia. Our contribu-
tions were as follows:

1. We introduced a hybrid architecture that al-
lowed us to take advantage of both engi-
neered features and deep-learning techniques
on conversational transcripts.

2. We explored the effects of a bi-directional
LSTM and attention mechanism on both our
model and the current state of the art for de-
mentia detection.

3. We examined the effects of loss func-
tion modification to take into consideration
the class imbalance in the DementiaBank
dataset.

Importantly, the model that we present in this
work represents the new state of the art for AD de-
tection on the DementiaBank dataset. Our source
code is available publicly online.4 In the fu-
ture, we plan to explore additional psycholinguis-
tic, sentiment-based, and stylistic features for this
task, as well as to experiment with features from
other modalities. Finally, we plan to work towards
interpreting the neural features implicitly learned
by the model, in order to understand some of the
latent characteristics it captures in AD patients’
conversational transcripts.

4https://github.com/flaviodipalo/
AlzheimerDetection
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Abstract

In this work, we conduct a study on Neu-
ral Machine Translation (NMT) for English-
Indonesian (EN-ID) and Indonesian-English
(ID-EN). We focus on spoken language do-
mains, namely colloquial and speech lan-
guages. We build NMT systems using the
Transformer model for both translation direc-
tions and implement domain adaptation, in
which we train our pre-trained NMT systems
on speech language (in-domain) data. More-
over, we conduct an evaluation on how the
domain-adaptation method in our EN-ID sys-
tem can result in more formal translation out-
puts.

1 Introduction

Neural machine translation (NMT) has become
the state-of-the-art method in the research area of
machine translation (MT) in the past few years
(Bojar et al., 2018). As a data-driven method,
NMT suffers from the need of a big amount of
data to build a robust translation model (Koehn
and Knowles, 2017). The lack of parallel cor-
pora for some languages is one of the reasons
why the research of NMT for these languages has
not grown. Indonesian is one of the examples of
such under-researched language. Despite the huge
number of speakers (more than 200 million peo-
ple), there have been only a few works on Indone-
sian MT, even towards the heavily researched lan-
guage like English. While the lack of data was
an issue for NMT research in this language (Trieu
et al., 2017; Adiputra and Arase, 2017), the recent
release of OpenSubtitles2018 corpus (Lison et al.,
2018) containing more than 9 millions Indonesian-
English sentence pairs gives us an opportunity to
broaden the study of Indonesian NMT systems.

One of interesting linguistic problems is lan-
guage style, which is the way a language is used
depending on some circumstances, such as when

and where it is spoken, who is speaking, or to
whom it is addressed. We are interested in study-
ing the formality of MT output, focusing on spo-
ken language domains. Given a small dataset of
speech-styled language and a significantly larger
dataset of less formal language, we would like to
investigate the effect of domain adaptation method
in learning the formality level of MT output.
Learning formality level through domain adap-
tation will help MT systems generate formality-
specific translations.

In this paper, we conduct a study of NMT
for English-Indonesian (EN-ID) and Indonesian-
English (ID-EN) directions. This study has the
following objectives:

1. to present a set of baseline results for EN-
ID and ID-EN NMT systems on spoken lan-
guage domains.

2. to examine the effectiveness of domain adap-
tation in:

(a) boosting the performance of the NMT
systems for both directions.

(b) learning the formality change in spoken
language EN-ID NMT systems.

To accomplish both objectives, we build the
NMT systems for both EN-ID and ID-EN direc-
tions using the Transformer model (Vaswani et al.,
2017). This model relies on self-attention to com-
pute the representation of the sequence. To the
best of our knowledge, there has not been any
work on building NMT for those language pairs
using the Transformer model.

We perform experiments using domain adap-
tation. We consider formal speech language
as our in-domain data, and colloquial dialogue-
styled language from movie subtitles as our out-
of-domain data. We adopt the domain-adaptation
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method used by Luong and Manning (2015) to
fine-tune the trained model using in-domain data.
For each translation direction, we run five experi-
ments: three in which we do not perform domain
adaptation and two when we do. We evaluate the
effectiveness of the domain adaptation method us-
ing automatic evaluation, BLEU (Papineni et al.,
2002), and report the score obtained from each
experiment on in-domain test set. Moreover, we
analyze how domain adaptation affects formality
change in the translations of EN-ID NMT systems
by performing a human evaluation.

2 Background

In this section, we provide background informa-
tion on Indonesian language and the approaches
used in our experiments.

2.1 Indonesian language

Similarly to English, Indonesian’s writing system
uses the Latin alphabet without any diacritics. The
typical word order in Indonesian is Subject-Verb-
Object (SVO). The language does not make use of
any grammatical case nor gender. The grammat-
ical tenses do not change the form of the verbs.
Most of the word constructions are derivational
morphology. The complexity of its morphology
includes affixation, clitics, and reduplication.

In spoken language, while formal speech is
similar to written language, people tend to use
non-standard spelling in colloquial language by
changing the word forms or simply using infor-
mal words. For example, ’bagaimana’ (how) →
’gimana’ or ’tidak’ (no) → ’nggak’. Although
the measure of formality level can be relative to
some people depending on their culture, there
are words that are only used in formal situation.
For example, the use of pronouns like saya’ (I),
’Anda’ (you), or certain words like ’dapat’ (can)
or ’mengkehendaki’ (would like).

2.2 Neural Machine Translation

Neural machine translation (NMT) uses an
encoder-decoder architecture, in which the en-
coder encodes the source sentence x =
(x1, ..., xn) to a continuous representation se-
quence z = (z1, ..., zk) and the decoder trans-
lates the representation z into a sentence y =
(y1, ..., ym) in the target language.

Several previous works implemented recurrent
neural networks (RNN) in their encoder-decoder

architecture (Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2015; Luong and Manning,
2015). While Bahdanau et al. (2015) used bidirec-
tional RNN for their encoder and Luong and Man-
ning (2015) used multilayer RNN in their architec-
ture, both works implemented an attention mech-
anism in their decoder, which was able to handle
the problem in translating long sentences.

The model that we use in this paper is Trans-
former model (Vaswani et al., 2017), which gets
rid of all the recurrent operations found in the pre-
vious approach. Instead, it relies on self-attention
mechanism to compute the continuous represen-
tation on both the encoder and the decoder. In
order to keep track of the token order within the
sequence, the model appends positional-encoding
of the tokens to the input and output embed-
dings. Both of the encoder and the decoder are
composed of stacked multi-head self-attention and
fully-connected layers.

Our choice of the Transformer model is moti-
vated by its good performance reported recently
in various translation tasks, such as bilingual
translation of various language directions (Bojar
et al., 2018), multilingual translation (Lakew et al.,
2018), and also for the low-resource with multi-
source setting (Tubay and Costa-jussà, 2018).
While some works empirically compare the per-
formance of Transformer and RNN-based models
(Vaswani et al., 2017; Lakew et al., 2018; Tang
et al., 2018), this is not the aim of this paper. We
leave the comparison of both methods for EN-ID
and ID-EN NMT as future research.

2.3 Domain-adaptation

One of the challenges in translation is that words
can be translated differently depending on the con-
text or domain (Koehn and Knowles, 2017). While
in-domain data is limited, we expect using avail-
able large amounts of out-of-domain data to train
our model and implementing a domain-adaptation
method will give the model a robust performance.
Therefore, we implement the method of Luong
and Manning (2015). First, we train our model
on general domain data consisting of around 9
millions parallel sentences. After that we fine-
tune the model using in-domain data, which means
the model training is continued on only in-domain
data for a few more steps.
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3 Experimental Setup

We run experiments on both EN-ID and ID-EN
pairs with different training scenarios as follows:

1. IN (baseline): using only small in-domain
data (speech language)

2. OUT: using only large out-of-domain data
(colloquial language)

3. OUT+DA: using only large out-of-domain
data, then fine-tune the model using only in-
domain data

4. MIX: using a mixture of in-domain and out-
of-domain data

5. MIX+DA: using a mixture of in-domain and
out-of-domain data, then fine-tune the model
using only in-domain data

3.1 Dataset

We use OpenSubtitles2018 (Lison et al., 2018)
parallel corpus as our out-of-domain data and
TEDtalk (Cettolo et al., 2012) as in-domain data.
OpenSubtitles2018 corpus contains movie subti-
tles which can represent colloquial language in di-
alogue style. On the other hand, TEDtalk corpus
contains speech language which has higher level
of formality than colloquial language. The details
of the dataset setting is shown in Table 1. As
the training data, we use all the sentences from
OpenSubtitles2018 and the train set of TEDtalk.
For training the baseline system (IN), we use only
TEDtalk train set. For OUT and MIX, we use
OpenSubtitles2018 train set and both sets in the
first phase of training, respectively. Then, for
the second phase of training (fine-tuning), we use
TEDtalk train set while keeping the vocabulary
from the first phase train set.

As development set, we use TEDtalk tst2013
and tst2014. As test set, we use TEDtalk tst2015-
16 and tst2017-plus. We notice that the test set
tst2017-plus provided at the website1 contains a
small part of the train data. Therefore, we re-
move these common sentences from the test set
and obtain tst2017-plus-mod with 1035 sentences
not overlapping with the training data.

1https://wit3.fbk.eu/mt.php?release=2017-01-more,
accessed on 25th February 2019

Part Dataset #sentences
Train OpenSubtitles2018 9,273,809

TEDtalk train 107,329
Dev TEDtalk tst2013 1034

TEDtalk tst2014 878
Test TEDtalk tst2015-16 980

TEDtalk tst2017-plus-mod 1035

Table 1: Dataset used in our experiments

3.2 Training details

We run our experiments using Tensor2Tensor
(T2T) (Vaswani et al., 2018) on a GeForce
GTX 1080 machine using a single GPU. We
use Transformer model with hyperparameter set
transformer_base (Vaswani et al., 2017).
Some hyperparameters follow the suggestion of
Popel and Bojar (2018): maximum sequence
length=150, batch size=1500, learning rate=0.2,
learning rate warmup steps=8000. We optimize
our model using the Adafactor optimizer (Shazeer
and Stern, 2018). For the vocabulary, we use the
default subword units implemented in T2T, Sub-
wordTextEncoder (STE), which is shared between
source and target languages with approximate size
of 32,678 units. Our data is not tokenized.

We run the baseline and the first phase of
our domain-adaptation experiments training for
300,000 and 500,000 steps, respectively, and save
the checkpoint hourly. However, we find an overfit
on baseline systems during the training so we stop
early and select the model from the checkpoint re-
sulting the highest BLEU score on development
set. For the second phase of training in domain-
adaptation experiments, we set the steps to 50,000
in order to avoid overfit to the in-domain data and
save the checkpoint every 10 minutes. We use the
last value of learning rate in the first training phase
for the second training phase.

During decoding, we use beam search with
beam size of 4 and alpha value (length normaliza-
tion penalty) of 0.6. We evaluate our model on the
development set during the training and the test
set after the model selection using case-sensitive
BLEU score computed by the built-in command
t2t-bleu.

3.3 Formality level evaluation

We conduct a manual evaluation for the formal-
ity level of translations resulted from our best EN-
ID system. The purpose of this evaluation is to
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System EN-ID ID-EN
IN 22.03 23.06
OUT 20.75 22.81
OUT+DA 27.47 26.93
MIX 24.84 25.18
MIX+DA 29.10 28.18

Table 2: BLEU scores of our English-Indonesian (EN-
ID) and Indonesian-English (ID-EN) NMT systems on
test set. The bold texts mark the best scores.

see whether the domain-adapted system generates
more formal translation based on human evalua-
tion. The evaluation is inspired by human assess-
ment of Niu et al. (2017). We randomly select
50 translation pairs from the test set generated by
the first and second phases of our EN-ID system.
We make sure each pair does not consist of the
same sentences. Then 48 Indonesian native speak-
ers vote which sentence is more formal between
two of them. An option of ”neutral or difficult to
distinguish” is also available. The voters are not
aware that the sentence pairs are generated by MT
systems in order to keep the purity of the evalua-
tion based on formality level and not biased to the
translation quality.

4 Result

4.1 NMT performance

Table 2 shows the BLEU evaluation of our sys-
tems. For both EN-ID and ID-EN directions, the
result shows similar patterns: (1) System trained
with only in-domain data (IN) works better than
with only out-of-domain data (OUT) although the
training-data sizes are significantly different. (2)
Domain adaptation (fine-tuning) helps to improve
the BLEU score in both cases when the model
is first trained without and with in-domain data
(OUT and MIX respectively). Despite the best
performance of our mixture system, the domain
adaptation method has higher impact on the out-
of-domain system.

While IN systems suffer from overfit, both
training and evaluation loss in OUT and MIX sys-
tems still slightly decrease in the end of the train-
ing which indicates the training steps still can be
increased.

4.2 Formality level

We use the evaluation approach described in Sub-
section 3.3 on translation output of MIX and

Sentence 1
Source You have to listen to one another.
MIX Kau harus mendengarkan satu sama lain.
MIX+DA Anda harus mendengarkan satu sama lain.
Sentence 2
Source I enjoy fashion magazines and pretty things.
MIX Aku menikmati majalah fashion dan hal-hal

cantik.
MIX+DA Saya menikmati majalah adibusana dan hal-

hal yang cukup.
Sentence 3
Source It could even be disseminated intentionally.
MIX Itu bahkan bisa dibubarkan secara sengaja.
MIX+DA Hal ini bahkan dapat diabaikan dengan sen-

gaja.
Sentence 4
Source They come from these cells.
MIX Mereka datang dari sel-sel ini.
MIX+DA Mereka berasal dari sel-sel ini.

Figure 1: Sample outputs of our EN-ID non-adapted
(MIX) and domain-adapted (MIX+DA) systems, in
which more than 50% of human assessors vote trans-
lation by the domain-adapted system as more formal.

MIX+DA from the test set. Out of 50 pairs,
35 MIX+DA sentences are voted by the majority
(>50% of the voters) as more formal than their
pairs. For the remaining pairs, the majority either
select MIX sentences as more formal (12 pairs) or
the MIX+DA sentences are still the most selected
but the frequency is less than 50% of the voters
(3 pairs). We consider the latter condition has no
difference to being indistinct, although none of the
pairs with ”difficult to distinguish” option are se-
lected by the majority,

Among those 35 MIX+DA sentence pairs, we
analyze 13 pairs that are voted by more than 85%
voters to observe which segment of the sentences
might trigger the voters to label them as more
formal. Figure 1 shows sample output sentence
pairs with such condition. Interestingly, 9 of those
pairs show similar pattern, namely they contain
the change of pronouns to the formal one. For
instance, ”kau” → ”Anda” or ”aku” → ”saya” in
Sentence 1 and 2, respectively, in the figure. Note
that English does not use honorifics that can give
such context change in the translation.

Among 2015 translation pairs from the test set,
we find 316 translations which change the pro-
nouns to be more formal, 448 translations which
already use formal pronouns before domain-
adapted thus do not change, and, surprisingly, no
translation that still uses informal pronouns after
being domain-adapted. This indicates the style of
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using honorifics is successfully transferred from
speech styled language.

Sentence 3 and 4 are of the remaining pairs that
do not have such pattern. In sentence 3, there
are 3 different segments in the translations. Al-
though native speaker might easily find that ”da-
pat” is more formal than ”bisa”, just like the use
of ”could” and ”can” in English, we cannot find
how to measure each of the lexical differences af-
fects the formality level. Meanwhile, in a pair that
only has one word difference like in sentence 4, we
can infer that the highlighted words are the trigger
of the formality of the sentences, if we assume that
the translation is correct (which is true in this sam-
ple). Nevertheless, the focus on finding segments
that trigger the formality of the whole translation
outputs can be an interesting future work.

5 Related Work

Most works on ID-EN or EN-ID MT were based
on phrase-based SMT (Yulianti et al., 2011;
Larasati, 2012; Sujaini et al., 2014), in which other
approaches were incorporated to the basic SMT to
enhance the performance, such as by combining
SMT with rule-based system or adding linguistics
information. Neural method was used as a lan-
guage model to replace statistical n-gram language
model in EN-ID SMT (Hermanto et al., 2015), not
as an end-to-end MT system like our models.

While we can not find any previous work
on end-to-end Indonesian NMT paired with En-
glish, such work has been performed with some
Asian languages. Trieu et al. (2017) built NMT
systems for Indonesian-Vietnamese and Adiputra
and Arase (2017) for Japanese-Indonesian NMT.
Those works used RNN-based encoder-decoder
architecture, while we use self-attention based
model.

Our analysis of formality level is related to po-
liteness or formality control in NMT output (Sen-
nrich et al., 2016; Niu et al., 2017). Both works
added a mark on the source side as an expected
formality level on the translation output. While
the former focused only on the use of honorifics,
the latter had a wider definition of formality based
on the calculation of formality score. Although
the finding of our work is similar to the expected
output of Sennrich et al. (2016), it differs from
both works as we use domain-adaptation method
instead of a formality mark.

6 Conclusions and Future Research

We have presented the use of Neural Machine
Translation (NMT) using Transformer model for
English-Indonesian language pair in the spoken
language domains, namely colloquial language
and speech language. We demonstrate that the
domain-adaptation method we use does not only
improve the model performance, but is also able
to generate translation in more formal language.
The most notable formality style transferred is the
use of honorifics.

There are still many open research directions for
EN-ID and ID-EN NMT systems. In this work,
we mostly use the default value of hyperparam-
eters for our Transformer model. An empirical
study to explore different set of hyperparameters
can be an interesting future work with a goal to
build the state-of-the-art model for both language
directions. The work can be also followed by
model comparison with the previous state-of-the-
art RNN-based NMT systems. Besides investigat-
ing segments of the translations that may trigger
the formality, it is also interesting to conduct fur-
ther analysis on the style transfer learned by the
domain adaptation method in our EN-ID system,
not restricted to the formality level.
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Abstract

Entity Disambiguation (ED) is the task of link-
ing an ambiguous entity mention to a corre-
sponding entry in a knowledge base. Cur-
rent methods have mostly focused on unstruc-
tured text data to learn representations of en-
tities, however, there is structured information
in the knowledge base itself that should be use-
ful to disambiguate entities. In this work, we
propose a method that uses graph embeddings
for integrating structured information from the
knowledge base with unstructured information
from text-based representations. Our experi-
ments confirm that graph embeddings trained
on a graph of hyperlinks between Wikipedia
articles improve the performances of simple
feed-forward neural ED model and a state-of-
the-art neural ED system.

1 Introduction

The inherent and omnipresent ambiguity of lan-
guage at the lexical level results in ambigu-
ity of words, named entities, and other lexical
units. Word Sense Disambiguation (WSD) (Nav-
igli, 2009) deals with individual ambiguous words
such as nouns, verbs, and adjectives. The task of
Entity Linking (EL) (Shen et al., 2015) is devoted
to the disambiguation of mentions of named enti-
ties such as persons, locations, and organizations.
Basically, EL aims to resolve such ambiguity by
creating an automatic reference between an am-
biguous entity mention/span in a context and an
entity in a knowledge base. These entities can be
Wikipedia articles and/or DBpedia (Mendes et al.,
2011)/Freebase (Bollacker et al., 2008) entries.
EL can be divided into two subtasks: (i) Men-
tion Detection (MD) or Name Entity Recognition
(NER) (Nadeau and Sekine, 2007) finds entity ref-
erences from a given raw text; (ii) and Entity Dis-
ambiguation (ED) assigns entity references for a
given mention in context. This work deals with

the entity disambiguation task.
The goal of an ED system is resolving the am-

biguity of entity mentions, such as Mars, Galaxy,
and Bounty are all delicious. It is hard for an al-
gorithm to identify whether the entity is an astro-
nomical structure1 or a brand of milk chocolate2.

Current neural approaches to EL/ED attempt to
use context and word embeddings (and sometimes
entity embeddings on mentions in text) (Kolitsas
et al., 2018; Sun et al., 2015). Whereas these and
most other previous approaches employ embed-
dings trained from text, we aim to create entity
embeddings based on structured data (i.e. hyper-
links) using graph embeddings and integrate them
into the ED models.

Graph embeddings aim at representing nodes in
a graph, or subgraph structure, by finding a map-
ping between a graph structure and the points in
a low-dimensional vector space (Hamilton et al.,
2017). The goal is to preserve the features of the
graph structure and map these features to the ge-
ometric relationships, such as distances between
different nodes, in the embedding space. Using
fixed-length dense vector embeddings as opposed
to operating on the knowledge bases’ graph struc-
ture allows the access of the information encoded
in the graph structure in an efficient and straight-
forward manner in modern neural architectures.

Our claim is that including graph structure fea-
tures of the knowledge base has a great potential
to make an impact on ED. In our first experiment,
we present a method based on a simple neural
network with the inputs of a context, entity men-
tion/span, explanation of a candidate entity, and
a candidate entity. Each entity is represented by
graph embeddings, which are created using the
knowledge base, DBpedia (Mendes et al., 2011)

1http://dbpedia.org/resource/Galaxy
2http://dbpedia.org/resource/Galaxy_

(chocolate)
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containing hyperlinks between entities. We per-
form ablation tests on the types of inputs, which
allows us to judge the impact of the single inputs
as well as their interplay. In a second experiment,
we enhance a state-of-the-art neural entity disam-
biguation system called end2end (Kolitsas et al.,
2018) with our graph embeddings: The original
system relies on character, word and entity embed-
dings; we replace respectively complement these
with our graph embeddings. Both experiments
confirm the hypothesis that structured information
in the form of graph embeddings are an efficient
and effective way of improving ED.

Our main contribution is a creation of a simple
technique for integration of structured information
into an ED system with graph embeddings. There
is no obvious way to use large structured knowl-
edge bases directly in a neural ED system. We
provide a simple solution based on graph embed-
dings and confirm experimentally its effectiveness.

2 Related Work

Entity Linking Traditional approaches to EL
focus on defining the similarity measurement be-
tween a mention and a candidate entity (Mihal-
cea and Csomai, 2007; Strube and Ponzetto, 2006;
Bunescu and Paşca, 2006). Similarly, Milne and
Witten (2008) define a measurement of entity-
entity relatedness. Current state-of-the-art ap-
proaches are based on neural networks (Huang
et al., 2015; Ganea and Hofmann, 2017; Kolitsas
et al., 2018; Sun et al., 2015), where are based on
character, word and/or entity embeddings created
by a neural network with a motivation of their ca-
pability to automatically induce features, as op-
posed to hand-crafting them. Then, they all use
these embeddings in neural EL/ED.

Yamada et al. (2016) and Fang et al. (2016) uti-
lize structured data modelling entities and words
in the same space and mapping spans to entities
based on the similarity in this space. They ex-
pand the objective function of word2vec (Mikolov
et al., 2013a,b) and use both text and structured in-
formation. Radhakrishnan et al. (2018) extend the
work of Yamada et al. (2016) by creating their own
graph based on co-occurrences statistics instead of
using the knowledge graph directly. Contrary to
them, our model learns a mapping of spans and
entities, which reside in different spaces and use
graph embeddings trained on the knowledge graph
for representing structured information.

Kolitsas et al. (2018) address both MD and ED
in their end2end system. They build a context-
aware neural network based on character, word,
and entity embeddings coupled with attention and
global voting mechanisms. Their entity embed-
dings, proposed by Ganea and Hofmann (2017),
are computed by the empirical conditional word-
entity distribution based on the co-occurrence
counts on Wikipedia pages and hyperlinks.

Graph Embeddings There are various meth-
ods to create graph embedding, which can be
grouped into the methods based on matrix factor-
ization, random walks, and deep learning (Goyal
and Ferrara, 2018). Factorization-based models
depend on the node adjacency matrix and dimen-
sionality reduction method (Belkin and Niyogi,
2001; Roweis and Saul, 2000; Tang et al., 2015).
Random-walk-based methods aim to preserve
many properties of graph (Perozzi et al., 2014;
Grover and Leskovec, 2016). Deep-learning-
based ones reduce dimensionality automatically
and model non-linearity (Wang et al., 2016; Kipf
and Welling, 2017). In our case, efficiency is cru-
cial and time complexity of factorization-based
models is high. The disadvantage of the deep-
learning-based models is that they require exten-
sive hyperparameter optimization. To keep it sim-
ple, efficient, and to minimize the numbers of hy-
perparameters to tune, yet still effective, we select
random-walk-based methods, where two promi-
nent representatives are DeepWalk (Perozzi et al.,
2014) and node2vec (Grover and Leskovec, 2016).

3 Learning Graph-based Entity Vectors

In order to make information from a semantic
graph available for an entity linking system, we
make use of graph embeddings. We use DeepWalk
(Perozzi et al., 2014) to create the representation
of entities in the DBPedia. DeepWalk is scalable,
which makes it applicable on a large graph. It uses
random walks to learn latent representations and
provides a representation of each node on the ba-
sis of the graph structure.

First, we created a graph whose nodes are
unique entities; attributes are explanations of en-
tities, i.e. long abstracts; edges are the page links
between entities with the information from DB-
pedia. Second, a vector representation per en-
tity is generated by training DeepWalk on the
edges of this graph. For this, we used all de-
fault hyper-parameters of DeepWalk, e.g. number-
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Entity Most similar 3 entities

Michael Jordan (basketball)
Charles Barkley,
Scottie Pippen,

Larry Bird

Michael I. Jordan
David Blei,

Machine learning ,
Supervised learning

Michael Jordan (footballer)
Dagenham & Redbridge F.C.,

Stevenage F.C.,
Yeovil Town F.C.

Table 1: Graph entity embeddings: Top three most
similar entities for the name “Michael Jordan” based
on our 400-dimensional DeepWalk embeddings.

walks is 10, walk-length is 40, and window-size is
5. To exemplify the result, the most similar 3 enti-
ties of disambiguated versions of Michael Jordan,
in the trained model with 400-dimension vec-
tors are shown in Table 1. The first entity,
Michael Jordan (basketball), is a well-known basket-
ball player, and his all most similar entities are
all basketball players and of similar age. The
second entity, Michael I. Jordan is a scientist, and
again the most similar entities are either scientists
in the same field or the topics of his study field.
The last entity, Michael Jordan (footballer), is a foot-
ball player whose most similar entities are football
clubs. This suggests that our graph entity embed-
dings can differentiate different entities with the
same name.

4 Experiment 1: Entity Disambiguation
with Text and Graph Embeddings

In our first experiment, we build a simple neural
ED system based on a feed-forward network and
test the utility of the graph embeddings as com-
pared to text-based embeddings.

4.1 Description of the Neural ED Model
The inputs of an ED task are a context and a pos-
sibly ambiguous entity span, and the output is a
knowledge base entry. For example, Desire con-
tains a duet with Harris in the song Joey and De-
sire given as an input and the output is Bob Dylan’s
album entity3.

Our model in this experiment is a feed-forward
neural network. Its input is a concatenation of
document vectors of a context, a span, and an
explanation of the candidate entity, i.e. long ab-
stract, and graph embedding of a candidate entity

3http://dbpedia.org/page/Desire_(Bob_
Dylan_album)

as in Figure 1, and output is a prediction value de-
noting whether the candidate entity is correct in
this context. For learning representations, we em-
ploy doc2vec (Le and Mikolov, 2014) for text and
DeepWalk (Perozzi et al., 2014) for graphs, both
methods have shown good performance on other
tasks. We will describe the input components in
more detail in the following.

Creating Negative Samples: It is not computa-
tionally efficient to use all entities in our graph as
a candidate for every context-span as negative ex-
amples for training because of the high number of
entities (about 5 million). Thus, we need to filter
some possible entities for each context-span in or-
der to generate negative samples. We use spans to
find out possible entities. If any lemma in the span
is contained in an entity’s name, the entity is added
to the candidates for this mention. For example, if
the span is undergraduates, the entity Undergradu-
ate degree is added to the candidates.

For training, we generate negative samples by
filtering this candidate list and limited the num-
ber of candidates per positive sample. We em-
ploy two techniques to filter the candidate list.
First, we shuffle the candidate list and randomly
select n candidates. The other is to select the
closest candidates by the following score for-
mula: score = # of intersection×page rank

length , where
# of intersection means the number of the com-
mon words between span/entity mention and can-
didate entity, page rank is the page rank value
(Page et al., 1999) on the entire graph for the can-
didate entity, and length is the number of tokens
in the entity’s name/title, e.g. the length of the en-
tity Undergraduate degree is 2. Before taking can-
didates with highest n scores, we have pruned the
most similar candidates to the correct entity on the
basis of the cosine between their respective graph
embeddings. The reason for pruning is to assure
that the entities are distinctive enough from each
other so that a classifier can learn the distinction.

Word and Context Vectors: Document embed-
ding techniques like doc2vec (Le and Mikolov,
2014) assign each document a single vector, which
gets adjusted with respect to all words in the doc-
ument and all document vectors in the dataset.
Additionally, doc2vec provides the infer vector
method, which takes a word sequence and returns
its representation. We employ this function for
representing contexts (including the entity span),
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Creates context 
vector from 

doc2vec

Creates long 
abstract 
vector

Gets word vector from doc2vec

Gets graph vector 
from DeepWalk

Concatenates 
vectors

Feed-Forward 
Neural 

Network 
0 - 1

Candidate 
matches 
the context

Desire

http://dbpedia.org/page/Desire
_(Bob_Dylan_album) 

Desire is the seventeenth 
studio album by American 

singer-songwriter Bob Dylan,...

Context

Target 
Span

Candidate 
entity’s URL

Desire contains a duet 
with Harris in the song 

Joey

Candidate 
entity’s long 

abstract

Figure 1: Architecture of our feed-forward neural ED system: using Wikipedia hyperlink graph embeddings as
an additional input representation of entity candidates.

entity explanations (long abstracts), and multi-
word spans.

4.2 Experimental Setup
Datasets: An English Wikipedia 2017 dump has
been used to train doc2vec, using the gensim im-
plementation (Řehůřek and Sojka, 2010). There
are about 5 million entities (nodes), and 112 mil-
lion page links (edges), in our graph.

DBpedia Spotlight (Mendes et al., 2011) (331
entities), KORE50 (Hoffart et al., 2012) (144 en-
tities), and Reuters-128 (Röder et al., 2014) (881
entities) datasets as described in (Rosales-Méndez
et al., 2018) are used to train and test our architec-
ture. We have used 80% of these data for training,
10% for development, and the remaining for test-
ing.

Implementation Details: We fixed context,
span, and long abstract embedding dimensionality
to 100, the default parameter defined in the imple-
mentation of gensim (Řehůřek and Sojka, 2010).
The size of the graph embeddings is 400. We opti-
mize the graph embedding size based on the devel-
opment set with the range 100 − 400. The over-
all input size is 700 when concatenating context,
span, long abstract, and graph entity embeddings.

The number of negative samples per positive
sample is 10. We have 3 hidden layers with equal
sizes of 100. In the last layer, we have applied
the tanh activation function. We have used Adam
(Kingma and Ba, 2014) optimizer with a learn-
ing rate of 0.005 and 15000 epochs. All hyper-
parameters are determined by preliminary experi-
ments.

4.3 Evaluation
The evaluation shows the impact of graph embed-
dings in a rather simple learning architecture.

In this experiment, an ablation test is performed
to analyze the effect of graph embeddings. We
have two types of training sets, where the creation
of negative samples differs (in one of them, we
have filtered negative samples randomly, whereas,
in the other, we filtered them by selecting the clos-
est ones, as explained in Section 4.1). In Fig-
ure 2, the upper part shows the Accuracy, Pre-
cision, Recall, and F1 values of the training set
filtered randomly while the lower part results re-
fer to the training set filtered by selecting clos-
est neighbors. The first bar in the charts contains
the result of the input, which concatenates context
and long abstract embeddings (in this condition
the input size becomes 200), here entity informa-
tion only comes from its long abstract. The second
bar presents the results of the input combination,
context, word/span, and long abstract embeddings
(the size of the input is 300). In the third bar, the
input is the concatenation of context, long abstract,
and graph embeddings (the input size is 600). Fi-
nally, the last bar indicates results for the concate-
nation of all types of inputs, for an input size of
700. For each configuration, we run the model 5
times and get the mean and standard deviation val-
ues. In Figure 2, charts show the mean values and
the lines on the charts indicate standard deviation.

Comparing the first and third bars (or the sec-
ond and last bars) in Figure 2, we can clearly see
the results are increased when the input includes
the graph embeddings for both variants of negative
sampling. Comparing the third and last bars (or
the first and second bars), we observe that includ-
ing the span representation slightly decreases re-
sults for both sampling variants. We attribute this
to the presence of the context embedding, which
already includes the span, thus this increases the
number of parameters of the network without sub-
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Figure 2: Entity disambiguation performance: various representations of our neural feed-forward ED system
(cf. Figure 1). Reported are scores on the positive class filtered randomly and closest neighbors: 0 context+long
abstract, 0 context+long abstract+span, 0 context+long abstract+graph, 0 context+long abstract+span+graph.

stantially adding new information. Appending
the graph embeddings improves the results about
0.09−0.17 in F1, 0.13−0.2 in recall, 0.07−0.12
in precision and 0.01−0.02 in accuracy scores. In
general, the randomly sampled dataset is easier as
it contains less related candidates.

5 Experiment 2: Integrating Graph
Embeddings in the end2end ED System

5.1 Description of the Neural ED Model

For the second experiment, we have used the
end2end state-of-the-art system for EL/ED (Kolit-
sas et al., 2018) and expanded it with our graph
embeddings. In this neural end-to-end entity dis-
ambiguation system, standard text-based entity
embeddings are used. In the experiment described
in this section, we replace or combine them (keep-
ing the remaining architecture unchanged) with
our graph embeddings build as described in Sec-
tion 3.

We replaced end2end’s entity vector with our
graph embeddings and the concatenation of their
entity vector and our graph embeddings. We use
the GERBIL (Usbeck et al., 2015) benchmark
platform for an evaluation.

5.2 Experimental Setup

Datasets: We train the neural end2end system
in its default configuration with the combina-
tion of MSNBC (Cucerzan, 2007) (747 entities),
ACE2004 (Ratinov et al., 2011) (306 entities),
AQUAINT (Ratinov et al., 2011) (727 entities),
ClueWeb, and Wikipedia datasets. We test the sys-
tem on the GERBIL (Usbeck et al., 2015) platform
using DBpedia Spotlight (Mendes et al., 2011)

(331 entities) and Reuters-128 (Röder et al., 2014)
(881 entities) datasets.

Implementation Details: We have not changed
hyper-parameters for training the end2end system4

(We used their base model + global for ED set-
ting). We create graph embeddings with the same
technique used before, however, to keep every-
thing the same, we decided to also use 300 dimen-
sions for the graph embeddings in this experiment
to match the dimensionality of end2end’s space.

We create the embeddings file with the same
format they used. They give an id for each en-
tity and call it “wiki id”. First, we generate a map
between this wiki id and our graph id (id of our
entity). Then, we replace each entity vector cor-
responding to the wiki id with our graph embed-
dings, which refers to the entity. Sometimes there
is no corresponding graph entity for the entity in
the end2end system, in this case, we supply a zero
vector.

They have a stopping condition, which applies
after 6 consecutive evaluations with no significant
improvement in the Macro F1 score. We have
changed this hyperparameter to 10, accounting for
our observation that the training converges slower
when operating on graph embeddings.

5.3 Evaluation
Table 2 reports ED performance evaluated on DB-
pedia Spotlight and Reuters-128 datasets. There
are three models, end2end trained using their text
entity vectors, our graph embeddings and the com-
bination of them. Training datasets and implemen-
tation details are the same for all models. We train

4https://github.com/dalab/end2end_
neural_el
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DBpedia Spotlight dataset

Model
Macro

F1
Macro

Precision
Macro
Recall

Micro
F1

Micro
Precision

Micro
Recall

text embeddings 0.762 0.790 0.742 0.781 0.815 0.750
graph embeddings 0.796 0.860 0.758 0.783 0.847 0.730
text and graph embeddings 0.798 0.835 0.775 0.797 0.835 0.763

Reuters-128 dataset

Model
Macro

F1
Macro

Precision
Macro
Recall

Micro
F1

Micro
Precision

Micro
Recall

text embeddings 0.593 0.654 0.575 0.634 0.687 0.589
graph embeddings 0.607 0.694 0.574 0.660 0.747 0.592
text and graph embeddings 0.614 0.687 0.590 0.650 0.707 0.602

Table 2: Entity disambiguation performance: The end2end (Kolitsas et al., 2018) system based on the original
text-based embeddings, our graph embeddings and a combination of both evaluated using the GERBIL platform
on DBpedia Spotlight and Reuters-128 datasets.

the models for 10 times and removed the mod-
els that did not converge (1 non-converging run
for each single type of embedding and 2 for the
combination). Table 2 shows the mean values.
The standard deviations of the models are between
0.02 − 0.05 in the DBpedia Spotlight dataset and
0.01 − 0.03 in the Reuters-128 dataset over all
scores. Scores are produced using the GERBIL
platform; these are Micro-averaged over the set
of annotations in the dataset and Macro-averaged
over the average performance per document. The
results are improved by including graph embed-
dings. When we compare two models, trained
by graph embeddings and trained by entity vec-
tors, the results are improved up to 0.03 in Macro
F1 scores and Micro Precision, and up to 0.07 in
Macro Precision. However, the improvement of
the combination model is higher in Macro F1 and
Recall. Micro-averaged results follow a similar
trend. When we look at the scores of Reuters-
128 (Röder et al., 2014) dataset, the combination
model improves Macro F1 and Recall and Micro
Recall up to 0.02, 0.015, and 0.013 respectively.
In the Micro-averaged evaluation, the combination
model scores slightly below the model using graph
embeddings alone.

To summarize the evaluation, our graph embed-
dings alone already lead to improvements over the
original text-based embeddings, and their combi-
nation is even more beneficial. This suggests that
test-based and graph-based representations in fact
encode somewhat complementary information.

6 Conclusion and Future Work

We have shown how to integrate structured infor-
mation into the neural ED task using two differ-

ent experiments. In the first experiment, we use
a simple neural network to gauge the impact of
different text-based and graph-based embeddings.
In the second experiment, we replace respectively
complemented the representation of candidate en-
tities in the ED component of a state-of-the-art EL
system. In both setups, we demonstrate that graph
embeddings lead to en par or better performance.
This confirms our research hypothesis that it is
possible to use structured resources for modeling
entities in ED tasks and the information is comple-
mentary to a text-based representation alone. Our
code and datasets are available online5.

For future work, we plan to examine graph em-
beddings on other relationships, e.g. taxonomic
or otherwise typed relations such as works-for,
married-with, and so on, generalizing the notion
to arbitrary structured resources. It might make
a training step on the distance measure depend-
ing on the relation necessary. On the disambigua-
tion architecture, modeling such direct links could
give rise to improvements stemming from the mu-
tual disambiguation of entities as e.g. done in
(Ponzetto and Navigli, 2010). We will explore
ways to map them into the same space to reduce
the number of parameters. In another direction,
we will train task-specific sentence embeddings.
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Michael Röder, Ricardo Usbeck, Sebastian Hellmann,
Daniel Gerber, and Andreas Both. 2014. N3 - A col-
lection of datasets for named entity recognition and
disambiguation in the NLP interchange format. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 3529–3533, Reykjavik, Iceland. European
Language Resources Association (ELRA).

Henry Rosales-Méndez, Aidan Hogan, and Barbara
Poblete. 2018. VoxEL: A benchmark dataset for
multilingual entity linking. In International Seman-
tic Web Conference (2), volume 11137 of Lecture
Notes in Computer Science, pages 170–186, Mon-
terey, CA, USA. Springer.

Sam T. Roweis and Lawrence K. Saul. 2000. Nonlin-
ear dimensionality reduction by locally linear em-
bedding. Science, 290:2323–2326.

Wei Shen, Jianyong Wang, and Jiawei Han. 2015. En-
tity linking with a knowledge base: Issues, tech-
niques, and solutions. IEEE Trans. Knowl. Data
Eng., 27(2):443–460.

Michael Strube and Simone P. Ponzetto. 2006.
WikiRelate! Computing semantic relatedness us-
ing Wikipedia. In Proceedings of the 21st Na-
tional Conference on Artificial Intelligence - Volume
2, AAAI’06, pages 1419–1424, Boston, MA, USA.
AAAI Press.

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhen-
zhou Ji, and Xiaolong Wang. 2015. Modeling
mention, context and entity with neural networks
for entity disambiguation. In Proceedings of the
24th International Conference on Artificial Intelli-
gence, IJCAI’15, pages 1333–1339, Buenos Aires,
Argentina. AAAI Press.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei. 2015. LINE: Large-scale in-
formation network embedding. In Proceedings of
the 24th International Conference on World Wide
Web, WWW ’15, pages 1067–1077, Republic and
Canton of Geneva, Switzerland. International World
Wide Web Conferences Steering Committee.

Ricardo Usbeck, Michael Röder, Axel-Cyrille
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tin Brümmer, Diego Ceccarelli, Marco Cornolti,
Didier Cherix, Bernd Eickmann, Paolo Ferragina,
Christiane Lemke, Andrea Moro, Roberto Navigli,
Francesco Piccinno, Giuseppe Rizzo, Harald Sack,
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Abstract

Capsule networks have been shown to demon-
strate good performance on structured data in
the area of visual inference. In this paper
we apply and compare simple shallow cap-
sule networks for hierarchical multi-label text
classification and show that they can perform
superior to other neural networks, such as
CNNs and LSTMs, and non-neural network
architectures such as SVMs. For our experi-
ments, we use the established Web of Science
(WOS) dataset and introduce a new real-world
scenario dataset, the BlurbGenreCollection
(BGC). Our results confirm the hypothesis that
capsule networks are especially advantageous
for rare events and structurally diverse cate-
gories, which we attribute to their ability to
combine latent encoded information.

1 Introduction

In hierarchical multi-label classification (HMC),
samples are classified into one or multiple class
labels that are organized in a structured label hier-
archy (Silla and Freitas, 2011). HMC has been
thoroughly researched for traditional classifiers
(Sun and Lim, 2001; Silla and Freitas, 2011),
but with the increase of available data, the desire
for more specific and specialized hierarchies in-
creases. However, since traditional approaches fail
to generalize adequately, more sophisticated and
robust classification methods are receiving more
attention. Complex neural network classifiers on
the contrary are computationally expensive, diffi-
cult to analyze, and the amount of hyperparam-
eters is significantly higher as compared to other
classification approaches. This makes it difficult
to apply the local classifier approach (Silla and
Freitas, 2011), where multiple classifiers are em-
ployed to cover different parts of the hierarchy.
Therefore, in this paper we focus on the global ap-
proach – one classifier that is able to capture the
entire hierarchy at once. There are indications

that capsule networks (Hinton et al., 2011; Sabour
et al., 2017) are successful at finding, adapting,
and agreeing on latent structures in the underlying
data in the area of image recognition as well as
recently in the field of natural language process-
ing (Zhao et al., 2018). This insight motivates our
research question: To which extent can the capa-
bilities of capsule networks be transferred and ap-
plied to HMC in order to capture the categories’
underlying structures?

In our experiments1 we compare HMC-
adjusted capsule networks to several baseline neu-
ral as well as non-neural architectures on the
BlurbGenreCollection (BGC), a dataset which we
collected and that consists of so-called blurbs of
books and their hierarchically structured writing
genres. Additionally, we test our hypothesis on
the Web of Science (WOS) dataset (Kowsari et al.,
2017). The main benefit of capsules is their abil-
ity to encode information of each category sepa-
rately by associating each capsule with one cate-
gory. Combining encoded features independently
for each capsule, and thus category, enables cap-
sule networks to handle label combinations bet-
ter than previous approaches. This property is es-
pecially relevant for HMC since documents that
for instance only belong to a parent category, e.g.
Fiction, often share similar features such as the
most frequent words or n-grams with documents
that additionally classify into one of the parent’s
child labels, e.g. Mystery & Suspense or Fantasy.
This makes it difficult for traditional classifiers to
distinguish between parent and child labels cor-
rectly, especially if the specific combination of la-
bels was never observed during training. This pa-
per contributes in two ways: Firstly, we introduce
the new openly accessible BlurbGenreCollection
dataset for the English language. This dataset
is created and only minimally adjusted on basis

1Code for replicating results: https://github.
com/uhh-lt/BlurbGenreCollection-HMC
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of a vertical search webpage for books and thus
presents a real-world scenario task. Secondly, we
thoroughly analyze the properties of capsule net-
works for HMC. To the best of our knowledge,
capsule networks have not yet been applied and
tested in the HMC domain.

2 Related Work

Neural networks for HMC: In hierarchical
multi-label classification (HMC) samples are as-
signed one or multiple class labels, which are
organized in a structured label hierarchy (Silla
and Freitas, 2011). For text classification (TC),
we treat a document as a sample and its cate-
gories as labels. Convolutional Neural Networks
(CNNs) and different types of Recurrent Neu-
ral Networks (RNNs) (Goodfellow et al., 2016;
Kim, 2014), most notably long short-term mem-
ory units (LSTMs, Hochreiter and Schmidhuber,
1997) have shown to be highly efficient in TC
tasks. For HMC, Cerri et al. (2014) use concate-
nated multi-layer perceptrons (MLP), where each
MLP is associated to one level of the class hierar-
chy. Kowsari et al. (2017) use multiple concate-
nated deep learning architectures (CNN, LSTM,
and MLP) to HMC on a dataset with a rather shal-
low hierarchy with only two levels. Similar to
Kiritchenko et al. (2005), Baker and Korhonen
(2017) treat the HMC task as a multi-label clas-
sification problem that considers every label in the
hierarchy, but they additionally leverage the co-
occurrence of labels within the hierarchy to initial-
ize the weights of their CNN’s final layer (Kurata
et al., 2016).

Capsule Networks: Capsule networks encap-
sulate features into groups of neurons, so-called
capsules (Hinton et al., 2011; Sabour et al., 2017).
Originally introduced for a handwritten digit im-
age classification task where each digit has been
associated with a capsule, capsules have shown to
learn more robust representations for each class as
they capture parent-child relationships more ac-
curately. They reached on-par performance with
more complex CNN architectures, even outper-
forming them in several classification tasks such
as the affNIST and MultiMNIST dataset (Sabour
et al., 2017). First attempts to use capsules for sen-
timent analysis were carried out by (Wang et al.,
2018) on the basis of an RNN, however, they
did not employ the routing algorithm, thus highly
limiting the capabilities of capsules. Zhao et al.

(2018) show that capsule networks can outperform
traditional neural networks for TC by a great mar-
gin when training on single-labeled and testing
on multi-labeled documents of the Reuters-21578
dataset since the routing of capsules behaves like a
parallel attention mechanism regarding the selec-
tion of categories. By connecting a BiLSTM to
a capsule network for relation extraction, Zhang
et al. (2018) show that capsule networks improve
at extracting n-ary relations, with n > 2, per sen-
tence and thus confirm the observation of (Zhao
et al., 2018) in a different context. For multi-task
learning, Xiao et al. (2018) use capsule networks
to improve the differentiation between tasks. They
encapsulate features in different capsules and use
the routing algorithm to cluster features for each
task. Further applications to NLP span aggression,
toxicity and emotion detection (Srivastava et al.,
2018; Rathnayaka et al., 2018), embedding cre-
ation for knowledge graph completion (Nguyen
et al., 2019), and knowledge transfer of user in-
tents (Xia et al., 2018). Despite the suitable prop-
erties of capsule networks to classify into hierar-
chical structured categories, they have not yet been
applied to HMC. This work aims to fill the gap
by applying and thoroughly analyzing capsules’
properties at HMC.

3 Capsule Network for HMC

For each category in the hierarchy, an associated
capsule outputs latent information of the category
in form of a vector as opposed to a single scalar
value used in traditional neural networks. The
vector is equivariant with its length defining the
pseudo-probability of its activation and its orien-
tation representing different cases of a category’s
existence. This distributional representation in the
form of a vector instead of a scalar makes cap-
sules exponentially more informative than tradi-
tional perceptrons (Sabour et al., 2017).

The input of capsules in the first capsule layer
of a capsule network is called primary capsules
and can be of arbitrary dimension, typically com-
ing from a convolutional layer or from the hid-
den state of a recurrent network. The output vec-
tor of a primary capsule represents latent informa-
tion such as local order and semantic representa-
tions of words (Zhao et al., 2018). Each capsule
j in the next layer, called classification capsules,
take as input the weighted sum sj =

∑
i cj|iûj|i

of the prediction vectors of all primary capsules
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i. A capsule’s prediction vector ûj|i is generated
by multiplying the output uj|i by a weight matrix
Wij . Since the length of a vector of a classification
capsule should be interpreted as the probability of
the corresponding category, a squashing function
vj = squash(sj) is applied, which scales the out-
put of each classification capsule non-linearly be-
tween zero and one. The coupling coefficients cj|i
that determine the contribution of each primary
capsule’s output to a classification capsule are cal-
culated using a dynamic routing heuristic (Sabour
et al., 2017). It iteratively decides the routes of
capsules and thus how to cluster features for each
category. The pseudocode for the full routing al-
gorithm is written in Algorithm 1.

Routing algorithm
Result: vj
Initialization: ∀i ∈ Primary.∀j ∈
Classification : bj|i ← 0.

for r iterations do
∀i ∈ Primary : ci ← softmax(bi)
∀j ∈ Clas. : vj ← squash(

∑
i cj|iûj|i)

∀i ∈ Primary.∀j ∈ Clas. : bj|i ←
bj|i + ûj|i · vj

end
Algorithm 1: Routing algorithm as described in
(Sabour et al., 2017)

The coupling coefficients are generated by ap-
plying the softmax function to the log prior proba-
bilities that primary capsule i should be coupled to
classification capsule j. The probability is higher
when the primary capsule’s prediction vector is
more similar to the classification capsule’s output.
Therefore, primary capsules try to predict the out-
put of the capsule in the subsequent layer. Since vj
is partially determined by uj|i, their similarity in-
creases for the next iteration. Thus a convergence
is guaranteed.

This routing algorithm is superior regarding
its ability to combine and generalize information
compared to primitive routing algorithms such as
max-pooling layers, as the latter only stores the
most prominent features while the others are ig-
nored. This leads to CNNs having more difficulty
differentiating between classes with highly similar
features (Sabour et al., 2017), but since most label
combinations appear rarely and categories often
share features with their parents, it is a desirable
property to exploit for hierarchical classification.

Architecture: The HMC task is converted to a
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Figure 1: Architecture of our capsule network with d
being the dimensionality of a capsule’s output.

multi-label classification task using the hierarchy
of labels: All explicitly labeled classes must also
include all ancestor labels of the hierarchy. The
architecture of our capsule network is shown in
Figure 1 and consists of four layers. We designed
a minimal capsule network, similar to CapsNet-
1 in (Xiao et al., 2018) in order to benefit from
capsules and dynamic routing while maintaining
high comparability to a similarly simple CNN. In
our network, the primary capsules take as input the
output created by a preceding convolutional layer.
For each classification capsule, the routing algo-
rithm is then used to cluster the outputs of all cp
primary capsules. The pseudo-probability ||vj || is
then assigned to the category associated with the
effective classification capsule. We follow Sabour
et al. (2017), and use their margin loss function.

Leveraging Label Co-occurrence: We fur-
ther follow the layer weight initialization in-
troduced by (Kurata et al., 2016) in order to
leverage label co-occurrences during the learn-
ing process of a neural network. Since label
co-occurrences such as {Fiction, Mystery & Sus-
pense} or {Fiction, Fantasy} naturally occur in
HMC because of parent-child relationships be-
tween categories, we aim to bias the learning pro-
cess of the capsule network in respect to the co-
occurrences in the dataset by initializing W with
label co-occurrences. Weights between a primary
capsule and the co-occurring classification cap-
sules are initialized using a uniform distribution
while all other values are set to zero.

Label Correction: A classifier may assign la-
bels to classes that do not conform with the under-
lying hierarchy of the categories as the activation
function as well as the routing algorithm look at
each category separately. For instance, if the cap-
sule network only assigns the label Fantasy then
the prediction is inconsistent with the hierarchy as
its parent Fiction has not been labeled. Inconsis-
tencies with respect to the hierarchical structure of
categories are corrected by a post-processing step.
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We applied three different ways of label correc-
tion: Correction by extension, removal and thresh-
old. The former two systematically add parent or
remove parentless labels to make the prediction
consistent (Baker and Korhonen, 2017). There-
fore, the first method adds Fiction to the predic-
tions while the second one removes the prediction
Fantasy (and all its children) in its entirety. Cor-
rection by threshold calculates the average confi-
dence of all ancestors for an inconsistent predic-
tion and adds them if above the threshold (Kir-
itchenko et al., 2005).

4 Experiments

Datasets: We test our hypothesis on two differ-
ent datasets with fundamentally different proper-
ties, the BlurbGenreCollection2 (BGC), and the
WOS-11967 (Web of Science, Kowsari et al.,
2017).

The BGC dataset consists of book blurbs (short
advertising texts) and several book-related meta-
information such as author, date of publication,
number of pages, and so on. Each blurb is cate-
gorized into one or multiple categories in a hier-
archy. With their permission, we crawled the Pen-
guin Random House website and performed clean-
ing steps, such as: removing categories that do
not rely on content (e.g. audiobooks), and remov-
ing category combinations that appear less than
five times. The dataset follows the well-known
dataset properties as described in (Lewis et al.,
2004): Firstly, at least one writing-genre is as-
signed to each book and secondly, every ancestor
of a book’s label is assigned to it as well. It is
important to note that the most specific genre of a
book does not have to be a leaf. For instance, the
most specific category of a book could be Chil-
dren’s Books, although Children’s Books has fur-
ther sub-genres, such as Middle Grade books. Fur-
thermore, in this dataset, each child-label has ex-
actly one parent, forming all-together a hierarchy
in form of a forest. Nonetheless, the label distribu-
tion remains highly unbalanced and diverse, with a
total of 1, 342 different label co-occurrences from
a pool of 146 different labels arranged on 4 hierar-
chy levels.

The WOS dataset consists of abstracts of pub-
lished papers from the Web of Science. The hi-

2The dataset is available at https://www.inf.
uni-hamburg.de/en/inst/ab/lt/resources/
data/blurb-genre-collection.html

BGC WOS-11967
Number of texts 91,892 11,967
Average number of tokens 93.56 125.90
Total number of classes 146 40
Classes on level 1;2;3;4 7; 46; 77; 16 7; 33; -; -
Average number of labels 3.01 2
Total number of label co-occurrences 1342 33
Co-occurrence entropy (normalized) 0.7345 0.9973
Samples per category standard deviation 4374.19 529.43

Table 1: Quantitative characteristics of both datasets.
Normalized entropy is the quotient between entropy
and the log of co-occurrence cardinality.

erarchy of the WOS dataset is shallower, but sig-
nificantly broader, with fewer classes in total. In
addition to having only as many co-occurrences as
leaf nodes, measuring the entropy of label com-
binations shows that the dataset is unnaturally bal-
anced – a consequence of the dataset’s requirement
to assign exactly two labels to each example. Ta-
ble 1 shows further important quantitative charac-
teristics of both datasets.

Feature selection: Since CNNs and our cap-
sule network require a fixed input length, we limit
the texts to the first 100 tokens, which covers the
complete input for over 90% of the dataset. We
remove stop-words, most punctuation and low-
frequency words (< 2). For the BGC, we kept spe-
cial characters like exclamation marks as they can
be frequently found in blurbs that have a younger
target audience and hence could provide useful in-
formation. We are using pre-trained fastText em-
beddings3 provided by Bojanowski et al. (2017)
and adjust them during training.

Baselines: We employ a one-vs-rest classifi-
cation strategy using one SVM (Cortes and Vap-
nik, 1995) for each label with linear kernels and
tf-idf values in a bag-of-words fashion as feature
vectors. Also, we apply the CNN as described by
Kim (2014) and an LSTM with recurrent dropout
(Gal and Ghahramani, 2016).4 For all experiments
we use the initialization strategy as described in
(Baker and Korhonen, 2017), which takes label co-
occurrences for initializing the weights of the final
layer, and the label correction method by thresh-

3https://fasttext.cc/docs/en/
pretrained-vectors.html

4All neural networks use the Adam optimizer, a dropout
probability of 0.5 and a minibatch size of 32. LSTM and
CNN use the binary cross entropy loss. Further hyperparame-
ters for (BGC, WOS) – CNN: filters: (1500, 1000), windows:
{3,4,5}, l. rate: (0.0005, 0.001), l. decay: (0.9, 1), epochs:
(30, 20); LSTM: hidden units: (1500, 1000), l. rate: (0.005,
0.001), epochs: (15, 25); capsule network: num. capsules:
(55, 32), windows: (90, 50), primary/class. cap. dim.: 8/16,
l. rate: (0.001, 0.002), l. decay: (0.4, 0.95), epochs: 4
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BGC WOS-11967
Model Recall Precision F1 Subset Acc. Recall Precision F1 Subset Acc.
SVM 61.11 85.37 71.23 35.79 72.43 89.84 80.20 56.47
CNN 64.75± 0.41 83.87± 0.09 73.08± 0.27 37.26± 0.52 84.06± 0.93 91.68± 1.00 87.71± 0.58 75.16± 1.66

LSTM 69.12± 1.24 75.49± 3.54 72.16± 1.01 37.99± 1.52 83.78± 1.69 87.56± 1.04 85.63± 1.22 76.80± 2.15
Caps. Network 71.73± 0.63 77.21± 0.54 74.37± 0.35 37.70± 0.68 80.67± 1.27 82.75± 2.42 81.69± 0.70 64.97± 0.49

Table 2: All results with their corresponding 95% confidence intervals, measured across three runs.

old with a confidence value of 0.2.5 The dataset
is split into 64% train, 16% validation and 20%
test. For evaluation, we measure subset accuracy,
micro-averaged recall, precision, and F1 as defined
in (Sorower, 2010; Silla and Freitas, 2011).

5 Results

Results are shown in Table 2. Regarding the BGC
dataset, the capsule network yields the highest F1

and recall, the SVM the highest precision, while
the LSTM showed the best result in subset accu-
racy. On WOS, all neural network architectures
beat the baseline SVM model by a substantial mar-
gin. However, both, the SVM and the capsule net-
work, are substantially outperformed by the CNN
and LSTM. In Figure 2 we further observe a per-
formance decline for deeper levels of the hierar-
chy. On BGC, the capsule network performs best
on every level of the hierarchy with an increasing
margin for more specific labels.

5.1 Identification of label co-occurrences

We argue that the pronounced performance differ-
ence between the datasets is due to the ability of
capsules to handle label combinations better than
the CNN and LSTM. We observe, as shown in Fig-
ure 4, that capsule networks are beneficial for ex-
amples with many label assignments. While the
capsule network performs worse on BGC for a la-
bel set cardinality of 1 and 2, it starts to perform
better at a cardinality of 3 and almost doubles the
F1 of all baselines for 9 and 11. The number of ex-
amples decreases exponentially with the label set
cardinality, so that the ability of networks to com-
bine labels is becoming increasingly important.

In contrast, in the WOS dataset, exactly one
parent-child label combination is assigned to each
example, resulting in a label set cardinality of two
for the whole dataset. There are comparably few
label combinations, which occur with a high fre-
quency in the dataset (cf. Table 1). The benefit of
capsules can thus not apply here.

5These options consistently performed well in prelimi-
nary experiments.

(a) BGC

(b) WOS

Figure 2: Scores on different levels for the BGC (a) and
WOS (b). The lines are the cumulative scores.

To verify this hypothesis, we conduct a fur-
ther test exclusively on BGC examples with label
combinations that have not been observed during
training (5, 943 samples). As shown in Table 3,
the capsule network again achieves the highest
F1 score, outperforming the other networks, es-
pecially in terms of recall. In order to create hi-
erarchical inconsistencies in the WOS dataset, we
test two modifications on the training data while
the test data is kept the same: a) 50% of all child
labels are removed, and b) for each sample, either
the child or the parent label is kept. Results of this
study are shown in Table 4. Removing 50% of the
children labels results in the capsule network be-
ing more similar to the CNN and LSTM in terms
of subset accuracy. However, for the second modi-
fication, where label combinations are completely
omitted for training, the capsule network signifi-
cantly outperforms both networks. Figure 3 shows
that different primary capsules are routed to the
classification capsule representing the parent cat-
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Figure 3: Connection strength between primary capsules (x-axis) and classification capsules (y-axis) for two BGC
samples: top belonging to {Fiction, Mystery & Suspense} and bottom to {Fiction, Fantasy} with Fiction being
their parent category. A reduced number of primary capsules and categories was used for visualization purposes.
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Figure 4: Test F1-scores of classifiers for different label
cardinalities.

BGC, unobserved R P F1

CNN 46.21 68.95 55.34
LSTM 45.79 60.48 52.13
Capsule Net. 53.30 61.21 56.98

Table 3: Performance results on the test set with label
combinations not seen during training.

egory Fiction than to the children. Some primary
capsules learn features for specific children cate-
gories. For instance Primary Capsule 5 is not in-
clined to any category for the bottom sample be-
cause of missing features for Mystery & Suspense
in this sample. Some capsules distribute their con-
nection strength to the parent and child category
evenly, likely due to the categories’ similarities.
To combine encoded features for each category
separately while using the softmax to ensure that
primary capsules encapsulate features of specific
categories appears to be the main cause of these
significant performance differences. These obser-
vations also align with previous work, especially
see (Sabour et al., 2017; Zhao et al., 2018).

Modified WOS 50% Child
Labels

Either Parent
or Child

F1 Acc F1 Acc
CNN 75.15 36.28 41.93 16.36
LSTM 73.00 35.09 38.74 5.28
Capsule Net. 71.59 35.21 67.23 34.27

Table 4: Results on the modified WOS training data.
Firstly, by removing 50% of the children labels and sec-
ondly, by removing label combinations completely.

6 Conclusion

This first application of capsule networks to the
HMC task indicates that the beneficial properties
of capsules can be successfully utilized. By asso-
ciating each category in the hierarchy with a sep-
arate capsule, as well as using a routing algorithm
to combine in capsules encoded features, cap-
sule networks have shown to identify and combine
categories with similar features more accurately
than the baselines. The introduced dataset, the
BlurbGenreCollection (BGC), is compiled from a
real-world scenario and is indicative of the promis-
ing properties of capsule networks for HMC tasks,
since most hierarchically organized datasets con-
sist of substantial amounts of rare label combina-
tions, where algorithms are very likely to be con-
fronted with unseen label combinations.

This initial attempt shows the advantage of sim-
plistic capsule networks over traditional methods
for HMC. Future architectures could for example
employ a cascade of capsule layers with each cap-
sule in one layer being associated to a category of
one specific level in the hierarchy.
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Abstract

Forecasting financial volatility of a publicly-
traded company from its annual reports has
been previously defined as a text regression
problem. Recent studies use a manually la-
beled lexicon to filter the annual reports by
keeping sentiment words only. In order to re-
move the lexicon dependency without decreas-
ing the performance, we replace bag-of-words
model word features by word embedding vec-
tors. Using word vectors increases the num-
ber of parameters. Considering the increase
in number of parameters and excessive lengths
of annual reports, a convolutional neural net-
work model is proposed and transfer learning
is applied. Experimental results show that the
convolutional neural network model provides
more accurate volatility predictions than lexi-
con based models.

1 Introduction

Most financial analysis methods and portfolio
management techniques are based on risk classi-
fication and risk prediction. Stock return volatility
is a solid indicator of the financial risk of a com-
pany. Therefore, forecasting stock return volatility
successfully creates an invaluable advantage in fi-
nancial analysis and portfolio management. While
most of the studies are focusing on historical data
and financial statements when predicting financial
volatility of a company, some studies introduce
new fields of information by analyzing soft infor-
mation which is embedded in textual sources.

Kogan et al. (2009) defined the problem of fore-
casting financial volatility from annual reports as
a text regression task and other studies contributed
to the task because of its value (Wang et al., 2013;
Tsai and Wang, 2014; Rekabsaz et al., 2017).
There are also alternative soft information sources
used for financial forecast like news (Tetlock et al.,
2008; Nuij et al., 2014; Kazemian et al., 2014;

Ding et al., 2015), online forums (Narayanan et al.,
2009; Nguyen and Shirai, 2015), blogs (Bar-Haim
et al., 2011) and bank reports (Nopp and Hanbury,
2015). However, annual reports are more informa-
tive and contain less noise since they are regulated
by the government. On the other hand, annual re-
ports are not suitable for short-term forecasting.

Volatility prediction using annual reports of
companies is also a proper test-bed for natural lan-
guage processing (NLP) since both volatility data
and annual report data are freely available and no
manual labeling is needed. In U.S., annual report
filings, known as 10-K reports, are mandated by
the government in a strictly specified format.

Previous works focus on sentiment polarity
while forecasting the volatility. Their models are
built on top of a financial lexicon (Loughran and
McDonald, 2011) and most improvements are ob-
tained by expanding the lexicon. However, a man-
ually created lexicon should be updated over time
and the solutions, depending on the lexicon, are
not persistent.

In this paper, we propose an artificial neural net-
work (ANN) solution which does not use a lexicon
or any other manually labeled source. The convo-
lutional neural network (CNN) model is designed
similar to Bitvai and Cohn (2015) and Kim (2014).
Nonetheless, annual reports contain excessively
long text compared to movie reviews and this re-
sults in a more difficult task. To overcome this
difficulty, max-over-time pooling layer is replaced
by local max-pooling layer and transfer learning is
applied.

The rest of the paper is organized as follows.
In Section 2, we defined the problem. Section 3
introduces the model and its architecture. The de-
tails of our experimental settings, the results of the
experiments and the analyses are presented in Sec-
tion 4. Our work is concluded in Section 5.
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2 Problem Definition

In this section, stock return volatility which is
aimed to be predicted is defined. Later, the dataset
which is used in this work is introduced. Finally,
evaluation measures are described.

2.1 Stock Return Volatility

Stock return volatility is defined as the standard
deviation of adjusted daily closing prices of a tar-
get stock over a period of time (Kogan et al.,
2009; Tsai and Wang, 2014; Rekabsaz et al., 2017;
Hacısalihzade, 2017). Let St be the adjusted clos-
ing stock price for the day t. Then, the stock re-
turn for the day t is Rt = St

St−1
− 1. Stock return

volatility v[t−τ,t] for τ days is given as

v[t−τ,t] =

√√√√
τ∑

i=0

(Rt−i − R̄)2

τ
.

2.2 Dataset

In this work, the dataset from Tsai et al. (2016),
which is published online1, is used because it in-
cludes up-to-date years and has enough reports for
each year. Note that the datasets shared by Kogan
et al. (2009) and Rekabsaz et al. (2017) are dif-
ferent than the dataset shared by Tsai et al. (2016)
even if the same year is compared since the num-
ber of reports differ from each other. Hence, a di-
rect performance comparison is not meaningful.

The dataset from Tsai et al. (2016) includes
10-K reports available on the U.S. Security Ex-
change Commission (SEC) Electronic Data Gath-
ering, Analysis and Retrieval (EDGAR) website2.
Following previous works (Kogan et al., 2009;
Wang et al., 2013; Tsai and Wang, 2014; Tsai
et al., 2016), section 7, Management’s Discussion
and Analysis (MD&A) is used instead of the com-
plete 10-K report.

The dataset includes a volatility value for each
report of 12 months after the report is published.
The volatility value in the dataset is the natural
logarithm of stock return volatility and used as the
prediction target. We checked randomly sampled
reports from SEC EDGAR and calculated volatil-
ity values by using adjusted closing stock prices
from Yahoo Finance3. Both were consistent with
the dataset.

1https://clip.csie.org/10K/data
2https://www.sec.gov/edgar.shtml
3https://finance.yahoo.com

2.3 Evaluation
Mean Square Error (MSE) is chosen as the main
evaluation metric which is calculated by

MSE =
1

n

n∑

i=1

(yi − ŷi)2

where yi = ln(vi).
Spearman’s rank correlation coefficient is a

measure which is used to evaluate the ranking per-
formance of a model. Real volatility values and
predicted volatility values can be used to calcu-
late Spearman’s rank correlation coefficient. Each
set contains samples which consist of a company
identifier and the volatility value of the company.
Spearman’s rank correlation coefficient of two sets
is equal to Pearson’s correlation coefficient of the
rankings of the sets. The rankings of a set can be
generated by sorting the volatility values of the set
in an ascending order and enumerating them. The
rankings of a set contains samples which consist
of a company identifier and a volatility rank of the
company. Spearman’s rank correlation coefficient
of the sets X and Y can be calculated by

ρX,Y =
cov(rankX , rankY )

σrankXσrankY

where rankX and rankY represent the rankings
of the sets X and Y respectively.

In all experiments, MSE is used as the loss func-
tion which means each model tries to optimize
MSE. On the other hand, Spearman’s rank corre-
lation coefficient is reported only to evaluate the
ranking performance of different models.

3 Model

The architecture of the network is presented in
Figure 1 which is similar to previous works us-
ing CNN for NLP (Collobert et al., 2011; Kim,
2014; Bitvai and Cohn, 2015). Before reports are
fed into embedding layer, their lengths are fixed
to m words and reports with less than m words are
padded. The output matrix of the embedding layer,
E ∈ Rkm , consists of k-dimensional word vectors
where the unknown word vector is initialized ran-
domly and the padding vector is initialized as zero
vector. Each element of the word vector represents
a feature of the word.

The convolution layer consist of different ker-
nel sizes where each kernel size represents a dif-
ferent n-gram. Figure 1 shows tri-gram, four-gram
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Figure 1: Network architecture of our baseline model
(CNN-simple). A word embedded report through a sin-
gle channel convolution layer with kernel sizes 3, 4 and
5 followed by a local max-pooling and two fully con-
nected layers.

and five-gram examples. Let n ∈ N be the kernel
width of a target n-gram. Each convolution feature
f ci ∈ Rm−n+1 is generated from a distinct kernel
weight, weightni ∈ Rkn, and bias, biasi ∈ R.
Rectified linear unit (ReLU) is used as the non-
linear activation function at the output of the con-
volution layer,

f cij = ReLU(weightni · wj:j+n−1 + biasi).

Note that the convolution features, f ci have m −
n + 1 dimension and they contain different infor-
mation than word features, fwi . Convolution fea-
tures are concatenated as

f ci = [f ci1, f
c
i2, ..., f

c
i+n−1].

gi in Figure 1 represents each n-gram element thus
there are m− n+ 1 n-gram elements for each in-
dividual n-gram. Next step is local max-pooling
layer which basically applies max-over-time pool-
ing to smaller word sequence instead of the com-
plete text (Le et al., 2018). Each sequence length

is h and there are s outputs for each sequence,

bi = max(gih:i(h+1)−1)

where bi ∈ Rr. After the local max-pooling layer
is applied to all convolution layer output matri-
ces, they are merged by concatenating feature vec-
tors. Later, dropout is applied to the merged ma-
trix and finally it is fed into two sequential fully
connected layers. The presented neural network
is implemented by using Pytorch4 deep learning
framework.

4 Experiments and Results

This section states preprocessing operations which
are applied to the dataset. Pretrained word embed-
dings which are used in this work are described.
Later, details of the setup of our experiments and
the model variations are presented. Finally, the re-
sults of the experiments and the analysis of the re-
sults are discussed.

4.1 Preprocessing
MD&A section of the 10-K reports in the dataset
are already tokenized by removing punctuation,
replacing numerical values with # and downcas-
ing the words. As in previous works, reports
are stemmed by using the Porter stemmer (Porter,
1980), supported by Natural Language Toolkit
(NLTK)5. Stemming decreases the vocabulary size
of the word embeddings and thus reduces the pa-
rameters of the model. Stemming is also required
to use word vectors trained by Tsai et al. (2016)
since the corpora which is used to train the word
embeddings consists of stemmed reports.

4.2 Word Embedding
Word embedding is a method, used to represent
words with vectors to embed syntactic and seman-
tic information. Instead of random initialization
of the embedding layer of the model, initializa-
tion with pretrained word embeddings enables the
model to capture contextual information faster and
better. In our work, we used pretrained word em-
beddings supported by Tsai et al. (2016). They
used MD&A section of 10-K reports from 1996 to
2013 to train the word embeddings with a vector
dimension of 200 by word2vec6 continuous bag-
of-words (CBOW) (Mikolov et al., 2013).

4https://pytorch.org
5https://www.nltk.org
6https://code.google.com/archive/p/word2vec/
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Model 2008 2009 2010 2011 2012 2013 Avg
EXP-SYN (Tsai 2016) 0.6537 0.2387 0.1514 0.1217 0.2290 0.1861 0.2634
CNN-simple (baseline) 0.3716 0.4708 0.1471 0.1312 0.2412 0.2871 0.2748
CNN-STC 0.5358 0.3575 0.3001 0.1215 0.2164 0.1497 0.2801
CNN-NTC-multichannel 0.5077 0.4353 0.1892 0.1605 0.2116 0.1268 0.2718
CNN-STC-multichannel 0.4121 0.4040 0.2428 0.1574 0.2082 0.1676 0.2653
CNN-NTC 0.4672 0.3169 0.2156 0.1154 0.1944 0.1238 0.2388

Table 1: Performance of different models, measured by Mean Square Error (MSE). Boldface shows the best result
among presented models for the corresponding column.

4.3 Setup

The hyper-parameters of the CNN models are de-
cided by testing them with our baseline CNN
model. All weights of the baseline model are
non-static and randomly initialized. Final hyper-
parameters are selected as mini-batch size 10,
fixed text length 20000, convolution layer kernels
3, 4 and 5 with 100 output features, probability of
dropout layer 0.5, and learning rate 0.001.

Kogan et al. (2009) showed that using reports
of the last two years for training performs better
than using reports of the last 5 years. Rekabsaz
et al. (2017) presented similarity heat-map of ten
consecutive years and stated that groups consist of
three to four consecutive years are highly similar.
Our experiments also show that including reports
which are four years older than test year into train-
ing set does not always help and sometimes even
causes noise.

In this work, reports of three consecutive years
were used for training while reports of the last
year were used for validation to determine the best
epoch. After the best epoch is determined, it is
used as fixed epoch and the oldest year is ignored
while the first step is repeated to train a new net-
work without using validation set but fixed epoch
instead. For example, reports of 2006 to 2008 are
used as training set while reports of 2009 is used
for validation. If the best result is achieved after
30 epochs, a new network is trained with reports
of 2007 to 2009 through 30 fixed epochs. Finally,
the trained network is tested for the year 2010.

Ignoring years older than four years prevent
their noise effect but also reduces training set size.
Experiments of this work show that old reports
decrease the performance of the embedding layer
but increase the performance of the convolution
layer. The embedding layer can be biased eas-
ier than convolution layer since convolution layer
learns features from larger structures (n-grams).

Nonetheless, even training only the convolution
layer using all years from 1996 to test year is time-
consuming. Therefore, transfer learning is used
by sharing the convolution layer weights which
are trained on comparatively larger range of years.
Yang et al. (2017) showed that relatedness of the
transfer domains has a direct effect on the amount
of improvement. Convolution layer weights are
trained by freezing the embedding layer which is
initialized with pretrained word embeddings and
using years 1996 to 2006 for 120 epoch with early
stopping. Other hyper-parameters are kept as de-
scribed above.

4.4 Extended Models

Using transfer learning convolution layer, four dif-
ferent models are built. Since convolution layer
weights are trained using pretrained word embed-
dings, those models perform well only when their
embedding layers are initialized with pretrained
word embeddings. Following Kim (2014), mul-
tichannel embedding layers are applied to some
models.

• CNN-STC: A model with single channel
non-static pretrained embedding layer and a
transferred convolution layer which is static.

• CNN-NTC: Same as CNN-STC but its trans-
ferred convolution layer is non-static.

• CNN-STC-multichannel: A model with
two channel of embedding layers, both are
pretrained but one is static and other one is
non-static. Transferred convolution layer is
also static.

• CNN-NTC-multichannel: Same as CNN-
STC-multichannel but its transferred convo-
lution layer is non-static
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Model 2008 2009 2010 2011 2012 2013 Avg
CNN-simple (baseline) 0.3884 0.0814 0.5758 0.5842 0.7064 0.7060 0.5070
CNN-STC 0.3875 0.5226 0.5570 0.5737 0.7149 0.7341 0.5816
CNN-NTC-multichannel 0.3727 0.4293 0.5187 0.5625 0.6531 0.7332 0.5449
CNN-STC-multichannel 0.3424 0.4042 0.4641 0.4924 0.4945 0.6305 0.4713
CNN-NTC 0.3921 0.4713 0.5500 0.5910 0.6978 0.7234 0.5709

Table 2: Ranking performance of different models, measured by Spearman’s rank correlation coefficient. Boldface
shows the best result among presented models for the corresponding column.

4.5 Results

Table 1 indicates that performance of our CNN-
simple (baseline) model is comparable with EXP-
SYN, the best model represented by Tsai et al.
(2016), which uses a manually created lexicon and
POS tagger. Furthermore, the best predictions for
the years 2008 and 2010 are achieved by the CNN-
simple model. Our best model, CNN-NTC, de-
creases the average error by 10% and produces the
best predictions for the last three years of the ex-
periment.

Ranking performance is valuable for some real
world applications such as portfolio management.
Furthermore, better ranking performance indicates
better explanation of label distribution. Table 2
shows ranking performance of each model which
is presented in this work. Spearman’s rank cor-
relation coefficient is bounded between -1 and
1. Higher Spearman’s rank correlation coefficient
means the model captures larger proportion of
variability in the labels. It can be seen that rank-
ing performance of CNN-NTC is as good as its
regression performance. On the other hand, CNN-
STC can model future distribution of stock return
volatilities better than future values of stock return
volatilities. It is important to note that our mod-
els use MSE as loss function and optimize MSE.
Changing the loss function may improve ranking
performance results and performance orders of the
models.

4.6 Analysis

The embedding weights of CNN-NTC are com-
pared with the pretrained word embeddings to de-
termine the most changed words. While com-
paring the most changed word vectors, the words
with yearly frequency less than 250 and more than
5000 are filtered out. Table 3 presents the top
10 most changed words and cosine distances to
their pretrained vectors. Note that presented words
are stemmed. Since words are in lowercase, the

Word Cosine Distance
anoth 0.2565
concern 0.2436
etc 0.2431
accordingli 0.2353
entir 0.2349
stabil 0.2328
increment 0.2308
thu 0.2306
situat 0.2167
guaranti 0.2120

Table 3: Top-10 most changed words, extracted from
non-static embedding layer.

word ETC may cause confusion. It is an abbrevia-
tion and stands for Exchanged-Traded Commodity
which is a common word in finance domain and
stemmed version includes its plural form ETCs
also. The stemmed words concern, stabil and
guaranti are sentiment words and contained by fi-
nance sentiment lexicon (Loughran and McDon-
ald, 2011). Having 3 sentiment words out of 10
words shows that our model uses sentiment infor-
mation but not solely depend on sentiment words.

We also analyzed most changed sentiment
word, concern, by extracting the 10 nearest words
of pretrained word embeddings and CNN-NTC
embedding weights separately (Table 4). It can
be observed that pertain, about and fear are re-
placed with safeti, trend and dmaa. Stem words
safeti and trend are related with the stem word
concern. The word pertain is semantically very
close to the word concern, they are even used in-
terchangeably sometimes. However, concern can
be replaced with pertain only if it does not have
any sentiment polarity. It can be seen that expand-
ing the lexicon using word embeddings, like pre-
vious works did (Tsai and Wang, 2014; Tsai et al.,
2016; Rekabsaz et al., 2017), can be problematic
and may end up with a lexicon expansion contain-
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Static Embedding on ’concern’ Non-static Embedding on ’concern’
Word Cosine Distance Word Cosine Distance
regard 0.2772 regard 0.3233
privaci 0.5287 privaci 0.5433
inform 0.5587 safeti 0.5550
debat 0.5706 inform 0.5562
implic 0.5817 trend 0.5568
heighten 0.5825 heighten 0.5692
pertain 0.5844 inquiri 0.5959
about 0.5901 dmaa 0.6013
inquiri 0.5919 debat 0.6025
fear 0.5954 implic 0.6033

Table 4: Top-10 most similar words to concern comparing their word vectors.

ing semantically close but sentimentally far words.
Another interesting word in the list is DMAA. It

stands for dimethylamylamine which is an energy-
boosting dietary supplement. In 2012, the U.S.
Food and Drug Administration (FDA) warned
DMAA manufacturers. In 10-K report of Vita-
min Shoppe, Inc. published on February 26, 2013,
concern of the company about DMAA is stated:

”If it is determined that DMAA does
not comply with applicable regulatory
and legislative requirements, we could
be required to recall or remove from the
market all products containing DMAA
and we could become subject to lawsuits
related to any alleged non-compliance,
any of which recalls, removals or law-
suits could materially and adversely af-
fect our business, financial condition
and results of operations.”

It shows that the CNN model focuses on cor-
rect word features but also can overfit easier. In
financial text regression task, the word DMAA is
quite related with the word concern but it is not a
common word and also sector specific.

5 Conclusion

The previous studies depend on a financial senti-
ment lexicon which is initially created by manual
work. This paper reduced both dependencies by
using word vectors in the model. Word vectors are
used in previous studies to expand the lexicon but
they are not included to the model directly. On the
contrary, our work includes word vectors directly
to the model as main input.

In addition, transfer learning is applied to the
convolution layer since effect of temporal infor-
mation on distinct layers differs. Evolving word
vectors are analyzed after model benchmarks. The
analysis demonstrates that CNN model tracks sen-
timent polarity of the words successfully and it
does not depend on sentiment words only. How-
ever, it is also observed that CNN models can over-
fit easier.

This work is focused on text source and did
not include any historical market data or any other
metadata. Further research on including metadata
to CNN model for the same task may increase the
value and analysis.
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Abstract 

Examining sentiments in social media 
poses a challenge to natural language 
processing because of the intricacy and 
variability in the dialect articulation, noisy 
terms in form of slang, abbreviation, 
acronym, emoticon, and spelling error 
coupled with the availability of real-time 
content. Moreover, most of the knowledge-
based approaches for resolving slang, 
abbreviation, and acronym do not consider 
the issue of ambiguity that evolves in the 
usage of these noisy terms. This research 
work proposes an improved framework for 
social media feed pre-processing that 
leverages on the combination of integrated 
local knowledge bases and adapted Lesk 
algorithm to facilitate pre-processing of 
social media feeds. The results from the 
experimental evaluation revealed an 
improvement over existing methods when 
applied to supervised learning algorithms 
in the task of extracting sentiments from 
Nigeria-origin tweets with an accuracy of 
99.17%. 

1 Introduction 

Sentiment Analysis is being used to automatically 
detect speculations, emotions, opinions, and 
evaluations in social media content (Thakkar and 
Patel, 2015). Unlike carefully created news and 
other literary web contents, social media streams 
present various difficulties for analytics algorithms 
because of their extensive scale, short nature, 

slang, abbreviation, grammatical and spelling 
errors (Asghar et al., 2017). Most of the 
knowledge-based approaches for resolving these  
noisy terms do not consider the issue of ambiguity 
that evolves in their usage (Sabbir et al., 2017). 
These challenges, which inform this research 
work, make it necessary to seek improvement on 
the performance of existing solutions for pre-
processing of social media streams (Carter et al., 
2013; Ghosh et al., 2017; Kuflik et al., 2017). 

Due to language complexity, analysing 
sentiments in social media presents a challenge to 
natural language processing (Vyas and Uma, 
2018). Moreover, social media content is 
characterized with a short length of messages, use 
of dynamically evolving, irregular, informal, and 
abbreviated words. These make it difficult for 
techniques that build on them to perform 
effectively and efficiently (Singh and Kumari, 
2016; Zhan and Dahal, 2017). 

The short nature of social media streams 
coupled with no restriction in the choice of 
language has informed the usage of abbreviation, 
slang, and acronym (Atefeh and Khreich, 2015; 
Kumar, 2016). These noisy but useful terms have 
their implicit meanings and form part of the rich 
context that needs to be addressed in order to fully 
make sense of social media streams (Bontcheva 
and Rout, 2014). Just like there is ambiguity in the 
use of normal language there is also ambiguity in 
the usage of slang/abbreviation/acronym because 
they often have context-based meanings, which 
must be rightly interpreted in order to improve the 
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results of social media analysis. There is a dearth 
of social media streams preprocessing geared at 
resolving slang, abbreviation and acronym as well 
as ambiguity issues that erupt as a result of their 
usage (Mihanovic et al., 2014; Matsumoto et al., 
2016).  

2 Related Work 

Many researchers have studied the effect and 
impact of pre-processing (which ranges from 
tokenization, removal of stop-words, 
lemmatization, fixing of slangs, redundancy 
elimination) on the accuracy of result of techniques 
building on them for sentiment analysis and 
unanimously agreed that when social media stream 
data are well interpreted and represented, it leads 
to significant improvement of sentiment analysis 
result.  

Haddi et al. (2013) presented the role of text pre-
processing in sentiment analysis. The pre-
processing stages include removal of HTML tags, 
stop word removal, negation handling, stemming, 
and expansion of abbreviation using pattern 
recognition and regular expression techniques.  
The problem here is that representing abbreviation 
based on co-occurrence does not take care of 
ambiguity. The impact of pre-processing methods 
on Twitter sentiment classification was explored by 
Bao et al. (2014) by using the Stanford Twitter 
Sentiment Dataset. The result of the study showed 
an improvement in accuracy when negation 
transformation, URLs feature reservation and 
repeated letters normalization is employed while 
lemmatization and stemming reduce the accuracy 
of sentiment classification. In the same vein, Uysal 
and Gunal (2014) and Singh and Kumari (2016) 
investigated the role of text pre-processing and 
found out that an appropriate combination of pre-
processing tasks improves classification accuracy. 

Smailovic et al. (2014) and Ansari et al. (2017) 
investigated sentiments analysis on twitter dataset. 
Their pre-processing method along with 
tokenization, stemming and lemmatization 
includes replacement of user mention, URLs, 
negation, exclamation, and question marks with 
tokens. Letter repetition was replaced with one or 
two occurrences of the letter. From the result of 
their experiments, it was concluded that pre-
processing twitter data improves techniques 
building on them.  

The pre-processing method adopted by Ouyang 
et al. (2017) and Ramadhan et al. (2017) includes 

deletion of URLs, mentions, stop-words, 
punctuation, and stemming. Ramadhan et al. 
(2017) added the handling of slang conversion in 
their work although the authors did not state how 
the slang conversion was done. Jianqiang and 
Xiaolin (2017) discussed the effect of pre-
processing and found that expanding acronyms and 
replacing negation improve classification while 
removal of stop-words, numbers or URLs do not 
yield any significant improvement. On the 
contrary, Symeonidis et al. (2018) evaluated 
classification accuracy based on pre-processing 
techniques and found out that removing numbers, 
lemmatization, and replacing negation improve 
accuracy. Zhang et al. (2017) presented Arc2Vec 
framework for learning acronyms in twitter using 
three embedding models. However, the authors did 
not take care of contextual information. From the 
review, most research efforts have not been 
directed towards the handling all of 
slang/abbreviation/acronym as well as resolving 
ambiguity in the usage of noisy terms based on 
contextual information. 

3 Methodology 

3.1 Data Collection 

The dataset (referred to as Naija-tweets in this 
paper) was extracted from tweets of Nigeria origin. 
The dataset focused on politics in Nigeria. A user 
interface was built around an underlying API 
provided by Twitter to collect tweets based on 
politics-related keywords such as “politics”, 
“governments”, “policy”, “policymaking”, and 
“legislation”. The total tweets extracted was 
10,000. These were manually classified into 
positive (1) or negative (0) by three experts in 
sentiment analysis. 80% was used as training data 
while 10% was used as test data and 10% for dev 
set. The general preprocessing method (GTPM), 
Arc2Vec Framework and the proposed 
preprocessing method (PTPM) are depicted in 
figure 1 (a), (b) and (c) respectively.  

3.2 Data Preprocessing 
From the data stream collected, Tags, URLs, 
mentions and non-ASCII characters were 
automatically removed using a regular expression. 
This was followed by tokenization and 
normalization. Thereafter, slangs, abbreviation, 
acronyms, and emoticons were filtered from the 
tweets using corpora of English words in natural 
language toolkit (NLTK). The filtered 
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slangs/abbreviation/acronyms are then passed to 
the Integrated Knowledge Base (IKB) for further 
processing.  
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3 Data Enrichment 
The IKB is an API centric resource that 
communicates with three (3) internet sources 
which are Naijalingo, Urban dictionary, and 
Internetslang.com. Naijalingo is included in order 
to take care of adulterated English commonly 
found in social media feeds in Nigeria and some 
parts of Anglophone West Africa. Moreover, the 
presence of Naijalingo is very important in order to 
resolve ambiguity in the usage of 
slang/abbreviation/acronym in tweets originated 
from Nigeria.  

The PTPM framework will allow the 
integrations of any other local knowledge base that 
may suit some other contexts in order to capture 
slang/abbreviation/acronym that has locally 
defined meaning. The IKB API is also responsible 
for slang/abbreviation/acronym disambiguation, 
spelling correction and emoticon replacement. The 
IKB is to cater for slangs, abbreviation or 
acronyms, and emoticons found in tweets and to 
provide a single platform where all these 
knowledge sources can be easily referenced. About 
two million slang/abbreviation/acronym and 
emoticons terms were crawled from these 
knowledge sources and stored on MongoDB.  All                                                                                                                    
lexicons that were used for the enrichment of the 
collected tweets in the IKB were derived from 
Naijalingo, Urban dictionary, and Internet slang 
knowledge sources. A lexicon of noisy terms 
(slang/acronym/abbreviation) in the IKB has four 
elements which are (1)  
slang/acronym/abbreviation term, (2) a descriptive 
phrase, (3) example (i.e. how it is being used) and 
(4) related terms from the three knowledge 
sources. Each term can have multiple entries which 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
imply that each term can be associated with any 
number of descriptive phrases. Each term is seen 
as a key-value pair where each term is the key and 
a network of associated descriptive phrases 
represent the value.  
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3.4 Resolving Ambiguity in 
Slang/Abbreviation/Acronym 

The next stage is to extract meanings of 
slang/abbreviation/acronym terms from IKB. 
Ambiguous slang/abbreviation/acronym terms 
were resolved by leveraging adapted Lesk 
algorithm based on the context in which they 
appear in the tweet. For ambiguous 
slang/abbreviation/acronym, there is a need to 
obtain the best sense from the pool of various 
definitions in the IKB based on how it is used in 
the tweet (see Listing 1).  

Usage examples (st) with a total number, n, 
mapped to various definitions of the 
slang/abbreviation/acronym term (sabt) that is to 
be interpreted are extracted from the IKB, where 
there are no usage examples mapped to definitions 
for a particular sabt in the ikb, the definitions are 
used instead. The tweet (sjk) in which this 
slang/abbreviation/acronym term appears and the 
extracted usage examples (st) is represented as a set 
data structure. After this, intersection operation 
between the tweet and each of the usage examples 
(relatedness(st,sjk)) is performed. Then the usage 
example (sti) with the highest intersection value 
(best_score) is selected. A lookup of the meaning 
attached to the selected usage example from the 
IKB is performed (map sense_i with definition), 
the definition is then used to replace the slang in 
the tweet as the best possible semantically 
meaningful elaboration of each 
slang/abbreviation/acronym based on how it is 
being used in the tweet.   

3.5 Feature Extraction 
For feature extraction, a total of 3,000 unigrams 
and 8,000 bigrams were used for vector 
representation. Each tweet was represented as a 
feature vector of these unigrams and bigrams. For 
convolutional neural network, Glove twitter 27B 
200d was used for the dataset vector 
representation. 

4 Result 

The proposed PTPM framework was benchmarked 
with the General Textual Pre-processing Method 
(GTPM) and Arc2Vec Framework by running 
them on three classifiers. The GTPM (i.e. general 
pre-processing method) does not take care of 
slang/abbreviation/acronym ambiguity issue while 
that   of  Arc2Vec  framework  only  took  care  of  

Listing 1. Adapted Lesk Pseudocode 

Input: tweet text 
Output: enriched tweet text 
// Procedure to disambiguate ambiguous  
// slang/acronyms/abbreviation in tweets  
// by adapting Lesk algorithm over usage  
// examples of slangs/acronym/abbreviation  
// found in the integrated knowledge base (ikb) 
Notations: 
 slngs: slangs; acrs: acronyms; abbrs: abrreviations 
 sab: slang/acronym/abbreviation;  
 sabt: slang/acronym/abbreviation term  
 st: ith usage example of target word sabt found in the   
 ikb 
procedure disambiguate_all_slngs/acrs/abbrs 
        for all sab(word) in input do //the input is the 
 //extracted slang/abbreviation/acronym 
 //from tweet 
 best_sense=disambiguate_each_   
  slng/acr/abbr(sabt) 
                display best_sense 
        end for 
end procedure 
function disambiguate_each_ slng/acr/abbr(sabt) 

// target word represent  
//slang/acronym/abbreviation in the tweet 

            st → ith usage example of target word sabt 
 found in the ikb 
            sjk → the current tweet being processed 
 sense  → { s1, s2, …sn | m ≧1}  // sense 
 is the set of senses of st found in the ikb 

 
for all st of the target word sabt do 

// sti is the ith usage example of target 
 //word sabt found in the ikb 

  score i = 0 
  for i= 1 to n do  
   // n is the total number of 
   //usage examples for each                            
             //slang/acronym/abbreviation 
   //in tweet 
   for sjk of word sabt           
             temp_score k =  
             relatedness(st,sjk) 
            end for 
            best_score =  
   max(temp_score) 
             score i += best_score 
  end for 

end for 
return si ∈ Sense 
// si is the ith  usage example from the ikb that 
best matches  
// slang/acronym/abbreviation in the tweet  
map si with defi (where defi ∈ definition) 
replace sabt in tweet with defi 

end function 
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Acronym. The classifiers used for the 
benchmarking were support vector machine 
(SVM), multi-layer perceptron (MLP), and 
convolutional neural networks (CNN) to extract 
sentiments from tweets. The essence of running 
both the general pre-processing method – GTPM, 
Arc2Vec framework, and the proposed SMFP 
framework on the classifiers was to compare the 
results of capturing of 
slangs/acronym/abbreviation and resolving 
ambiguity in social media streams 
slang/acronym/abbreviation have been undertaken, 
and whether it has not been undertaken. The goal 
is to ascertain the impact of this on the algorithms 
building on them. The result of the sentiment 
classification of naija_tweets dataset is shown in 
Tables 1 and 2  

M
et

ho
d 

A
lg

or
ith

m
 

A
cc

ur
ac

y 
(%

) 
U

ni
gr

am
 

A
cc

ur
ac

y 
(%

) 
Bi

gr
am

 

A
cc

ur
ac

y 
(%

) 
U

ni
gr

am
 +

 
Bi

gr
am

 

GTPM SVM 77.50 67.50 72.50 
Arc2Vec 66.97 66.58 66.32 
PTPM 80.00 70.00 87.50 
GTPM MLP 74.80 93.00 99.00
Arc2Vec 62.78 90.36 75.04 
PTPM 75.00 95.00 99.00 

 
In Table 1, the result of the experiment did not 

only reveal that the PTPM outperformed the 
GTPM and Arc2Vec but there is also an 
improvement in the accuracy of the result obtained. 
This underscores the importance of using a 
localized knowledge base in pre-processing social 
media feeds to fully capture the noisy terms that are 
domiciled in the social media feeds originating 
from a particular location. 
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GTPM CNN 97.78 97.78 94.72 93.61 
Arc2Vec 83.00 93.00 73.4 70.74 
PTPM 99.17 98.61 96.94 93.33 

 
The result presented in Table 2 also supports our 

argument that there should be the inclusion of 
localized knowledge source in pre-processing 

social media feeds originating from a specific 
location in order to better interpret 
slang/abbreviation/acronym emanating from such 
social media feeds content. It is also worthy to note 
that convolutional neural networks performed 
better than support vector machines and multilayer 
perceptron algorithms in tweet sentiment analysis 
with the accuracy of 99.17%. 

5 Conclusion 

This paper provides an improved approach to pre-
processing of social media streams by (1) 
integrating localized knowledge sources as 
extension to knowledge-based approaches, (2) 
capturing the rich semantics embedded in slangs, 
abbreviation and acronym, and (3) resolving 
ambiguity in the usage of slangs, abbreviation and 
acronym to better interpret and understand social 
media streams content. The result shows that in 
addition to normal preprocessing techniques of the 
social media stream, understanding, interpreting 
and resolving ambiguity in the usage of 
slangs/abbreviation/acronyms lead to improved 
accuracy of algorithms building on them as evident 
in the experimental result. 
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Abstract

In recent years, it has been shown that falsifi-
cation of online reviews can have a substantial,
quantifiable effect on the success of the sub-
ject. This creates a large enticement for sellers
to participate in review deception to boost their
own success, or hinder the competition. Most
current efforts to detect review deception are
based on supervised classifiers trained on syn-
tactic and lexical patterns. However, recent
neural approaches to classification have been
shown to match or outperform state-of-the-art
methods. In this paper, we perform an ana-
lytic comparison of these methods, and intro-
duce our own results. By fine-tuning Google’s
recently published transformer-based architec-
ture, BERT, on the fake review detection task,
we demonstrate near state-of-the-art perfor-
mance, achieving over 90% accuracy on a
widely used deception detection dataset.

1 Introduction

Online reviews of products and services have be-
come significantly more important over the last
two decades. Reviews influence customer pur-
chasing decisions through review score and vol-
ume of reviews (Maslowska et al., 2017). It is es-
timated that as many as 90% of consumers read re-
views before a purchase (Kumar et al., 2018) and
that the conversion rate of a product increases by
up to 270% as it gains reviews. For high price
products, reviews can increase conversion rate by
380% (Askalidis and Malthouse, 2016).

With the rise of consumer reviews comes the
problem of deceptive reviews. It has been shown
that in competitive, ranked conditions it is worth-
while for unlawful merchants to create fake re-
views. For TripAdvisor, in 80% of cases, a hotel
could become more visible than another hotel us-
ing just 50 deceptive reviews (Lappas et al., 2016).
Fake reviews are an established problem – 20% of

∗Joint first author with Stefan Kennedy

Yelp reviews are marked as fake by Yelp’s algo-
rithm (Luca and Zervas, 2016).

First introduced by Jindal and Liu (2007), the
problem of fake review detection has been tack-
led from the perspectives of opinion spam de-
tection and deception detection. It is usually
treated as a binary classification problem using tra-
ditional text classification features such as word
and part-of-speech n-grams, structural features ob-
tained from syntactic parsing (Feng et al., 2012),
topic models (Hernández-Castañeda et al., 2017),
psycho-linguistic features obtained using the Lin-
guistic Inquiry and Word Count (Ott et al., 2011;
Hernández-Castañeda et al., 2017; Pennebaker
et al., 2015) and non-verbal features related to re-
viewer behaviour (You et al., 2018; Wang et al.,
2017; Aghakhani et al., 2018; Stanton and Irissap-
pane, 2019)

We revisit the problem of fake review detection
by comparing the performance of a variety of neu-
ral and non-neural approaches on two freely avail-
able datasets, a small set of hotel reviews where
the deceptive subset has been obtained via crowd-
sourcing (Ott et al., 2011) and a much larger set of
Yelp reviews obtained automatically (Rayana and
Akoglu, 2015). We find that features based on re-
viewer characteristics can be used to boost the ac-
curacy of a strong bag-of-words baseline. We also
find that neural approaches perform at about the
same level as the traditional non-neural ones. Per-
haps counter-intuitively, the use of pretrained non-
contextual word embeddings do not tend to lead
to improved performance in most of our experi-
ments. However, our best performance is achieved
by fine-tuning BERT embeddings (Devlin et al.,
2018) on this task. On the hotel review dataset,
bootstrap validation accuracy is 90.5%, just be-
hind the 91.2% reported by Feng et al. (2012)
who combine bag-of-words with constituency tree
fragments.
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2 Data

Collecting data for classifying opinion spam is dif-
ficult because human labelling is only slightly bet-
ter than random (Ott et al., 2011). Thus, it is dif-
ficult to find large-scale ground truth data. We ex-
periment with two datasets:

• OpSpam (Ott et al., 2011): This dataset
contains 800 gold-standard, labelled reviews.
These reviews are all deceptive and were
written by paid, crowd-funded workers for
popular Chicago hotels. Additionally this
dataset contains 800 reviews considered
truthful, that were mined from various online
review communities. These truthful reviews
cannot be considered gold-standard, but are
considered to have a reasonably low decep-
tion rate.

• Yelp (Rayana and Akoglu, 2015): This
is the largest ground truth, deceptively la-
belled dataset available to date. The de-
ceptive reviews in this dataset are those that
were filtered by Yelp’s review software for
being manufactured, solicited or malicious.
Yelp acknowledges that their recommenda-
tion software makes errors1. Yelp removed
7% of its reviews and marked 22% as not
recommended2. This dataset is broken into
three review sets, one containing 67,395 ho-
tel and restaurant reviews from Chicago, one
containing 359,052 restaurant reviews from
NYC and a final one containing 608,598
restaurant reviews from a number of zip
codes. There is overlap between the zip
code dataset and the NYC dataset, and it is
known that there are significant differences
between product review categories (Blitzer
et al., 2007) (hotels and restaurants) so we
will only use the zip code dataset in training
our models. Due to the memory restrictions
of using convolutional networks, we filter the
reviews with an additional constraint of being
shorter than 321 words. This reduces the size
of our final dataset by 2.63%. There are many
more genuine reviews than deceptive, so we
extract 78,346 each of genuine and deceptive
classes to create a balanced dataset. The en-
tire dataset contains 451,906 unused reviews.

1https://www.yelpblog.com/2010/03/yelp-review-filter-
explained

2https://www.yelp.com/factsheet

3 Methods

We train several models to distinguish between
fake and genuine reviews. The non-neural of
these are logistic regression, and support vec-
tor machines (Cortes and Vapnik, 1995), and
the neural are feed-forward networks, convolu-
tional networks and long short-term memory net-
works (LeCun and Bengio, 1998; Jacovi et al.,
2018; Hochreiter and Schmidhuber, 1997). We
experiment with simple bag-of-word input repre-
sentations and, for the neural approaches, we also
use pre-trained word2vec embeddings (Le and
Mikolov, 2014). In contrast with word2vec vec-
tors which provide the same vector for a particular
word regardless of its sentential context, we also
experiment with contextualised vectors. Specif-
ically, we utilize the BERT model developed by
Google (Devlin et al., 2018) for fine-tuning pre-
trained representations.

4 Experiments

4.1 Feature Engineering

Following Wang et al. (2017), we experiment with
a number of features on the Yelp dataset:

• Structural features including review length,
average word and sentence length, percent-
age of capitalized words and percentage of
numerals.

• Reviewer features including maximum re-
view count in one day, average review length,
standard deviation of ratings, and percentage
of positive and negative ratings.

• Part-of-Speech (POS) tags as percentages.

• Positive and negative word sentiment as per-
centages.

Feature selection using logistic regression found
that some features were not predictive of decep-
tion. In particular POS tag percentages and sen-
timent percentages were not predictive. Metadata
about the author of the review was the most pre-
dictive of deception, and the highest classifica-
tion performance occurred when including only
reviewer features in conjunction with bag-of-word
vectors. Separation of these features displayed in
Figure 1 shows that a large number (greater than 2)
of reviews in one day indicates that a reviewer is
deceptive. Conversely a long (greater than 1000)
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Figure 1: Separability of three most significant metadata features. Max reviews in one day is computed over
randomly sampled, equal numbers of each class. The vertical axis represents deceptive as 1.0 and genuine as 0.0.

average character length of reviews is indicative
that a reviewer is genuine. The standard deviation
of a user’s ratings is also included as a large devia-
tion is an indicator of a review being genuine. For
the remainder of experiments, we concatenate the
word representations with a scaled (from 0 to 1)
version of these user features. Note that reviewer
features are not available for the OpSpam dataset.

4.2 Experimental Details

Evaluation

For the smaller OpSpam dataset we report results
with both 5-Fold cross validation and bootstrap
validation repeated 10 times. For small datasets
and a small number of splits, K-Fold is known to
be subject to high variance. Additionally bootstrap
validation is known to be subject to high bias in
some contexts (Kohavi, 1995). We therefore re-
port results for both forms of validation. In all
forms of validation we create stratified train and
test sets. For the larger Yelp dataset we use the
balanced set described in section 2. As this dataset
is substantially large enough we use 10-Fold cross
validation only to obtain results.

Non-Neural Models

For both OpSpam and Yelp datasets we design our
models with similar methods. In the logistic re-
gression and SVM experiments, words are repre-
sented in TF-IDF format, and in the case of Yelp
only the most relevant 10,000 words are repre-
sented. Repeated experiments found that both lin-
ear and non-linear SVM kernels produced compa-
rable performance. Applying grid search with the
Yelp dataset found that a linear kernel could reach
the highest accuracy.

Neural Models
For the Yelp dataset, neural classifiers use early
stopping with a patience of 6 epochs of waiting
for an improvement in validation loss. The same
filtered, balanced dataset is used as input to all
classifiers, and we use a hold out set of 1000 sam-
ples (6.38% of the balanced data) to verify perfor-
mance.

Word2vec We use word2vec embeddings pre-
trained with a dimensionality of 300 on a Google
News dataset3. This model was pretrained using a
skip-gram architecture.

FFNNs We model FFNNs using a network con-
taining two hidden dense layers. For both layers
we use ReLU activation and l2 regularization, and
we use sigmoid activation on the output layer. For
the Yelp data, user features are directly concate-
nated to the BoW representation. For word2vec
embeddings, the embeddings are first flattened to
a single dimension before concatenation. The
model used for OpSpam contains 32 units in the
first hidden layer, and 16 units in the second. The
model used for Yelp contains 16 units in the first
hidden layer, and 8 units in the second. Models for
both datasets use a dropout rate of 0.25 between
the two hidden layers.

CNNs Convolutional networks are modelled in
different ways for BoW and word2vec embedding
representations. As BoW is represented in a single
dimension, we create a convolutional layer with a
kernel height of 1 unit and width of 10 units. This
kernel slides horizontally along the BoW vector.
For word2vec embeddings we position word vec-
tors vertically in the order they occur, as has been
implemented in earlier research (Kim, 2014). In

3https://code.google.com/archive/p/word2vec/
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this case the kernel has a width equal to the di-
mensionality of the word vectors and slides verti-
cally along the word axis. We use a kernel height
of 10, containing 10 words in each kernel posi-
tion. Both BoW and word2vec embedding mod-
els use 50 filters. Following the convolutions the
result is passed through a pooling layer, and a
dropout rate of 0.5 is applied before the result is
flattened. In the case of Yelp this flattened result
is concatenated with the user features of the re-
view. Two hidden dense layers follow this, both
using ReLU activation and l2 regularization. Both
hidden layers contain 8 units and are followed by
an output layer that uses sigmoid activation. For
the OpSpam dataset, the BoW model uses a pool
size of (1, 10) and the word2vec embedding im-
plementation uses a pool size of (5, 1). For the
Yelp dataset both BoW and word2vec embedding
models use global max pooling.

LSTMs In the implementation of LSTMs, mod-
els for both BoW and word2vec embeddings di-
rectly input word representations to an LSTM
layer. Numerous repeated runs with different
numbers of LSTM layers and units found that
the optimal accuracy occurs at just one layer of
10 units. We model implementations for both
OpSpam and Yelp datasets using this number of
layers and units. In the case of the Yelp dataset,
the output of the LSTM layer is concatenated with
user features. This is followed by 2 hidden dense
layers using ReLU activation and l2 regulariza-
tion, each containing 8 units, followed by an out-
put layer using sigmoid activation.

BERT We fine-tune the
bert-base-uncased model on the
OpSpam dataset and perform stratified vali-
dation using both 5-Fold validation and bootstrap
validation repeated 10 times. For fine-tuning we
use a learning rate of 2e-5, batch size of 16 and 3
training epochs.

Two implementations of fine-tuning are used to
verify results. One implementation is the BERT
implementation published by Google alongside
the pretrained models, and the other uses the
‘op-for-op’ reimplementation of BERT created by
Hugging Face4.

4https://github.com/huggingface/pytorch-pretrained-
BERT

4.3 Results

The results of performing validation on these mod-
els are shown in Tables 1, 2 and 3. Table 1 shows
that SVMs slightly outperform logistic regression,
and that the Yelp dataset represents a much harder
challenge than the OpSpam one.

Contrary to expectations, Table 2 shows that
pretrained word2vec embeddings do not improve
performance, and in the case of OpSpam BoW
can substantially outperform them. We do not yet
know why this might be case.

The BERT results in Table 3 show that
the Google TensorFlow implementation performs
substantially better than PyTorch in our case. This
is an unexpected result and more research needs
to be carried out to understand the differences. We
also report that Google’s TensorFlow implemen-
tation outperforms all other classifiers tested on
the OpSpam dataset, providing tentative evidence
of contextualized embeddings outperforming all
non-contextual pre-trained word2vec embeddings
and BoW approaches.

By inspecting the results of evaluation on a sin-
gle 5-Fold test set split for the BERT experiments,
we see that there are an approximately equal num-
ber of false negatives (15), and false positives (14).
There appears to be a slight tendency for the model
to perform better when individual sentences are
longer, and when the review is long. In the case
of our 29 incorrect classifications the number of
words in a sentence was 16.0 words, compared
to 18.4 for correct classifications. Entire reviews
tend to be longer in correct classifications with an
average length of 149.0 words, compared to 117.6
for incorrect classifications. Meanwhile the av-
erage word length is approximately 4.25 for both
correct and incorrect classifications.

5 Application of Research

We have developed a frontend which retrieves
business information from Yelp and utilizes our
models to analyze reviews. Results are displayed
in an engaging fashion using data visualization
and explanations of our prediction. We display a
deception distribution of all reviews for the prod-
uct. This includes how many reviews are clas-
sified as deceptive or genuine, shown in buckets
at 10% intervals of confidence. This allows users
to quickly determine if the distribution is different
to a typical, expected one. This tool also enables
users to view frequency and average rating of re-
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OpSpam Yelp
5-Fold Bootstrap 10-Fold

Logistic Reg 0.856 0.869 0.713
SVM 0.864 0.882 0.721

Table 1: Non-neural Classifier Accuracy

OpSpam Yelp
BoW word2vec BoW word2vec

5-Fold Bootstrap 5-Fold Bootstrap
FFNN 0.888 0.883 0.587 0.605 0.708 0.704
CNN 0.669 0.639 0.800 0.822 0.722 0.731

LSTM 0.876 0.876 0.761 0.769 0.731 0.727

Table 2: Neural classifier accuracy using bag-of-words (BoW) and non-contextual (word2vec) word embeddings

TensorFlow PyTorch
K-Fold 0.891 0.862
Bootstrap 0.905 0.867

Table 3: Accuracy performance of BERT implementa-
tions in TensorFlow and PyTorch (OpSpam)

views over time. This information can be used to
spot unusual behaviour at a given time, such as a
sudden increase in activity, where that activity is
creating a positive or negative rating score. The
aim of this web application is to highlight the abil-
ity of our models to detect fake reviews, and al-
lows interactions that drill down on specific de-
tails such as the impact of individual words on the
overall evaluation. Additional features enrich the
evaluation by performing statistical analysis on the
users who wrote the retrieved reviews. We use
badges to show the significance of this analysis,
where a badge is given to show a deceptive or gen-
uine indicator. Reviews can receive badges for the
user’s average review length, standard deviation of
review scores and maximum number of reviews in
one day. This adds a layer of transparency to the
data, allowing us to give a more informative ver-
dict on the review itself.

The models developed in this research are pub-
licized through our API. The web application pro-
vides an option to set the model used in requests,
providing easy access to experimentation. This is
an open-source5 project implemented in the Re-
act6 Javascript web interface library and Flask7

5https://github.com/CPSSD/LUCAS
6https://reactjs.org
7http://flask.pocoo.org

Figure 2: Search page of web interface.

Python server library respectively.

Figure 3: Sample Visualization of Reviews

6 Conclusion

We have conducted a series of classification ex-
periments on two freely available deceptive review
datasets. The dataset created by crowd-sourcing
deceptive reviews results in an easier task than the
real-world, potentially noisy, dataset produced by
Yelp. On the Yelp dataset, we find that features
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that encode reviewer behaviour are important in
both a neural and non-neural setting. The best per-
formance on the OpSpam dataset, which is com-
petitive with the state-of-the-art, is achieved by
fine-tuning with BERT. Future work involves un-
derstanding the relatively poor performance of the
pretrained non-contextual embeddings, and exper-
imenting with conditional, more efficient genera-
tive adversarial networks.
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Ángel Hernández-Castañeda, Hiram Calvo, Alexander
Gelbukh, and Jorge J. Flores. 2017. Cross-domain
deception detection using support vector networks.
Soft Comput., 21(3):585–595.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Alon Jacovi, Oren Sar Shalom, and Yoav Goldberg.
2018. Understanding convolutional neural networks
for text classification. pages 56–65.

Nitin Jindal and Bing Liu. 2007. Review spam de-
tection. In Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, pages
1189–1190, New York, NY, USA. ACM.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Ron Kohavi. 1995. A study of cross-validation and
bootstrap for accuracy estimation and model selec-
tion. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence - Volume 2,
IJCAI’95, pages 1137–1143, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Naveen Kumar, Deepak Venugopal, Liangfei Qiu, and
Subodha Kumar. 2018. Detecting review manipula-
tion on online platforms with hierarchical supervised
learning. Journal of Management Information Sys-
tems, 35(1):350–380.

Theodoros Lappas, Gaurav Sabnis, and Georgios
Valkanas. 2016. The impact of fake reviews on on-
line visibility: A vulnerability assessment of the ho-
tel industry. Information Systems Research, 27:940–
961.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Pro-
ceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-
26 June 2014, pages 1188–1196.

Yann LeCun and Yoshua Bengio. 1998. Convolutional
networks for images, speech, and time series. pages
255–258. MIT Press, Cambridge, MA, USA.

Michael Luca and Georgios Zervas. 2016. Fake it till
you make it: Reputation, competition, and yelp re-
view fraud. Management Science, 62:3412–3427.

Ewa Maslowska, Edward C. Malthouse, and Vijay
Viswanathan. 2017. Do customer reviews drive pur-
chase decisions? the moderating roles of review ex-
posure and price. Decis. Support Syst., 98(C):1–9.

Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T.
Hancock. 2011. Finding deceptive opinion spam
by any stretch of the imagination. In Proceedings

349



of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 309–319, Portland, Oregon, USA.
Association for Computational Linguistics.

James W Pennebaker, Ryan L Boyd, Kayla Jordan, and
Kate Blackburn. 2015. The development and psy-
chometric properties of liwc2015. Technical report.

Shebuti Rayana and Leman Akoglu. 2015. Collec-
tive opinion spam detection: Bridging review net-
works and metadata. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’15, pages
985–994, New York, NY, USA. ACM.

Gray Stanton and Athirai Aravazhi Irissappane. 2019.
Gans for semi-supervised opinion spam detection.
CoRR, abs/1903.08289.

Zehui Wang, Yuzhu Zhang, and Tianpei Qian. 2017.
Fake review detection on yelp.

Zhenni You, Tieyun Qian, and Bing Liu. 2018. An at-
tribute enhanced domain adaptive model for cold-
start spam review detection. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 1884–1895, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.

350



Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 351–356
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

Scheduled Sampling for Transformers

Tsvetomila Mihaylova
Instituto de Telecomunicações

Lisbon, Portugal
tsvetomila.mihaylova@lx.it.pt
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Abstract
Scheduled sampling is a technique for avoid-
ing one of the known problems in sequence-
to-sequence generation: exposure bias. It con-
sists of feeding the model a mix of the teacher
forced embeddings and the model predictions
from the previous step in training time. The
technique has been used for improving the
model performance with recurrent neural net-
works (RNN). In the Transformer model, un-
like the RNN, the generation of a new word
attends to the full sentence generated so far,
not only to the last word, and it is not straight-
forward to apply the scheduled sampling tech-
nique. We propose some structural changes
to allow scheduled sampling to be applied to
Transformer architecture, via a two-pass de-
coding strategy. Experiments on two language
pairs achieve performance close to a teacher-
forcing baseline and show that this technique
is promising for further exploration.

1 Introduction

Recent work in Neural Machine Translation
(NMT) relies on a sequence-to-sequence model
with global attention (Sutskever et al., 2014; Bah-
danau et al., 2014), trained with maximum like-
lihood estimation (MLE). These models are typ-
ically trained by teacher forcing, in which the
model makes each decision conditioned on the
gold history of the target sequence. This tends to
lead to quick convergence but is dissimilar to the
procedure used at decoding time, when the gold
target sequence is not available and decisions are
conditioned on previous model predictions.

Ranzato et al. (2015) point out the problem that
using teacher forcing means the model has never
been trained on its own errors and may not be
robust to them—a phenomenon called exposure
bias. This has the potential to cause problems at
translation time, when the model is exposed to its
own (likely imperfect) predictions.

A common approach for addressing the prob-
lem with exposure bias is using a scheduled strat-
egy for deciding when to use teacher forcing and
when not to (Bengio et al., 2015). For a recur-
rent decoder, applying scheduled sampling is triv-
ial: for generation of each word, the model decides
whether to condition on the gold embedding from
the given target (teacher forcing) or the model pre-
diction from the previous step.

In the Transformer model (Vaswani et al.,
2017), the decoding is still autoregressive, but un-
like the RNN decoder, the generation of each word
conditions on the whole prefix sequence and not
only on the last word. This makes it non-trivial to
apply scheduled sampling directly for this model.
Since the Transformer achieves state-of-the-art re-
sults and has become a default choice for many
natural language processing problems, it is inter-
esting to adapt and explore the idea of scheduled
sampling for it, and, to our knowledge, no way of
doing this has been proposed so far.

Our contributions in this paper are:

• We propose a new strategy for using sched-
uled sampling in Transformer models by
making two passes through the decoder in
training time.

• We compare several approaches for condi-
tioning on the model predictions when they
are used instead of the gold target.

• We test the scheduled sampling with trans-
formers in a machine translation task on two
language pairs and achieve results close to
a teacher forcing baseline (with a slight im-
provement of up to 1 BLEU point for some
models).

2 Related Work

Bengio et al. (2015) proposed scheduled sampling
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for sequence-to-sequence RNN models: a method
where the embedding used as the input to the de-
coder at time step t+1 is picked randomly between
the gold target and the argmax of the model’s
output probabilities at step t. The Bernoulli prob-
ability of picking one or the other changes over
training epochs according to a schedule that makes
the probability of choosing the gold target de-
crease across training steps. The authors propose
three different schedules: linear decay, exponen-
tial decay and inverse sigmoid decay.

Goyal et al. (2017) proposed an approach
based on scheduled sampling which backpropa-
gates through the model decisions. At each step,
when the model decides to use model predictions,
instead of the argmax, they use a weighted aver-
age of all word embeddings, weighted by the pre-
diction scores. They experimented with two op-
tions: a softmax with a temperature parameter, and
a stochastic variant using Gumbel Softmax (Jang
et al., 2016) with temperature. With this tech-
nique, they achieve better results than the standard
scheduled sampling. Our works extends Bengio
et al. (2015) and Goyal et al. (2017) by adapting
their frameworks to Transformer architectures.

Ranzato et al. (2015) took ideas from sched-
uled sampling and the REINFORCE algorithm
(Williams, 1992) and combine the teacher forcing
training with optimization of the sequence level
loss. In the first epochs, the model is trained with
teacher forcing and for the remaining epochs they
start with teacher forcing for the first t time steps
and use REINFORCE (sampling from the model)
until the end of the sequence. They decrease the
time for training with teacher forcing t as training
continues until the whole sequence is trained with
REINFORCE in the final epochs. In addition to
the work of Ranzato et al. (2015) other methods
that are also focused on sequence-level training
are using for example actor-critic (Bahdanau et al.,
2016) or beam search optimization (Wiseman and
Rush, 2016). These methods directly optimize the
metric used at test time (e.g. BLEU). Another pro-
posed approach to avoid exposure bias is SEARN
(Daumé et al., 2009). In SEARN, the model uses
its own predictions at training time to produce se-
quence of actions, then a search algorithm deter-
mines the optimal action at each step and a policy
is trained to predict that action. The main draw-
back of these approaches is that the training be-
comes much slower. By contrast, in this paper we

focus on methods which are comparable in train-
ing time with a force-decoding baseline.

3 Scheduled Sampling with
Transformers

In the case with recurrent neural networks (RNN)
in the training phase we generate one word at a
time step, and we condition the generation of this
word to the previous word from the gold target se-
quence. This sequential decoding makes it simple
to apply scheduled sampling - at each time step,
with some probability, instead of using the previ-
ous word in the gold sequence, we use the word
predicted from the model on the previous step.

The Transformer model (Vaswani et al., 2017),
which achieves state-of-the-art results for a lot of
natural language processing tasks, is also an au-
toregressive model. The generation of each word
conditions on all previous words in the sequence,
not only on the last generated word. The model
is based on several self-attention layers, which di-
rectly model relationships between all words in the
sentence, regardless of their respective position.
The order of the words is achieved by position em-
beddings which are summed with the correspond-
ing word embeddings. Using position masking in
the decoder ensures that the generation of each
word depends only on the previous words in the
sequence and not on the following ones. Because
generation of a word in the Transformer conditions
on all previous words in the sequence and not just
the last word, it is not trivial to apply scheduled
sampling to it, where, in training time, we need
to choose between using the gold target word or
the model prediction. In order to allow usage of
scheduled sampling with the Transformer model,
we needed to make some changes in the Trans-
former architecture.

3.1 Two-decoder Transformer

The model we propose for applying scheduled
sampling in transformers makes two passes on the
decoder. Its architecture is illustrated on Figure 1.
We make no changes in the encoder of the model.
The decoding of the scheduled transformer has the
following steps:

1. First pass on the decoder: get the model
predictions. On this step, the decoder condi-
tions on the gold target sequence and predicts
scores for each position as a standard trans-
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Figure 1: Transformer model adapted for use with scheduled sampling. The two decoders on the image share the
same parameters. The first pass on the decoder conditions on the gold target sequence and returns the model pre-
dictions. The second pass conditions on a mix of the target sequence and model predictions and returns the result.
The thicker lines show the path that is backpropagated in all experiments, i.e. we always make backpropagation
through the second decoder pass. The thin arrows are only backpropagated in a part of the experiments. (The
image is based on the transformer architecture from the paper of Vaswani et al. (2017).)

former model. Those scores are passed to the
next step.

2. Mix the gold target sequence with the pre-
dicted sequence. After obtaining a sequence
representing the prediction from the model
for each position, we imitate scheduled sam-
pling by mixing the target sequence with the
model predictions: For each position in the
sequence, we select with a given probability
whether to use the gold token or the predic-
tion from the model. The probability for us-
ing teacher forcing (i.e. the gold token) is
a function of the training step and is calcu-
lated with a selected schedule. We pass this
“new reference sequence” as the reference for
the second decoder. The vectors used from
the model predictions can be either the em-
bedding of the highest-scored word, or a mix
of the embeddings according to their scores.
Several variants of building the vector from
the model predictions for each position are
described below.

3. Second pass on the decoder: the final pre-
dictions. The second pass of the decoder
uses as output target the mix of words in
the gold sequence and the model predictions.

The outputs of this decoder pass are the ac-
tual result from the models.

It is important to mention that the two decoders
are identical and share the same parameters. We
are using the same decoder for the first pass, where
we condition on the gold sequence and the second
pass, where we condition on the mix between the
gold sequence and the model predictions.

3.2 Embedding Mix
For each position in the sequence, the first decoder
pass gives a score for each vocabulary word. We
explore several ways of using those scores when
the model predictions are used.

• The most obvious case is to not mix the em-
beddings at all and pass the argmax from the
model predictions, i.e. use the embedding of
the vocabulary word with the highest score
from the decoder.

• We also experiment with mixing the top-k
embeddings. In our experiments, we use the
weighted average of the embeddings of the
top-5 scored vocabulary words.

• Inspired by the work of Goyal et al. (2017),
we experiment with passing a mix of the em-
beddings with softmax with temperature.
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Using a higher temperature parameter makes
a better approximation of the argmax.

ēi−1 =
∑

y

e(y)
exp(αsi−1(y))∑
y′ exp(αsi−1(y′))

where ēi−1 is the vector which will be used
at the current position, obtained by a sum
of the embeddings of all vocabulary words,
weighted by a softmax of the scores si−1.

• An alternative of using argmax is sampling
an embedding from the softmax distribu-
tion. Also based on the work of Goyal et al.
(2017), we use the Gumbel Softmax (Maddi-
son et al., 2016; Jang et al., 2016) approxima-
tion to sample the embedding:

ēi−1 =
∑

y

e(y)
exp(α(si−1(y)) +Gy)∑
y′ exp(α(si−1(y′) +Gy′))

where U ∼ Uniform(0, 1) and G =
− log(− logU).

• Finally, we experiment with passing a
sparsemax mix of the embeddings (Mar-
tins and Astudillo, 2016).

3.3 Weights update
We calculate Cross Entropy Loss based on the out-
puts from the second decoder pass. For the cases
where all vocabulary words are summed (Softmax,
Gumbel softmax, Sparsemax), we try two variants
of updating the model weights.

• Only backpropagate through the decoder
which makes the final predictions, based on
mix between the gold target and the model
predictions.

• Backpropagate through the second, as well as
through the first decoder pass which predicts
the model outputs. This setup resembles the
differentiable scheduled sampling proposed
by Goyal et al. (2017).

4 Experiments

We report experiments with scheduled sampling
for Transformers for the task of machine trans-
lation. We run the experiments on two language
pairs:

• IWSLT 2017 German−English (DE−EN,
Cettolo et al. (2017)).

Encoder model type Transformer
Decoder model type Transformer
# Enc. & dec. layers 6
Heads 8
Hidden layer size 512
Word embedding size 512
Batch size 32
Optimizer Adam
Learning rate 1.0
Warmup steps 20,000
Maximum training steps 300,000
Validation steps 10,000
Position Encoding True
Share Embeddings True
Share Decoder Embeddings True
Dropout 0.2 (DE-EN)
Dropout 0.1 (JA-EN)

Table 1: Hyperparameters shared across models

• KFTT Japanese−English (JA−EN, Neubig
(2011)).

We use byte pair encoding (BPE; (Sennrich et al.,
2016)) with a joint segmentation with 32,000
merges for both language pairs.

Hyperparameters used across experiments are
shown in Table 1. All models were implemented
in a fork of OpenNMT-py (Klein et al., 2017). We
compare our model to a teacher forcing baseline,
i.e. a standard transformer model, without sched-
uled sampling, with the hyperparameters given in
Table 1. We did hyperparameter tuning by trying
several different values for dropout and warmup
steps, and choosing the best BLEU score on the
validation set for the baseline model.

With the scheduled sampling method, the
teacher forcing probability continuously decreases
over the course of training according to a prede-
fined function of the training steps. Among the
decay strategies proposed for scheduled sampling,
we found that linear decay is the one that works
best for our data:

t(i) = max{ε, k − ci}, (1)

where 0 ≤ ε < 1 is the minimum teacher forc-
ing probability to be used in the model and k and
c provide the offset and slope of the decay. This
function determines the teacher forcing ratio t for
training step i, that is, the probability of doing
teacher forcing at each position in the sequence.
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Experiment DE−EN JA−EN
Dev Test Dev Test

Teacher Forcing Baseline 35.05 29.62 18.00 19.46
No backprop
Argmax 23.99 20.57 12.88 15.13
Top-k mix 35.19 29.42 18.46 20.24
Softmax mix α = 1 35.07 29.32 17.98 20.03
Softmax mix α = 10 35.30 29.25 17.79 19.67
Gumbel Softmax mix α = 1 35.36 29.48 18.31 20.21
Gumbel Softmax mix α = 10 35.32 29.58 17.94 20.87
Sparsemax mix 35.22 29.28 18.14 20.15
Backprop through model decisions
Softmax mix α = 1 33.25 27.60 15.67 17.93
Softmax mix α = 10 27.06 23.29 13.49 16.02
Gumbel Softmax mix α = 1 30.57 25.71 15.86 18.76
Gumbel Softmax mix α = 10 12.79 10.62 13.98 17.09
Sparsemax mix 24.65 20.15 12.44 16.23

Table 2: Experiments with scheduled sampling for Transformer. The table shows BLEU score for the best check-
point on BLEU, measured on the validation set. The first group of experiments do not have a backpropagation
pass through the first decoder. The results from the second group are from model runs with backpropagation pass
through the second as well as through the first decoder.

The results from our experiments are shown In
Table 2. The scheduled sampling which uses only
the highest-scored word predicted by the model
does not have a very good performance. The
models which use mixed embeddings (the top-k,
softmax, Gumbel softmax or sparsemax) and only
backpropagate through the second decoder pass,
perform slightly better than the baseline on the val-
idation set, and one of them is also slightly better
on the test set. The differentiable scheduled sam-
pling (when the model backpropagates through the
first decoder) have much lower results. The perfor-
mance of these models starts degrading too early,
so we expect that using more training steps with
teacher forcing at the beginning of the training
would lead to better performance, so this setup still
needs to be examined more carefully.

5 Discussion and Future Work

In this paper, we presented our approach to ap-
plying the scheduled sampling technique to Trans-
formers. Because of the specifics of the decoding,
applying scheduled sampling is not straightfor-
ward as it is for RNN and required some changes
in the way the Transformer model is trained, by
using a two-step decoding. We experimented with
several schedules and mixing of the embeddings
in the case where the model predictions were

used. We tested the models for machine trans-
lation on two language pairs. The experimental
results showed that our scheduled sampling strat-
egy gave better results on the validation set for
both language pairs compared to a teacher forcing
baseline and, in one of the tested language pairs
(JA−EN), there were slightly better results on the
test set.

One possible direction for future work is exper-
imenting with more schedules. We noticed that
when the schedule starts falling too fast, for exam-
ple, with the exponential or inverse sigmoid de-
cay, the performance of the model degrades too
fast. Therefore, we think it is worth exploring
more schedules where the training does more pure
teacher forcing at the beginning of the training
and then decays more slowly, for example, inverse
sigmoid decay which starts decreasing after more
epochs. We will also try the experiments on more
language pairs.

Finally, we need to explore the poor perfor-
mance on the differential scheduled sampling
setup (with backpropagating through the two de-
coders). In this case, the performance of the model
starts decreasing earlier and the reason for this
needs to be examined carefully. We expect this
setup to give better results after adjusting the de-
cay schedule to allow more teacher forcing train-
ing before starting to use model predictions.
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Abstract

Popular fake news articles spread faster than
mainstream articles on the same topic which
renders manual fact checking inefficient. At
the same time, creating tools for automatic de-
tection is as challenging due to lack of dataset
containing articles which present fake or ma-
nipulated stories as compelling facts. In this
paper, we introduce manually verified corpus
of compelling fake and questionable news ar-
ticles on the USA politics, containing around
700 articles from Aug-Nov, 2016. We present
various analyses on this corpus and finally im-
plement classification model based on linguis-
tic features. This work is still in progress as
we plan to extend the dataset in the future and
use it for our approach towards automated fake
news detection.

1 Introduction

Fake news is a widespread menace which has re-
sulted into protests and violence around the globe.
A study published by Vosoughi et al. of MIT states
that falsehood diffuses significantly farther, faster,
deeper and more broadly than the truth in all cate-
gories of information. They also stated that effects
were more pronounced for false political news
than for false news about terrorism, natural dis-
aster, science, urban legends or financial informa-
tion. According to Pew Research Center’s survey
1 of 2017, 64% of US adults said to have great deal
of confusion about the facts in the current events.
Major events around the globe saw sudden jump in
deceitful stories on internet during sensitive events
because of which social media organizations and
government institutions have scrambled together
to tackle this problem as soon as possible. How-
ever, fake news detection has its own challenges.

1http://www.journalism.org/2016/12/15/many-
americans-believe-fake-news-is-sowing-confusion/

Figure 1: Conceptual framework for examining infor-
mation disorder presented by Wardle and Derakhshan

First and foremost is the consensus on the defini-
tion of fake news which is a topic of discussion
in several countries. Considering the complexity
of defining fake news, Wardle and Derakhshan in-
stead created a conceptual framework for exam-
ining information disorder as shown in Figure -
1. Based on this model, EU commission in 2018
categorized fake news as disinformation with the
characteristics being verifiably false or misleading
information that is created, presented and dissem-
inated for economic gain or to intentionally de-
ceive the public, and in any event to cause public
harm. Since our work focuses on false information
written intentionally to deceive people in order to
cause social unrest, we will be following the def-
inition defined by EU to categorize fake articles
into various categories as defined in Section 3 of
this paper.

The second challenge is the lack of structured
and clean dataset which is a bottleneck for fake
opinion mining, automated fact checking and cre-
ating computationally-intensive learning models
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for feature learning. In the following section, we
elaborate on this challenge more, specify related
works and how our work is different from others.

2 Related Works

There have been several datasets released previ-
ously for fake news, most notably Buzzfeed2 and
Stanford (Allcott and Gentzkow, 2017) datasets
containing list of popular fake news articles from
2016. However, these datasets only contain web-
page links of these articles and most of them don’t
exist anymore. Fake news challenge, 20173 re-
leased a fake news dataset for stance detection,
i.e, identifying whether a particular news head-
line represents the content of news article, but al-
most 80% of the dataset does not meet the defi-
nition that we are following in our work. Many
of the articles were satire or personal opinions
which cannot be flagged as intentionally deceiv-
ing the public. (Wang, 2017) released a bench-
mark dataset containing manually labelled 12, 836
short statements, however it contains short state-
ments by famous personalities and not malicious
false stories about certain events that we are inter-
ested in. Finally, the dataset created by using BS
detector4 contains articles annotated by news ve-
racity detector tool and hence, cannot be trusted,
as the labels are not verified manually and there
are many anomalies like movie or food reviews
being flagged as fake.

In this paper, we overcome these issues by man-
ually selecting popular fake and questionable sto-
ries about US politics during Aug-Nov, 2016. The
corpus has been designed in such a way that the
writing style matches mainstream articles. In the
following sections, we define our motivation for
creating such corpus, provide details on it and
present a classification model trained on this cor-
pus to segregate articles based on writing style.
We also discuss properties of fake news articles
that we observed while developing this corpus.

Other notable works like FEVER dataset
(Thorne et al., 2018), TwoWingOS (Yin and Roth,
2018) etc. are focused on claim extraction and ver-
ification which is currently out of scope of this pa-
per. In this work, we are solely focused on creat-
ing a clean corpus for fake news articles and per-
forming classification of articles into “question-

2https://www.buzzfeednews.com/article/craigsilverman/these-
are-50-of-the-biggest-fake-news-hits-on-facebook-in

3http://www.fakenewschallenge.org/
4https://www.kaggle.com/mrisdal/fake-news/data/

able” and “mainstream” based on writing style.
Fact checking, fake news opinion mining and fake
claim extraction and verification fall under future
work of this paper. For classification task, previ-
ous works include Potthast et al. who used stylo-
metric approach on Buzzfeed dataset and achieved
an F1 score of 0.41; Pérez-Rosas et al. who
used Amazon Mechanical Turk to manually gen-
erate fake news based on real news content and
achieved an F1 score of 0.76 to detect fake news,
and Ruchansky et al. who used Twitter and Weibo
datasets and achieved F1 scores of 0.89 and 0.95
on respective datasets. In our work, we were
able to achieve an F1 score of 0.97 on the corpus
we have created, hence setting benchmark for the
writing-style based classification task on this cor-
pus.

3 Motivation

Fake news detection is a complicated topic fraught
with many difficulties such as freedom of expres-
sion, confirmation bias and different types of dis-
semination techniques. In addition to these, there
are three more ambiguities that one needs to over-
come to create an unbiased automated fake news
detector - 1. harmless teenagers writing false sto-
ries for monetary gains5; 2. AI tools generat-
ing believable articles6 and; 3. mainstream chan-
nels publishing unverifiable stories7. Considering
these elements, our motivation for this problem is
to design a system with the focus on understand-
ing the inference of the assertions, automatically
fact check and explain the users why a particular
article was tagged as questionable by the system.
In order to do so, our first priority was to create an
efficient corpus for this task. As we will see in the
following sections, we have manually selected the
articles that contain malicious assertions about a
particular topic (2016 US elections), written with
an intent of inciting hatred towards a particular en-
tity of the society. The uniqueness of the articles
in this corpus lies in the fact that a reader might be-
lieve them if not specifically informed about them
being fake, hence confusing them whether the arti-
cle was written by mainstream media or fake news

5https://www.wired.com/2017/02/veles-macedonia-fake-
news/

6https://www.technologyreview.com/s/612960/an-ai-
tool-auto-generates-fake-news-bogus-tweets-and-plenty-of-
gibberish/

7https://indianexpress.com/article/cities/delhi/retract-
reports-that-claim-najeeb-is-isis-sympathiser-delhi-hc-to-
media-5396414/
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channel. This uniqueness will ultimately help in
creating a detector which is not biased towards
mainstream news articles on the same topic (2016
elections in this case.)

4 Corpus

4.1 Creation and Verification

The final corpus consists of 26 known fake arti-
cles from Stanford’s dataset along with 679 ques-
tionable articles taken from BS detector’s kag-
gle dataset. All the articles are in English and
talk about 2016 US presidential elections. We,
first, went through the Stanford’s list of fake ar-
ticles links and found the webpages that still ex-
ist. We then picked the first 50-70 assertive sen-
tences from these articles. After that, we read the
articles from BS detector’s kaggle dataset and se-
lected those articles which are written in a very
compelling way and succeeded in making us be-
lieve its information. We then manually verified
the claims made by these articles by doing simple
Google searches and categorized them as shown in
Table - 1. Based on the type of assertions, we have
come up with two types of labels:

Primary Label: based on the assertions they
make, articles are divided into 3 categories: 1.
False but compelling (innovated lies having jour-
nalistic style of writing); 2. Half baked informa-
tion i.e, partial truth (manipulating true events to
suit agenda); and 3. Opinions/commentary pre-
sented as facts (written in a third person narrative
with no disclaimer of the story being a personal
opinion).

Secondary Label: is of 2 types: 1. articles ex-
tracted from Stanford’s dataset have been tagged
as fake as per their own description and; 2. articles
taken from kaggle dataset are tagged as question-
able. We believe tagging something fake, when
they do contain some elements of truth, will be an
extreme measure and we leave this task to the ex-
perts.

Finally, the corpus was cleaned by removing ar-
ticles with first person narrative; removing images
and video links and keeping only textual content;
removing tweets, hyperlinks and other gibberish
like Read additional information here, [MORE],
[CLICK HERE] etc.

4.2 Analysis

Features: We used NLTK package to explore ba-
sic features of the content of news articles in terms

Figure 2: Top 20 most common keywords

of sentence count, word count etc. Number of
assertions ranges from 2 to 124 with word count
varying from 74-1430. Maximum number of stop
words in the longest article is 707. Since keywords
form an important representation of the dataset,
we extracted top 20 most common keywords from
the corpus as shown in Figure - 2.

Comparison with mainstream article: Main-
stream articles from publishers like New York
Times were extracted from all the news8 kaggle
dataset, which contains news articles from 15 US
mainstream publishers. We selected articles from
Oct - Nov, 2016 covering US politics during the
time of election. There were total 6679 articles re-
trieved from this dataset which were then catego-
rized into two labels as per our corpus’s schema.
Table - 2 compares characteristics of top 3 sen-
tences from mainstream news articles with our
corpus. We can observe that there are not many
dissimilarities except the information presented in
both the articles.

Observed Characteristics: Although articles
in our corpus have many similarities with main-
stream articles, there are some underlying patterns
that can be noticed by reading all of them together
at once. Following are the observations that we
made while verifying the claims presented in these
articles.

1. All of the news articles were trying to create
sympathy for a particular entity by manipu-
lating real stories. They were either trying
to sympathize with Donald Trump by men-
tioning media rhetoric against him, or with
Hillary Clinton by mentioning Trump’s past.

2. Similarly, they also made false claims against
above mentioned entities, by referring leaked

8https://www.kaggle.com/snapcrack/all-the-news
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URL Authors Content Headline Primary Label Secondary
Label

URL
of
article

Can contain
anonymous
writers

Collection of
assertions

Headline of
the article

1. False
2. Partial truth
3. Opinions

1. Fake
2. Questionable

Table 1: Corpus schema. No cleaning has been performed on headlines as they are intentionally made catchy for
attention seeking.

Attributes Mainstream Questionable
Word count range (min to max) 20-100 21-100
Character count range (min to
max)

89-700 109-691

Uppercase words count range
(min to max)

0-14 0-8

Mainstream Example WASHINGTON - An exhausted Iraqi Army faces
daunting obstacles on the battlefield that will most
likely delay for months a major offensive on the
Islamic State stronghold of Mosul, American and
allied officials say. The delay is expected despite
American efforts to keep Iraqs creaky war machine
on track. Although President Obama vowed to end
the United States role in the war in Iraq, in the
last two years the American military has increas-
ingly provided logistics to prop up the Iraqi military,
which has struggled to move basics like food, water
and ammunition to its troops.

Questionable Example WASHINGTON - Hillary Clinton is being accused
of knowingly allowing American weapons into the
hands of ISIS terrorists. Weapons that Hillary Clin-
ton sent off to Qatar ostensibly designed to give to
the rebels in Libya eventually made their way to
Syria to assist the overthrow of the Assad regime.
The folks fighting against Assad were ISIS and al-
Qaeda jihadists.

Table 2: Comparing basic features of top 3 sentences from mainstream articles and questionable articles.

documents from WikiLeaks or other similar
sources. In our verification, we found that
in most of these articles, only few claims
matched the leaked story and rest were in-
vented.

3. Articles first tell false stories against a cer-
tain entity and then asks the reader ques-
tions such as “Do you think mainstream me-
dia is conspiring against you by hiding this
story?”, “Do you think Google is making al-
gorithms to create an illusion of reality?” Af-
ter asking such questions, they either leave

the reader hanging in contemplation or ask
them to “share [the article] if you believe so.”

4. The above point then leads to what (Nyhan
and Reifler, 2010) describes as backfire effect
in which correcting readers actually makes
them believe false stories.

5. Fake news writers have learnt/are learning to
use mainstream writing style such as, men-
tioning city name before starting the article,
mentioning abbreviations like (SC) for Secu-
rity Council, (AI) for Amnesty Investor, us-
ing elaborate vocabulary etc.
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Split
Random K-Fold

Questionable (1) Mainstream (0) Questionable (1) Mainstream (0)

Train 406 5334 396 5343
Test 90 1345 100 1336

Table 3: To meet the real world scenario, train data and test data have been split with an approximate ratio of 1:10.

Figure 3: Bi-directional architecture

5 Classification Task

5.1 Model

After creating this corpus, we trained a classifi-
cation model on the content to see if it can learn
any writing patterns which are not visible to hu-
man eye and create benchmark results. Our model,
as shown in Figure - 3, is inspired by the works of
(Anand et al., 2016) and uses bi-directional LSTM
and character embedding to classify articles into
questionable (1) and mainstream (0) by learning
writing style. We have not performed any pre-
processing like removing punctuation, stop words
etc. to make sure the model learns every context
of the content. 1-D CNN has been used to cre-
ate character embedding which has been proven to
be very efficient in learning orthographic and mor-
phological features of text (Zhang et al., 2015).
This layer takes one-hot vector of each character
and uses filter size of [196, 196, 300]. We have
used 3 layers of 1-D CNN with pool size 2 and
kernel stride of 3. Finally, we have performed
maxpooling across the sequence to identify fea-
tures that produces strong sentiments. This layer
is then connected to bi-directional LSTM which
contains one forward and one backward layer with
128 units each.

This model was trained with top 3 sentences,
containing 20-100 words, and retrieved from total

7175 articles. As per the example shown in Ta-
ble - 2, it can be assumed that top 3 sentences are
enough for a normal reader to understand what the
article is talking about. Dataset splitting for train-
ing and testing was inspired by the findings in the
study conducted by (Guess et al., 2019) of Prince-
ton and NYU earlier this year which stated that
Americans who shared false stories during 2016
Presidential elections were far more likely to be
over 65. Current US age demographic suggests
that 15% of the population are over 65 9. There-
fore, we have decided to have the ratio of question-
able to mainstream news articles approximately
1:10, as shown in Table - 3.

5.2 Training and Results

We first trained our model by randomly splitting
our dataset into training, validation and test set of
sizes 4592, 1148 and 1435 respectively. However,
since the dataset is unbalanced, stratified k-fold
cross-validation mechanism is also implemented
with 5 folds. (Kohavi, 1995) states that stratifica-
tion, which ensures that each fold represents the
entire dataset, is generally a better scheme both
in terms of bias and variance. The model was
trained on an average number of 2, 296, 000 char-
acters. We have evaluated our models on various
metrics as shown in Figure - 4. For this prob-
lem, we will be majorly focused on ROC and F1
scores. In both the cases, stratified k-fold out-
performs random sampling significantly. Training
with only random sampling resulted into under-
representation of data points leading to many false
positives. This can also be because writing style
of questionable and mainstream articles are very
similar. On the other hand, 5-fold cross validation
performed significantly well in learning the pat-
terns and avoiding the problems of false positives.

9https://www.census.gov/quickfacts/fact/table/US/PST045217

361



Figure 4: Evaluation results of our model over various
metrics. Performance of model using Stratified K-Fold
is exceptionally good in terms of ROC score and F1
score.

6 Conclusion

In this paper, we have introduced a novel corpus of
articles containing false assertions which are writ-
ten in a very compelling way. We explain how
this corpus is different from previously published
datasets and explore the characteristics of the cor-
pus. Finally, we use a deep learning classification
model to learn the invisible contextual patterns of
the content and produce benchmark results on this
dataset. Our best model was able to achieve state
of the art ROC score of 97%. This is a work in
progress and we are planning to extend this cor-
pus by adding more topics and metadata. Future
work also involves claim extraction and verifica-
tion which can be further used to design an un-
biased automated detector of intentionally written
false stories.
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Abstract

The development of computational methods to
detect abusive language in social media within
variable and multilingual contexts has recently
gained significant traction. The growing inter-
est is confirmed by the large number of bench-
mark corpora for different languages devel-
oped in the latest years. However, abusive lan-
guage behaviour is multifaceted and available
datasets are featured by different topical fo-
cuses. This makes abusive language detection
a domain-dependent task, and building a ro-
bust system to detect general abusive content
a first challenge. Moreover, most resources
are available for English, which makes de-
tecting abusive language in low-resource lan-
guages a further challenge. We address both
challenges by considering ten publicly avail-
able datasets across different domains and lan-
guages. A hybrid approach with deep learn-
ing and a multilingual lexicon to cross-domain
and cross-lingual detection of abusive content
is proposed and compared with other simpler
models. We show that training a system on
general abusive language datasets will produce
a cross-domain robust system, which can be
used to detect other more specific types of abu-
sive content. We also found that using the
domain-independent lexicon HurtLex is useful
to transfer knowledge between domains and
languages. In the cross-lingual experiment,
we demonstrate the effectiveness of our joint-
learning model also in out-domain scenarios.

1 Introduction

Detecting online abusive language in social me-
dia messages is gaining increasing attention from
scholars and stakeholders, such as governments,
social media platforms and citizens. The spread of
online abusive content negatively affects the tar-
geted victims, has a chilling effect on the demo-
cratic discourse on social networking platforms

and negatively impacts those who speak for free-
dom and non-discrimination. Abusive language is
usually used as an umbrella term (Waseem et al.,
2017), covering several sub-categories, such as cy-
berbullying (Van Hee et al., 2015; Sprugnoli et al.,
2018), hate speech (Waseem and Hovy, 2016;
Davidson et al., 2017), toxic comments (Wulczyn
et al., 2017), offensive language (Zampieri et al.,
2019a) and online aggression (Kumar et al., 2018).
Several datasets have been proposed having dif-
ferent topical focuses and specific targets, e.g.,
misogyny or racism. This diversity makes the task
to detect general abusive language difficult. Some
studies attempted to bridge some of these subtasks
by proposing cross-domain classification of abu-
sive content (Wiegand et al., 2018a; Karan and
Šnajder, 2018; Waseem et al., 2018).

Another prominent challenge in abusive lan-
guage detection is the multilinguality issue. Even
if in the last year abusive language datasets were
developed for other languages, including Italian
(Bosco et al., 2018; Fersini et al., 2018b), Span-
ish (Fersini et al., 2018b), and German (Wiegand
et al., 2018b), most studies so far focused on En-
glish. Since most popular social media such as
Twitter and Facebook goes multilingual, fostering
their users to interact in their primary language,
there is a considerable urgency to develop a robust
approach for abusive language detection in a mul-
tilingual environment, also for guaranteeing a bet-
ter compliance to governments demands for coun-
teracting the phenomenon (see, e.g., the recently
issued EU commission Code of Conduct on coun-
tering illegal hate speech online (EU Commis-
sion, 2016). Cross-lingual classification is an ap-
proach to transfer knowledge from resource-rich
languages to resource-poor ones. It has been ap-
plied to sentiment analysis (Zhou et al., 2016), a
related task to abusive language detection. How-
ever, there is still not much work focused on cross-
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Dataset Label Language Topical Focus Train Test PIR

Harassment (Golbeck
et al., 2017)

H - harassing,
N - non-harassing EN

Harassing content, including
racist and misogynistic
contents, offensive profanities
and threats

14,252 6,108 0.26

Waseem (Waseem and
Hovy, 2016)

racism, sexism,
none EN Racism and Sexism 11,542 4,947 0.31

OffensEval (Zampieri
et al., 2019b)

OFF - offensive,
NOT - not
offensive

EN

Offensive content, including
insults, threats, and posts
containing profane language or
swear words

13,240 860 0.33

HatEval (Basile et al.,
2019)

1 - hateful,
0 - not hateful EN, ES Hate speech against women

and immigrants
9,000 (EN)
4,500 (ES)

2,971 (EN)
1,600 (ES)

0.42
0.41

AMI Evalita (Fersini
et al., 2018a)

1 - misogynous,
0 - not misogynous EN, IT Misogynous content 4,000 (EN)

4,000 (IT)
1,000 (EN)
1,000 (IT)

0.45
0.47

AMI IberEval (Fersini
et al., 2018b)

1 - misogynous,
0 - not misogynous EN, ES Misogynous content 3,251 (EN)

3,307 (ES)
726 (EN)
831 (ES)

0.47
0.50

GermEval (Wiegand
et al., 2018b) offensive, other DE Offensive content, including

insults, abuse, and profanity 5,009 3,532 0.34

Table 1: Twitter abusive language datasets in four languages: original labels, language(s) featured, topical focus,
distribution of train and test set and positive instance rate (PIR).

lingual abusive language classification.
In this study, we conduct an extensive exper-

iment to explore cross-domain and cross-lingual
abusive language classification in social media
data, by proposing a hybrid approach with deep
learning and a multilingual lexicon. We exploit
several available Twitter datasets in different do-
mains and languages. We present three main con-
tributions in this work. First, we characterize
the available datasets as capturing various phe-
nomena related to abusive language, and inves-
tigate this characterization in cross-domain clas-
sification. Second, we explored the use of a
domain-independent, multilingual lexicon of abu-
sive words called HurtLex (Bassignana et al.,
2018) in both cross-domain and cross-lingual set-
tings. Last, we take advantage of the availability
of multilingual word embeddings to build a joint-
learning approach in the cross-lingual setting. All
code and resources are available at https://
github.com/dadangewp/ACL19-SRW.

2 Related Work

Some work has been done in the cross-domain
classification of abusive language. Wiegand et al.
(2018a) proposed to use high-level features by
combining several linguistic features and lexicons
of abusive words in the cross-domain classifica-
tion of abusive microposts from different sources.
Waseem et al. (2018) use multi-task learning for
domain transfer in a cross-domain hate speech de-
tection task. Recently, Karan and Šnajder (2018)
also addressed cross-domain classification in sev-
eral abusive language datasets, testing the frame-

work of Frustratingly Simple Domain Adaptation
(FEDA) (Daume III, 2007) to transfer knowledge
between domains.

Meanwhile, cross-lingual abusive language de-
tection has not been explored yet by NLP schol-
ars. We only found a few works describing partic-
ipating systems developed for recent shared tasks
on the identification of misogynous (Basile and
Rubagotti, 2018) and offensive language (van der
Goot et al., 2018), where some experiment in
a cross-lingual setting is proposed. Basile and
Rubagotti (2018) used the bleaching approach
(van der Goot et al., 2018) to conduct cross-lingual
experiments between Italian and English when
participating to the automatic misogyny identifica-
tion task at EVALITA 2018 (Fersini et al., 2018a).
Schneider et al. (2018) used multilingual embed-
dings in a cross-lingual experiment related to Ger-
mEval 2018 (Wiegand et al., 2018b).

3 Data

We consider ten different publicly abusive lan-
guage datasets and benchmark corpora from
shared tasks. Some shared tasks (HatEval, AMI
Evalita and AMI IberEval) provided data in two
languages. Table 1 summarizes the datasets’ char-
acteristics. We binarize the label of these datasets
into abusive (bold) and not-abusive. For the cross-
lingual experiments, we include datasets from four
languages: English, Italian, Spanish, and Ger-
man. We split all datasets into training and testing
by keeping the original split when provided, and
splitting the distribution randomly (70% for train-
ing and 30% for testing) otherwise.
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Dataset LSVC + BoW LSVC + BoW + HL LSTM + WE LSTM + WE + HL
Test Train P R F1 ∆ P R F1 ∆ P R F1 ∆ P R F1 ∆
Harassment Waseem .325 .233 .271 .103 .337 .264 .296 .079 .291 .467 .359 .033 .290 .524 .373 .045

HatEval .389 .119 .183 .191 .374 .116 .177 .198 .341 .308 .324 .068 .332 .379 .354 .064
OffensEval .320 .508 .393 -.019 .322 .516 .396 -.021 .333 .443 .380 .012 .314 .567 .404 .014
Harassment .547 .284 .374 .540 .288 .375 .510 .319 .392 .464 .380 .418

Waseem Harassment .729 .022 .043 .688 .720 .034 .065 .669 .464 .111 .179 .587 .491 .149 .229 .520
HatEval .620 .109 .186 .545 .672 .113 .194 .540 .496 .213 .299 .467 .453 .318 .374 .375
OffensEval .461 .390 .422 .309 .453 .391 .420 .314 .444 .282 .345 .421 .419 .411 .415 .334
Waseem .817 .662 .731 .819 .665 .734 .760 .771 .766 .711 .790 .749

HatEval Harassment .485 .181 .264 .339 .513 .229 .317 .290 .523 .308 .387 .216 .514 .394 .446 .158
Waseem .505 .490 .497 .106 .477 .558 .514 .093 .481 .636 .548 .055 .494 .609 .546 .058
OffensEval .450 .646 .531 .072 .451 .656 .534 .073 .452 .603 .516 .087 .457 .704 .554 .050
HatEval .449 .919 .603 .453 .919 .607 .444 .939 .603 .441 .955 .604

OffensEval Harassment .301 .104 .155 .422 .321 .113 .167 .406 .525 .133 .213 .395 .406 .179 .249 .349
Waseem .440 .246 .316 .261 .462 .254 .328 .245 .403 .225 .289 .319 .400 .175 .244 .354
HatEval .372 .225 .281 .296 .381 .233 .289 .284 .392 .371 .381 .227 .371 .529 .436 .162
OffensEval .616 .542 .577 .626 .529 .573 .667 .558 .608 .551 .654 .598

Table 2: Results on cross-domain abusive language identification (only in English).

We also provide further information about the
captured phenomena of every dataset. Based
on this information, we can compare the nature
and topical focus of the dataset, which poten-
tially affect the cross-domain experimental results.
Some datasets have a broader coverage than the
others, focussing on more general phenomena,
such as OffensEval (Zampieri et al., 2019b), and
GermEval (Wiegand et al., 2018b). However,
there are also some shared phenomena between
datasets, such as racism and sexism in Waseem
(Waseem and Hovy, 2016) and HatEval (Basile
et al., 2019). AMI datasets contain the most spe-
cific phenomenon, only focusing on misogyny.
The positive instance rate (PIR) denotes the ratio
of abusive instances to all instances of the dataset.

4 Cross-domain Classification

In this experiment, we investigate the performance
of machine learning classifiers which are trained
on a particular dataset and tested on different
datasets ones. We focus on investigating the in-
fluence of captured phenomena coverage between
datasets. We hypothesize that a classifier which is
trained on a broader coverage dataset and tested on
narrower coverage dataset will give better perfor-
mance than the opposite. Furthermore, we analyse
the impact of using the HurtLex lexicon (Bassig-
nana et al., 2018) to transfer knowledge between
domains. HurtLex is a multilingual lexicon of
hate words, originally built from 1,082 Italian hate
words compiled in a manual fashion by the linguist
Tullio De Mauro (De Mauro, 2016). This lexi-
con is semi-automatically extended and translated
into 53 languages by using BabelNet (Navigli and
Ponzetto, 2012), and the lexical items are divided

into 17 categories such as homophobic slurs, eth-
nic slurs, genitalia, cognitive and physical disabil-
ities, animals and more1.
Model. In this experiment, we employ two mod-
els. First, we exploit a simple traditional machine
learning approach by using linear support vector
classifier (LSVC) with unigram representation as
a feature. Second, we utilize a long short-term
memory (LSTM) neural model consisting of sev-
eral layers, starting with a word embedding layer
(32-dimensions) without any pre-trained model
initialization2. This embedding layer is followed
by LSTM networks (16-units), whose output is
passed to a dense layer with ReLU activation func-
tion and dropout (0.4). The last section is a dense
layer with sigmoid activation to produce the final
prediction. We experiment with HurtLex by con-
catenating its 17 categories as one hot encoding
representation to both LSVC-based and LSTM-
based systems.
Data and Evaluation We use four English
datasets, namely Harassment, Waseem, HatEval,
and OffensEval 3. We evaluate the system perfor-
mance based on precision, recall, and F -score on
the positive class (abusive class).
Results. Table 2 shows the results of the cross-
domain experiment. We test every dataset with
three systems which are trained on three other
datasets. We also run in-domain scenario to
compare the delta between in-domain and out-
domain performance and measure the drop in per-

1http://hatespeech.di.unito.it/
resources.html

2We experimented the use of pre-trained models (i.e.
GloVe, word2vec, and FastText), but the result is lower com-
pared to a self-trained model based on training set.

3AMI datasets are excluded due to the low number of in-
stances.
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formance. Not surprisingly, the performance on
out-domain datasets is always lower (except in
two cases when the Harassment dataset is used
as test set). Overall, LSTM-based systems per-
formed better than LSVC-based systems. The use
of HurtLex also succeeded in improving the per-
formance on both LSVC-based and LSTM-based
systems. We can see that HurtLex is able to im-
prove the recall in most of the cases. Our further
investigation shows that systems with HurtLex are
able to detect more abusive contents, noted by the
increases of true positives. The OffensEval train-
ing set always achieves the best performance when
tested on three other datasets. On the other hand,
the Harassment dataset always presents the larger
drop in performance when used as training data.
Training the models on the Harassment dataset
lead to a very low result even in the in-domain
setting. The highest result on the Harassment
dataset is only .418 F -score, achieved by LSTM
with HurtLex 4, while when trained on the other
datasets our models are able to reach above .600
F -score. Upon further investigation, we found,
that Golbeck et al. (2017) only used a limited set of
keywords, which contributes to limit their dataset
coverage. Overall, we argue that there are good
arguments in favor of our hypothesis that a system
trained on datasets with a broader coverage of phe-
nomena will be more robust to detect other kinds
of abusive language (see the OffensEval results).

5 Cross-lingual Classification

We aim to experiment with cross-lingual abusive
language classification. As far as our knowledge
goes, there is still no work which focuses on inves-
tigating the feasibility of cross-lingual classifica-
tion in the abusive language area. We will explore
two scenarios, in-domain and out-domain classi-
fication, in four different languages, namely En-
glish, Spanish, Italian, and German. Again, we
will test HurtLex in this experiment.
Model. We build four systems for each in-domain
and out-domain experiments. One system of each
scenario is built based on LSVC with unigram fea-
tures, while three other systems are built based on
a LSTM architecture. Here we describe three sys-
tems which are based on LSTM:

(a). LSTM + WE. First, we exploit LSTM with
4Marwa et al. (2018) claimed to get a higher result, but

that paper did not give a complete information about system
configuration they used.

Figure 1: Joint-learning model architecture.

monolingual word embedding. We adopt
a similar model as in cross-domain classi-
fication where we use machine translation
(Google Translate5) to translate training data
from source to target language. In this model,
we use pre-trained word embedding from
FastText6.

(b). JL + ME. We also propose a joint-learning
model with multilingual word embedding.
We take advantage of the availability of mul-
tilingual word embeddings7 to build a joint-
learning model. Figure 1 summarize how
the data is transformed and learned in this
model. We create bilingual training data
automatically by using Google Translate to
translate the data in both directions (training
from source to target language and testing
from target to source language), then using it
as training data for the two LSTM-based ar-
chitectures (similar architecture of the model
in cross-domain experiment). We concate-
nate these two architectures before the output
layer, which produces the final prediction. In
the, we expect to reduce some of the noise
from the translation while keeping the origi-
nal structure of the training set.

5http://translate.google.com/
6https://fasttext.cc/
7https://github.com/facebookresearch/

MUSE
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Dataset LSVC + BoW LSTM + WE JL + ME JL + ME + HL
Test Train P R F1 ∆ P R F1 ∆ P R F1 P R F1

EN-Evalita IT-Evalita .491 .739 .590 .004 .479 .824 .605 .019 .480 .935 .635 .501 .761 .605
ES-IberEval .561 .704 .624 -.030 .551 .615 .581 .081 .550 .711 .620 .543 .763 .635
EN-Evalita .557 .637 .594 .518 .917 .662 - - - - - -

IT-Evalita EN-Evalita .209 .125 .156 .698 .179 .129 .150 .682 .453 .520 .484 .491 .502 .497
ES-IberEval .611 .611 .611 .243 .583 .287 .385 .447 .698 .387 .506 .666 .654 .660
IT-Evalita .786 .934 .854 .714 .996 .832 - - - - - -

ES-IberEval EN-Evalita .640 .545 .589 .151 .524 .829 .642 .118 .627 .721 .670 .604 .798 .687
IT-Evalita .575 .528 .550 .190 .474 .455 .464 .296 .587 .636 .610 .586 .696 .637
ES-IberEval .739 .742 .740 .761 .759 .760 - - - - - -

Table 3: Results on in-domain (AMI) cross-lingual abusive language identification (EN, ES,IT).

Dataset LSVC + BoW LSTM + WE JL + ME JL + ME + HL
Test Train P R F1 ∆ P R F1 ∆ P R F1 P R F1

EN-Waseem ES-HatEval .498 .353 .413 .318 .519 .524 .522 .244 .591 .414 .487 .532 .523 .528
IT-Evalita .470 .248 .325 .406 .481 .199 .282 .484 .497 .156 .238 .566 .311 .401
DE-GermEval .547 .323 .406 .325 .505 .388 .439 .327 .545 .182 .273 .350 .456 .396
EN-Waseem .817 .662 .731 .760 .771 .766 - - - - - -

ES-HatEval EN-Waseem .464 .286 .354 .308 .489 .323 .389 .284 .332 .708 .452 .426 .351 .384
IT-Evalita .517 .234 .323 .239 .620 .443 .517 .156 .626 .506 .559 .602 .647 .623
DE-GermEval .495 .429 .459 .203 .450 .503 .475 .198 .510 .341 .409 .516 .446 .478
ES-HatEval .606 .730 .662 .615 .744 .673 - - - - - -

IT-Evalita EN-Waseem .311 .700 .431 .423 .300 .709 .422 .410 .306 .836 .448 .301 .743 .428
ES-HatEval .502 .538 .519 .335 .424 .724 .534 .298 .439 .829 .574 .462 .724 .564
DE-GermEval .569 .268 .364 .490 .486 .377 .425 .407 .369 .730 .490 .593 .590 .592
IT-Evalita .786 .934 .854 .714 .996 .832 - - - - - -

DE-GermEval EN-Waseem .442 .178 .254 .196 .421 .189 .261 .311 .436 .136 .208 .456 .188 .266
ES-HatEval .438 .254 .321 .129 .398 .607 .481 .091 .361 .726 .482 .395 .359 .377
IT-Evalita .371 .656 .474 -.024 .369 .730 .490 .082 .362 .862 .510 .354 .909 .509
DE-GermEval .578 .369 .450 .799 .446 .572 - - - - - -

Table 4: Results on out-domain cross-lingual abusive language identification (EN, ES, IT, DE).

(c). JL + ME + HL. Finally, we also experi-
ment the use of HurtLex in our joint-learning
model, by simply concatenating its represen-
tation into both LSTM model in source and
target language.

Dataset and Evaluation We use the AMI datasets
(with topical focus on misogyny identification) for
the in-domain experiment, in three languages, i.e.
English (EN-Evalita), Spanish (ES-Ibereval), and
Italian (IT-Evalita). For English, we decide to use
the Evalita one due to its larger size. For the out-
domain experiment, we use Waseem (EN), HatE-
val (ES), AMI-Evalita (IT-Evalita in the table, IT),
and GermEval (DE). We use precision, recall, and
F -score in positive class as evaluation metric.
Results. Table 3 shows the results of the in-
domain experiments, while out-domain results can
be seen in Table 4. For the in-domain experi-
ment, our joint-learning based systems are able
to outperform two other systems based on LSVC
and LSTM with monolingual embeddings. Fur-
thermore, HurtLex succeeded to improve the sys-
tem performance, except when systems are tested
on English datasets. LSCV models were outper-
formed by deep learning-based systems in the out-
domain experiment. Our joint-learning based sys-

tem always gives the best performance on all set-
tings (except when trained on GermEval and tested
on Waseem, where LSTM with monolingual em-
beddings performs better). HurtLex is only able
to improve 7 out of 12 results based on F -score,
where in most cases it succeeds to improve the re-
call. This result is consistent with in cross-domain
experiments in Section 3. The out-domain results
are generally lower than in-domain ones. A lot of
variables could influence the difficulty of the out-
domain scenario, which calls for deeper investiga-
tions. Some of them are discussed in Section 6.

6 Discussion

We discuss some of the challenges which con-
tribute to make the cross-domain and cross-lingual
abusive language detection tasks difficult. In par-
ticular we will focus on some issues related to the
presence of swear words in these kinds of texts.
The different uses of swear words. As described
in Section 3, the datasets we considered have dif-
ferent focuses w.r.t. the abusive phenomena cap-
tured, and this impacts on the lexical distribu-
tion in each dataset. Based on a further analysis
we observed that in datasets with a general topi-
cal focus such as OffensEval, the abusive tweets
are marked by some common swear words such
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as “fuck”, “shit”, and “ass”. While in datasets
featured by a specific hate target, such as the
AMI dataset (misogyny), the lexical keywords in
abusive tweets are dominated by specific sexist
slurs such as “bitch”, “cunt”, and “whore”. This
finding is consistent with the study of (ElSherief
et al., 2018), which conducted an analysis on hate
speech in social media based on its target. Fur-
thermore, the pragmatics of swearing could also
change from one dataset to another, depending on
the topical features.
Translation issues. As we expected, the use of
automatic machine translation (via Google Trans-
late) in our pipeline can give rise to errors in
the cross-lingual setting. In particular, we ob-
served errors in translations from English to other
languages (Italian and Spanish) on some swear
words, which are usually important clues to de-
tect abusive content. See for instance the follow-
ing cases from the EN-AMI Evalita dataset:

Original tweet (EN):
Punch that girl right in the skank
Translated tweet (IT):
Pugno quella ragazza proprio nella
Skank

Original tweet (EN):
Apparently, you can turn a hoe into a
housewife
Translated tweet (ES):
Aparentemente, puedes convertir una
azada en una ama de casa.

Translating swearing is indeed challenging. In the
first example, Google Translate is unable to pro-
vide an Italian translation for the English word
“skank” (a proper translation could be “sciac-
quetta” or “sciattona”, which means “slut”). We
found 134 occurrences of the word “skank” in EN-
AMI Evalita and 185 in the EN-HatEval dataset.
The second example shows, instead, a problem
related to context and disambiguation issues. In-
deed, the word “hoe” here is used informally in
its derogatory sense, meaning “A woman who
engages in sexual intercourse for money” (syn-
onyms: slut, whore, floozy)8. But, disregarding
the context, it is translated in Spanish by relying
on a different conventional meaning (hoe as agri-
cultural and horticultural hand tool). The term

8https://www.urbandictionary.com/
define.php?term=Hoe

“hoe” is also very frequent in the EN-AMI Evalita
(292 occurrences) and EN-HatEval dataset (348
occurrences).

7 Conclusion and Future Work

In this study, we conduct an exploratory exper-
iment on abusive language detection in cross-
domain and cross-lingual classification scenarios.
We focus on social media data, exploiting several
datasets across different domains and languages.
Based on the cross-domain experiments, we found
that training a system on datasets featured by
more general abusive phenomena will produce a
more robust system to detect other more specific
kinds of abusive languages. We also observed that
HurtLex is able to transfer knowledge between do-
mains by improving the number of true positives.
In the cross-lingual experiment, our joint-learning
systems outperformed the other systems in most
cases also in the out-domain setting. The results
presented here succeed to shed some light regard-
ing the issues and difficulties of this research di-
rection. As future work, we aim at exploring more
deeply the issue related to different coverage, top-
ical focuses and abusive phenomena characteriz-
ing the datasets in this field, taking a semantic
ontology-based approach to clearly represent the
relations between concepts and linguistic phenom-
ena involved. This will allow us to further explore
and refine the idea that combining some datasets
can produce a more robust system to detect abu-
sive language across different domains. We also
found that detecting out-domain abusive content
cross-lingual is really challenging, and the use of
domain-independent resources to transfer knowl-
edge between domains and languages an interest-
ing issue to be further explored. Finally, we will
further investigate the different uses and contexts
of swearing, which seems to play a key role in
the abusive language detection task (Holgate et al.,
2018), with impact also on experiments in cross-
domain and cross-lingual settings.
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Abstract

Code-mixing is the phenomenon of mixing the
vocabulary and syntax of multiple languages
in the same sentence. It is an increasingly
common occurrence in today’s multilingual
society and poses a big challenge when en-
countered in different downstream tasks. In
this paper, we present a hybrid architecture
for the task of Sentiment Analysis of English-
Hindi code-mixed data. Our method consists
of three components, each seeking to allevi-
ate different issues. We first generate sub-
word level representations for the sentences
using a CNN architecture. The generated
representations are used as inputs to a Dual
Encoder Network which consists of two dif-
ferent BiLSTMs - the Collective and Spe-
cific Encoder. The Collective Encoder cap-
tures the overall sentiment of the sentence,
while the Specific Encoder utilizes an atten-
tion mechanism in order to focus on individ-
ual sentiment-bearing sub-words. This, com-
bined with a Feature Network consisting of or-
thographic features and specially trained word
embeddings, achieves state-of-the-art results -
83.54% accuracy and 0.827 F1 score - on a
benchmark dataset.

1 Introduction

Sentiment Analysis (SA) is crucial in tasks like
user modeling, curating online trends, running po-
litical campaigns and opinion mining. The major-
ity of this information comes from social media
websites such as Facebook and Twitter. A large
number of Indian users on such websites can speak
both English and Hindi with bilingual proficiency.
Consequently, English-Hindi code-mixed content
has become ubiquitous on the Internet, creating
the need to process this form of natural language.

Code-mixing is defined as ”the embedding of
linguistic units such as phrases, words and mor-

∗Equal Contribution

phemes of one language into an utterance of an-
other language” (Myers-Scotton, 1993). Typi-
cally, a code-mixed sentence retains the underly-
ing grammar and script of one of the languages it
is comprised of.

Due to the lack of a formal grammar for a code-
mixed hybrid language, traditional approaches
don’t work well on such data. The spelling vari-
ations of the same words according to different
writers and scripts increase the issues faced by tra-
ditional SA systems. To alleviate this issue, we
introduce the first component of our model - it
uses CNNs to generate subword representations
to provide increased robustness to informal pecu-
liarities of code-mixed data. These representations
are learned over the code-mixed corpus.

Now, let’s consider the expression: x but y,
where x and y are phrases holding opposite sen-
timents. However, the overall expression has a
positive sentiment. Standard LSTMs work well in
classifying the individual phrases but fail to effec-
tively combine individual emotions in such com-
pound sentences (Socher et al., 2013). To address
this issue, we introduce a second component into
our model which we call the Dual Encoder Net-
work. This network consists of two parallel BiL-
STMs, which we call the Collective and Specific
Encoder. The Collective Encoder takes note of
the overall sentiment of the sentence and hence,
works well on phrases individually. On the other
hand, the Specific Encoder utilizes an attention
mechanism which focuses on individual sentiment
bearing units. This helps in choosing the correct
sentiment when presented with a mixture of senti-
ments, as in the expression above.

Additionally, we introduce a novel component,
which we call the Feature Network. It uses surface
features as well as monolingual sentence vector
representations. This helps our entire system work
well, even when presented with a lower amount of
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training examples as compared to established ap-
proaches.

We perform extensive experiments to evaluate
the effectiveness of this system in comparison to
previously proposed approaches and find that our
method outperforms all of them for English-Hindi
code-mixed sentiment analysis, reporting an accu-
racy of 83.54% and F1 score of 0.827. An ablation
of the model also shows the effectiveness of the in-
dividual components.

2 Related Work

Mohammad et al. (2013) employ surface-form and
semantic features to detect sentiments in tweets
and text messages using SVMs. Keeping in mind a
lack of computational resources, Giatsoglou et al.
(2017) came up with a hybrid framework to ex-
ploit lexicons (polarized and emotional words) as
well as different word embedding approaches in
a polarity classification model. Ensembling sim-
ple word embedding based models with surface-
form classifiers has also yielded slight improve-
ments (Araque et al., 2017).

Extending standard NLP tasks to code-mixed
data has presented peculiar challenges. Meth-
ods for POS tagging of code-mixed data obtained
from online social media such as Facebook and
Twitter has been attempted (Vyas et al., 2014) .
Shallow parsing of code-mixed data curated from
social media has also been tried (Sharma et al.,
2016). Work has also been done to support word
level identification of languages in code-mixed
text (Chittaranjan et al., 2014).

Sharma et al. (2015) tried an approach based on
lexicon lookup for text normalization and senti-
ment analysis of code-mixed data. Pravalika et al.
(2017) used a lexicon lookup approach to per-
form domain specific sentiment analysis. Other
attempts include using sub-word level composi-
tions with LSTMs to capture sentiment at mor-
pheme level (Joshi et al., 2016), or using con-
trastive learning with Siamese networks to map
code-mixed and standard language text to a com-
mon sentiment space (Choudhary et al., 2018).

3 Model Architecture

An overview of this architecture can be found in
Figure 3. Our approach is built on three compo-
nents. The first generates sub-word level repre-
sentations for words using Convolutional Neural
Networks (CNNs). This produces units that are

more atomic than words, which serve as inputs for
a sequential model.

In Section 3.2, we describe our second com-
ponent, a dual encoder network made of two Bi-
directional Long Short Term Memory (BiLSTM)
Networks that: (1) captures the overall sentiment
information of a sentence, and (2) selects the more
important sentiment-bearing parts of the sentence
in a differential manner.

Finally, we introduce a Feature Network, in
Section 3.3, built on surface features and a mono-
lingual vector representation of the sentence. It
augments our base neural network to boost classi-
fication accuracy for the task.

3.1 Generating Subword Representations

Word embeddings are now commonplace but are
generally trained for one language. They are not
ideal for code-mixed data given the transcription
of one script into another, and spelling variations
in social media data. As a single character does not
inherently provide any semantic information that
can be used for our purpose, we dismiss character-
level feature representations as a possible choice
of embeddings.

Keeping in mind the fact that code-mixed data
has innumerable inconsistencies, we use charac-
ters to generate subword embeddings (Joshi et al.,
2016). This increases the robustness of the model,
which is important for noisy social media data.
Intermediate sub-word feature representations are
learned by filters during the convolution operation.

sw1 sw2 swt

Sub-word
Representations

Max Pooling

Sub-word Level
Convolutions

sw3

Figure 1: CNNs for Generating Sub-Word Representa-
tions

Let S be the representation of the sentence. We
generate the required embedding by passing the
characters of a sentence individually into 3 layer
1-D CNN. We perform a convolution of S with a
filter F of length m, before adding a bias b and
applying a non-linear activation function g. Each
such operation generates a sub-word level feature
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map fsw.

fsw[i] = g((S[:, i : i+m− 1] ∗ F ) + b) (1)

Here, S[:, i : i + m − 1] is a matrix of (i)th to
(i +m − 1)th character embeddings and g is the
ReLU activation function. Thereafter, a final max-
pooling operation over p feature maps generates a
representation for individual subwords:

swi = max(fsw[p ∗ (i : i+ p− 1)]) (2)

A graphical representation of the architecture
can be seen in Figure 1

3.2 Dual Encoder

We utilize a combination of two different encoders
in our model.

3.2.1 Collective Encoder
The collective encoder, built over a BiLSTM, aims
to learn a representation for the overall sentiment
of the sentence. A graphical representation of this
encoder is in Figure 2(A). It takes as input the
subword representation of the sentence. The last
hidden state of the BiLSTM i.e. ht, encapsulates
the overall summary of the sentence’s sentiment,
which is denoted by cmrc.

3.2.2 Specific Encoder
The specific encoder is similar to the collective en-
coder, in that it takes as input a subword repre-
sentation of the sentence and is built over LSTMs,
with one caveat - an affixed attention mechanism.
This allows for selection of subwords which con-
tribute the most towards the sentiment of the input
text. It can be seen in Figure 2(B).

Identifying which subwords play a significant
role in deciding the sentiment is crucial. The spe-
cific encoder generates a context vector cmrs to
this end. We first concatenate the forward and
backward states to obtain a combined annotation
(k1, k2, . . . , kt). Taking inspiration from (Yang
et al., 2016), we quantify the significance of a sub-
word by measuring the similarity of an additional
hidden representation ui of each sub-word against
a sub-word level context vector X . Then, a nor-
malized significance weight αi is obtained.

ui = tanh(Wiki + bi) (3)

αi =
exp(uTi X)∑
exp(uTi X)

(4)

The context vectorX can be looked at as a high-
level representation of the question ”is it a signif-
icant sentiment-bearing unit” evaluated across the
sub-words. It is initialized randomly and learned
jointly during training. Finally, we calculate a vec-
tor cmrs as a weighted sum of the sub-word anno-
tations.

cmrs =
∑

αiki (5)

Using such a mechanism helps our model to adap-
tively select the more important sub-words from
the less important ones.

3.2.3 Fusion of the Encoders
We concatenate the outputs obtained from both
these encoders and use it as inputs to further fully
connected layers. Information obtained from both
the encoders is utilized to come up with a unified
representation of sentiment present in a sentence,

cmrsent = [cmrc; cmrs] (6)

where cmrsent represents the unified representa-
tion of the sentiment. A representation of the same
can be found in Figure 3.

3.3 Feature Network
We also use linguistic features to augment the neu-
ral network framework of our model.

• Capital words: Number of words that have
only capital letters

• Extended words: Number of words with mul-
tiple contiguous repeating characters.

• Aggregate positive and negative sentiments:
Using SentiWordNet (Esuli and Sebastiani,
2006) for every word bar articles and con-
junctions, and combining the sentiment po-
larity values into net positive aggregate and
net negative aggregate features.

• Repeated exclamations and other punctua-
tion: Number of sets of two or more contigu-
ous punctuation.

• Exclamation at end of sentence: Boolean
value.

• Monolingual Sentence Vectors: Bojanowski
et al. (2017)’s method is used to train word
vectors for Hindi words in the code-mixed
sentences.

373



sw1 sw2 sw3 swt

←
ht

cmrc = ht

←
h1

←
h2

←
h3

Sub-word
Representations

BiLSTM Layer

sw1 sw2 sw3 swt

cmrs =
t

∑
i=1

αiki

←
k1

Sub-word
Representations

BiLSTM Layer

Representation of the
Specific Sentiment of the
Sentence

α1 α2 αtα3
Attention Weights

(A) Collective Encoder 
Models the overall sentiment of the sentence

(B) Specific Encoder 
Models the specific sentiments of the sentence

→
ht

→
h1

→
h2

→
h3

Representation of the
Collective Sentiment of

the Sentence

←
k2

←
k3

←
kt

→
k 1

→
k 2

→
k 3

→
k t

Figure 2: Parts of the Dual Encoder Network

Method Accuracy F1-score

SVM (Uni+Bigram) (Pang and Lee, 2008) 52.96% 0.3773
NBSVM (Uni+Bigram) (Wang and Manning, 2012) 62.5% 0.5375

MNB (Uni+Bigram) (Wang and Manning, 2012) 66.36% 0.6046
MNB (Tf-Idf) (Wang and Manning, 2012) 63.53% 0.4783

Lexicon Lookup (Sharma et al., 2015) 51.15% 0.252
Char-LSTM (Joshi et al., 2016) 59.8% 0.511

Subword-LSTM (Joshi et al., 2016) 69.7% 0.658
FastText (Joulin et al., 2017) 46.39% 0.505

SACMT (Choudhary et al., 2018) 77.3% 0.759
CMSA (Proposed) 83.54% 0.827

Table 1: Comparing against previous approaches

3.4 CMSA

The entire model is shown in Figure 3. Sub-word
representations are fed into both the specific and
the collective encoder. The outputs of the encoders
are concatenated with each other, and further with
the result of the Feature Network. Subsequently,
these are passed through multiple fully connected
layers to make the prediction. This architecture
allows us to capture sentiment on the morphemic,
syntactic and semantic levels simultaneously and
learn which parts of a sentence provide the most
value to its sentiment.

This system enables us to combine the best of
neural networks involving attention mechanisms
with surface and semantic features that are tradi-
tionally used for sentiment analysis.

4 Experiments And Results

4.1 Dataset

We use the dataset released by (Joshi et al., 2016).
It is made up of 3879 code-mixed English-Hindi

sentences which were collected from public Face-
book pages popular in India.

4.2 Baselines
We compare our approach with the following:

• SVM (Pang and Lee, 2008): Uses SVMs
with ngrams as features.

• NBSVM (Wang and Manning, 2012): Uses
Naive Bayes and SVM with ngrams as fea-
tures.

• MNB (Wang and Manning, 2012): Uses
Multinomial Naive Bayes with various fea-
tures.

• Lexicon Lookup (Sharma et al., 2015): The
code-mixed sentences are first transliterated
from Roman to Devanagari. Thereafter, sen-
timent analysis is done using a lexicon based
approach.

• Char-LSTM and Sub-word-LSTM (Joshi
et al., 2016): Character and sub-word level
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Figure 3: Complete Architecture of CMSA.

embeddings are passed to LSTM for classifi-
cation.

• FastText (Joulin et al., 2017): Word Embed-
dings utilized for classification. It has the
ability to handle OoV words as well.

• SACMT (Choudhary et al., 2018): Siamese
networks are used to map code-mixed and
standard sentences to a common sentiment
space.

5 Results and Analysis

From Table 1, it is clear that that CMSA outper-
forms the state-of-the-art techniques by 6.24% in
accuracy and 0.068 in F1-score. We observe that
sentence vectors (FastText) alone are not suitable
for this task. A possible reason for this is the pres-
ence of two different languages.

There is a significant difference in accuracy be-
tween Subword-LSTM and Char-LSTM, as seen
in Table 1, which confirms our assumption about
subword-level representations being better for this
task as compared to character-level embeddings.
Amongst the baselines, SACMT performed the
best. However, mapping two sentences into a com-
mon space does not seem to be enough for senti-
ment classification. With a combination of differ-

ent components, our proposed method is able to
overcome the shortcomings of each of these base-
lines and achieve significant gains.

5.1 Effect of different Encoders

Method Accuracy F1-score
Specific Encoder 80.2% 0.801

Collective Encoder 77.3% 0.795
Specific + Collective (CMSA) 83.54% 0.827

Table 2: Different encoding mechanisms with Feature
Network

We experiment with different encoders used in
the dual encoder network. From Table 2, we can
see that CMSA > Collective Encoder > Specific
Encoder, for both accuracy and F1 score. A com-
bination of the two encoders provides a better sen-
timent classification model which validates our
initial hypothesis of using two separate encoders.

5.2 Effect of Different Model Components

System Accuracy F1-score
Dual Encoder 75.74% 0.705

Feature Network only 57.9% 0.381
CMSA 83.54% 0.827

Table 3: Effect of different model components

From Table 3, we see the performance trend as
follows: CMSA > Dual Encoder > Feature Net-
work. Although the feature network alone does
not result in better overall performance, it is still
comparable to Char-LSTM (Table 2). However,
the combination of feature network with dual en-
coder helps in boosting the overall performance.

5.3 Effect of Training Examples

Figure 4: Performance on varying training data size
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We experimented with varying numbers of
training examples used for learning the model pa-
rameters. Different models were trained on 500,
1000, 1500 and 2000 examples. We observed
that the performance of CMSA was greater than
Subword-LSTM and SACMT at each point. This
can be seen in Figure 4. One of the reasons for the
same is the feature network in CMSA which helps
in better performance even with lesser number of
training examples.

6 Conclusion

We propose a hybrid approach that combines re-
current neural networks utilizing attention mech-
anisms, with surface features, yielding a unified
representation that can be trained to classify sen-
timents. We conduct extensive experiments on a
real world code-mixed social media dataset, and
demonstrate that our system is able to achieve an
accuracy of 83.54% and an F1-score of 0.827,
outperforming state-of-the-art approaches for this
task. In the future, we’d like to look at varying the
attention mechanism in the model, and evaluating
how it performs with a larger training set.
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Abstract

Existing document embedding approaches
mainly focus on capturing sequences of words
in documents. However, some document clas-
sification and regression tasks such as essay
scoring need to consider discourse structure of
documents. Although some prior approaches
consider this issue and utilize discourse struc-
ture of text for document classification, these
approaches are dependent on computationally
expensive parsers. In this paper, we propose
an unsupervised approach to capture discourse
structure in terms of coherence and cohesion
for document embedding that does not require
any expensive parser or annotation. Extrin-
sic evaluation results show that the document
representation obtained from our approach im-
proves the performance of essay Organization
scoring and Argument Strength scoring.

1 Introduction

Document embedding is important for many NLP
tasks such as document classification (e.g., es-
say scoring and sentiment classification) (Le and
Mikolov, 2014; Liu et al., 2017; Wu et al.,
2018; Tang et al., 2015) and summarization.
While embedding approaches can be supervised,
semi-supervised and unsupervised, recent studies
have largely focused on unsupervised and semi-
supervised approaches in order to utilize large
amounts of unlabeled text and avoid expensive an-
notation procedures.

In general, a document is a discourse where
sentences are logically connected to each other to
provide comprehensive meaning. Discourse has
two important properties: coherence and cohesion
(Halliday, 1994). Coherence refers to the seman-
tic relatedness among sentences and logical order
of concepts and meanings in a text. For example,
“I saw Jill on the street. She was going home.” is
coherent whereas “I saw Jill on the street. She has
two sisters.” is incoherent. Cohesion refers to the

use of linguistic devices that hold a text together.
Example of these linguistic devices include con-
junctions such as discourse indicators (DIs) (e.g.,
“because” and “for example”), coreference (e.g.,
“he” and “they”), substitution, ellipsis etc.

Some text classification and regression tasks
need to consider discourse structure of text in
addition to dependency relations and predicate-
argument structures. One example of such tasks
is essay scoring, where discourse structure (e.g.,
coherence and cohesion) plays a crucial role, es-
pecially when considering Organization and Argu-
ment Strength criteria, since they refer to logical-
sequence awareness in texts. Organization refers
to how good an essay structure is, where well-
structured essays logically develop arguments and
state positions by supporting them (Persing et al.,
2010). Argument Strength means how strongly an
essay argues in favor of its thesis to persuade the
readers (Persing and Ng, 2015).

An example of the relation between coherence
and an essay’s Organization is shown in Figure 1.
The high-scored essay (i.e., Organization score of
4) first states its position regarding the prompt
and then provides several reasons to strengthen the
claim. It is considered coherent because it follows
a logical order. However, the low-scored essay
is not clear on its position and what it is arguing
about. Therefore, it can be considered incoherent
since it lacks logical sequencing.

Previous studies on document embedding have
primarily focused on capturing word similarity,
word dependencies and semantic information of
documents (Le and Mikolov, 2014; Liu et al.,
2017; Wu et al., 2018; Tang et al., 2015). How-
ever, less attention has been paid to capturing dis-
course structure for document embedding in an
unsupervised manner and no prior work applies
unsupervised document representation learning to
essay scoring. In short, it has not yet been ex-
plored how some of the discourse properties can
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Coherent Essay: Organization Score = 4 Incoherent Essay: Organization Score = 2.5

There is no doubt in the fact that we live under the full reign of
science, technology and industrialization. Our lives are
dominated by them in every aspect. …………… In other words,
what I am trying to say more figuratively is that in our world
of science, technology and industrialization there is no really
place for dreaming and imagination.

One of the reasons for the disappearing of the dreams and the
imagination from our life is one that I really regret to mention,
that is the lack of time. We are really pressed for time
nowadays …………

The world we are living in is without any doubt a modern
and civilized one. It is not like the world five hundred years
ago, it is not even like the one fifty years ago. Perhaps we -
the people who live nowadays, are happier than our
ancestors, but perhapswe are not.

The strange thing is that we judge and analyse their world
without knowing it and maybe without trying to know it.
The only thing that is certain is that the world is changing
and it is changing so fast that even we cannot notice it.
Sciece has developed to such an extent that it is difficult to
believe this can be true. …………

Prompt: Some people say that in our modern world , dominated by science, technology and 
industrialization, there is no longer a place for dreaming and imagination. What is your opinion? 

Figure 1: Example of coherent and incoherent ICLE essays with their Organization score.

be included in text embedding without an expen-
sive parser and how document embeddings affect
essay scoring tasks.

In this paper, we propose an unsupervised
method to capture discourse structure in terms
of cohesion and coherence for document embed-
ding. We train a document encoder with unla-
beled data which learns to discriminate between
coherent/cohesive and incoherent/incohesive doc-
uments. We then use the pre-trained document en-
coder to obtain feature vectors of essays for Orga-
nization and Argument Strength score prediction,
where the feature vectors are mapped to scores by
regression. The advantage of our approach is that
it is fully unsupervised and does not require any
expensive parser or annotation. Our results show
that capturing discourse structure in terms of co-
hesion and coherence for document representation
helps to improve the performance of essay Orga-
nization scoring and Argument Strength scoring.
We make our implementation publicly available.1

2 Related Work

The focus of this study is the unsupervised en-
capsulation of discourse structure (coherence and
cohesion) into document representation for es-
say scoring. A popular approach for document
representation is the use of fixed-length features
such as bag-of-words (BOW) and bag-of-ngrams
due to their simplicity and highly competitive re-
sults (Wang and Manning, 2012). However, such
approaches fail to capture the semantic similarity
of words and phrases since they treat each word or

1Our implementation is publicly available at
https://github.com/FarjanaSultanaMim/
DiscoShuffle

phrase as a discrete token.

Several methods for document representation
learning have been introduced in recent years. One
popular unsupervised method is doc2vec (Le and
Mikolov, 2014), where a document is mapped to a
unique vector and every word in the document is
also mapped to a unique vector. Then, the docu-
ment vector and and word vectors are either con-
catenated or averaged to predict the next word
in a context. Liu et al. (2017) used a convo-
lutional neural network (CNN) to capture longer
range semantic structure within a document where
the learning objective predicted the next word.
Wu et al. (2018) proposed Word Mover’s Em-
bedding (WME) utilizing Word Mover’s Distance
(WMD) that considers both word alignments and
pre-trained word vectors to learn feature represen-
tation of documents. Tang et al. (2015) proposed
a semi-supervised method called Predictive Text
Embedding (PTE) where both labeled information
and different levels of word co-occurrence were
encoded in a large-scale heterogeneous text net-
work, which was then embedded into a low di-
mensional space. Although these approaches have
been proven useful for several document classifi-
cation and regression tasks, their focus is not on
capturing the discourse structure of documents.

One exception is the study by Ji and Smith
(2017) who illustrated the role of discourse struc-
ture for document representation by implement-
ing a discourse structure (defined by RST) aware
model and showed that their model improves text
categorization performance (e.g., sentiment clas-
sification of movies and Yelp reviews, and predic-
tion of news article frames). The authors utilized
an RST-parser to obtain the discourse dependency
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tree of a document and then built a recursive neu-
ral network on top of it. The issue with their ap-
proach is that texts need to be parsed by an RST
parser which is computationally expensive. Fur-
thermore, the performance of RST parsing is de-
pendent on the genre of documents (Ji and Smith,
2017).

Previous studies have modeled text coher-
ence (Li and Jurafsky, 2016; Joty et al., 2018;
Mesgar and Strube, 2018). Farag et al. (2018)
demonstrated that state-of-the-art neural auto-
mated essay scoring (AES) is not well-suited for
capturing adversarial input of grammatically cor-
rect but incoherent sequences of sentences. There-
fore, they developed a neural local coherence
model and jointly trained it with a state-of-the-art
AES model to build an adversarially robust AES
system. Mesgar and Strube (2018) used a local
coherence model to assess essay scoring perfor-
mance on a dataset of holistic scores where it is
unclear which criteria of the essay the score con-
siders.

We target Organization and Argument Strength
dimension of essays which are related to coher-
ence and cohesion. Persing et al. (2010) pro-
posed heuristic rules utilizing various DIs, words
and phrases to capture the organizational struc-
ture of texts. Persing and Ng (2015) used sev-
eral features such as part-of-speech, n-grams, se-
mantic frames, coreference, and argument com-
ponents for calculating Argument Strength in es-
says. Wachsmuth et al. (2016) achieved state-
of-the-art performance on Organization and Argu-
ment Strength scoring of essays by utilizing argu-
mentative features such as sequence of argumen-
tative discourse units (e.g., (conclusion, premise,
conclusion)). However, Wachsmuth et al. (2016)
used an expensive argument parser to obtain such
units.

3 Base Model

3.1 Overview

Our base model consists of (i) a base document
encoder, (ii) auxiliary encoders, and (iii) a scor-
ing function. The base document encoder pro-
duces a vector representation hbase by capturing
a sequence of words in each essay. The auxiliary
encoders capture additional essay-related informa-
tion that is useful for essay scoring and produce
a vector representation haux. By taking hbase and
haux as input, the scoring function outputs a score.

Specifically, these encoders first produce the
representations, hbase and haux. Then, these repre-
sentations are concatenated into one vector, which
is mapped to a feature vector z.

z = tanh(W · [hbase;haux]) , (1)

where W is a weight matrix. Finally, z is mapped
to a scalar value by the sigmoid function.

y = sigmoid(w · z+ b) ,

where w is a weight vector, b is a bias value, and
y is a score in the range of (0, 1). In the follow-
ing subsections, we describe the details of each en-
coder.

3.2 Base Document Encoder
The base document encoder produces a document
representation hbase in Equation 1. For the base
document encoder, we use the Neural Essay As-
sessor (NEA) model proposed by Taghipour and
Ng (2016). This model uses three types of layers:
an embedding layer, a Bi-directional Long Short-
Term Memory (BiLSTM) (Schuster and Paliwal,
1997) layer and a mean-over-time layer.

Given the input essay of T words w1:T =
(w1, w2, · · · , wT ), the embedding layer (Emb)
produces a sequence of word embeddings w1:T =
(w1,w2, · · · ,wT ).

w1:T = Emb(w1:T ) ,

where each word embedding is a dword dimen-
sional vector, i.e. wi ∈ Rdword

.
Then, taking x1:T as input, the BiLSTM layer

produces a sequence of contextual representations
h1:T = (h1,h2, · · · ,hT ).

h1:T = BiLSTM(x1:T ) ,

where each representation hi is Rdhidden
.

Finally, taking h1:T as input, the mean-over-
time layer produces a vector averaged over the se-
quence.

hmean =
1

T

T∑

t=1

ht . (2)

We use this resulting vector as the base document
representation, i.e. hbase = hmean.

3.3 Auxiliary Encoders
The auxiliary encoders produce a representation of
essay-related information haux in Equation 1. We
provide two encoders that capture different types
of essay-related information.
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They are only … because they pass exams.

The majority … instead of activities.
I believe that … because the students ...

Moreover, some are … percentage.
They are only … for they pass exams.

Moreover, some are … percentage.
They are only … for they pass exams.

The majority … instead of activities.
I believe that … because the students ...

Figure 2: Proposed method for unsupervised learning of discourse-aware text representation utilizing coher-
ent/incoherent and cohesive/incohesive texts and use of the discourse-aware text embeddings for essay scoring.

Paragraph Function Encoder (PFE). Each
paragraph in an essay plays a different role. For
instance, the first paragraph tends to introduce the
topic of the essay, and the last paragraph tends to
sum up the whole content and make some conclu-
sions. Here, we capture such paragraph functions.

Specifically, we obtain paragraph function la-
bels of essays using Persing et al. (2010)’s heuris-
tic rules.2 Persing et al. (2010) specified four
paragraph function labels: Introduction (I), Body
(B), Rebuttal (R) and Conclusion (C). We repre-
sent these labels as vectors and incorporate them
into the base model. The paragraph function label
encoder consists of two modules, an embedding
layer and a BiLSTM layer.

We assume that an essay consists of M para-
graphs, and the i-th paragraph has already been
assigned a function label pi. Given the sequence
of paragraph function labels of an essay p1:M =
(p1, p2, ..., pM ), the embedding layer (Embpara)
produces a sequence of label embeddings, i.e.
p1:M = Embpara(p1:M ), where each embedding
pi is Rdpara

. Then, taking p1:M as input, the BiL-
STM layer produces a sequence of contextual rep-
resentations h1:M = BiLSTM(p1:M ), where hi

is RdPFE
. We use the last hidden state hM as the

paragraph function label sequence representation,
i.e. haux = hM .

Prompt Encoder (PE). As shown in Figure 1,
essays are written for a given prompt, where the
prompt itself can be useful for essay scoring.

2See http://www.hlt.utdallas.edu/
˜persingq/ICLE/orgDataset.html for further
details.

Based on this intuition, we incorporate prompt in-
formation.

The prompt encoder uses an embed-
ding layer and a Long Short-Term Memory
(LSTM) (Hochreiter, Sepp and Schmidhuber,
Jürgen, 1997) layer to produce a prompt repre-
sentation. Formally, we assume that the input is a
prompt of N words, w1:N = (w1, w2, · · · , wN ).
First, the embedding layer maps the input prompt
w1:N to a sequence of word embeddings, w1:N ,
where wi is Rdprompt

. Then, taking w1:N as input,
the LSTM layer produces a sequence of hidden
states, h1:N = (h1,h2, · · · ,hN ), where hi is
RdPE

. The last hidden state is regarded as the
resulting representation, i.e. haux = hN .

4 Proposed Method

4.1 Overview

Figure 2 summarizes the proposed method. First,
we pre-train a base document encoder (Sec-
tion 3.2) in an unsupervised manner. The pretrain-
ing is motivated by the following hypotheses: (i)
artificially corrupted incoherent/incohesive docu-
ments lack logical sequencing, and (ii) training a
base document encoder to differentiate between
the original and incoherent/incohesive documents
makes the encoder logical sequence-aware.

The pre-training is done in two steps. First, we
pre-train the document encoder with large-scale
unlabeled essays. Second, we pre-train the en-
coder using only the unlabeled essays of target
corpus used for essay scoring. We expect that
this fine-tuning alleviates the domain mismatch
between the large-scale essays and target essays
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(e.g., essay length). Finally, the pre-trained en-
coder is then re-trained on the annotations of essay
scoring tasks in a supervised manner.

4.2 Pre-training

We artificially create incoherent/incohesive docu-
ments by corrupting them with random shuffling
methods: (i) sentences, (ii) only DIs and (iii) para-
graphs. Figure 2 shows examples of original and
corrupted documents. We shuffle DIs since they
are important for representing the logical connec-
tion between sentences. For example, “Mary did
well although she was ill” is logically connected,
but “Mary did well but she was ill.” and “Mary
did well. She was ill.” lack logical sequencing be-
cause of improper and lack of DI usage, respec-
tively. Paragraph shuffling is also important since
coherent essays have sequences like Introduction-
Body-Conclusion to provide a logically consistent
meaning of the text.

Specifically, we treat the pre-training as a bi-
nary classification task where the encoder classi-
fies documents as coherent/cohesive or not.

P (y(d) = 1|d) = σ(wunsup · hmean) ,

where y is a binary function mapping from a doc-
ument d to {0, 1}, in which 1 represents the doc-
ument is coherent/cohesive and 0 represents not.
The base document representation hmean (Eq. 2)
is multiplied with a weight vector wunsup, and the
sigmoid function σ returns a probability that the
given document d is coherent/cohesive.

To train the model parameters, we minimize the
binary cross-entropy loss function,

L = −
N∑

i=1

yilog(P (y(di) = 1|di)) +

(1− yi)log(1− P (y(di) = 1|di)) ,

where yi is a gold-standard label of coher-
ence/cohesion of di and N is the total number of
documents. Note that yi is automatically assigned
in the corruption process where an original docu-
ment has a label of 1 and an artificially corrupted
document has a label of 0.

5 Experiments

5.1 Setup

We use five-fold cross-validation for evaluating
our models with the same split as Persing et al.

(2010); Persing and Ng (2015) and Wachsmuth
et al. (2016). The reported results are aver-
aged over five folds. However, our results are
not directly comparable since our training data is
smaller as we reserve a development set (100 es-
says) for model selection while they do not. We
use the mean squared error as an evaluation mea-
sure.

Data We use the International Corpus of Learner
English (ICLE) (Granger et al., 2009) for essay
scoring which contains 6,085 essays and 3.7 mil-
lion words. Most of the ICLE essays (91%) are
argumentative and vary in length, having 7.6 para-
graphs and 33.8 sentences on average (Wachsmuth
et al., 2016). Some essays have been anno-
tated with different criteria among which 1,003
essays are annotated with Organization scores
and 1,000 essays are annotated with Argument
Strength scores. Both scores range from 1 to 4
at half-point increments. For our scoring task, we
utilize the 1,003 essays.

To pre-train the document encoder, we use
35,222 essays from four datasets, (i) the Kaggle’s
Automated Student Assessment Prize (ASAP)
dataset3 (12,976) (ii) TOEFL11 (Blanchard et al.,
2013) dataset (12,100), (iii) The International Cor-
pus Network of Asian Learners of English (IC-
NALE) (Ishikawa, 2013) dataset (5,600), and (iv)
the ICLE essays not used for Organization and Ar-
gument Strength scoring (4,546).4

See Appendix A and B for further details on the
hyperparameters and preprocessing.

5.2 Results and Discussion

From two baseline models, we report the best
model for each task (Base+PFE for Organization,
Base+PE for Argument Strength).

Table 1 indicates that the proposed unsuper-
vised pre-training improves the performance of
Organization and Argument Strength scoring.
These results support our hypothesis that training
with random corruption of documents helps a doc-
ument encoder learn logical sequence-aware text
representations. In most cases, fine-tuning the en-
coder for each scoring task again helps to improve
the performance.

The results indicate that paragraph shuffling

3https://www.kaggle.com/c/asap-aes
4During pre-training with paragraph shuffled essays, we

use only 16,646 essays (TOEFL11 and ICLE essays) since
ASAP and ICNALE essays have a single paragraph.
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Model Shuffle Type Fine-tuning Mean Squared Error
Organization Argument Strength

Baseline - - 0.182 0.248

Proposed

Sentence 0.187 0.244
Sentence X 0.186 0.244*

Discourse Indicator 0.187 0.242
Discourse Indicator X 0.193 0.246
Paragraph 0.172* 0.236*

Paragraph X 0.169* 0.231*

Persing et al. (2010) 0.175 -
Persing et al. (2015) - 0.244
Wachsmuth et al. (2016) 0.164 0.226

Table 1: Performance of essay scoring. ‘*’ indicates a statistical significance (Wilcoxon signed-rank test, p < 0.05)
against the baseline model. Base+PFE and Base+PE are used in Organization and Argument Strength, respectively.

is the most effective in both scoring tasks (sta-
tistically significant by Wilcoxon’s signed rank
test, p < 0.05). This could be attributed to
the fact that paragraph sequences create a more
clear organizational and argumentative structure.
Suppose that an essay first introduces a topic,
states their position, supports their position and
then concludes. Then, the structure of the essay
would be regarded as “well-organized”. More-
over, the argument of the essay would be con-
sidered “strong” since it provides support for
their position. The results suggest that such lev-
els of abstractions (e.g., Introduction-Body-Body-
Conclusion) are well captured at a paragraph-
level, but not at a sentence-level or DI-level alone.

Furthermore, a manual inspection of DIs identi-
fied by the system suggest room for improvement
in DI shuffling. First, the identification of DIs is
not always reliable. Almost half of DIs identified
by our simple pattern matching algorithm (see Ap-
pendix B) were not actually DIs (e.g., we have sur-
vived so far only external difficulties). Second, we
also found that some DI-shuffled documents are
sometimes cohesive. This happens when original
document counterparts have two or more DIs with
the more or less same meaning (e.g., since and be-
cause). We speculate that this confuses the docu-
ment encoder in the pre-training process.

6 Conclusion and Future Work

We proposed an unsupervised strategy to capture
discourse structure (i.e., coherence and cohesion)
for document embedding. We train a document
encoder with coherent/cohesive and randomly cor-
rupted incoherent/incohesive documents to make
it logical-sequence aware. Our method does not
require any expensive annotation or parser. The

experimental results show that the proposed learn-
ing strategy improves the performance of essay
Organization and Argument Strength scoring.

Our future work includes adding more unanno-
tated data for pre-training and trying other unsu-
pervised objectives such as swapping clauses be-
fore and after DIs (e.g., A because B→ B because
A). We also intend to perform intrinsic evaluation
of the learned document embedding space. More-
over, we plan to evaluate the effectiveness of our
approach on more document regression or classi-
fication tasks.
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A Hyperparameters

We use BiLSTM with 200 hidden units in each
layer for the base document encoder (dhidden =
200). For the paragraph function encoder, we
use a BiLSTM with hidden units of 200 in each
layer (dPFE = 200). For the prompt encoder, an
LSTM with an output dimension of 300 is used
(dPE = 300). We use the 50-dimensional pre-
trained word embeddings released by Zou et al.
(2013) in our base document encoder (dword =
50, dprompt = 50).

We use the Adam optimizer with a learning rate
of 0.001 and a batch size of 32. We use early stop-
ping with patience 15 (5 for pre-training), and train
the network for 100 epochs. The vocabulary con-
sists of the 90,000 and 15,000 most frequent words
for pre-training and essay scoring, respectively.
Out-of-vocabulary words are mapped to special
tokens. We perform hyperparameter tuning and
choose the best model. We tuned norm clipping
maximum values (3,5,7) and dropout rates (0.3,
0.5, 0.7, 0.9) for all models on the development
set.

B Preprocessing

We lowercase the tokens and specify an essay’s
paragraph boundaries with special tokens. During
sentence/DI shuffling for pre-training, paragraph
boundaries are not used. We collect 847 DIs from
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the Web.5 We exclude the DI “and” since it is not
always used for initiating logic (e.g milk, banana
and tea). In essay scoring data, we found 176 DIs
and average DIs per essay is around 24. In the
pre-training data, the number of DIs found is 204
and the average DIs per essay is around 13. We
identified DIs by simple string-pattern matching.

5http://www.studygs.net/wrtstr6.htm,
http://home.ku.edu.tr/˜doregan/Writing/
Cohesion.html etc.
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Abstract

A large amount of research about multimodal
inference across text and vision has been re-
cently developed to obtain visually grounded
word and sentence representations. In this
paper, we use logic-based representations as
unified meaning representations for texts and
images and present an unsupervised multi-
modal logical inference system that can ef-
fectively prove entailment relations between
them. We show that by combining seman-
tic parsing and theorem proving, the system
can handle semantically complex sentences for
visual-textual inference.

1 Introduction

Multimodal inference across image data and text
has the potential to improve understanding infor-
mation of different modalities and acquiring new
knowledge. Recent studies of multimodal in-
ference provide challenging tasks such as visual
question answering (Antol et al., 2015; Hudson
and Manning, 2019; Acharya et al., 2019) and vi-
sual reasoning (Suhr et al., 2017; Vu et al., 2018;
Xie et al., 2018).

Grounded representations from image-text pairs
are useful to solve such inference tasks. With the
development of large-scale corpora such as Visual
Genome (Krishna et al., 2017) and methods of au-
tomatic graph generation from an image (Xu et al.,
2017; Qi et al., 2019), we can obtain structured
representations for images and sentences such as
scene graph (Johnson et al., 2015), a visually-
grounded graph over object instances in an image.

While graph representations provide more inter-
pretable representations for text and image than
embedding them into high-dimensional vector
spaces (Frome et al., 2013; Norouzi et al., 2014),
there remain two challenges: (i) to capture com-
plex logical meanings such as negation and quan-

7 No cat is next to a pumpkin. (1)
7 There are at least two cats. (2)
3All pumpkins are orange. (3)

Figure 1: An example of visual-textual entailment.
An image paired with logically complex statements,
namely, negation (1), numeral (2), and quantification
(3), leads to a true (3) or false (7) judgement.

tification, and (ii) to perform logical inferences on
them.

For example, consider the task of checking if
each statement in Figure 1 is true or false under
the situation described in the image. The state-
ments (1) and (2) are false, while (3) is true. To
perform this task, it is necessary to handle seman-
tically complex phenomena such as negation, nu-
meral, and quantification.

To enable such advanced visual-textual infer-
ences, it is desirable to build a framework for rep-
resenting richer semantic contents of texts and im-
ages and handling inference between them. We
use logic-based representations as unified meaning
representations for texts and images and present
an unsupervised inference system that can prove
entailment relations between them. Our visual-
textual inference system combines semantic pars-
ing via Combinatory Categorial Grammar (CCG;
Steedman (2000)) and first-order theorem prov-
ing (Blackburn and Bos, 2005). To describe infor-
mation in images as logical formulas, we propose
a method of transforming graph representations
into logical formulas, using the idea of predicate
circumscription (McCarthy, 1986), which comple-
ments information implicit in images using the
closed world assumption. Experiments show that
our system can perform visual-textual inference
with semantically complex sentences.
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Figure 2: Overview of the proposed system. In this work, we assume the input image is processed into an FOL
structure or scene graph a priori. The system consists of three parts: (a) Graph Translator converts an image
annotated with a scene graph/FOL structure to formula M ; (b) Semantic parser maps a sentence to formula T via
CCG parsing; (c) Inference Engine checks whether M entails T by FOL theorem proving.

2 Background

There are two types of grounded meaning repre-
sentations for images: scene graphs and first-order
logic (FOL) structures. Both characterize objects
and their semantic relationships in images.

2.1 Scene Graph

A scene graph, as proposed in Johnson et al.
(2015), is a graphical representation that depicts
objects, their attributes, and relations among them
occurring in an image. An example is given in Fig-
ure 2. Nodes in a scene graph correspond to ob-
jects with their categories (e.g. woman) and edges
correspond to the relationships between objects
(e.g. touch). Such a graphical representation has
been shown to be useful in high-level tasks such
as image retrieval (Johnson et al., 2015; Schuster
et al., 2015) and visual question answering (Teney
et al., 2017). Our proposed method builds on the
idea that these graph representations can be trans-
lated into logical formulas and be used in complex
logical reasoning.

2.2 FOL Structure

In logic-based approaches to semantic represen-
tations, FOL structures (also called FOL models)
are used to represent semantic information in im-
ages (Hürlimann and Bos, 2016), An FOL struc-
ture is a pair (D, I) where D is a domain (also
called universe) consisting of all the entities in an

image and I is an interpretation function that maps
a 1-place predicate to a set of entities and a 2-place
predicate to a set of pairs of entities, and so on; for
instance, we write I(man) = {d1} if the entity
d1 is a man, and I(next to) = {(d1, d2)} if d1 is
next to d2. FOL structures have clear correspon-
dence with the graph representations of images in
that they both capture the categories, attributes and
relations holding of the entities in an image. For
instance, the FOL structure and scene graph in the
upper left of Figure 2 have exactly the same infor-
mation. Thus, the translation from graphs to for-
mulas can also work for FOL structures (see §3.1).

3 Multimodal Logical Inference System

Figure 2 shows the overall picture of the proposed
system. We use formulas of FOL with equality as
unified semantic representations for text and im-
age information. We use 1-place and 2-place pred-
icates for representing attributes and relations, re-
spectively. The language of FOL consists of (i) a
set of atomic formulas, (ii) equations of the form
t = u, and (iii) complex formulas composed of
negation (¬), conjunction (∧), disjunction (∨), im-
plication (→), and universal and existential quan-
tification (∀ and ∃). The expressive power of the
FOL language provides a structured representation
that captures not only objects and their semantic
relationships but also those complex expressions
including negation, quantification and numerals.
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Trs(D) = entity(d1) ∧ . . . ∧ entity(dn)

Trs(P ) = P (d1) ∧ . . . ∧ P (dn′)

Trs(R) = R(di1 , dj1) ∧ . . . ∧ R(din , djn)

Trc(D) = ∀x.(entity(x) ↔ (x = d1 ∨ . . . ∨ x = dn))

Trc(P ) = ∀x.(P (x) ↔ (x = d1 ∨ . . . ∨ x = dn′))

Trc(R) = ∀x∀y.(R(x, y) ↔ ((x = di1 ∧ y = dj1) ∨ . . .
∨ (x = dim ∧ y = djm)))

Table 1: Definition of two types of translation, TRs and
TRc. Here we assume that D = {d1, . . . , dn}, P =
{d1, . . . , dn′}, and R = {(di1 , dj1), . . . , (dim , djm)}.

The system takes as input an image I and a sen-
tence S and determines whether I entails S, in
other words, S is true with respect to the situation
described in I . In this work, we assume the in-
put image I is processed into a scene graph/FOL
structure GI using an off-the-shelf converter (Xu
et al., 2017; Qi et al., 2019).

To determine entailment relations between sen-
tences and images, we proceed in three steps.
First, graph translator maps a graph GI to a for-
mula M . We develop two ways of translating
graphs to FOL formulas (§3.1). Second, semantic
parser takes a sentence S as input and return a for-
mula T via CCG parsing. We improve a semantic
parser in CCG for handling numerals and quantifi-
cation (§3.2). Additionally, we develop a method
for utilizing image captions to extend GI with in-
formation obtainable from their logical formulas
(§3.3). Third, inference engine checks whether
M entails T , written M ⊢ T , using FOL theo-
rem prover (§3.4). Note that FOL theorem provers
can accept multiple premises, M1, . . . , Mn, con-
verted from images and/or sentences and check if
M1, . . . , Mn ⊢ T holds or not. Here we focus on
single-premise visual inference.

3.1 Graph Translator

We present two ways of translating graphs (or
equivalently, FOL structures) to formulas: a sim-
ple translation (Trs) and a complex translation
(Trc). These translations are defined in Ta-
ble 1. For example, consider a graph consist-
ing of the domain D = {d1, d2}, where we
have man(d1), hat(d2), red(d2) as properties and
wear(d1, d2) as relations. The simple translation
TRs gives the formula (S) below, which simply
conjoins all the atomic information.

(S) man(d1)∧hat(d2)∧ red(d2)∧wear(d1, d2)

1. A ∈ P, ¬A ∈ N , if A is an atomic formula.
2. A, ¬A ∈ P , if A is an equation of the form t=u.
3. A ∧ B, A ∨ B ∈ P , if A ∈ P and B ∈ P .
4. A ∧ B, A ∨ B ∈ N , if A ∈ N or B ∈ N .
5. A → B ∈ P , if A ∈ N and B ∈ P .
6. A → B ∈ N , if A ∈ P or B ∈ N .
7. ∀x.A, ∃x.A ∈ P , if A ∈ P .
8. ∀x.A, ∃x.A ∈ N , if A ∈ N .

Table 2: Positive (P) and negative (N ) formulas

However, this does not capture the negative in-
formation that d1 is the only entity that has the
property man; similarly for the other predicates.
To capture it, we use the complex translation Trc,
which gives the following formula:

(C) ∀x.(man(x) ↔ x = d1) ∧
∀y.(hat(y) ↔ y = d2) ∧
∀z.(red(z) ↔ z = d2) ∧
∀x∀y.(wear(x, y) ↔ (x = d1 ∧ y = d2))

This formula says that d1 is the only man in the
domain, d2 is the only hat in the domain, and
so on. This way of translation can be regarded
as an instance of Predicate Circumscription (Mc-
Carthy, 1986), which complement negative infor-
mation using the closed world assumption. The
translation Trc is useful for handling formulas with
negation and universal quantification.

One drawback here is that since (C) involves
complex formulas, it increases the computational
cost in theorem proving. To remedy this prob-
lem, we use two types of translation selectively,
depending on the polarity of the formula to be
proved. Table 2 shows the definition to classify
each FOL formula A ∈ L into positive (P) and
negative (N ) one. For instance, the formulas
∃x∃y.(cat(x) ∧ dog ∧ touch(x, y)), which corre-
spond to A cat touches a dog, is a positive for-
mula, while ¬∃x.(cat(x) ∧ white(x)), which cor-
responds to No cats are white, is a negative for-
mula.

3.2 Semantic Parser
We use ccg2lambda (Mineshima et al., 2015), a
semantic parsing system based on CCG to convert
sentences to formulas, and extend it to handle nu-
merals and quantificational sentences. In our sys-
tem, a sentence with numerals, e.g., There are (at
least) two cats, is compositionally mapped to the
following FOL formula:

(Num) ∃x∃y.(cat(x) ∧ cat(y) ∧ (x ̸= y))
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Also, to capture the existential import of universal
sentences, the system maps the sentence All cats
are white to the following one:

(Q) ∃x.cat(x) ∧ ∀y.(cat(y) → white(y))

3.3 Extending Graphs with Captions

Compared with images, captions can describe a
variety of properties and relations other than spa-
tial and visual ones. By integrating caption infor-
mation into FOL structures, we can obtain seman-
tic representations reflecting relations that can be
described only in the caption.

We convert captions into FOL structures (=
graphs) using our semantic parser. We only con-
sider the cases where the formulas obtained are
composed of existential quantifiers and conjunc-
tions. For extending FOL structures with cap-
tion information, it is necessary to analyze co-
reference between the entities occurring in sen-
tences and images. We add a new predicate to an
FOL structure if the co-reference is uniquely de-
termined.

As an illustration, consider the captions and the
FOL structure (D, I) which represents the image
shown in Figure 2.1 The captions, (1a) and (2a),
are mapped to the formulas (1a) and (2b), respec-
tively, via semantic parsing.

(1) a. The woman is calling.

b. ∃x.(woman(x) ∧ calling(x))

(2) a. The woman is wearing glasses.

b. ∃x∃y.(woman(x) ∧ glasses(y)
∧ wear(x, y))

Then, the information in (1b) and (2b) can be
added to (D, I), because there is only one woman
d1 in (D, I) and thus the co-reference between the
woman in the caption and the entity d1 is uniquely
determined. Also, a new entity d5 for glasses is
added because there are no such entities in the
structure (D, I). Thus we obtain the following
new structure (D∗, I∗) extended with the informa-
tion in the captions.

D∗ := D ∪ {d5}
I∗ := I ∪ {(glasses, {d5}), (calling, {d1}),

(wear, {(d1, d5)})}
1Note that there is a unique correspondence between FOL

structures and scene graphs. For the sake of illustration, we
use FOL structures in this subsection.

Pattern Phenomena
There is a ⟨attr⟩ ⟨attr⟩ ⟨obj⟩ . Con
There are at least ⟨number⟩ ⟨obj⟩ . Num
All ⟨obj⟩ are ⟨attr⟩ . Q
⟨obj⟩ ⟨rel⟩ ⟨obj⟩ . Rel
No ⟨obj⟩ is ⟨attr⟩ . Neg
All ⟨obj⟩ ⟨attr⟩ or ⟨attr⟩ . Con, Q
Every ⟨obj⟩ is not ⟨rel⟩ ⟨obj⟩ . Num, Rel, Neg

Table 3: Examples of sentence templates. ⟨obj⟩ : ob-
jects, ⟨attr⟩ : attributes, ⟨rel⟩ : relations.

3.4 Inference Engine

Theorem prover is a method for judging whether a
formula M entails a formula T . We use Prover92

as an FOL prover for inference. We set timeout
(10 sec) to judge that M does not entail T .

4 Experiment

We evaluate the performance of the proposed
visual-textual inference system. Concretely, we
formulate our task as image retrieval using query
sentences and evaluate the performance in terms
of the number of correctly returned images. In
particular, we focus on semantically complex sen-
tences containing numerals, quantifiers, and nega-
tion, which are difficult for existing graph repre-
sentations to handle.

Dataset: We use two datasets: Visual
Genome (Krishna et al., 2017), which con-
tains pairs of scene graphs and images, and
GRIM dataset (Hürlimann and Bos, 2016), which
annotates an FOL structure of an image and two
types of captions (true and false sentences with
respect to the image). Note that our system is fully
unsupervised and does not require any training
data; in the following, we describe only test set
creation procedure.

For the experiment using Visual Genome, we
randomly extracted 200 images as test data, and
a separate set of 4,000 scene graphs for creating
query sentences; we made queries by the follow-
ing steps. First, we prepared sentence templates
focusing on five types of linguistic phenomena:
logical connective (Con), numeral (Num), quan-
tifier (Q), relation (Rel) and negation (Neg). See
Table 3 for the templates. Then, we manually ex-
tracted object, attribute and relation types from the
frequent ones (appearing more than 30 times) in
the extracted 4,000 graphs, and created queries by

2http://www.cs.unm.edu/ mccune/prover9/
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Sentences Phenomena Count
There is a long red bus. Con 3
There are at least three men. Num 32
All windows are closed. Q 53
Every green tree is tall. Q 18
A man is wearing a hat. Rel 12
No umbrella is colorful. Neg 197
There is a train which is not red. Neg 6
There are two cups or three cups. Con, Num 5
All hairs are black or brown. Con, Q 46
A gray or black pole has two signs. Con, Num, Rel 6
Three cars are not red. Num, Neg 28
All women wear a hat. Q, Rel 2
A man is not walking on a street. Rel, Neg 76
A clock on a tower is not black. Rel, Neg 7
Two women aren’t having black hair. Num, Rel, Neg 10
Every man isn’t eating anything. Q, Rel, Neg 67

Table 4: Examples of query sentences In §4.1; Count
shows the number of images describing situations un-
der which each sentence is true.

replacing ⟨obj⟩ , ⟨attr⟩ and ⟨rel⟩ in the templates
with them. As a result, we obtained 37 semanti-
cally complex queries as shown in Table 4. To as-
sign correct images to each query, two annotators
judged whether each of the test images entails the
query sentence. If the two judgments disagreed,
the first author decided the correct label.

In the experiment using GRIM, we adopted the
same procedure to create a test dataset and ob-
tained 19 query sentences and 194 images.

One of the issues in this dataset is that annotated
FOL structures contain only spatial relations such
as next to and near; to handle queries containing
general relations such as play and sing, our sys-
tem needs to utilize annotated captions (§3.3). To
evaluate if our system can effectively extract infor-
mation from captions, we split Rel of above lin-
guistic phenomena into spatial relation (Spa-Rel;
relations about spatial information) and general re-
lation (Gen-Rel; other relations), and report the
scores separately in terms of these categories.

4.1 Experimental Results on Visual Genome

Firstly, we evaluate the performance in terms of
our Graph translator’s conversion algorithm. As
described in §3.1, there are two translation algo-
rithms; simple one that conjunctively enumerates
all relation in a graph (SIMPLE in the following),
and one that selectively employs translation based
on Predicate Circumscription (HYBRID).

Table 5 shows image retrieval scores per lin-
guistic phenomenon, macro averages of F1 scores
of queries labeled with the respective phenomena.

Phenomena (#) SIMPLE HYBRID

Con (17) 36.40 41.66
Num (9) 43.07 45.45

Q (9) 8.59 28.18
Rel (11) 25.13 35.10
Neg (11) 66.38 73.39

Table 5: Experimental results on Visual Genome (F1).
“#” stands for the number of query sentences catego-
rized into that phenomenon.

HYBRID shows better performance for all phe-
nomena than SIMPLE one, improving by 19.59%
on Q, 9.97% on Rel and 7.01% on Neg, over SIM-
PLE, suggesting that the proposed complex trans-
lation is useful for inference using semantically
complex sentences including quantifier and nega-
tion. Figure 3 shows retrieved results for a query
(a) Every green tree is tall and (b) No umbrella is
colorful, each containing universal quantifier and
negation, respectively. Our system successfully
performs inference on these queries, returning the
correct images, while excluding wrong ones (note
that the third picture in (a) contains short trees).

(a) Every green tree is tall.

(b) No umbrella is colorful.

Figure 3: Predicted images of our system; Images in
green entail the queries, while those in red do not.

Error Analysis: One of the reasons for the
lower F1 of Q is the gap of annotation rule be-
tween Visual Genome and our test set. Quan-
tifiers in natural language often involve vague-
ness (Pezzelle et al., 2018). for example, the in-
terpretation of everyone depends on what counts
as an entity in the domain. Difficulties in fixing
the interpretation of quantifiers caused the lower
performance.

The low F1 in Rel is primarily due to lexical
gaps between formulas of a query and an image.
For example, sentences All women wear a hat and
All women have a hat are the same in their mean-
ing. However, if a scene graph contains only wear
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relation, our system can handle the former query,
while not the other. In future work, we will ex-
tend our system with a knowledge insertion mech-
anism (Martı́nez-Gómez et al., 2017).

4.2 Experimental Results on GRIM

We test our system on GRIM dataset. As noted
above, the main issue on this dataset is the lack of
relations other than spatial ones. We evaluate if
our system can be enhanced using the information
contained in captions. The F1 scores of the Hybrid
system with captions are the same with the one
without captions on the sets except for Gen-Rel;3
on the subset, the F1 score of the former improves
by 60% compared to the latter, which suggests that
captions can be integrated into FOL structures for
the improved performance.

5 Conclusion

We have proposed a logic-based system to achieve
advanced visual-textual inference, demonstrating
the importance of building a framework for rep-
resenting the richer semantic content of texts and
images. In the experiment, we have shown that our
CCG-based pipeline system, consisting of graph
translator, semantic parser and inference engine,
can perform visual-textual inference with seman-
tically complex sentences, without requiring any
supervised data.
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Abstract

In this work, we consider the medical con-
cept normalization problem, i.e., the prob-
lem of mapping a health-related entity men-
tion in a free-form text to a concept in a con-
trolled vocabulary, usually to the standard the-
saurus in the Unified Medical Language Sys-
tem (UMLS). This is a challenging task since
medical terminology is very different when
coming from health care professionals or from
the general public in the form of social media
texts. We approach it as a sequence learning
problem with powerful neural networks such
as recurrent neural networks and contextual-
ized word representation models trained to ob-
tain semantic representations of social media
expressions. Our experimental evaluation over
three different benchmarks shows that neural
architectures leverage the semantic meaning
of the entity mention and significantly outper-
form an existing state of the art models.

1 Introduction

User-generated texts (UGT) on social media
present a wide variety of facts, experiences, and
opinions on numerous topics, and this treasure
trove of information is currently severely under-
explored. We consider the problem of discovering
medical concepts in UGTs with the ultimate goal
of mining new symptoms, adverse drug reactions
(ADR), and other information about a disorder or
a drug.

An important part of this problem is to translate
a text from “social media language” (e.g., “can’t
fall asleep all night” or “head spinning a little”)
to “formal medical language” (e.g., “insomnia”
and “dizziness” respectively). This is necessary
to match user-generated descriptions with medical
concepts, but it is more than just a simple matching
of UGTs against a vocabulary. We call the task of
mapping the language of UGTs to medical termi-

nology medical concept normalization. It is espe-
cially difficult since in social media, patients dis-
cuss different concepts of illness and a wide array
of drug reactions. Moreover, UGTs from social
networks are typically ambiguous and very noisy,
containing misspelled words, incorrect grammar,
hashtags, abbreviations, smileys, different varia-
tions of the same word, and so on.

Traditional approaches for concept normaliza-
tion utilized lexicons and knowledge bases with
string matching. The most popular knowledge-
based system for mapping texts to UMLS identi-
fiers is MetaMap (Aronson, 2001). This linguistic-
based system uses lexical lookup and variants by
associating a score with phrases in a sentence. The
state-of-the-art baseline for clinical and scientific
texts is DNorm (Leaman et al., 2013). DNorm
adopts a pairwise learning-to-rank technique using
vectors of query mentions and candidate concept
terms. This model outperforms MetaMap signif-
icantly, increasing the macro-averaged F-measure
by 25% on an NCBI disease dataset. However,
while these tools have proven to be effective for
patient records and research papers, they achieve
moderate results on social media texts (Nikfarjam
et al., 2015; Limsopatham and Collier, 2016).

Recent works go beyond string matching: these
works have tried to view the problem of matching
a one- or multi-word expression against a knowl-
edge base as a supervised sequence labeling prob-
lem. Limsopatham and Collier (2016) utilized
convolutional neural networks (CNNs) for phrase
normalization in user reviews, while Tutubalina
et al. (2018), Han et al. (2017), and Belousov et al.
(2017) applied recurrent neural networks (RNNs)
to UGTs, achieving similar results. These works
were among the first applications of deep learning
techniques to medical concept normalization.

The goal of this work is to study the use of deep
neural models, i.e., contextualized word represen-
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Entity from UGTs Medical Concept
no sexual interest Lack of libido
nonsexual being Lack of libido
couldnt remember long
periods of time or things

Poor long-term
memory

loss of memory Amnesia
bit of lower back pain Low Back Pain
pains Pain
like i went downhill Depressed mood
just lived day by day Apathy
dry mouth Xerostomia

Table 1: Examples of extracted social media entities
and their associated medical concepts.

tation model BERT (Devlin et al., 2018) and Gated
Recurrent Units (GRU) (Cho et al., 2014) with
an attention mechanism, paired with word2vec
word embeddings and contextualized ELMo em-
beddings (Peters et al., 2018). We investigate if
a joint architecture with special provisions for do-
main knowledge can further improve the mapping
of entity mentions from UGTs to medical con-
cepts. We combine the representation of an en-
tity mention constructed by a neural model and
distance-like similarity features using vectors of
an entity mention and concepts from the UMLS.
We experimentally demonstrate the effectiveness
of the neural models for medical concept normal-
ization on three real-life datasets of tweets and
user reviews about medications with two evalua-
tion procedures.

2 Problem Statement

Our main research problem is to investigate the
content of UGTs with the aim to learn the tran-
sition between a laypersons language and formal
medical language. Examples from Table 1 show
that an automated model has to account for the se-
mantics of an entity mention. For example, it has
to be able to map not only phases with shared n-
grams no sexual interest and nonsexual being into
the concept “Lack of libido” but also separate the
phase bit of lower back pain from the broader con-
cept “Pain” and map it to a narrower concept.

While focusing on user-generated texts on so-
cial media, in this work we seek to answer the fol-
lowing research questions.

RQ1: Do distributed representations reveal im-
portant features for medication use in user-
generated texts?

RQ2: Can we exploit the semantic similarity be-
tween entity mentions from user comments
and medical concepts? Do the neural mod-
els produce better results than the existing
effective baselines? [current research]

RQ3: How to integrate linguistic knowledge
about concepts into the models? [current
research]

RQ4: How to jointly learn concept embeddings
from UMLS and representations of health-
related entities from UGTs? [future re-
search]

RQ5: How to effectively use of contextual infor-
mation to map entity mentions to medical
concepts? [future research]

To answer RQ1, we began by collecting UGTs
from popular medical web portals and investigat-
ing distributed word representations trained on 2.6
millions of health-related user comments. In par-
ticular, we analyze drug name representations us-
ing clustering and chemoinformatics approaches.
The analysis demonstrated that similar word vec-
tors correspond to either drugs with the same ac-
tive compound or to drugs with close therapeutic
effects that belong to the same therapeutic group.
It is worth noting that chemical similarity in such
drug pairs was found to be low. Hence, these rep-
resentations can help in the search for compounds
with potentially similar biological effects among
drugs of different therapeutic groups (Tutubalina
et al., 2017).

To answer RQ2 and RQ3, we develop sev-
eral models and conduct a set of experiments on
three benchmark datasets where social media texts
are extracted from user reviews and Twitter. We
present this work in Sections 3 and 4. We discuss
RQ4 and RQ5 with research plans in Section 5.

3 Methods

Following state-of-the-art research (Limsopatham
and Collier, 2016; Sarker et al., 2018), we view
concept normalization as a classification problem.

To answer RQ2, we investigate the use of neural
networks to learn the semantic representation of an
entity before mapping its representation to a med-
ical concept. First, we convert each mention into
a vector representation using one of the following
(well-known) neural models:
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(1) bidirectional LSTM (Hochreiter and Schmid-
huber, 1997) or GRU (Cho et al., 2014)
with an attention mechanism and a hyper-
bolic tangent activation function on top of
200-dimensional word embeddings obtained
to answer RQ1;

(2) a bidirectional layer with attention on top
of deep contextualized word representations
ELMo (Peters et al., 2018);

(3) a contextualized word representation model
BERT (Devlin et al., 2018), which is a multi-
layer bidirectional Transformer encoder.

We omit technical explanations of the neural net-
work architectures due to space constraints and re-
fer to the studies above.

Next, the learned representation is concate-
nated with a number of semantic similarity fea-
tures based on prior knowledge from the UMLS
Metathesaurus. Lastly, we add a softmax layer to
convert values to conditional probabilities.

The most attractive feature of the biomedical
domain is that domain knowledge is prevailing in
this domain for dozens of languages. In particular,
UMLS is undoubtedly the largest lexico-semantic
resource for medicine, containing more than 150
lexicons with terms from 25 languages. To answer
RQ3, we extract a set of features to enhance the
representation of phrases. These features contain
cosine similarities between the vectors of an input
phrase and a concept in a medical terminology dic-
tionary. We use the following strategy, which we
call TF-IDF (MAX), to construct representations
of a concept and a mention: represent a medical
code as a set of terms; for each term, compute the
cosine distance between its TF-IDF representation
and the entity mention; then choose the term with
the largest similarity.

4 Experiments

We perform an extensive evaluation of neu-
ral models on three datasets of UGTs, namely
CADEC (Karimi et al., 2015), PsyTAR (Zolnoori
et al., 2019), and SMM4H 2017 (Sarker et al.,
2018). The basic task is to map a social media
phrase to a relevant medical concept.

4.1 Data

CADEC. CSIRO Adverse Drug Event Corpus
(CADEC) (Karimi et al., 2015) is the first richly

annotated and publicly available corpus of med-
ical forum posts taken from AskaPatient1. This
dataset contains 1253 UGTs about 12 drugs di-
vided into two categories: Diclofenac and Lipi-
tor. All posts were annotated manually for 5 types
of entities: ADR, Drug, Disease, Symptom, and
Finding. The annotators performed terminology
association using the Systematized Nomenclature
Of Medicine Clinical Terms (SNOMED CT). We
removed “conceptless” or ambiguous mentions for
the purposes of evaluation. There were 6,754 en-
tities and 1,029 unique codes in total.

PsyTAR. Psychiatric Treatment Adverse Reac-
tions (PsyTAR) corpus (Zolnoori et al., 2019) is
the second open-source corpus of user-generated
posts taken from AskaPatient. This dataset in-
cludes 887 posts about four psychiatric medica-
tions from two classes: (i) Zoloft and Lexapro
from the Selective Serotonin Reuptake Inhibitor
(SSRI) class and (ii) Effexor and Cymbalta
from the Serotonin Norepinephrine Reuptake In-
hibitor (SNRI) class. All posts were anno-
tated manually for 4 types of entities: ADR,
withdrawal symptoms, drug indications, and
sign/symptoms/illness. The corpus consists of
6556 phrases mapped to 618 SNOMED codes.

SMM4H 2017. In 2017, Sarker et al. (2018)
organized the Social Media Mining for Health
(SMM4H) shared task which introduced a dataset
with annotated ADR expressions from Twitter.
Tweets were collected using 250 keywords such
as generic and trade names for medications along
with misspellings. Manually extracted ADR ex-
pressions were mapped to Preferred Terms (PTs)
of the Medical Dictionary for Regulatory Activi-
ties (MedDRA). The training set consists of 6650
phrases mapped to 472 PTs. The test set consists
of 2500 mentions mapped to 254 PTs.

4.2 Evaluation Details

We evaluate our models based on classification
accuracy, averaged across randomly divided five
folds of the CADEC and PsyTAR corpora. For
SMM4H 2017 data, we adopted the official train-
ing and test sets (Sarker et al., 2018). Analy-
sis of randomly split folds shows that Random
KFolds create a high overlap of expressions in
exact matching between subsets (see the base-
line results in Table 2). Therefore, we set up a

1https://www.askapatient.com

395



specific train/test split procedure for 5-fold cross-
validation on the CADEC and PsyTAR corpora:
we removed duplicates of mentions and grouped
medical records we are working with into sets re-
lated to specific medical codes. Then, each set has
been split independently into k folds, and all folds
have been merged into the final k folds named
Custom KFolds. Random folds of CADEC are
adopted from (Limsopatham and Collier, 2016)
for a fair comparison. Custom folds of CADEC
are adopted from our previous work (Tutubalina
et al., 2018). PsyTAR folds are available on Zen-
odo.org2. We have also implemented a simple
baseline approach that uses exact lexical match-
ing with lowercased annotations from the training
set.

4.3 Results

Table 2 shows our results for the concept normal-
ization task on the Random and Custom KFolds of
the CADEC, PsyTAR, and SMM4H 2017 corpora.

To answer RQ2, we compare the performance
of examined neural models with the baseline
and state-of-the-art methods in terms of accuracy.
Attention-based GRU with ELMo embeddings
showed improvement over GRU with word2vec
embeddings, increasing the average accuracy to
77.85 (+3.65). The semantic information of an
entity mention learned by BERT helps to im-
prove the mapping abilities, outperforming other
models (avg. accuracy 83.67). Our experiments
with recurrent units showed that GRU consistently
outperformed LSTM on all subsets, and atten-
tion mechanism provided further quality improve-
ments for GRU. From the difference in accuracy
on the Random and Custom KFolds, we conclude
that future research should focus on developing
extrinsic test sets for medical concept normaliza-
tion. In particular, the BERT model’s accuracy on
the CADEC Custom KFolds decreased by 9.23%
compared to the CADEC Random KFolds.

To answer RQ3, we compare the performance
of models with additional similarity features
(marked by “w/”) with others. Indeed, joint mod-
els based on GRU and similarity features gain 2-
5% improvement on sets with Custom KFolds.
The joint model based on BERT and similarity
features stays roughly on par with BERT on all
sets. We also tested different strategies for con-

2https://doi.org/10.5281/zenodo.
3236318

structing representations using word embeddings
and TF-IDF for all synonyms’ tokens that led to
similar improvements for GRU.

5 Future Directions

RQ4. Future research might focus on develop-
ing an embedding method that jointly maps ex-
tracted entity mentions and UMLS concepts into
the same continuous vector space. The methods
could help us to easily measure the similarity be-
tween words and concepts in the same space. Re-
cently, Yamada et al. (2016) demonstrated that co-
trained vectors improve the quality of both word
and entity representations in entity linking (EL)
which is a task closely related to concept nor-
malization. We note that most of the recent EL
methods focus on the disambiguation sub-task, ap-
plying simple heuristics for candidate generation.
The latter is especially challenging in medical con-
cept normalization due to a significant language
difference between medical terminology and pa-
tient vocabulary.

RQ5. Error analysis has confirmed that mod-
els often misclassify closely related concepts
(e.g., “Emotionally detached” and “Apathy”) and
antonymous concepts (e.g., “Hypertension” and
“Hypotension”). We suggest to take into account
not only the distance-like similarity between en-
tity mentions and concepts but the mention’s con-
text, which is not used directly in recent studies on
concept normalization. The context can be repre-
sented by the set of adjacent words or entities. As
an alternative, one can use a conditional random
field (CRF) to output the most likely sequence of
medical concepts discussed in a review.

6 Related Work

In 2004, the research community started to address
the needs to automatically detect biomedical en-
tities in free texts through shared tasks. Huang
and Lu (2015) survey the work done in the orga-
nization of biomedical NLP (BioNLP) challenge
evaluations up to 2014. These tasks are devoted to
the normalization of (1) genes from scientific arti-
cles (BioCreative I-III in 2005-2011); (2) chemical
entity mentions (BioCreative IV CHEMDNER in
2014); (3) disorders from abstracts (BioCreative
V CDR Task in 2015); (4) diseases from clini-
cal reports (ShARe/CLEF eHealth 2013; SemEval
2014 task 7). Similarly, the CLEF Health 2016
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Method CADEC PsyTAR SMM4H
Random Custom Random Custom Official

Baseline: match with training set annotation 66.09 0.0 56.04 2.63 67.12
DNorm (Limsopatham and Collier, 2016) 73.39 - - - -
CNN (Limsopatham and Collier, 2016) 81.41 - - - -
RNN (Limsopatham and Collier, 2016) 79.98 - - - -
Attentional Char-CNN (Niu et al., 2018) 84.65 - - - -
Hierarchical Char-CNN (Han et al., 2017) - - - - 87.7
Ensemble (Sarker et al., 2018) - - - - 88.7
GRU+Attention 82.19 66.56 73.12 65.98 83.16
GRU+Attention w/ TF-IDF (MAX) 84.23 70.05 75.53 68.59 86.28
ELMo+GRU+Attention 85.06 71.68 77.58 68.34 86.60
ELMo+GRU+Attention w/ TF-IDF (MAX) 85.71 74.70 79.52 70.05 87.52
BERT 88.69 79.83 83.07 77.52 89.28
BERT w/ TF-IDF (MAX) 88.84 79.25 82.37 77.33 89.64

Table 2: The performance of the proposed models and the state-of-the-art methods in terms of accuracy.

and 2017 labs addressed the problem of ICD cod-
ing of free-form death certificates (without speci-
fied entity mentions). Traditionally, linguistic ap-
proaches based on dictionaries, association mea-
sures, and syntactic properties have been used to
map texts to a concept from a controlled vocabu-
lary (Aronson, 2001; Van Mulligen et al., 2016;
Mottin et al., 2016; Ghiasvand and Kate, 2014;
Tang et al., 2014). Leaman et al. (2013) pro-
posed the DNorm system based on a pairwise
learning-to-rank technique using vectors of query
mentions and candidate concept terms. These
vectors are obtained from a tf-idf representation
of all tokens from training mentions and concept
terms. Zweigenbaum and Lavergne (2016) uti-
lized a hybrid method combining simple dictio-
nary projection and mono-label supervised classi-
fication from ICD coding. Nevertheless, the ma-
jority of biomedical research on medical concept
extraction primarily focused on scientific litera-
ture and clinical records (Huang and Lu, 2015).
Zolnoori et al. (2019) applied a popular dictio-
nary look-up system cTAKES on user reviews.
cTAKES based on additional PsyTAR’s dictionar-
ies achieves twice better results (0.49 F1 score on
the exact matching). Thus, dictionaries gathered
from layperson language can efficiently improve
automatic performance.

The 2017 SMM4H shared task (Sarker et al.,
2018) was the first effort for the evaluation of NLP
methods for the normalization of health-related
text from social media on publicly released data.
Recent advances in neural networks have been

utilized for concept normalization: recent stud-
ies have employed convolutional neural networks
(Limsopatham and Collier, 2016; Niu et al., 2018)
and recurrent neural networks (Belousov et al.,
2017; Han et al., 2017). These works have trained
neural networks from scratch using only entity
mentions from training data and pre-trained word
embeddings. To sum up, most methods have dealt
with encoding information an entity mention it-
self, ignoring the broader context where it oc-
curred. Moreover, these studies did not examine
an evaluation methodology tailored to the task.

7 Conclusion

In this work, we have performed a fine-grained
evaluation of neural models for medical concept
normalization tasks. We employed several pow-
erful models such as BERT and RNNs paired
with pre-trained word embeddings and ELMo em-
beddings. We also developed a joint model that
combines (i) semantic similarity features based on
prior knowledge from UMLS and (ii) a learned
representation that captures extensional semantic
information of an entity mention. We have car-
ried out experiments on three datasets using 5-fold
cross-validation in two setups. Each dataset con-
tains phrases and their corresponding SNOMED
or MedDRA concepts. Analyzing the results, we
have found that similarity features help to improve
mapping abilities of joint models based on recur-
rent neural networks paired with pre-trained word
embeddings or ELMo embeddings while staying
roughly on par with the advanced language repre-

397



sentation model BERT in terms of accuracy. Dif-
ferent setups of evaluation procedures affect the
performance of models significantly: the accu-
racy of BERT is 7.25% higher on test sets with
a simple random split than on test sets with the
proposed custom split. Moreover, we have dis-
cussed some interesting future research directions
and challenges to be overcome.
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Abstract

Traditional model training for sentence gener-
ation employs cross-entropy loss as the loss
function. While cross-entropy loss has con-
venient properties for supervised learning, it
is unable to evaluate sentences as a whole,
and lacks flexibility. We present the approach
of training the generation model using the es-
timated semantic similarity between the out-
put and reference sentences to alleviate the
problems faced by the training with cross-
entropy loss. We use the BERT-based scorer
fine-tuned to the Semantic Textual Similarity
(STS) task for semantic similarity estimation,
and train the model with the estimated scores
through reinforcement learning (RL). Our ex-
periments show that reinforcement learning
with semantic similarity reward improves the
BLEU scores from the baseline LSTM NMT
model.

1 Introduction

Sentence generation using neural networks has
become a vital part of various natural lan-
guage processing tasks including machine transla-
tion (Sutskever et al., 2014) and abstractive sum-
marization (Rush et al., 2015). Most previ-
ous work on sentence generation employ cross-
entropy loss between the model outputs and the
ground-truth sentence to guide the maximum-
likelihood training on the token-level. Differentia-
bility of cross-entropy loss is useful for computing
gradients in supervised learning; however, it lacks
flexibility and may penalize the generation model
for a slight shift or change in token sequence even
if the sequence retains the meaning.

For instance, consider the sentence pair, “I
watched a movie last night.” and “I saw a film last

night.”. As the simple cross-entropy loss lacks the
ability to properly assess semantically similar to-
kens, these sentences are penalized for having two
token mismatches. As another example, the sen-
tence pair “He often walked to school.” and “He
walked to school often.” would be severely pun-
ished by the token misalignment, despite having
identical meanings.

To tackle the inflexible nature of model eval-
uation during training, we propose an approach
of using semantic similarity between the output
sequence and the ground-truth sequence to train
the generation model. In the proposed framework,
semantic similarity of sentence pairs is estimated
by a BERT-based (Devlin et al., 2018) regression
model fine-tuned against Semantic Textual Simi-
larity (Agirre et al., 2012) dataset, and the result-
ing score is passed back to the model using rein-
forcement learning strategies.

Our experiment on translation datasets suggests
that the proposed method is better at improving
the BLEU score than the traditional cross-entropy
learning. However, since the model outputs had
limited paraphrastic variations, the results are also
inconclusive in supporting the effectiveness of ap-
plying the proposed method to sentence genera-
tion.

2 Related Work

2.1 Sentence Generation

Recurrent neural networks have become pop-
ular models of choice for sentence genera-
tion (Sutskever et al., 2014). These sentence gen-
eration models are generally implemented as an
architecture known as an Encoder-Decoder model.

The decoder model, the portion of Encoder-
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Decoder responsible for generating tokens, is usu-
ally an RNN. For an intermediate representation
X , output token distribution at time t ŷt for the
RNN decoder πθ can be written as

st+1 = Φθ (ŷt, st, X) (1)

ŷt+1 ∼ πθ (yt | ŷt, st, X) (2)

where st is the hidden state of the decoder at time
t, Φθ is the state update function, and θ is the
model parameter. Since a simple RNN is known
to lack the ability to handle long-term dependen-
cies, recurrent models with more sophisticated up-
date mechanisms such as Long Short-term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
and Gate Recurrent Unit (GRU) (Cho et al., 2014)
are used in more recent works.

Sentence generation models are typically
trained using cross-entropy loss as follows:

LCE = −
T∑

t=1

log πθ (yt | yt−1, st, X) , (3)

where Y = {y1, y2, ..., yT } is the ground-truth se-
quence.

While cross-entropy loss is an effective loss
function for multi-class classification problems
such as sentence generation, there are a few draw-
backs. Cross-entropy loss is computed by compar-
ing the output distribution and the target distribu-
tion on every timestep, and this token-wise nature
is intolerant of slight shift or reordering in output
tokens. As the ground-truth distributions Y are
usually one-hot distributions cross-entropy loss is
also intolerant to distribution mismatch even when
the two distributions represent similar but different
tokens.

2.2 Reinforcement Learning for Sentence
Generation

One way to avoid the problems of cross-entropy
loss is to use a different criterion during the model
training. Reinforcement learning, a framework in
which the agent must choose a series of discrete
actions to maximize the reward returned from
its surrounding environment, is one of such ap-
proaches. The advantages of using RL are that the
reward for an action does not have to be returned
spontaneously and that the reward function does
not have to be differentiable by the parameter of
the agent model.

Because of these advantages, RL has of-
ten been used as a means to train sentence

generation model against sentence-level met-
rics (Pasunuru and Bansal, 2018; Ranzato et al.,
2015). Sentence-level metrics commonly used in
RL settings, such as BLEU, ROUGE and ME-
TEOR, are typically not differentiable, and thus
are not usable under the regular supervised train-
ing.

One of the common RL algorithms used in
sentence generation is REINFORCE (Williams,
1992). REINFORCE is a relatively simple pol-
icy gradient algorithm. In the context of sentence
generation, the goal of the agent is to maximize the
expectation of the reward provided as the function
r as in the following:

Maximize Eŷ1,...,ŷT ∼πθ(ŷ1,...,ŷT ) [r (ŷ1, ..., ŷT )] ,
(4)

where Ŷ = {ŷ1, ŷ2, ..., ŷT } is a series of decoder
output tokens.

The loss function is the negative of the reward
expectation, but the expectation is typically ap-
proximated by a single sample sequence as fol-
lows:

LRL =
∑

t

log πθ (yt | ŷt−1, st) (r (ŷ1,...,T ) − rb) ,

(5)
where rb is the baseline reward which counters the
large variance of reward caused by sampling. rb
can be any function that does not contain the pa-
rameter of the sentence generation model, but usu-
ally is kept to a simple model or function to not
hinder the training.

2.3 Semantic Textual Similarity
Semantic Textual Similarity (STS) (Agirre et al.,
2012; Cer et al., 2017) is an NLP task of evalu-
ating the degree of similarity between two given
texts. Similarity scores must be given as continu-
ous real values from 0 (completely dissimilar) and
5 (completely equivalent), and the model perfor-
mance is measured by computing the Pearson cor-
relation between the machine score and the human
score. As STS scores are assigned as similarity
scores between whole sentences and not tokens,
slight token differences can lower the STS score
drastically. For example, the first sentence pair
shown in Table 1, “A man is playing a guitar.” and
“A girl is playing a guitar.”, only has a single token
mismatch, “man” and “girl”. However, the score
given to the pair is 2.8, because that single mis-
match causes clear contrasts in meanings between
the sentences.
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Table 1: Examples of STS similarity scores in STS-B
dataset.

Score Sentence Pair

2.8
A man is playing a guitar.
A girl is playing a guitar.

4.2
A panda bear is eating some bamboo.
A panda is eating bamboo.

On the other hand, STS scores are tolerant of
modifications that do not change the meaning of
sentence. This leniency is illustrated by the sec-
ond sentence pair in Table 1, “A panda bear is
eating some bamboo.” and “A panda is eating
bamboo.”. Such a sentence pair would receive an
unfavourable score in similarity evaluation using
token-wise comparison, because every word after
“panda” would be considered as a mismatched to-
ken. In contrast, the STS score given to the pair
is 4.2. Omission of words “bear” and “some” in
the latter sentence does not alter the meaning from
the first sentence, and thus the pair is considered
semantically similar.

STS is similar to other semantic comparison
tasks such as textual entailment (Dagan et al.,
2010) and paraphrase identification (Dolan et al.,
2004). One key distinction that STS has from
these two tasks is that STS expects the model
to output continuous scores with interpretable in-
termediate values rather than discrete binary val-
ues describing whether or not given sentence pairs
have certain semantic relationships.

2.4 BERT

Bidirectional Encoder Representations from
Transformer (BERT) (Devlin et al., 2018) is a
pre-training model based on the transformer
model (Vaswani et al., 2017). Previous pre-
training models such as ELMo (Peters et al.,
2017) and OpenAI-GPT (Radford et al., 2018)
used unidirectional language models to learn
general language representations and this limited
their ability to capture token relationships in both
directions. Instead, BERT employs a bidirectional
self-attention architecture to capture the language
representations more thoroughly.

Upon its release, BERT broke numerous
state-of-the-art records such as those on a general
language understanding task GLUE (Wang et al.,
2018), question answering task SQuAD
v1.1 (Rajpurkar et al., 2016), and grounded com-

monsense inference task SWAG (Zellers et al.,
2018). STS is one of the tasks included in GLUE.

3 Models

3.1 Sentence Generation Model

The sentence generation model πθ used for this
research is a neural machine translation (NMT)
model consisting of a single-layer LSTM encoder-
decoder model with attention mechanism and the
softmax output layer. The model also incor-
porates input feeding to make itself aware of
the alignment decision in the previous decoding
step (Luong et al., 2015). The encoder LSTM is
bidirectional while the decoder LSTM is unidirec-
tional.

3.2 STS Estimator

The STS estimator model rψ consists of two mod-
ules. As described in Eq. (6), one is the BERT en-
coder with pooling layer B and the other is a linear
output layer (with weight vector Wψ and bias bψ)
with ReLU activation rψ.

B (Y1, Y2) = Pool (BERT (Y1, Y2)) , (6)

rψ (Y1, Y2) = ReLU (Wψ · B (Y1, Y2) + bψ) .
(7)

The BERT encoder reads tokenized sentence pairs
(Y1, Y2) joined by a separation (SEP) token and
outputs intermediate representations that are then
fed into the linear layer through a pooling layer.
The output layer projects the input into scalar val-
ues representing the estimated STS scores for in-
put sentence pairs.

The model rψ is trained using the mean squared
error (MSE) to fit the corresponding real-valued
label v as written in Eq. (8).

LBERT = |rψ (Y1, Y2) − v|2. (8)

While the use of the BERT-based STS estima-
tor as an evaluation mechanism allows the sen-
tence generation model to train its outputs against
sentence-wise evaluation criteria, there is a down-
side to this framework.

The BERT encoder expects the input sentences
to be sequences of tokens. As with most sentence
generation models, the outputs of the encoder-
decoder model described in the previous subsec-
tion are sequences of output probability distribu-
tions of tokens.

402



Obtaining a single token from a probabil-
ity distribution equates to performing indiffer-
entiable operations like argmax and sampling.
Consequently, the regular backpropagation algo-
rithm cannot be applied the training of generation
model. Furthermore, the scores provided by the
STS estimator rψ are sentence-wise while the se-
quence generation is done token by token. There
is no direct way to evaluate the effect of a single
instance of token generation on a sentence-wise
outcome in the setting of supervised learning. As
mentioned in Section 2.2, RL is an approach that
can provide solutions to these problems.

3.3 Baseline Estimator
Following the previous work (Ranzato et al.,
2015), the baseline estimator Ωω is defined as fol-
lows:

Ωω (st) = σ (Wω · st + bω) , (9)

where Wr is a weight vector, bω is a bias, and σ is
the logistic sigmoid function.

3.4 Model Training
Overall, the model training is separated into three
stages.

The first stage is the training of BERT-based
STS estimator rψ. The model rψ, with its pre-
trained BERT encoder, is fine-tuned using a STS
dataset with the loss function described in Eq. (8).
The parameter of the STS estimator is frozen from
this point onward.

The second stage is the training of the NMT
model using the cross-entropy loss shown in
Eq. (3). This stage is necessary to allow the model
training to converge. The action space in sen-
tence generation is extremely large and applying
RL from scratch would lead to slow and unstable
training.

The final stage is the RL stage where we apply
REINFORCE to NMT model. The loss function
for REINFORCE is rewritten from Eq. (5) as fol-
lows:

LRL =
∑

t

Rt log πθ (yt | ŷt−1, st), (10)

Rt =

(
1

5
rψ

(
Ŷ,Y

)
− Ωω (st)

)
, (11)

where Rt is the difference between the reward rψ
and the expected reward Ωω. rψ is multiplied by
1
5 as Ωω is bounded in [0, 1]. Because using only

LRL in the RL stage reportedly leads to unstable
training (Wu et al., 2016) the loss used in this step
is a linear combination of LCE and LRL as fol-
lows:

L = λLCE + (1 − λ) LRL, (12)

where λ ∈ [0, 1] is a hyperparameter. The value of
λ typically is a small non-zero value.

During the RL stage, the reward prediction
model Ωω is trained using the MSE loss as fol-
lows:

LBSE =

∣∣∣∣
1

5
rψ

(
Ŷ , Y

)
− Ωω (st)

∣∣∣∣
2

. (13)

The reward predictor does not share its parameter
with the NMT model.

4 Experiment

4.1 Dataset

The dataset used for fine-tuning the STS estimator
is STS-B (Cer et al., 2017). The tokenizer used is
a wordpiece tokenizer for BERT.

For machine translation, we used De-En par-
allel corpora from multi30k-dataset (Elliott et al.,
2016) and WIT3 (Cettolo et al., 2012). The
multi30k-dataset is comprised of textual descrip-
tions of images while the WIT3 consists of tran-
scribed TED talks. Each corpus provides a single
validation set and multiple test sets. We chose the
best models based on their scores for the validation
sets and used the two newest test sets from each
corpus for testing. Both corpora are tokenized us-
ing the sentencepiece BPE tokenizer with a vo-
cabulary size of 8,000 for each language. All let-
ters are turned to lowercase and any consecutive
spaces are turned into a single space before tok-
enization. The source and target vocabularies are
kept separate.

4.2 Training Settings

The BERT model used for the experiment is
BERT-base-uncased, and is trained with a max-
imum sequence length of 128, batch size of 32,
learning rate of 2 × 10−5 up to 6 epochs.

For the supervised (cross-entropy) training of
the NMT model, we set size of hidden states for
all LSTM to 256 for each direction, and use SGD
with an initial learning rate of 1.0, momentum
of 0.75, the learning rate decay of 0.5, and the
dropout rate of 0.2. With the batch size of 128
and the maximum sequence length of 100, the
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NMT model typically reached the highest esti-
mated STS score on the validation set after less
than 10 epochs.

In the RL stage, initial learning rates are set to
0.01 and 1.0 × 10−3 for the NMT model and the
baseline estimator model respectively. λ is set to
0.005. The batch size is reduced to 100 but other
hyperparameters are kept the same as in the super-
vised stage.

For a comparison, we also train a separate trans-
lation model with RL using GLEU (Wu et al.,
2016). GLEU score is calculated by taking the
minimum of n-gram recall and n-gram precision
between output tokens and target tokens. While
the GLEU score is known to correlate well with
the BLEU score on the corpus-level, it also avoids
some of the undesirable characteristics that the
BLEU score has on the sentence-level. During the
RL stage for the GLEU model, the reward measure
1
5rψ

(
Ŷ , Y

)
in Eq. (11) and Eq. (13) is replaced

by GLEU
(
Ŷ , Y

)
. Other training procedures and

hyperparameters are kept the same as those of the
model trained using STS.

5 Results and Discussion

The BLEU scores of Cross-entropy, RL-GLEU
and RL-STS models are shown in Table 2 and the
sample outputs of the models during the training
are displayed in Table 3.

As shown in Table 2 applying the RL step with
STS improved BLEU scores for all test sets, even
though the model was not directly optimized to
increase the BLEU score. It can be inferred that
estimated semantic similarity scores have positive
correlation with the BLEU score.

As BLEU is scored using matching n-grams be-
tween the candidate and ground-truth sentences, it
can be considered a better indicator of semantic
similarity between sentences than cross-entropy
loss. One interesting observation made during
the training was that after entering the RL stage,
the cross-entropy loss against the training data in-
creased yet the BLEU scores improved. This sug-
gests that RL using STS reward is a better train-
ing strategy for improving the semantic accuracy
of output tokens than the plain cross-entropy loss
training.

Table 2 also shows that RL-GLEU has better
BLEU scores than RL-STS. This is inevitable con-
sidering that STS, unlike GLEU and BLEU, is not

based on n-gram matching and may permit output
tokens not present in a target sequence as long as
the output sequence stays semantically similar to
the target sequence. Such property can lead to n-
gram mismatches and lower BLEU scores. It is
important to note that the leniency of STS evalua-
tion does not severely affect BLEU scores.

In fact, training with RL using STS did alter
outputs of the model in ways that suggest the le-
niency of STS as a training objective. For instance,
sentences shown in Table 3 demonstrate the cases
where the RL swapped a few tokens or added an
extra token to the output sentences without dras-
tically changing the meaning of the original sen-
tence.

Nevertheless, this kind of alterations were not
abundant perhaps because of the fact that the
model is never encouraged to output paraphras-
tic sentences during the supervised learning phase.
The degree of effectiveness of our approach would
be more apparent in the setting where the model
outputs are more diverse, such as paraphrasing.

Another interesting characteristic of the outputs
of RL-STS is that they sometimes did not properly
terminate. This occurred even in cases where the
cross-entropy model was able to form a complete
sentence. One possible cause of this problem is
the way the output sequence is tokenized before
it is fed to the BERT-based estimator. Because an
end-of-sentence (EOS) token is not one of the spe-
cial tokens used in pretraining of BERT, any EOS
token was stripped before inserting a SEP token.
Consequently, the RL-STS model was not able to
receive proper feedback for producing the EOS to-
ken. This can perhaps be avoided by introducing
an additional loss term in Eq. (10) to penalize se-
quences that are not terminated.

6 Conclusion

In this paper, we focused on the disadvantages of
using cross-entropy loss for sentence generation,
namely its inability to handle similar tokens and
its intolerance towards token reordering. To solve
these problems, we proposed an approach of us-
ing the BERT-based semantic similarity estima-
tor trained using STS dataset to evaluate the de-
gree of meaning overlap between output sentences
and ground-truth sentences. As the estimated STS
scores are indifferentiable, we also incorporated
REINFORCE into the training to backpropagate
the gradient using RL strategies. The proposed
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Table 2: BLEU and estimated STS scores for test sets in multi30k-dataset and WIT3. mscoco2017 and flickr2017
are test sets for multi30k-dataset, while TED2014 and TED2015 are test sets for WIT3. RL-GLEU and RL-STS
denote models trained with REINFORCE using GLEU reward and STS reward respectively.

mscoco2017 flickr2017 TED2014 TED2015
Model BLEU STS BLEU STS BLEU STS BLEU STS
Cross-entropy 16.44 2.76 22.22 3.03 12.54 2.63 13.43 2.80
RL-GLEU 20.13 2.93 25.83 3.15 13.97 2.71 14.59 2.89
RL-STS 18.31 2.96 24.70 3.21 13.58 2.87 14.56 2.99

Table 3: Sample outputs of the models for the training set

Model Output Sentences
Ground-truth I’ll show you what I mean. So how do we solve?
Cross-entropy I’ll show you what I mean. So how do we solve?
RL-GLEU I’ll show you what I mean. So how do we solve?
RL-STS I’m going to show you what I mean. So how do we solve problems?

method proved successful in improving the BLEU
score over the baseline model trained using only
the cross-entropy loss. The findings from the com-
parison of model outputs suggest that the STS al-
lows lenient evaluation without severely degrad-
ing BLEU scores. However, the extent of effec-
tiveness of the proposed method is yet to be deter-
mined. Further analysis of the method using dif-
ferent datasets such as those for abstractive sum-
marization and paraphrasing, as well as human
evaluation are necessary to reach a proper conclu-
sion.
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Abstract

In document-level sentiment classification,
each document must be mapped to a fixed
length vector. Document embedding mod-
els map each document to a dense, low-
dimensional vector in continuous vector
space. This paper proposes training docu-
ment embeddings using cosine similarity in-
stead of dot product. Experiments on the
IMDB dataset show that accuracy is im-
proved when using cosine similarity com-
pared to using dot product, while using fea-
ture combination with Naı̈ve Bayes weighted
bag of n-grams achieves a new state of
the art accuracy of 97.42%. Code to
reproduce all experiments is available at
https://github.com/tanthongtan/dv-cosine.

1 Introduction

In document classification tasks such as sentiment
classification (in this paper we focus on binary
sentiment classification of long movie reviews, i.e.
determining whether each review is positive or
negative), the choice of document representation
is usually more important than the choice of clas-
sifier. The task of text representation aims at map-
ping variable length texts into fixed length vec-
tors, as to be valid inputs to a classifier. Document
embedding models achieve this by mapping each
document to a dense, real-valued vector.

This paper aims to improve existing document
embedding models (Le and Mikolov, 2014; Li
et al., 2016a) by training document embeddings
using cosine similarity instead of dot product. For
example, in the basic model of trying to predict -
given a document - the words/n-grams in the doc-
ument, instead of trying to maximize the dot prod-
uct between a document vector and vectors of the
words/n-grams in the document over the training
set, we’ll be trying to maximize the cosine simi-
larity instead.

The motivation behind this is twofold. Firstly,
cosine similarity serves as a regularization mech-
anism; by ignoring vector magnitudes, there is
less incentive to increase the magnitudes of the
input and output vectors, whereas in the case of
dot product, vectors of frequent document-n-gram
pairs can be made to have a high dot product sim-
ply by increasing the magnitudes of each vector.
The weights learned should be smaller overall.

Secondly, as cosine similarity is widely used
to measure document similarity (Singhal, 2001;
Dai et al., 2015), we believe our method should
more directly maximize the cosine similarity be-
tween similar document vectors. The angle be-
tween similar documents should be lower, and that
may encode useful information for distinguishing
between different types of documents. We’ll com-
pare the performance of our model on the IMDB
dataset (Maas et al., 2011) with dot product and
to determine if our model serves anything beyond
simple regularization, we’ll also compare it to dot
product using L2 regularization.

2 Related Work

Here we review methods of text representation,
in which there are two main categories: bag of
words models and neural embedding models.

The bag of words model (Joachims, 1998) rep-
resents text as a fixed length vector of length equal
to the number of distinct n-grams in the vocab-
ulary. Naive Bayes - Support Vector Machine
(NB-SVM) (Wang and Manning, 2012) utilizes
naı̈ve bayes weighted bag of n-grams vectors for
representing texts, feeding these vectors into a lo-
gistic regression or support vector machine classi-
fier.

The first example of a neural embedding
model is word embeddings which was proposed
by Bengio et al. in 2003, while objective functions
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utilizing the negative sampling technique for effi-
cient training of word embeddings were proposed
in 2013 by Mikolov et al. (word2vec). The aim
of word embeddings is to map each word to a real
vector, whereby the dot product between two vec-
tors represents the amount of similarity in meaning
between the words they represent. There are two
versions of word2vec: continuous bag of words
(CBOW), in which a neural network is trained to
predict the next word in a piece of text given the
word’s context, and skip-gram, where it will try to
predict a word’s context given the word itself.

In a 2017 paper Arora et al. produce Sentence
Embeddings by computing the weighted average
of word vectors, where each word is weighted us-
ing smooth inverse frequency, and removing the
first principle component.

Paragraph Vector (Le and Mikolov, 2014)
may be seen as a modification to word embed-
dings in order to embed as vectors paragraphs as
opposed to words. Paragraph vector comes in
two flavors: the Distributed Memory Model of
Paragraph Vectors (PV-DM), and the Distributed
Bag of Words version of Paragraph Vector (PV-
DBOW). PV-DM is basically the same as CBOW
except that a paragraph vector is additionally av-
eraged or concatenated along with the context and
that whole thing is used to predict the next word.
In the PV-DBOW model a paragraph vector alone
is used/trained to predict the words in the para-
graph.

Document Vector by predicting n-grams
(DV-ngram) (Li et al., 2016a) trains paragraph
vectors to predict not only the words in the para-
graph, but n-grams in the paragraph as well.
Weighted Neural Bag of n-grams (W-Neural-
BON) (Li et al., 2016b) uses an objective function
similar to the one in DV-ngram, except that each
log probability term is weighted using a weighing
scheme which is similar to taking the absolute val-
ues of naive bayes weights.

In (Li et al., 2017), they introduce three main
methods of embedding n-grams. The first is con-
text guided n-gram representation (CGNR), which
is training n-gram vectors to predict its context n-
grams. The second is label guided n-gram rep-
resentation (LGNR), which is predicting given an
n-gram the label of the document to which it be-
longs. The last is text guided n-gram representa-
tion (TGNR), which is predicting given an n-gram
the document to which it belongs.

Embeddings from Language Models (ELMo)
(Peters et al., 2018) learns contextualized word
embeddings by training a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) on the lan-
guage modelling task of predicting the next word
as well as the previous word. Bidirectional
Encoder Representations from Transformers
(BERT) (Devlin et al., 2018) uses the masked lan-
guage model objective, which is predicting the
masked word given the left and right context, in
order to pre-train a multi-layer bidirectional Trans-
former (Vaswani et al., 2017). BERT also jointly
pre-trains text-pair representations by using a next
sentence prediction objective.

For the rest of this section we’ll look at other
research which replaces dot product with cosine
similarity. In the context of fully-connected neural
networks and convolutional neural networks, (Luo
et al., 2017) uses cosine similarity instead of dot
product in computing a layer’s pre-activation as a
regularization mechanism. Using a special dataset
where each instance is a paraphrase pair, (Wieting
et al., 2015) trains word vectors in such a way that
the cosine similarity between the resultant docu-
ment vectors of a paraphrase pair is directly max-
imized.

3 Proposed Model

In learning neural n-gram and document embed-
dings, a dot product between the input vector and
the output vector is generally used to compute the
similarity measure between the two vectors, i.e.
‘similar’ vectors should have a high dot product.
In this paper we explore using cosine similarity
instead of dot product in computing the similar-
ity measure between the input and output vectors.
More specifically we focus on modifications to
the PV-DBOW and the similar DV-ngram models.
The cosine similarity between a paragraph vector
and vectors of n-grams in the paragraph is maxi-
mized over the training set.

3.1 Architecture
A neural network is trained to be useful in pre-
dicting, given a document, the words and n-grams
in the document, in the process of doing so learn-
ing useful document embeddings. Formally, the
objective function to be minimized is defined as
follows:

∑

d∈D

∑

wo∈Wd

− log p(wo|d) (1)
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where d is a document, D is the set of all docu-
ments in the dataset, wo is an n-gram and Wd is
the set of all n-grams in the document d. p(wo|d)
is defined using softmax:

p(wo|d) =
eα cos θwo

∑
w∈W eα cos θw

(2)

= softmax(α cos θwo) (3)

We have cos θw defined as follows:

cos θw =
vTd vw
‖vd‖‖vw‖

(4)

where vd and vw are vector representations of the
document d and the word/n-gram w respectively
and are parameters to be learned. α is a hyperpa-
rameter. W is the set of all n-grams in the vocab-
ulary.

Normally, the softmax of the dot product be-
tween the input and output vector is used to model
the conditional probability term as follows:

p(wo|d) =
ev

T
d vwo

∑
w∈W ev

T
d vw

(5)

Whereas dot product ranges from negative infinity
to positive infinity, since cosine similarity ranges
from -1 to 1, using the cosine similarity term alone
as an input to the softmax function may not be
sufficient in modeling the conditional probability
distribution. Therefore, we add a scaling hyperpa-
rameter α to increase the range of possible proba-
bility values for each conditional probability term.6/12/2019 architecture.drawio

1/1

 nodes in
hidden layer
N

M|D|×N
M ′

|W|×N

 nodes in
output layer
|W |

vd vw

d vd
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for 

(α cos )θw

w ∈ W

Figure 1: Proposed Architecture.

Figure 1 shows the architecture of the neural
network used in learning the document embed-
dings. There is a hidden layer with N nodes cor-
responding to the dimensionality of the paragraph
vectors and an output layer with |W | nodes corre-
sponding to the number of distinct n-grams found
in the dataset. There are two weight parameter ma-
trices to be learned: M , which may be seen as a

collection of |D| document vectors each havingN
dimensions, and M ′, which is a collection of |W |
n-gram vectors each also having N dimensions.

An input document id d is used to select its
vector representation vd which is exactly output
through the N nodes of the first hidden layer. The
output of each node in the output layer represents
the probability p(w|d) of its corresponding n-gram
w, and is calculated as in (2) using softmax.

3.2 Negative Sampling
Since the weight update equations for minimizing
(1) implies that we must update each output vec-
tor corresponding to each feature in the feature set
W , with extremely large vocabularies, this com-
putation is impractical. In (Mikolov et al., 2013),
the negative sampling technique is introduced as a
means to speed up the learning process and it can
be shown that the updates for the negative sam-
pling version of (1) as shown in (6) approximates
the weight updates carried out in minimizing (1).
Therefore in practice, the document embeddings
are obtained by minimizing the following objec-
tive function with stochastic gradient descent and
backpropagation (Rumelhart et al., 1986):
∑

d∈D

∑

wo∈Wd

[
− log σ (α cos θwo)

−
∑

wn∈Wneg

log σ (−α cos θwn)

]
(6)

where Wneg is a set of negatively sampled words;
the size of the set or the negative sampling size
as well as the distribution used to draw negatively
sampled words/n-grams are hyperparameters. σ is
the sigmoid function.

By contrast, in the case of dot product the ob-
jective function is:
∑

d∈D

∑

wo∈Wd

[
− log σ

(
vTd vwo

)

−
∑

wn∈Wneg

log σ
(
−vTd vwn

)]
(7)

while in the case of L2R dot product, the objective
function used is:
∑

d∈D

∑

wo∈Wd

[
− log σ

(
vTd vwo

)
+
λ

2
‖vd‖2 +

λ

2
‖vwo‖2

−
∑

wn∈Wneg

(
log σ

(
−vTd vwn

)
+
λ

2
‖vwn‖2

)]

(8)
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Features Dot Product Dot Product Cosine
(DV-ngram) with L2R Similarity

(%) (%) (%)

Unigrams 89.60 87.15 (-2.45) 90.75 (+1.15)
Unigrams+Bigrams 91.27 91.72 (+0.45) 92.56 (+1.29)
Unigrams+Bigrams+Trigrams 92.14 92.45 (+0.31) 93.13 (+0.99)

Table 1: Experimental Results.

where λ is the regularization strength.

4 Experiments

The models are benchmarked on the IMDB dataset
(Maas et al., 2011), which contains 25,000 train-
ing documents, 25,000 test documents, and 50,000
unlabeled documents. The IMDB dataset is a bi-
nary sentiment classification dataset consisting of
movie reviews retrieved from IMDB; training doc-
uments in the dataset are highly polar. For labeled
documents, there is a 1:1 ratio between negative
and positive documents. The document vectors
are learned using all the documents in the dataset
(train, test and unlabeled documents). The dataset
consists of mainly long movie reviews.

In order to train the document vectors on un-
igrams to trigrams, the reviews are preprocessed
in such a way that tokens representing bigrams
and trigrams are simply appended to the original
unigrams of the review itself. An L2-regularized
logistic regression (LR) classifier is used to clas-
sify the documents at the end of each epoch us-
ing the predefined train-test split. However, the
results reported in this paper include only the ac-
curacy obtained from classifying documents in
the final epoch. For any java implementations of
the LR classifier we use the LIBLINEAR library
(Fan et al., 2008) while for python implementa-
tions we use Sci-kit learn (Pedregosa et al., 2011).
Code to reproduce all experiments is available at
https://github.com/tanthongtan/dv-cosine.

4.1 Optimal Hyperparameters

Grid search was performed using 20% of the train-
ing data as a validation set in order to determine
the optimal hyperparameters as well as whether to
use a constant learning rate or learning rate an-
nealing. Table 2 shows the optimal hyperparam-
eters for the models on the IMDB dataset. We
did not tune the N hyperparameter or the nega-
tive sampling size and left it the same as in (Li
et al., 2016a) and (Lau and Baldwin, 2016). We
did however tune the number of iterations from

[10, 20, 40, 80, 120], learning rate from [0.25,
0.025, 0.0025, 0.001] and α from [4, 6, 8]. A sen-
sible value of α should be around 6, since looking
at the graph of the sigmoid function, for input val-
ues greater than 6 and less than -6, the sigmoid
function doesn’t change much and has values of
close to 1 and 0, respectively. In the case of us-
ing L2 regularized dot product, λ (regularization
strength) was chosen from [1, 0.1, 0.01].

Hyperparameter Dot L2R Dot Cos.
Prod. Prod. Sim.

N (dimensionality) 500 500 500
Neg. Sampling Size 5 5 5
Iterations 10 20 120
Learning Rate 0.25 0.025 0.001
α - - 6
λ - 0.01 -
LR annealing true false false

Table 2: Optimal Hyperparameters.

The optimal learning rate in the case of cosine
similarity is extremely small, suggesting a chaotic
error surface. Since the learning rate is already
small to begin with, no learning rate annealing is
used. The model in turn requires a larger number
of epochs for convergence. For the distribution for
sampling negative words, we used the n-gram dis-
tribution raised to the 3/4th power in accordance
with (Mikolov et al., 2013). The weights of the
networks were initialized from a uniform distribu-
tion in the range of [-0.001, 0.001].

4.2 Results

Each experiment was carried out 5 times and the
mean accuracy is reported in Table 1. This is to
account for random factors such as shuffling doc-
ument and word ids, and random initialization.
From here we see that using cosine similarity in-
stead of dot product improves accuracy across the
board. The results are most apparent in the case
of unigrams + bigrams. However it is not to sug-
gest that switching from dot product to cosine sim-
ilarity alone improves accuracy as other minor ad-
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Figure 2: PCA visualization of embeddings trained with (a) dot product, (b) L2R dot product and (c) cos. similarity.

justments and hyperparameter tuning as explained
was done. However it may imply that using cosine
similarity allows for a higher potential accuracy as
was achieved in these experiments.

Regardless, we believe the comparisons are fair
since each model is using its own set of optimal
hyperparameters, but for the full sake of compari-
son, leaving everything the same and only switch-
ing out dot product for cosine similarity (α = 1) as
well as switching it out and using a sensible value
of α at α = 6 both achieve an accuracy of around
50%. This is because our model fails whenever
the learning rate is too large. As seen during grid
search, whenever the initial learning rate was 0.25,
accuracy was always poor.

Introducing L2 regularization to dot product im-
proves accuracy for all cases except a depreciation
in the case of using unigrams only, lucikily cosine
similarity does not suffer from this same depreci-
ation.

4.3 Discussion

From table 3, the mean Euclidean norm of embed-
dings trained with cosine similarity is lower than
that of L2R dot product which is in turn lower than
in the case of using dot product; this suggests that
the method employing cosine similarity acts as a
regularization mechanism, preventing the weights
from getting too large. Large magnitudes of doc-
ument vectors may be harder for the end classifier
to fit in such a way that generalizes well, which
may be why cosine similarity and L2R dot prod-
uct perform better than dot product on the IMDB
dataset.

As predicted, the mean cosine similarity be-
tween all pairs of vectors in the same class (Same
Mean Cos. Sim.) is higher in the case of cosine
similarity than the other two models. Unfortu-

nately, the mean for all pairs in different classes
(Diff. Mean Cos. Sim.) is higher as well. Fur-
ther analysis and hopefully some formalism as to
why cosine similarity performs better is a planned
future work.

Embedding Dot L2R Dot Cos.
Statistic Prod. Prod. Sim.

Same Mean Cos. Sim. 0.23 0.20 0.35
Diff. Mean Cos. Sim. 0.21 0.17 0.32
Mean Norm 8.91 6.30 5.35

Table 3: Embedding statistics.

Figure 2 shows the projection of the embed-
dings along their first two principle components,
different colors corresponding to different classes.
Cosine similarity shows slightly better seperabil-
ity between the two classes, while dot product and
L2R dot product are quite similar.

4.4 Feature Combination
Another contribution of this paper is demonstrat-
ing the effectiveness of concatenating naive bayes
weighted bag of n-grams with DV-ngram, L2R dot
product, or document vectors trained with cosine
similarity, the last achieving state of the art accu-
racy on the IMDB dataset. We note that all models
utilize unigrams to trigrams and additional unla-
beled data if possible. Table 4 shows a compari-
son between our proposed models (shown in bold)
and previous state of the arts and other published
results.

5 Conclusion and Future Work

Our proposed model trains document embeddings
using cosine similarity as the similarity measure
and we show that sentiment classification perfor-
mance on the IMDB dataset is improved when
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Model IMDB Dataset
Accuracy (%)

NB-SVM Bigrams 91.22
(Wang and Manning, 2012)
NB-SVM Trigrams 91.87
(Mesnil et al., 2015)
DV-ngram 92.14
(Li et al., 2016a)
Dot Product with 92.45
L2 Regularization
Paragraph Vector 92.58
(Le and Mikolov, 2014)
Document Vectors using 93.13
Cosine Similarity
W-Neural-BON Ensemble 93.51
(Li et al., 2016b)
TGNR Ensemble 93.51
(Li et al., 2017)
TopicRNN 93.76
(Dieng et al., 2017)
One-hot bi-LSTM 94.06
(Johnson and Zhang, 2016)
Virtual Adversarial 94.09
(Miyato et al., 2016)
BERT large finetune UDA 95.80
(Xie et al., 2019)
NB-weighted-BON + 96.95
DV-ngram
NB-weighted-BON + 97.17
L2R Dot Product
NB-weighted-BON + 97.42
Cosine Similarity

Table 4: Comparison with other models.

utilizing these embeddings as opposed to those
trained using dot-product. Cosine similarity may
help reduce overfitting to the embedding task, and
this regularization in turn produces more useful
embeddings. We also show that concatenating
these embeddings with Naı̈ve bayes weighed bag
of n-grams results in high accuracy on the IMDB
dataset.

An important future development is to carry out
experiments on other datasets. It is essential that
we benchmark on more than one dataset, to pre-
vent superficially good results by overfitting hy-
perparameters or the cosine similarity model itself
to the IMDB dataset. Other tasks and datasets in-
clude: (1) sentiment analysis - the Stanford senti-
ment treebank dataset (Socher et al., 2013), the po-
larity dataset v2.0 (Pang and Lee, 2004), (2) topic
classification - AthR, XGraph, BbCrypt (Wang
and Manning, 2012), and (3) semantic relatedness
tasks - datasets from the SemEval semantic textual
similarity (STS) tasks (Agirre et al., 2015).

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. Semeval-2015 task 2: Semantic tex-
tual similarity, english, spanish and pilot on inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation, pages 252–263.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In Proceedings of the 5th International
Conference on Learning Representations.
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Grégoire Mesnil, Tomas Mikolov, Marc’Aurelio Ran-
zato, and Yoshua Bengio. 2015. Ensemble of gen-
erative and discriminative techniques for sentiment
analysis of movie reviews. In Proceedings of the
3rd International Workshop on Learning Represen-
tations.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems,
pages 3111–3119.

Takeru Miyato, Andrew M. Dai, and Ian Goodfel-
low. 2016. Adversarial training methods for semi-
supervised text classification. In Proceedings of the
4th International Conference on Learning Represen-
tations.

Bo Pang and Lillian Lee. 2004. A sentimental edu-
cation: Sentiment analysis using subjectivity sum-
marization based on minimum cuts. In Proceedings
of the 42nd Annual Meeting of the Association for
Computational Linguistics, page 271.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of Machine
Learning Research, 12(Oct):2825–2830.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference

of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2227–2237.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. 1986. Learning representations by back-
propagating errors. Nature, 323(6088):533–536.

Amit Singhal. 2001. Modern information retrieval: A
brief overview. IEEE Data Engineering Bulletin,
24(4):35–43.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1631–1642.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, pages 5998–6008.

Sida Wang and Christopher D. Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics, pages 90–94.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. Towards universal paraphrastic sen-
tence embeddings. In Proceedings of the 4th Inter-
national Conference on Learning Representations.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Lu-
ong, and Quoc V. Le. 2019. Unsupervised data aug-
mentation. arXiv preprint arXiv:1904.12848.

A Obtaining the weight update equations
in the case of cosine similarity

To obtain the weight update equations for the input
and output vectors of our model in each iteration
of stochastic gradient descent, we must find the
gradient of the error function at a given training
example, which may be considered a document,
n-gram pair.

Let:

E =− log σ (α cos θwo)

−
∑

wn∈Wneg

log σ (−α cos θwn) (9)

where:

cos θw =
vTd vw
‖vd‖‖vw‖

(10)
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be the objective function at a single training ex-
ample (d,wo). Then, to find the gradient of E first
differentiate E with respect to cos θw:

∂E

∂ cos θw
= α (σ (α cos θw)− t) (11)

where t = 1 if w = wo; 0 otherwise. We then
obtain the derivative of E w.r.t. the output n-gram
vectors:

∂E

∂vw
=

∂E

∂ cos θw
· ∂ cos θw

∂vw
(12)

∂E

∂vw
= α (σ (α cos θw)− t)

·
(

vd
‖vd‖‖vw‖

− vw
(
vTd vw

)

‖vd‖‖vw‖3

)
(13)

This leads to the following weight update equa-
tion for the output vectors:

v(new)
w = v(old)

w − η ∂E
∂vw

(14)

where η is the learning rate. This equation needs
to be applied to all w ∈ {wo} ∪ Wneg in each
iteration.

Next, the errors are backpropagated and the in-
put document vectors are updated. Differentiating
E with respect to vd:

∂E

∂vd
=

∑

w∈{wo}∪Wneg

∂E

∂ cos θw
· ∂ cos θw

∂vd
(15)

=
∑

w∈{wo}∪Wneg

α (σ (α cos θw)− t)

·
(

vw
‖vd‖‖vw‖

− vd
(
vTd vw

)

‖vd‖3‖vw‖

)
(16)

Thus, we obtain the weight update equation for
the input vector in each iteration:

v
(new)
d = v

(old)
d − η ∂E

∂vd
(17)

B Weight update equations in the case of
dot product

This section contains the weight update equations
for the input and output vectors of the dot prod-
uct model in each iteration of stochastic gradient
descent.

The following weight update equations for the
output vectors:

v(new)
w = v(old)

w − η
(
σ
(
vTd vw

)
− t
)
· vd (18)

where t = 1 if w = wo; 0 otherwise, needs to be
applied to all w ∈ {wo} ∪Wneg in each iteration.

The following weight update equation needs to
be applied to the input vector in each iteration:

v
(new)
d = v

(old)
d − η

∑

w∈{wo}∪Wneg

(
σ
(
vTd vw

)
− t
)
· vw

(19)

C Weight update equations in the case of
L2R dot product

This section contains the weight update equations
for the input and output vectors of the L2R dot
product model in each iteration of stochastic gra-
dient descent.

The following weight update equations for the
output vectors:

v(new)
w = v(old)

w − η
(
σ
(
vTd vw

)
− t
)
· vd

− ηλvw (20)

where t = 1 if w = wo; 0 otherwise, needs to be
applied to all w ∈ {wo} ∪Wneg in each iteration.

The following weight update equation needs to
be applied to the input vector in each iteration:

v
(new)
d = v

(old)
d − η

∑

w∈{wo}∪Wneg

(
σ
(
vTd vw

)
− t
)
· vw

− ηλvd (21)
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Abstract

Detection of adverse drug reactions in post-
approval periods is a crucial challenge for
pharmacology. Social media and electronic
clinical reports are becoming increasingly
popular as a source for obtaining health-
related information. In this work, we focus on
extraction information of adverse drug reac-
tions from various sources of biomedical text-
based information, including biomedical liter-
ature and social media. We formulate the prob-
lem as a binary classification task and com-
pare the performance of four state-of-the-art
attention-based neural networks in terms of the
F-measure. We show the effectiveness of these
methods on four different benchmarks.

1 Introduction

Detection of adverse drug reactions (ADRs) in the
post-marketing period is becoming increasingly
popular, as evidenced by the growth of ADR mon-
itoring systems (Singh et al., 2017; Shareef et al.,
2017; Hou et al., 2016). Information about ad-
verse drug reactions can be found in the texts of
social media, health-related forums, and electronic
health records. We formulated the problem as a
binary classification task. The ADR classifica-
tion task addresses two sub-tasks: (a) detecting the
presence of ADRs in a textual message (message-
level task) and (b) detecting the class of an entity
within a message (entity-level task). In this pa-
per, we focus on the latter task. Different from
the message-level classification task, which aims
to determine whether a textual fragment such as
tweet or an abstract of a paper includes an ADR
mention or not, the objective of the entity-level
task is to detect whether a given entity (a single
word or a multi-word expression) conveys adverse
drug effect in the context of a message. For exam-
ple, in “He was unable to sleep last night because

of pain”, the health condition ‘pain’ trigger insom-
nia. Meanwhile, in “after 3 days on this drug I was
unable to sleep due to symptoms like a very bad
attack of RLS”, there is an entity ‘unable to sleep’
associated with drug use and can be classified as
ADR.

Inspired by recent successful methods, we in-
vestigated various deep neural network models for
entity-level ADR classification (Alimova and Tu-
tubalina, 2018). Our previous experiments showed
that Interactive Attention Neural network (IAN)
(Ma et al., 2017) outperforms other models based
on LSTM (Hochreiter and Schmidhuber, 1997).
In this paper, we continue our study and com-
pare IAN with the following attention-based neu-
ral networks for entity-level ADR classification:
(i) Attention-over-Attention (AOA) model (Huang
et al., 2018); (ii) Attentional Encoder Network
(AEN) (Song et al., 2019); (iii) Attention-based
LSTM with Aspect Embedding (ATAE-LSTM)
(Wang et al., 2016). We conduct extensive experi-
ments on four benchmarks which consist of scien-
tific abstracts and user-generated texts about drug
therapy.

2 Related Work

Different approaches are utilized to identify ad-
verse drug reactions (Sarker et al., 2015; Gupta
et al., 2018b; Harpaz et al., 2010). First works
were limited in the number of study drugs and
targeted ADRs due to limitations of traditional
lexicon-based approaches (Benton et al., 2011;
Liu and Chen, 2013). In order to eliminate these
shortcomings, rule-based methods have been pro-
posed (Nikfarjam and Gonzalez, 2011; Na et al.,
2012). These methods capture the underlying
syntactic and semantic patterns from social me-
dia posts. Third group of works utilized popu-
lar machine learning models, such as support vec-
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tor machine (SVM) (Liu and Chen, 2013; Sarker
et al., 2015; Niu et al., 2005; Bian et al., 2012; Al-
imova and Tutubalina, 2017), conditional random
fields (CRF) (Aramaki et al., 2010; Miftahutdinov
et al., 2017), and random forest (RF) (Rastegar-
Mojarad et al., 2016). The most popular hand-
crafted features are n-grams, parts of speech tags,
semantic types from the Unified Medical Lan-
guage System (UMLS), the number of negated
contexts, the belonging lexicon based features for
ADRs, drug names, and word embeddings (Dai
et al., 2016). One of the tracks of the shared task
SMM4H 2016 was devoted to ADR classification
on a tweet level. The two best-performing sys-
tems applied machine learning classifier ensem-
bles and obtained 41.95% F-measure for ADR
class (Rastegar-Mojarad et al., 2016; Zhang et al.,
2016). Two other participants utilized SVM clas-
sifiers with different sets of feature and obtained
35.8% and 33% F-measure (Ofoghi et al., 2016;
Jonnagaddala et al., 2016). During SMM4H 2017,
the best performance was achieved by SVM clas-
sifiers with a variety of surface-form, sentiment,
and domain-specific features (Kiritchenko et al.,
2018). This classifier obtained 43.5% F-measure
for ‘ADR’ class. Sarker and Gonsales outper-
formed these result utilizing SVM with a more
rich set of features and the tuning of the model pa-
rameters and obtained 53.8% F-measure for ADR
class (Sarker and Gonzalez, 2015). However,
these results are still behind the current state-of-
the-art for general text classification (Lai et al.,
2015).

Modern approaches for the extracting of ADRs
are based on neural networks. Saldana adopted
CNN for the detection of ADR relevant sentences
(Miranda, 2018). Huynh T. et al. applied convolu-
tional recurrent neural network (CRNN), obtained
by concatenating CNN with a recurrent neural net-
work (RNN) and CNN with the additional weights
(Huynh et al., 2016). Gupta S. et al. utilized
a semi-supervised method based on co-training
(Gupta et al., 2018a). Chowdhury et al. proposed
a multi-task neural network framework that in ad-
dition to ADR classification learns extract ADR
mentions (Chowdhury et al., 2018).

Methods for sentiment analysis are actively
adopted in the medical domain as well as in other
domains (Serrano-Guerrero et al., 2015; Rus-
nachenko and Loukachevitch, 2018; Ivanov et al.,
2015; Solovyev and Ivanov, 2014). In the field of

aspect-level sentiment analysis, neural networks
are popularly utilized (Zhang et al., 2018). Ma et
al. proposed Interactive Attention Network which
interactively learns attentions in the contexts and
targets, and generates the representations for tar-
gets and contexts separately (Ma et al., 2017). The
model compared with different modifications of
Long Short Term Memory (LSTM) models and
performed greatest results with 78.6% and 72.1%
of accuracy on restaurant and laptop corpora re-
spectively. Song et al. introduced Attentional En-
coder Network(AEN) (Song et al., 2019). AEN es-
chews recurrence and employs attention based en-
coders for the modeling between context and tar-
get. The model obtained 72.1% and 69% f accu-
racy on restaurant and laptop corpora respectively.
Wang et al. utilized Attention-based LSTM, which
takes into account aspect information during at-
tention (Wang et al., 2016). This neural network
achieved 77.2% and 68.7% of accuracy restaurant
and laptop corpora respectively. The Attention-
over-Attention neural network proposed by Huang
et al. models aspects and sentences in a joint way
and explicitly captures the interaction between as-
pects and context sentences (Huang et al., 2018).
This approach achieved the best results among the
described articles wit 81.2% and 74.5% of accu-
racy on restaurant and laptop corpora.

To sum up this section, we note that there
has been little work on utilizing neural networks
for entity-level ADR classification task. Most of
the works used classical machine learning mod-
els, which are limited to linear models and man-
ual feature engineering (Liu and Chen, 2013;
Sarker et al., 2015; Niu et al., 2005; Bian et al.,
2012; Alimova and Tutubalina, 2017; Aramaki
et al., 2010; Miftahutdinov et al., 2017; Rastegar-
Mojarad et al., 2016). Most methods for extracting
ADR so far dealt with extracting information from
the mention itself and a small window of words
on the left and on the right as a context, ignoring
the broader context of the text document where
it occurred (Korkontzelos et al., 2016; Dai et al.,
2016; Alimova and Tutubalina, 2017; Bian et al.,
2012; Aramaki et al., 2010). Finally, in most of
the works experiments were conducted on a single
corpus.

3 Corpora

We conducted our experiments on four corpora:
CADEC, PsyTAR, Twitter, TwiMed. Further, we
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briefly describe each dataset.
CADEC CSIRO Adverse Drug Event Cor-

pus (CADEC) consists of annotated user reviews
written about Diclofenac or Lipitor on askapa-
tient.com (Karimi et al., 2015). There are five
types of annotations: ‘Drug’, ‘Adverse effect’,
‘Disease’, ‘Symptom’, and ‘Finding’. We grouped
diseases, symptoms, and findings as a single class
called ‘non-ADR’.

PsyTAR Psychiatric Treatment Adverse Re-
actions (PsyTAR) corpus (Zolnoori et al., 2019)
is the first open-source corpus of user-generated
posts about psychiatric drugs taken from AskaP-
atient.com. This dataset includes reviews about
four psychiatric medications: Zoloft, Lexapro,
Effexor, and Cymbalta. Each review annotated
with 4 types of entities: adverse drug reac-
tions, withdrawal symptoms, drug indications,
sign/symptoms/illness.

TwiMed TwiMed corpus consists of sentences
extracted from PubMed and tweets. This corpus
contains annotations of diseases, symptoms, and
drugs, and their relations. If the relationship be-
tween disease and drug was labeled as ‘Outcome-
negative’, we marked disease as ADR, otherwise,
we annotate it as ‘non-ADR’ (Alvaro et al., 2017).

Twitter Twitter corpus include tweets about
drugs. There are three annotations: ‘ADR’, ‘Indi-
cation’ and ‘Other’. We consider ‘Indication’ and
‘Other’ as ‘non-ADR’ (Nikfarjam et al., 2015).

Summary statistics of corpora are presented in
Table 1. As shown in this table, the CADEC and
PsyTAR corpora contain a much larger number of
annotations than the TwiMed and Twitter corpora.

4 Models

4.1 Interactive Attention Network

The Interactive Attention Network (IAN) network
consists of two parts, each of which creates a rep-
resentation of the context and the entity using the
vector representation of the words and the LSTM
layer (Ma et al., 2017). The obtained vectors are
averaged and used to calculate the attention vector.
IAN uses attention mechanisms to detect the im-
portant words of the target entity and its full con-
text. In the first layer of attention, the vector of
context and the averaged vector of the entity and
in the second, the vector of the entity and the av-
eraged vector of context are applied. The result-
ing vectors are concatenated and transferred to the

layer with the softmax activation function for clas-
sification.

4.2 Attention-over-Attention
Attention-over-Attention (AOA) model was intro-
duced by Huang et al. (Huang et al., 2018). This
model consists of two parts which handle left and
right contexts, respectively. Using word embed-
dings as input, BiLSTM layers are employed to
obtain hidden states of words for a target and
its context, respectively. Given the hidden se-
mantic representations of the context and target
the attention weights for the text is calculated
with AOA module. At the first step, the AOA
module calculates a pair-wise interaction matrix.
On the second step, with a column-wise softmax
and row-wise softmax, the module obtains target-
to-sentence attention and sentence-to-target atten-
tion. The final sentence-level attention is calcu-
lated by a weighted sum of each individual target-
to-sentence attention using column-wise averag-
ing of sentence-to-target attention. The final sen-
tence representation is a weighted sum of sentence
hidden semantic states using the sentence attention
from AOA module.

4.3 Attentional Encoder Network
The Attentional Encoder Network (AEN) eschews
complex recurrent neural networks and employs
attention based encoders for the modeling be-
tween context and target (Song et al., 2019). The
model architecture consists of four main parts:
embedding layer, attentional encoder layer, target-
specific attention layer, and output layer. The
embedding layer encodes context and target with
pre-trained word embedding models. The atten-
tional encoder layer applies the Multi-Head Atten-
tion and the Point-wise Convolution Transforma-
tion to the context and target embedding represen-
tation. The target-specific attention layer employs
another Multi-Head Attention to the introspective
context representation and context-perceptive tar-
get representation obtained on the previous step.
The output layer concatenates the average pooling
outputs of previous layers and uses a fully con-
nected layer to project the concatenated vector into
the space of the targeted classes.

4.4 Attention-based LSTM with Aspect
Embedding

The main idea of Attention-based LSTM with As-
pect Embedding (ATAE-LSTM) is based on ap-
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Table 1: Summary statistics of corpora.

Corpus Documents ADR non-ADR Max sentence length
CADEC (Karimi et al., 2015) 1231 5770 550 236
PsyTAR (Zolnoori et al., 2019) 891 4525 2987 264
TwiMed-Pubmed (Alvaro et al., 2017) 1000 264 983 150
TwiMed-Twitter (Alvaro et al., 2017) 637 329 308 42
Twitter (Nikfarjam et al., 2015) 645 569 76 37

pending the input aspect embedding into each con-
text word input vector (Wang et al., 2016). The
concatenated vectors are fed to the LSTM layer
in order to obtain the hidden semantic represen-
tations. With the resulting hidden states and the
aspect embedding, the attention mechanism pro-
duces an attention weight vector and a weighted
hidden representation, which is applied for final
classification.

5 Experiments

In this section, we compare the performance of the
discussed neural networks with Interactive Atten-
tion Neural Network.

5.1 Settings
We utilized vector representation trained on so-
cial media posts from (Miftahutdinov et al., 2017).
Word embedding vectors were obtained using
word2vec trained on a Health corpus consists of
2.5 million reviews written in English. We used
an embedding size of 200, local context length of
10, the negative sampling of 5, vocabulary cutoff
of 10, Continuous Bag of Words model. Coverage
statistics of word embedding model vocabulary:
CADEC – 93.5%, Twitter – 80.4%, PsyTAR –
54%, TwiMed-Twitter – 81.2%, TwiMed-Pubmed
– 76.4%. For the out of vocabulary words, the
representations were uniformly sampled from the
range of embedding weights. We used a maximum
of 15 epochs to train IAN and ATAE-LSTM and
30 epochs to train AEN and AOA on each dataset.
We set the batch size to 32 for each corpus. The
number of hidden units for LSTM layer is 300, the
learning rate is 0.01, l2 regularization is 0.001. We
applied the implementation of the model from this
repository1.

5.2 Experiments and Results
All models were evaluated by 5-fold cross-
validation. We utilized the F-measure to evaluate

1https://github.com/songyouwei/ABSA-PyTorch

the quality of the classification.
The results are presented in Table 2. The re-

sults show that IAN outperformed other models
on all corpora. IAN obtained the most signifi-
cant increase in results compared to other models
on Cadec and Twitter-Pubmed corpora with 81.5%
and 87.4% of the macro F-measures, respectively.
We assume that the superiority of the IAN results
in comparison with other models is due to the
small number of parameters being trained and the
small size of the corpora.

The AOA model achieved the second-place re-
sult on all corpora except Twitter. The AOA re-
sults for PsyTAR (81.5%) and Twimed-Twitter
(79.5%) corpora state on par with IAN model,
while for the rest corpora, the results are signifi-
cantly lower. This leads to the conclusion that the
model is unstable for highly imbalanced corpora.

The ATAE-LSTM model with 78.6% of macro
F-measure outperformed AEN and AOA models
results on Twitter corpora and achieved compara-
ble with AOA results on Twimed-Pubmed corpora
(80.1%). This result shows that ATAE-LSTM ap-
plicable to a small size imbalanced corpora.

The AEN model achieved comparable with
other models results on PsyTAR (80.2%) corpora
and significantly lower results on Twitter (66.7%),
Cadec (49%) and Twimed-Pubmed (74.3%) cor-
pora. 72.4% of F-measure on Twimed-Twitter cor-
pus states on par with the ATAE-LSTM model
(73.5%). This leads to the conclusion that the pres-
ence of multiple attention layers did not give the
improvement in results.

6 Conclusion and Feature Research
Directions

We have performed a fine-grained evaluation
of state-of-the-art attention-based neural network
models for entity-level ADR classification task.
We have conducted extensive experiments on four
benchmarks. Analyzing the results, we have found
that that increasing the number of attention layers
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Model Twitter Cadec PsyTAR Twimed-Twitter Twimed-PubMed
IAN .794 .815 .817 .819 .874
AEN .667 .490 .802 .742 .743
AOA .752 .752 .815 .795 .803
ATAE-LSTM .786 .702 .807 .735 .801

Table 2: Macro F-measure classification results of the compared methods for each datasets.

did not give an improvement in results. Addition
an aspect vector to the input layer also did not give
significant benefits. IAN model showed the best
results for entity-level ADR classification task in
all of our experiments.

There are three future research directions that
require, from our point of view, more attention.
First, we plan to add knowledge-based features
as input for IAN model and evaluate their effi-
ciency. Second, apply these models to the entity-
level ADR classification task for texts in other lan-
guages. Finally, we plan to explore the potential
of new state-of-the-art text classification methods
based on BERT language model.
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Abstract

For analyzing online persuasions, one of the
important goals is to semantically understand
how people construct comments to persuade
others. However, analyzing the semantic role
of arguments for online persuasion has been
less emphasized. Therefore, in this study,
we propose a novel annotation scheme that
captures the semantic role of arguments in
a popular online persuasion forum, so-called
ChangeMyView. Through this study, we have
made the following contributions: (i) propos-
ing a scheme that includes five types of el-
ementary units (EUs) and two types of rela-
tions; (ii) annotating ChangeMyView which re-
sults in 4612 EUs and 2713 relations in 345
posts; and (iii) analyzing the semantic role
of persuasive arguments. Our analyses cap-
tured certain characteristic phenomena for on-
line persuasion.

1 Introduction

Changing a person’s opinion is a difficult process
because one has to first understand his/her opinion
and reasons. Recent studies in the field of argu-
ment mining and persuasion detection have inves-
tigated the feature of persuasiveness in the doc-
uments of a persuasive forum (Tan et al., 2016;
Hidey et al., 2017). Many existing studies ana-
lyzing the features of persuasion have focused on
lexical features (Tan et al., 2016; Habernal and
Gurevych, 2016) and argumentative features such
as post-to-post interaction (Ji et al., 2018), conces-
sions (Musi et al., 2018), and semantic types of ar-
gument components. Although these analyses are
important, we argue that it is also important to un-
derstand the fine-grained strategy by analyzing the
semantic roles of arguments.

∗ The work of this paper was performed when he was a
student at Tokyo University of Agriculture and Technology
(to contact: morio@katfuji.lab.tuat.ac.jp.)

!"#

$%&'()

*
+,$)-

$#./0&$

1#&'234#!"#$!#%&'"$()*&*"+,-.&%#/,*#&

0$!%+)*&1(!"&2$2(#*&,)-#**&(!3*&$&%$!#.&

4&5+6(# !"#$%&'(5#6789:

;(#0$%#)!*&'$)&!$7#&!"#(%&2$2(#*&$).&

)+!&1+%%8&$2+,!&.(*!,%2()9&+!"#%*

!)*$+,(5#678<:

:+,%&1$)!()9&!+&*##&$&

5+6(#&.+#*&)+!&#)!(!-#&

8+,&!+&%,()&#6#%8+)#&

#-*#3*&#;0#%(#)'#&!"$!&

!"#8&0$(.&5+)#8&/+%
!)*$+,(5#678=:

+0<!(!-#=&>&2#-(#6#&0#+0-#&*"+,-.&)+!&2#&$--+1#.&!+&2%()9&2$2(#*&()&

$&5+6(#&!"#$!#%&#;'#0!&(/&(!3*&$&???&6>$?()#@0$2A:

"(;2&2B/

1#&'234#2$))()9&$)8+)#&(*&$&

*!,0(.&(.#$ !)*$+,(5#678C:

@"#)&58&!1()*&1#%#&$&

1##7&$).&$&"$-/&+-.&1#&!++7&

!"#5&$-+)9&1(!"&,*&$).&

+,%&???&!-,./%0#1'(5# 678D:

#6#%8+)#&)##.*&!+&2#&

%#*0#'!/,-&+/&+!"#%&0$!%+)*

!"#$%&'(5#678E:

>/&+)#&+%&2+!"&+/&58&2$2(#*&

"$.&2##)&/,**8&$).&

()'+)*+-$2-#&>&1+,-.&"$6#&

!$7#)&!"#5&+,!&+/&!"#&!"#$!%#&

(55#.($!#-8 !)*$+,(5 678F:

G/H$&2B/

%#*0+)*(2-#&0$%#)!*&.+)3!&)##.&$&2$)&()&+%.#%&!+&)+!&2+!"#%&

+!"#%&0#+0-#A&$).&()'+)*(.#%$!#&$**"+-#*&1(--&$-1$8*&2#&

()'+)*(.#%$!#&%#9$%.-#**&+/&1"$!&8+,&2$) !)*$+,(5#678I:

B6#%8+)#C&D,*!&)##.*&!+&EFGH&()&!"#&!"#$!#%A&$).&-#$6#&I1(!"&

0$%#)!*&(/&)#'#**$%8J&(/&!"#8&5$7#&)+(*# !"#$%&'(5#678J:

:+,&.+)3!&)##.&$)8&*+%!&+/&2$)&2#8+).&!"$! !)*$+,(5#678=K:

L%MM()&

Figure 1: An overview of our annotation in Change-
MyView. EUs have five types and the relations between
the EUs have two types (refer to Section 3.2).

In this study, we investigate the semantic roles
of arguments in a persuasive forum by proposing
an annotation scheme on a data set of Change-
MyView (Tan et al., 2016). ChangeMyView is a
subreddit in which users post an opinion (named
a View) to change their perspective through com-
ments of a challenger. When the View is changed,
the user who posted the original post (OP) awards
a Delta point (∆) to the challenger who changed
the View. Figure 1 is an overview of our annota-
tion in ChangeMyView in which the Positive post
is an awarded post that won a ∆ and the Negative
post is a non-awarded one.

To parse arguments from ChangeMyView, we
considered five types of elementary unit (EU) (i.e.,
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Fact, Testimony, Value, Policy, and Rhetorical
Statement) and two types of relation between EUs
(i.e., Support and Attack). Moreover, We demon-
strated that EUs and these relations are effective
for characterizing persuasive arguments.

The contributions of this study can be summa-
rized as follows: (i) We have proposed an annota-
tion scheme for EUs and its relations for Change-
MyView; (ii) We annotated 4612 EUs and 2713 re-
lations in 115 threads, and we computed an inter-
annotator agreement using Krippendorff’s alpha.
Note that αEU = .677 and αRel = .532 are bet-
ter than those of existing studies; (iii) A significant
difference in the distribution of each EU exists be-
tween OP and reply posts; however, no significant
difference in the types of EU and relation is ob-
served between persuasive and non-persuasive ar-
guments.

2 Related Work

Recent studies in argument mining investigated
the characteristics of an argument by considering
the role of argumentative discourse units and re-
lations (Ghosh et al., 2014; Peldszus and Stede,
2015; Stab and Gurevych, 2014). Moreover, re-
cent studies have focused on the semantics of ar-
gument components (Park et al., 2015; Al Khatib
et al., 2016; Becker et al., 2016). For example,
Hollihan and Baaske (2004) proposed three types
of claims, i.e., fact, value, and policy, in which fact
can be verified with objective evidence, value is an
interpretation or judgment, and policy is an asser-
tion of what should be done. Park et al. (2015) ex-
tended this argument model with types of claims
such as testimony and reference. Al Khatib et al.
(2016) proposed the argument model for analyz-
ing the argumentation strategy in news editorials.
This model separated an editorial into argumen-
tative discourse units of six different types, such
as Common Ground, Assumption, and Testimony.
Because persuasion is often based on facts and
testimony, this type of semantic classification of
claim is valid for our study.

Several studies have focused on the semantics
for analyzing the characteristics of persuasive ar-
guments. Wachsmuth et al. (2018) investigated the
rhetorical strategy for effectively persuading to the
other, and Hidey et al. (2017) focused on the se-
mantics of premise and claim.

3 Annotation Study

3.1 Data Source

In our study, a dataset of ChangeMyView (Tan
et al., 2016) is introduced. ChangeMyView is a
forum in which users initiate the discussion by
posting an Original Post (OP) and describing their
View (or we call it as Major Claim) in the title.
An OP user has to describe his/her reason behind
the View. Then, certain challengers post a reply to
change the OP’s View. If the challenger succeeds
at changing the OP’s View, the OP user awards a
∆ to the challenger.

In this study, we extracted 115 threads from the
ChangeMyView dataset through a simple random
sampling. Each thread contained a triple of OP,
Positive (which won a ∆), and Negative (which
is a non-awarded one). Therefore, we used 345
posts (115 × (OP, Positive, Negative)) for our an-
notation.

3.2 Annotation Scheme

We defined the five types of EUs and two types
of relations between the EUs. This scheme en-
ables us to capture the semantic roles of elemen-
tary units and how we build an argument based on
the semantic units.

3.2.1 Type of Elementary Units
There are five types of EUs that are similar to the
scheme of Park et al. (2015) pertaining to eRule-
making comments. The motivation for the intro-
duction of the scheme is based on our expecta-
tion that we can feature persuasive arguments by
considering personal experience, facts, and value
judgments. The five types of EUs are defined as
follows:
Fact: This is a proposition describing objective
facts as perceived without any distortion by per-
sonal feelings, prejudices, or interpretations. Un-
like Testimony, this proposition can be verified
with objective evidence; therefore, it captures the
evidential facts for persuasion. Certain examples
of Fact are as follows: “they did exactly this in the
U.K. about thirty or so years ago” and “this study
shows that women are 75% less likely to speak up
in a space when outnumbered”.
Testimony: This is an objective proposition re-
lated to the author’s personal state or experience.
This proposition characterizes how users utilize
their experience for persuasions. Certain exam-
ples of Testimony are as follows: “I do not have
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children” and “I’ve heard suggestions of an exor-
bitant tax on ammunition”.
Value: This is a proposition that refers to sub-
jective value judgments without providing a state-
ment on what should be done. This proposition is
nearly similar to an opinion. Certain examples of
Value are as follows: “this is completely unwork-
able” and “it is absolutely terrifying”.
Policy: This is a proposition that offers a spe-
cific course of action to be taken or what should
be done. It typically contains modal verbs, such
as should, or imperative forms. Certain examples
of Policy are as follows: “everyone needs to be
respectful of other patrons” and “intelligent stu-
dents should be able to see that”.

Finally, because ChangeMyView users usually
utilize a rhetorical question (Blankenship and
Craig, 2006) to increase their persuasion, this
study provides a novel EU type that is useful for
determining a rhetorical strategy.
Rhetorical Statement: This unit implicitly states
the subjective value judgment by expressing fig-
urative phrases, emotions, or rhetorical questions.
Therefore, we can regard it as a subset of Value 1.
Certain examples of Rhetorical Statement are as
follows: “You can observe this phenomenon your-
self!” and “if one is paying equal fees to all other
students why is one not allowed equal access and
how is this a good thing?”.

3.2.2 Type of Relations
The two types of relations between EUs are de-
fined as follows:
Support: An EU X has support relation to the
other EU Y if X provides positive reasoning for Y.
It is typically linked by connectives such as there-
fore. An example of support relation is as follows:
X: “Every state in the U.S. allows homeschool-
ing” (Fact) support Y: “if you are ideologically
opposed to the public school system, you are free
to opt out” (Value).
Attack: An EU X has attack relation to the other
EU Y if X provides negative reasoning for Y. It is
typically linked by connectives such as however.
An example of attack relation is as follows: X:
“Young men are the most likely demographic to
get into an accident” (Value) attack Y: “that does
not warrant discriminating against every individ-
ual in the group” (Value).

1Unlike Value, we allow the Rhetorical Statement to be
an incomplete sentence because it is usually expressed im-
plicitly.

3.3 Annotation Process

The annotation task includes two subtasks: (1)
segmentation and classification of EUs and (2) re-
lation identification. We recruited 19 non-native
students who are English proficient as annotators
with all annotations being performed over origi-
nal English texts. Each annotator was asked to
read the guideline as well as the entire post be-
fore the actual annotation. Moreover, we held sev-
eral meetings for each subtask to train the annota-
tors. Furthermore, because the annotators are non-
native speakers, to ensure the understanding of the
posts is consistent among the annotators, the posts
are translated into their language. The translation
was conducted by two annotators per document:
one for the translation and the other for the valida-
tion. Note that the translated documents are only
used as a reference for the annotators.

In the EU annotation, three annotators inde-
pendently annotated 87 threads, whereas the re-
maining 28 threads were annotated by eight ex-
pert annotators who were selected from 19 anno-
tators. From the 87 threads, using a majority vote,
a gold standard is established by merging three
annotation results. To extract accurate minimal
EU boundary and remove irrelevant tokens, such
as therefore and punctuation, we considered the
token-level annotation rather than the sentence-
level. Token-level annotation enables us to dis-
tinguish an inference step that one of the proposi-
tions can be a claim and the other can be a premise.
Here is an example of inference step: <“Empire
Theatres in Canada has a ”Reel Babies” show-
ing for certain movies” [Fact]> so <“parents can
take their babies and not worry about disturbing
others” [Value]>. Moreover, all EU boundaries,
except a Rhetorical Statement, should contain a
complete sentence to render EU propositions.

In the relation annotation, two annotators inde-
pendently annotated 50 threads, whereas the re-
maining 65 threads were annotated by eight expert
annotators. In the 50 threads, to establish the gold
standard by merging two annotation results, expert
annotators were assigned to each thread. We mod-
eled the structure of each argument with a one-
claim approach (Stab and Gurevych, 2016) that
considers an argument as the pairing of a single
claim and a set of premises that justify the claim.
Major Claim has to be a root node of an argument
in OP posts, and each claim has a stance attribute
to the OP’s View.
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Post type #Fact #Testimony #Value #Policy #RS #Total #Support #Attack #Total
OP 52 134 914 44 157 1301 864 128 992

Positive 127 134 1338 55 327 1981 924 108 1032
Negative 78 86 882 41 243 1330 595 94 689

Table 1: Annotation results of EUs and relations

3.4 Annotation Result

Table 1 shows an overview of the annotated cor-
pus. Our corpus contains 4612 EUs and 2713 re-
lations between units in 345 posts. As can be seen
from the table, 68% of EUs were Values and 15%
of EUs were Rhetorical Statements. Although
the Value ratio is 45% in the dataset of Park and
Cardie (2018), Value occupies most of the EUs in
our corpus. We estimate this because Value of-
ten gives a subjective opinion by the characteris-
tics of persuasive forum. Moreover, 88% of rela-
tions were Support relations. This result indicates
an Attack inference seldom appears in online per-
suasions.

We computed an inter-annotator agreement
(IAA) using Krippendorff’s α. Consequently, the
IAA of EUs is αEU = 0.677 and that of rela-
tions is αRel = 0.532. Note that the IAA val-
ues are higher than the result of Park and Cardie
(2018) in the eRulemaking annotation with respect
to EUs (α = 0.648) and relations (α = 0.441).
2 Furthermore, our IAA of EUs is higher than
the result of Hidey et al. (2017) (α = 0.65) in
the ChangeMyView annotation 3. We consider the
higher agreement is because of the token-level an-
notations as the sentence-level annotations cannot
accurately distinguish an inference step.

Most of the disagreement in EU annotation oc-
curred between Value and the other types. In Value
vs. Fact situation, a disagreement occurred when a
unit is described in a general way, such as “many
people” and “generally”, and incorrectly marked
as a Fact, although the unit should be Value. More-
over, in Value vs. Testimony situation, a disagree-
ment occurred when a unit is incorrectly inter-
preted as a Value. For example, “I am an athe-
ist” was incorrectly marked as Value, although it
should be labeled Testimony because the unit de-
scribes a personal state.

2Note that the relation annotation of Park and Cardie
(2018) is only limited to the Support relation.

3Note that the IAA result of relations cannot be compared
because the labeling of relations is not conducted in Hidey
et al. (2017)

4 Corpus Analysis

To examine the features of persuasive arguments,
we analyzed the EUs and the relation between
units in each case, i.e., OP vs. Reply (Positive and
Negative) and Positive vs. Negative.

We investigated how the number of EU in a post
contributes to the persuasive strategy. We used
the Mann-Whitney U test and identified that there
exists a significant difference in Testimony and
Rhetorical Statement in OP vs. Reply. Testimony
is more likely to appear in OP (10.3%) than in Re-
ply (6.6%) and Rhetorical Statement is more likely
to appear in Reply (17.2%) than in OP (12.1%).
Therefore, an OP author tends to describe their
View based on their own experience or state and
Rhetorical Statement tends to appear more in Re-
ply as the reply post is for trying to change the
OP’s View. This result is consistent with intuition;
however, there is no significant difference between
positive and negative in any type of the EU and
the p-value of Testimony, Policy, and Rhetorical
Statement is p > 0.85. This indicates that the fre-
quency of occurrence of the EU cannot be a per-
suasive feature.

Figure 2 shows the annotation result of Rela-
tions between units in each post, in which source
means the type of supporting EU and target means
the type of supported unit. Most of the targets is
Value type. Note that Testimony is reasoning more
in OP than in reply and Rhetorical Statement is
reasoning more in reply than in OP; moreover, the
relation between Values is more in positive than in
negative.

Next, to investigate the logical strength of an
argument (Wachsmuth et al., 2017), we examine
degree and depth. The degree means the number
of supporting EUs to a supported unit. For exam-
ple, in Figure 1, Major Claim is supported by EU1
and EU2; thus, the degree = 2 and the depth = 2.
However, EU4 is only supported by EU5; thus, the
degree = 1 and the depth = 1. Figures 3 and 4
show the resulting histogram of degree and depth
in each post, respectively. According to the re-
sults, each post has no significant difference and it
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Figure 2: Transition matrix of Support and Attack relations

Figure 3: Histogram of the degree in each post.

Figure 4: Histogram of the depth in each post.

is a power-law distribution. Most of the EUs have
two or less relations, and the depths of arguments
are less than three. This indicates that the logical
strength of argument may not contribute to persua-
siveness. Moreover, because it indicates that there
are many arguments that have a stance attribute to
the OP’s View, how they interact with the OP may
contribute to persuasion.

To clarify the role of EUs as arguments, we in-
vestigated the position of each type of EUs in an
argument. Figure 5 shows a histogram of the po-
sition in the argument, where the position means
normalized depth at the root node to 0.0 and at
the terminal node to 1.0. For instance, normalized
depth of the following argument can be described

Figure 5: The distribution of positions in an argument
in each type of EU.

as follows:

In Positive and Negative post, Fact and Testimony
often appear at near the terminal node of an argu-
ment structure, which indicates that trying to per-
suade is based on facts and personal experiences.
Moreover, Value and Policy appear at near the root
node, which indicates trying to change the View
by finally describing an opinion or what should be
done as a conclusion. These results are consistent
with intuitive results; moreover, an interesting re-
sult is that Rhetorical Statement tends to appear at
near the terminal node of the argument. This in-
dicates that people tend to use rhetorical phrases
for appealing to the emotions first and then assert
their opinion as their persuasive strategy.

Furthermore, the statistical tests were con-
ducted to examine whether the difference in OP
vs. Reply and Positive vs. Negative post exists.
We used the Kolomogorov-Smirnov (KS) test and
Levene test on each case. In OP vs. Reply, a sig-
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nificant difference exists in the position distribu-
tion of Fact by KS test (p < 0.05), and Policy by
Levene test (p < 0.01). This indicates that people
tend to make an assertion based on objective facts
as a persuasion strategy.

5 Conclusion

In this study, we proposed an annotation scheme
for capturing the semantic role of EUs and re-
lations in online persuasions. We annotated five
types of EUs and two types of relations that re-
sulted in 4612 EU and 2713 relation annotations.
The analyses revealed that the existence of Rhetor-
ical Statement and the position of Fact in an argu-
ment structure characterizes the persuasive posts
that try to change the View. In future studies, we
will focus on the following: (i) the expansion of
our corpus data by annotating the post-to-post in-
teraction and (ii) the application of our data to
training sets of machine learning, i.e., automat-
ically identifying the argument structure and de-
tecting the persuasive posts.
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Abstract

Current Japanese word segmentation methods,
that use a morpheme-based approach, may
produce different segmentations for the same
strings. This occurs when these strings appear
in different sentences. The cause is the influ-
ence of different contexts around these strings
affecting the probabilistic models used in seg-
mentation algorithms. This paper presents
an alternative to the current morpheme-based
scheme for Japanese word segmentation. The
proposed scheme focuses on segmenting in-
flections as single words instead of separat-
ing the auxiliary verbs and other morphemes
from the stems. Some morphological segmen-
tation rules are presented for each type of word
and these rules are implemented in a program
which is properly described. The program is
used to generate a segmentation of a sentence
corpus, whose consistency is calculated and
compared with the current morpheme-based
segmentation of the same corpus. The ex-
periments show that this method produces a
much more consistent segmentation than the
morpheme-based one.

1 Introduction

In computational linguistics, the first step in text-
processing tasks is segmenting an input text into
words. Most languages make use of white spaces
as word boundaries, facilitating this segmentation
step. However, Japanese is one of the few lan-
guages that does not use a word delimiter. This
particular problem has been the focus of many re-
searchers because its solution is key to subsequent
processing tasks, such as Part-of-Speech (PoS)
tagging, machine translation or file indexing.

Segmenting a text requires the definition of
a segmentation unit (Indurkhya and Damerau,
2010). This unit must be strictly defined to de-
scribe all the elements in a language. But lan-
guages are not perfect and have changed abruptly

throughout the years, making it difficult or nearly
impossible to define such a unit. The consensus
has been that the unit to be used was the word, be-
cause it defines the majority of the elements in a
language, elements that have a meaning and can
stand by themselves (Katamba, 1994).

Even though there still are some constructions
that do not fit in the word definition (Bauer, 1983),
this segmentation unit is useful in languages that
use spaces because they separate the majority of
words in a text. For Japanese, however, this is not
the case. It is a language that does not use spaces
in its written form.

私たちの性格はまったく異なる。

(Our personalities are completely different.)

Furthermore, Japanese is an agglutinative lan-
guage, which means that some constructions (spe-
cially inflected words) are formed by consecu-
tively attaching morphemes to a stem (Kamer-
mans, 2010). These long words are very important
because they can work as full sentences without
the need to add context that was previously stated,
as illustrated in the following example:

待たされていました。

(I have been kept waiting.)

待つ (wait)
待たされる (be kept waiting)
待たされている (being kept waiting)
待たされています (being kept waiting) (*P)1

待たされていました (been kept waiting) (*P)

Given the nature of the language and the lack
of a need for native speakers to explicitly sepa-
rate words, there is no standard on how to seg-
ment a written text. Because of this, the segmenta-
tion unit and rules for text processing tasks are set
by each researcher, although most of them have

1*P: Polite form
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chosen a morpheme-based approach (Matsumoto
et al., 1991; Kudo, 2005; Matsumoto et al., 2007).

The downside about this morpheme approach is
that, in many cases, there is no consistency when
segmenting the same string. The cause seems to
be the influence of different contexts on the prob-
abilistic models used in segmentation algorithms.
In other words, by producing short morphemes as
candidates, there are many segmentation possibil-
ities from which the final one may change due to
the context. This inconsistency problem is visi-
ble in n-gram data produced by Kudo and Kazawa
(2009) and Yata (2010). Within these files, there
are various entries of the same string as result of
different segmentations, as shown in Table 1. This
problem directly affects any later processing task
that relies on the resulting segmentation. In ma-
chine translation, for example, different segmen-
tations for the same word would produce different
incorrect translations.

File N-gram Frequency
3gm-0034 行き　まし　た 2681486
4gm-0056 行　き　まし　た 290
4gm-0056 行き　ま　し　た 384

Table 1: The word行きました (went) (*P) as found in
n-gram data files produced by Yata (2010).

Inflected words follow a limited set of rules.
These rules properly define all possible inflections
(Kamermans, 2010). As such, they can only lead
to one possible correct segmentation. Taking this
premise, the Proposed approach aims for a more
consistent segmentation by focusing on the treat-
ment of inflected words to limit their segmentation
possibilities to a single one in all cases. Thus, re-
ducing word segmentation inconsistency errors.

The present work is structured as follows: Sec-
tion 2 describes the rules that lead the Proposed
segmentation method. Section 3 describes the im-
plementation of the algorithm that applies these
rules; Section 4 introduces the evaluation param-
eters and the results obtained with the Proposed
method, a comparison of these metrics with a
morpheme-based method and discussion of the re-
sults; and Section 5 presents the conclusions of the
work.

2 Segmentation Definition

Most Japanese constructions are created by di-
rectly connecting an affix to a word. A few

of these constructions are considered separated
words when translating them into English, such
as: 日本式 (Japan style, from 日本 Japan and
式 style) or 外国語 (foreign language, from 外
国 foreign and語 language). Other constructions
have a single word as translation, such as: 日本
語 (Japanese (language) from日本 Japan and語
language). However, this word construction rule
in Japanese can be found in ”basic” words as well.
For example: 大人 (adult, from 大 great and 人
person) or 女子 (girl, from 女 woman and 子
child), which are kept as single words in both lan-
guages. This means that we cannot generalize how
these constructions should always get segmented,
either as single words or multiple words.

As such, we have established a few segmenta-
tion rules where some affixes were connected to
the words they modify by the use of symbols, re-
gardless of the number of words it forms when
translating them into English. For prefix concate-
nation, the backtick symbol (`) was used, on the
other hand, for suffix concatenation, the hyphen
symbol (-) was used. In general, the words that
were considered for these affix concatenation rules
were nouns and verbs.

Overall, the base of the segmentation for this
work was the IPADIC (Asahara and Matsumoto,
2003) dictionary. This means that what was con-
sidered as word was each entry in this dictionary,
with the exception of the verb and adjective en-
tries. For these inflectional words, what was con-
sidered as word were the union of the inflectional
word stems and the morphemes or auxiliary verbs
that form the inflection, as described by Pontes
(2013). In the case of the inflectional words, only
the most common inflections are shown below 2.

Based on this word definition, the following
rules were set:

2.1 Nouns

Most regular nouns were kept as single words ac-
cording to the entries that belonged to this tag
within the IPADIC. Some PoS included in this
category were: common nouns, proper names,
pronouns, pronoun contractions, adverbial nouns,
verbal nouns (nouns that can be followed by す
る or related verbs), adjectival nouns (nouns that
can be followed byな), Arabic numbers (wide and
short length), counters and Chinese numbers.

2When mentioning an inflection based on an auxiliary
verb, it also refers to all the inflections of such auxiliary.
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• Names and pronouns were connected to per-
sonal suffixes.

和子-さん (Ms. Kazuko)

• Common nouns were connected to non-
inflectional affixes.
フィリピン-人 (Filipino) (demonym)
貧困-者 (Pauper)
ドイツ-語 (German) (language)
数`年 (Several years)

• Pronouns were connected to plural suffixes.

私-たち (We)
彼-等 (They)

• Nouns were connected to honorific prefixes.

ご`注文 (Order) (*P)

• Nouns were connected to more than one affix
when it was the case. The main noun was
always right after the backtick or just before
the first hyphen.

お`手伝い-さん-たち (Servants) (*P)

• Nouns connected to the的 character to adjec-
tivize them were treated as suffixes. For the
possible inflections of the的 character, refer
to Section 2.4.

世界-的な (Global)

2.2 Verbs

Verbs are the most varied words in terms of in-
flections. This is due to the possibility of con-
catenating many auxiliary verbs to a single stem,
producing really long words. In current segmen-
tation methods, each inflectional word gets seg-
mented by its stem and by each auxiliary verb.
This scheme can be found in linguistic texts but it
might not be the best way to segment these words
because of the inconsistency problem illustrated
in Table 1. For this method, the inflections were
treated as single words.

• Present affirmative.

会う (Meet)

• Negative form with auxiliaryない.

合わない (Do not meet)

• Polite form with auxiliaryます.

会います (Meet) (*P)

• Past form with auxiliaryた.

描いた (Drew)

• Continuative form with auxiliaryて.

話して (Talk and ...)

• Continuative form using the auxiliaryいる.

走ている (Is running)

• Desire with auxiliaryたい.

買いたい (Would like to buy)

• Hypothetical with auxiliaryば.

読めば (Should (you) read ...)

• Passive with the auxiliaryされる.

待たされる (Be kept waiting)

2.3 Adjectival Verbs
Adjectival verbs, also called i-adjectives, work the
same as verbs. They keep a static stem while their
suffixes change. These suffixes are formed by in-
flected auxiliary verbs from which a few are the
same as the ones for verbs. Just like verbs, the
inflections are treated as single words.

• Attributive form withい.

欲しい (Wanted, Desired)

• Adverbial form withく.

楽しく (Happily)

• Past form withかった.

寒かった (Was cold)

• Negative form with auxiliaryない.

面白くない (Not interesting)

2.4 Adjectival Nouns
Adjectival nouns, usually known as na-adjectives,
can be connected to just three morphemes which
are directly connected to the stem in this method.

• Copulaな to directly modify a noun.

大変な (Terrible)

• Continuative particleで to chain adjectives.

知的で (Intelligent and ...)

• Nominalising particleさ.

深刻さ (Seriousness)
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3 Implementation

3.1 The Dictionaries
The dictionaries needed for this work were a list of
non-inflectional words and various lists of inflec-
tional word stems:

The Non-Inflectional Word Dictionary
(NIWD) was formed by unifying the IPADIC
files into a single list; omitting verb, adjectival
verb, adjectival noun and symbol files. For the
final dictionary file, a column with frequency
counts was added. These counts were obtained
from n-gram data produced by Yata (2010) and
assigned to each entry. For this, the n-gram data
was first cleaned by removing the white spaces
separating the n-gram tokens, and the counts of
the repeated entries were summed. Once cleaned,
the whole n-gram data was sorted. Then, each
entry of the dictionary was searched within the
cleaned data to extract its frequency count.

The Inflectional Word Dictionary (IWD) in-
cluded lists of the stems for all the inflectional
words obtained by Pontes (2013). This dictionary
was divided in two sets. The first set contained
the adjectives classified in: noun adjectives (na,
な), verbal adjectives (i, い) and irregular adjec-
tives (ii,いい). The second set covered all verbs
classified in eleven groups: u (う), bu (ぶ), gu
(ぐ), ku (く), mu (む), nu (ぬ), ru (る), su (す)
and tsu (つ) for first group verbs, and ichidan (え
る,いる) for second group verbs. One additional
group was added for the honorific verbs that end
in aru (ある).

3.2 The Inflection Automaton
Due to the large number of possible inflected
words in the Japanese language, as shown by
Pontes (2013), it was not practical to store them
all in memory. Instead, a Deterministic Finite Au-
tomaton (DFA) was built to validate them.

The objective of the DFA was identifying
whether an input string corresponds to an inflected
word or not. This was done by checking if the
string was formed by a stem (by making use of the
IWD) and a correct inflectional suffix. The inflec-
tional suffixes that were implemented in the DFA
involved treating each character as a transition to a
new state. The states were final if all the previous
transitions formed a valid inflection. The transi-
tions and states were created following the inflec-
tional patterns obtained by (Pontes, 2013).

The process that the DFA implemented was:

1. Receive a string, set position to the start of
the string.

2. Take a substring from position to i, where i
grows by 1 in each iteration.

3. Look for the substring in the IWD. If not
found, take the next substring and repeat this
step. If there is no next substring, the string is
not an inflected word, as it does not contain a
stem.

4. If the substring is found, set the initial state to
the corresponding stem group and move po-
sition to the end of the substring within the
original string.

5. Read each next character from position and
use it as a transition to a new state. If the next
character is not a valid transition, go to step
3.

6. When there are no more characters left and
the last state reached is an accepting state, the
string is considered an inflected word. If the
last state reached is not an accepting state, go
to step 3.

Given that irregular verbs (suruする and kuru
くる) do not have static stems, the method started
at step 5 by setting the initial state to suru and, if
not found, to kuru.

If the string was not recognized as an inflected
word by the DFA, it verified if the first character
of the string was a honorific prefix (お,ご or御),
and if so, a substring starting from the second char-
acter was sent to step 1.

3.3 The Segmentation Program
The main program implemented the NIWD and

the DFA for word and inflection recognition re-
spectively, which were part of a unigram language
model for word segmentation (Jurafsky and Mar-
tin, 2000). This probabilistic model was accom-
panied with a few grammar rules for overriding
the final segmentation decision. To refine the pro-
gram, 2,500 sentences from the Tatoeba (Ho and
Simon, 2006) sentence corpus were used as vali-
dation data.

The steps that were followed by the program
were:

1. Split the input text into phrases by using de-
limiter symbols such as parenthesis, punctu-
ation, etc., as separators.
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2. For each phrase, take substrings of all sizes
> 0, and from all positions < phrase length.

3. For each substring, verify if it is an inflected
word with the DFA. If it is not, look for it in
the NIWD. If it is not found, verify if it is
a number or a foreign word in Katakana or
other alphabets. If it is not, repeat this step
with the next substring.

4. If the substring was verified or found in step
3, save it as a candidate word and assign it
a frequency count by looking for its value
within n-gram data like the one produced by
Yata (2010), and accumulate the frequency
count in a variable.

5. Once all candidate words are available, cal-
culate their score by taking the negative loga-
rithm of the frequency count assigned to each
word, divided to the accumulated frequency
count.

6. Create a graph where its nodes represent
the positions between each character of the
phrase.

7. For each node, select all the candidate words
whose last character position is right before
the node. Check if any of the grammar rules
apply to them in order to directly choose one
or remove them. If no rules applied, choose
the one with the least score value.

8. Set the chosen word as the edge that connects
the node before the position of the first char-
acter of the candidate word, and the current
node.

9. When all the edges are set, obtain each previ-
ous edge that connects the current node, start-
ing from the last one and going backwards.

10. Return the obtained edges in order while
adding a separation symbol between them
such as a backtick (‘) or hyphen (-) for affixes
or a white space for other words.

4 Evaluation

Two evaluations were established for the Proposed
method. The first one checked how correctly
it segments a test corpus in comparison with a
gold segmentation. The second one compared the
consistency of its segmentation of a corpus with
MeCab’s (Kudo, 2005) for the same corpus.

4.1 Segmentation Evaluation

For this evaluation, we used 1,000 sentences from
the Tatoeba (Ho and Simon, 2006) sentence cor-
pus, which were manually segmented to create a
gold segmentation corpus.

A Baseline method by Pontes (2013), that seg-
ments words based on longest string matches, was
used for comparison. Both methods’ outputs are
comparable given that the Baseline also uses the
IWD for inflected word segmentation. MeCab, on
the other hand, is not. It produces a morpheme-
based segmentation for inflected words.

The metrics used for evaluating both segmen-
tation methods were: recall, precision, and f-
measure (Wong et al., 2009). From these met-
rics, the following abbreviations were considered:
number of correctly segmented words (CW), to-
tal number of words in gold corpus (GW), total
number of segmented words (SW). The obtained
results are shown in Table 2.

Table 2: Results from evaluating the segmentation
methods.

Method GW SW CW
Proposed 9757 9798 9656
Baseline 9757 9190 8069
Method Recall Precision F-Measure
Proposed 98.96% 98.55% 98.76%
Baseline 82.70% 87.80% 85.17%

The Proposed method outperforms the Baseline
method. This score is apparently high, but notice
that it is not statistically significant, as the time
allowed us to manually prepare and revise only
1,000 sentences. Definitely, a larger corpus is nec-
essary in order to provide a higher confidence level
on the evaluation of our Japanese word segmen-
tation method. For the next evaluation, however,
we do count with a larger corpus for testing as ex-
plained below.

4.2 Consistency Evaluation

To evaluate the consistency of the segmentation
method, a corpus of 185,393 sentences from the
Tatoeba (Ho and Simon, 2006) sentence corpus
was used. This corpus was segmented with four
segmentation methods which were: the Proposed
method that attaches affixes to words as defined
in Section 2.1 (PMA), the Proposed method that
does not attach affixes to words (PM), the Base-
line method (BM) and MeCab.
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PMA, PM and the Baseline method consider in-
flected words as single words, which means, all
the auxiliary verbs that forms the inflections are
directly connected to the stems.

For each corpus segmentation, the following
process was applied:

Generate the n-gram data. Generate up to 7-
gram data of a corpus segmentation by using the
SRILM toolkit (Stolcke, 2004).

Clean the n-gram data. Remove the white
spaces that separate the n-gram tokens and sort the
whole n-gram data.

Create a list of repeated entries. Extract the
repeated entries (RE) from the clean n-gram data
by the use of regular expressions and produce a
repetition list. Count the number of RE to calcu-
late the inconsistency.

Count the RE that contain inflected words.
Apply the DFA on the repetition list in order to ob-
tain a subset of entries that contain inflected words
and count them.

Due to the large amount of entries and the lack
of context in n-gram data, it was not reasonable to
say that the inflected words detected were the cor-
rect words in the corpus. Therefore, we made three
different sets for inflected word count approxima-
tion: inflected words of more than one character
within the entry (IW1), inflected words of more
than two characters within the entry (IW2) and in-
flected words found as the whole entry (IWW). Ta-
ble 3 shows an example of each set.

Table 3: Repeated n-gram entries, generated from
MeCab’s segmentation, that contain inflected words as
found by the DFA.

Set Clean N-gram Inflected Word
Entry Found

IW1 にいるか いる

IW2 は思ったより 思った

IWW 変われる 変われる

In order to calculate the inconsistency of each
method, the entries of the RE, IW1, IW2 and IWW
lists of all the methods were summed. The share
of the inconsistency from each method is shown in
Table 4.

The evaluation of the four methods shows that
both Proposed methods produce the least RE,
which means that they are more consistent overall.
Regarding the RE that contain inflected words, the
Baseline method has the least inconsistency.

Table 4: Number of n-gram entries and inconsistency
error distribution for each method.

Method N-gram Entries
PMA 5,803,353
PM 5,808,828
BM 5,717,438

MeCab 6,245,224

Method RE IW1 IW2 IWW
PMA 14.58% 16.46% 17.42% 19.94%
PM 15.40% 17.20% 18.12% 20.66%
BM 16.23% 13.25% 13.46% 8.12%

MeCab 53.79% 53.09% 51.00% 51.28%
Total 100% 100% 100% 100%

The total number of n-gram entries produced
from MeCab’s segmentation is approximately 8%
higher than the one produced by the second higher
(PM). However, such a rate is insignificant com-
pared to the rate of RE within the n-gram data, in
which MeCab is around 300% more inconsistent
than each one of the other three methods.

5 Conclusion

We have demonstrated that by considering inflec-
tional words (with all their auxiliary verbs) as
single words, the number of possible segmenta-
tions for those words in different contexts gets re-
duced. Therefore, the resulting segmentation is
more consistent and more accurate. Tasks that
use word segmentation would also see an improve-
ment, such as language models and machine trans-
lation systems.

This approach relies on the fact that it is pos-
sible to define all the inflectional rules of the
Japanese language. The same method could be ap-
plied to other words that can be defined by rules, or
to other unsegmented languages whose rules can
be defined the same way.
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