
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 6140–6150
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

6140

Dynamically Fused Graph Network for Multi-hop Reasoning

Lin Qiu1† Yunxuan Xiao1† Yanru Qu1†

Hao Zhou2 Lei Li2 Weinan Zhang1 Yong Yu1

1 Shanghai Jiao Tong University 2 ByteDance AI Lab, China
{lqiu, kevinqu, yyu}@apex.sjtu.edu.cn
{xiaoyunxuan, wnzhang}@sjtu.edu.cn
{zhouhao.nlp, lilei.02}@bytedance.com

Abstract

Text-based question answering (TBQA) has
been studied extensively in recent years. Most
existing approaches focus on finding the an-
swer to a question within a single paragraph.
However, many difficult questions require
multiple supporting evidence from scattered
text across two or more documents. In this pa-
per, we propose the Dynamically Fused Graph
Network (DFGN), a novel method to answer
those questions requiring multiple scattered
evidence and reasoning over them. Inspired
by human’s step-by-step reasoning behavior,
DFGN includes a dynamic fusion layer that
starts from the entities mentioned in the given
query, explores along the entity graph dynam-
ically built from the text, and gradually finds
relevant supporting entities from the given
documents. We evaluate DFGN on HotpotQA,
a public TBQA dataset requiring multi-hop
reasoning. DFGN achieves competitive results
on the public board. Furthermore, our analy-
sis shows DFGN could produce interpretable
reasoning chains.

1 Introduction

Question answering (QA) has been a popular
topic in natural language processing. QA pro-
vides a quantifiable way to evaluate an NLP sys-
tem’s capability on language understanding and
reasoning (Hermann et al., 2015; Rajpurkar et al.,
2016, 2018). Most previous work focus on find-
ing evidence and answers from a single para-
graph (Seo et al., 2016; Liu et al., 2017; Wang
et al., 2017). It rarely tests deep reasoning ca-
pabilities of the underlying model. In fact, Min
et al. (2018) observe that most questions in exist-
ing QA benchmarks can be answered by retrieving
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The Sum of All Fears is a best-selling thriller novel by Tom Clancy ... It
was the fourth of Clancy's Jack Ryan books to be turned into a film ...

Dr. John Patrick Jack Ryan Sr., KCVO (Hon.), Ph.D. is a fictional
character created by Tom Clancy who appears in many of his novels
and their respective film adaptations ...

Net Force Explorers is a series of young adult novels created by Tom
Clancy and Steve Pieczenik as a spin-off of the military fiction series
...

Question: What fiction character created by Tom Clancy was turned
into a film in 2002?
Answer: Jack Ryan

Input	Paragraphs:

Original	Entity	Graph Second	Mask	AppliedFirst	Mask	Applied

Figure 1: Example of multi-hop text-based QA. One
question and three document paragraphs are given. Our
proposed DFGN conducts multi-step reasoning over
the facts by constructing an entity graph from multiple
paragraphs, predicting a dynamic mask to select a sub-
graph, propagating information along the graph, and
finally transfer the information from the graph back to
the text in order to localize the answer. Nodes are entity
occurrences, with the color denoting the underlying en-
tity. Edges are constructed from co-occurrences. The
gray circles are selected by DFGN in each step.

a small set of sentences without reasoning. To ad-
dress this issue, there are several recently proposed
QA datasets particularly designed to evaluate a
system’s multi-hop reasoning capabilities, includ-
ing WikiHop (Welbl et al., 2018), ComplexWe-
bQuestions (Talmor and Berant, 2018), and Hot-
potQA (Yang et al., 2018).

In this paper, we study the problem of multi-hop
text-based QA, which requires multi-hop reason-
ing among evidence scattered around multiple raw
documents. In particular, a query utterance and a
set of accompanying documents are given, but not
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all of them are relevant. The answer can only be
obtained by selecting two or more evidence from
the documents and inferring among them (see Fig-
ure 1 for an example). This setup is versatile and
does not rely on any additional predefined knowl-
edge base. Therefore the models are expected to
generalize well and to answer questions in open
domains.

There are two main challenges to answer ques-
tions of this kind. Firstly, since not every docu-
ment contain relevant information, multi-hop text-
based QA requires filtering out noises from multi-
ple paragraphs and extracting useful information.
To address this, recent studies propose to build en-
tity graphs from input paragraphs and apply graph
neural networks (GNNs) to aggregate the informa-
tion through entity graphs (Dhingra et al., 2018;
De Cao et al., 2018; Song et al., 2018a). However,
all of the existing work apply GNNs based on a
static global entity graph of each QA pair, which
can be considered as performing implicit reason-
ing. Instead of them, we argue that the query-
guided multi-hop reasoning should be explicitly
performed on a dynamic local entity graph tailored
according to the query.

Secondly, previous work on multi-hop QA (e.g.
WikiHop) usually aggregates document informa-
tion to an entity graph, and answers are then
directly selected on entities of the entity graph.
However, in a more realistic setting, the answers
may even not reside in entities of the extracted en-
tity graph. Thus, existing approaches can hardly
be directly applied to open-domain multi-hop QA
tasks like HotpotQA.

In this paper, we propose Dynamically Fused
Graph Network (DFGN), a novel method to ad-
dress the aforementioned concerns for multi-hop
text-based QA. For the first challenge, DFGN con-
structs a dynamic entity graph based on entity
mentions in the query and documents. This pro-
cess iterates in multiple rounds to achieve multi-
hop reasoning. In each round, DFGN generates
and reasons on a dynamic graph, where irrele-
vant entities are masked out while only reason-
ing sources are preserved, via a mask prediction
module. Figure 1 shows how DFGN works on a
multi-hop text-based QA example in HotpotQA.
The mask prediction module is learned in an end-
to-end fashion, alleviating the error propagation
problem.

To solve the second challenge, we propose

a fusion process in DFGN to solve the unre-
stricted QA challenge. We not only aggregate
information from documents to the entity graph
(doc2graph), but also propagate the information of
the entity graph back to document representations
(graph2doc). The fusion process is iteratively per-
formed at each hop through the document tokens
and entities, and the final resulting answer is then
obtained from document tokens. The fusion pro-
cess of doc2graph and graph2doc along with the
dynamic entity graph jointly improve the interac-
tion between the information of documents and the
entity graph, leading to a less noisy entity graph
and thus more accurate answers.

As one merit, DFGN’s predicted masks implic-
itly induce reasoning chains, which can explain
the reasoning results. Since the ground truth rea-
soning chain is very hard to define and label for
open-domain corpus, we propose a feasible way to
weakly supervise the mask learning. We propose
a new metric to evaluate the quality of predicted
reasoning chains and constructed entity graphs.

Our contributions are summarized as follows:

• We propose DFGN, a novel method for the
multi-hop text-based QA problem.
• We provide a way to explain and eval-

uate the reasoning chains via interpreting
the entity graph masks predicted by DFGN.
The mask prediction module is additionally
weakly trained.
• We provide an experimental study on a public

dataset (HotpotQA) to demonstrate that our
proposed DFGN is competitive against state-
of-the-art unpublished work.

2 Related work

Text-based Question Answering Depending
on whether the supporting information is struc-
tured or not, QA tasks can be categorized into
knowledge-based (KBQA), text-based (TBQA),
mixed, and others. In KBQA, the supporting infor-
mation is from structured knowledge bases (KBs),
while the queries can be either structure or natural
language utterances. For example, SimpleQues-
tions is one large scale dataset of this kind (Bor-
des et al., 2015). In contrast, TBQA’s support-
ing information is raw text, and hence the query
is also text. SQuAD (Rajpurkar et al., 2016)
and HotpotQA (Yang et al., 2018) are two such
datasets. There are also mixed QA tasks which
combine both text and KBs, e.g. WikiHop (Welbl
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Paragraph 1: Australia at the 2012 Winter Youth Olympics
Australia competed at the 2012 Winter Youth Olympics in Innsbruck. The chef de 
mission of the team will be former Olympic champion Alisa Camplin, the first time 
a woman is the chef de mission of any Australian Olympic team. The Australian 
team will consist of 13 athletes in 8 sports.
Paragraph 2: Alisa Camplin
Alisa Peta Camplin OAM (born 10 November 1974) is an Australian aerial skier 
who won gold at the 2002 Winter Olympics, the second ever winter Olympic gold 
medal for Australia. At the 2006 Winter Olympics, Camplin finished third to receive 
a bronze medal. She is the first Australian skier to win medals at consecutive 
Winter Olympics, making her one of Australia's best skiers.
Distractor Paragraphs 3 - 10 ...

Q: The first woman to be the chef de mission of an Australian Olympic 
team won gold medal in which winter Olympics ?
A: 2002 Winter Olympics 

The Hanging Gardens, in Mumbai , also known as 
Pherozeshah Mehta Gardens, are terraced gardens 
?  They provide sunset views over the Arabian Sea.

Mumbai (also known as Bombay, the official name 
until 1995) is the capital city of the Indian state of 
Maharashtra. It is the most populous city in India ?  

The Arabian Sea is a region of the northern Indian 
Ocean bounded on the north by Pakistan and Iran, 
on the west by northeastern Somalia and the 
Arabian Peninsula, and on the east by India ?  

Q: (Hanging gardens of Mumbai, country, ?) 
Options: {Iran, India, Pakistan , Somalia, ? } 
A: India

HotpotQA WikiHop

Figure 2: Comparison between HotpotQA (left) and WikiHop (right). In HotpotQA, the questions are proposed
by crowd workers and the blue words in paragraphs are labeled supporting facts corresponding to the question. In
WikiHop, the questions and answers are formed with relations and entities in the underlying KB respectively, thus
the questions are inherently restricted by the KB schema. The colored words and phrases are entities in the KB.

et al., 2018) and ComplexWebQuestions (Talmor
and Berant, 2018). In this paper, we focus on
TBQA, since TBQA tests a system’s end-to-end
capability of extracting relevant facts from raw
language and reasoning about them.

Depending on the complexity in underlying
reasoning, QA problems can be categorized into
single-hop and multi-hop ones. Single-hop QA
only requires one fact extracted from the underly-
ing information, no matter structured or unstruc-
tured, e.g. “which city is the capital of Califor-
nia”. The SQuAD dataset belongs to this type (Ra-
jpurkar et al., 2016). On the contrary, multi-hop
QA requires identifying multiple related facts and
reasoning about them, e.g. “what is the capital city
of the largest state in the U.S.”. Example tasks and
benchmarks of this kind include WikiHop, Com-
plexWebQuestions, and HotpotQA. Many IR tech-
niques can be applied to answer single-hop ques-
tions (Rajpurkar et al., 2016). However, these IR
techniques are hardly introduced in multi-hop QA,
since a single fact can only partially match a ques-
tion.

Note that existing multi-hop QA datasets Wik-
iHop and ComplexWebQuestions, are constructed
using existing KBs and constrained by the schema
of the KBs they use. For example, the answers are
limited in entities in WikiHop rather than formed
by free texts in HotpotQA (see Figure 2 for an ex-
ample). In this work, we focus on multi-hop text-
based QA, so we only evaluate on HotpotQA.

Multi-hop Reasoning for QA Popular GNN
frameworks, e.g. graph convolution network

(Kipf and Welling, 2017), graph attention network
(Veličković et al., 2018), and graph recurrent net-
work (Song et al., 2018b), have been previously
studied and show promising results in QA tasks
requiring reasoning (Dhingra et al., 2018; De Cao
et al., 2018; Song et al., 2018a).

Coref-GRN extracts and aggregates entity in-
formation in different references from scattered
paragraphs (Dhingra et al., 2018). Coref-GRN
utilizes co-reference resolution to detect different
mentions of the same entity. These mentions are
combined with a graph recurrent neural network
(GRN) (Song et al., 2018b) to produce aggregated
entity representations. MHQA-GRN (Song et al.,
2018a) follows Coref-GRN and refines the graph
construction procedure with more connections:
sliding-window, same entity, and co-reference,
which shows further improvements. Entity-GCN
(De Cao et al., 2018) proposes to distinguish dif-
ferent relations in the graphs through a relational
graph convolutional neural network (GCN) (Kipf
and Welling, 2017). Coref-GRN, MHQA-GRN
and Entity-GCN explore the graph construction
problem in answering real-world questions. How-
ever, it is yet to investigate how to effectively rea-
son about the constructed graphs, which is the
main problem studied in this work.

Another group of sequential models deals with
multi-hop reasoning following Memory Networks
(Sukhbaatar et al., 2015). Such models construct
representations for queries and memory cells for
contexts, then make interactions between them in
a multi-hop manner. Munkhdalai and Yu (2017)
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and Onishi et al. (2016) incorporate a hypothe-
sis testing loop to update the query representation
at each reasoning step and select the best answer
among the candidate entities at the last step. IR-
Net (Zhou et al., 2018) generates a subject state
and a relation state at each step, computing the
similarity score between all the entities and rela-
tions given by the dataset KB. The ones with the
highest score at each time step are linked together
to form an interpretable reasoning chain. How-
ever, these models perform reasoning on simple
synthetic datasets with a limited number of entities
and relations, which are quite different with large-
scale QA dataset with complex questions. Also,
the supervision of entity-level reasoning chains in
synthetic datasets can be easily given following
some patterns while they are not available in Hot-
potQA.

3 Dynamically Fused Graph Network

We describe dynamically fused graph net-
work (DFGN) in this section. Our intuition is
drawn from the human reasoning process for QA.
One starts from an entity of interest in the query,
focuses on the words surrounding the start entities,
connects to some related entity either found in the
neighborhood or linked by the same surface men-
tion, repeats the step to form a reasoning chain,
and lands on some entity or snippets likely to be
the answer. To mimic human reasoning behav-
ior, we develop five components in our proposed
QA system (Fig. 3): a paragraph selection sub-
network, a module for entity graph construction,
an encoding layer, a fusion block for multi-hop
reasoning, and a final prediction layer.

3.1 Paragraph Selection

For each question, we assume that Np paragraphs
are given (e.g. Np = 10 in HotpotQA). Since not
every piece of text is relevant to the question, we
train a sub-network to select relevant paragraphs.
The sub-network is based on a pre-trained BERT
model (Devlin et al., 2018) followed by a sentence
classification layer with sigmoid prediction. The
selector network takes a query Q and a paragraph
as input and outputs a relevance score between 0
and 1. Training labels are constructed by assign-
ing 1’s to the paragraphs with at least one support-
ing sentence for each Q&A pair. During inference,
paragraphs with predicted scores greater than η
(= 0.1 in experiments) are selected and concate-

Encoder

Input 
Documents

Input
Query

Context Entity
Graph

Fusion Block

LSTM Prediction Layer

Paragraph
Selector

Graph
Constructor

BERT Bi-attention

Supporting
Sentences

Answer
Span

Answer
Type

multi-hop

Figure 3: Overview of DFGN.

nated together as the context C. η is properly cho-
sen to ensure the selector reaches a significantly
high recall of relevant paragraphs. Q and C are
further processed by upper layers.

3.2 Constructing Entity Graph
We do not assume a global knowledge base. In-
stead, we use the Stanford corenlp toolkit (Man-
ning et al., 2014) to recognize named entities from
the context C. The number of extracted entities
is denoted as N . The entity graph is constructed
with the entities as nodes and edges built as fol-
lows. The edges are added 1. for every pair of en-
tities appear in the same sentence in C (sentence-
level links); 2. for every pair of entities with the
same mention text in C (context-level links); and
3. between a central entity node and other entities
within the same paragraph (paragraph-level links).
The central entities are extracted from the title sen-
tence for each paragraph. Notice the context-level
links ensures that entities across multiple docu-
ments are connected in a certain way. We do
not apply co-reference resolution for pronouns be-
cause it introduces both additional useful and er-
roneous links.

3.3 Encoding Query and Context
We concatenate the query Q with the context C
and pass the resulting sequence to a pre-trained
BERT model to obtain representations Q =
[q1, . . . ,qL] ∈ RL×d1 and C> = [c1, . . . , cM ] ∈
RM×d1 , where L,M are lengths of query and con-
text, and d1 is the size of BERT hidden states.
In experiments, we find concatenating queries and
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contexts performs better than passing them sepa-
rately to BERT.

The representations are further passed through
a bi-attention layer (Seo et al., 2016) to enhance
cross interactions between the query and the con-
text. In practice, we find adding the bi-attention
layer achieves better performance than the BERT
encoding only. The output representation are
Q0 ∈ RL×d2 and C0 ∈ RM×d2 , where d2 is the
output embedding size.

3.4 Reasoning with the Fusion Block
With the embeddings calculated for the query Q
and context C, the remaining challenge is how
to identify supporting entities and the text span
of potential answers. We propose a fusion block
to mimic human’s one-step reasoning behavior –
starting from Q0 and C0 and finding one-step sup-
porting entities. A fusion block achieves the fol-
lowing: 1. passing information from tokens to en-
tities by computing entity embeddings from to-
kens (Doc2Graph flow); 2. propagating informa-
tion on entity graph; and 3. passing information
from entity graph to document tokens since the
final prediction is on tokens (Graph2Doc flow).
Fig. 4 depicts the inside structure of the fusion
block in DFGN.

Document to Graph Flow. Since each entity is
recognized via the NER tool, the text spans associ-
ated with the entities are utilized to compute entity
embeddings (Doc2Graph). To this end, we con-
struct a binary matrix M, where Mi,j is 1 if i-th
token in the context is within the span of the j-th
entity. M is used to select the text span associated
with an entity. The token embeddings calculated
from the above section (which is a matrix con-
taining only selected columns of Ct−1) is passed
into a mean-max pooling to calculate entity em-
beddings Et−1 = [et−1,1, . . . , et−1,N ]. Et−1 will
be of size 2d2×N , whereN is the number of enti-
ties, and each of the 2d2 dimensions will produce
both mean-pooling and max-pooling results. This
module is denoted as Tok2Ent.

Dynamic Graph Attention. After obtaining en-
tity embeddings from the input context Ct−1, we
apply a graph neural network to propagate node
information to their neighbors. We propose a dy-
namic graph attention mechanism to mimic hu-
man’s step-by-step exploring and reasoning be-
havior. In each reasoning step, we assume ev-
ery node has some information to disseminate to

M

MeanPool

Soft Mask

Context
Ct-1

Query
Qt-1

Dynamic Graph
Attention

M

Entity
Et

Entity Graph G

Doc2Graph Graph2Doc

Bi-Attention

Entity
Et-1

Context
Ct

Query
Qt

...
...

... ... ... ...
...

Query Update

Figure 4: Reasoning with the fusion block in DFGN

neighbors. The more relevant to the query, the
neighbor nodes receive more information from
nearby.

We first identify nodes relevant to the query by
creating a soft mask on entities. It serves as an in-
formation gatekeeper, i.e. only those entity nodes
pertaining to the query are allowed to disseminate
information. We use an attention network between
the query embeddings and the entity embeddings
to predict a soft mask mt, which aims to signify
the start entities in the t-th reasoning step:

q̃(t−1) = MeanPooling(Q(t−1)) (1)

γ
(t)
i = q̃(t−1)V(t)e

(t−1)
i /

√
d2 (2)

m(t) = σ([γ
(t)
1 , · · · , γ(t)N ]) (3)

Ẽ(t−1) = [m
(t)
1 e

(t−1)
1 , . . . ,m

(t)
N e

(t−1)
N ] (4)

where Vt is a linear projection matrix, and σ is the
sigmoid function. By multiplying the soft mask
and the initial entity embeddings, the desired start
entities will be encouraged and others will be pe-
nalized. As a result, this step of information prop-
agation is restricted to a dynamic sub-part of the
entity graph.

The next step is to disseminate information
across the dynamic sub-graph. Inspired by
GAT (Veličković et al., 2018), we compute atten-
tion score α between two entities by:

h
(t)
i = Utẽ

(t−1)
i + bt (5)

β
(t)
i,j = LeakyReLU(W>

t [h
(t)
i ,h

(t)
j ]) (6)

α
(t)
i,j =

exp(β
(t)
i,j )∑

k exp(β
(t)
i,k)

(7)

where Ut ∈ Rd2×2d2 , Wt ∈ R2d2 are linear pro-
jection parameters. Here the i-th row of α rep-
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resents the proportion of information that will be
assigned to the neighbors of entity i.

Note that the information flow in our model is
different from most previous GATs. In dynamic
graph attention, each node sums over its column,
which forms a new entity state containing the total
information it received from the neighbors:

e
(t)
i = ReLU(

∑
j∈Bi

α
(t)
j,ih

(t)
j ) (8)

where Bi is the set of neighbors of entity i. Then
we obtain the updated entity embeddings E(t) =

[e
(t)
1 , . . . , e

(t)
N ].

Updating Query. A reasoning chain contains
multiple steps, and the newly visited entities by
one step will be the start entities of the next step.
In order to predict the expected start entities for
the next step, we introduce a query update mecha-
nism, where the query embeddings are updated by
the entity embeddings of the current step. In our
implementation, we utilize a bi-attention network
(Seo et al., 2016) to update the query embeddings:

Q(t) = Bi-Attention(Q(t−1),E(t)) (9)

Graph to Document Flow. Using Tok2Ent and
dynamic graph attention, we realize a reasoning
step at the entity level. However, the unrestricted
answer still cannot be backtraced. To address this,
we develop a Graph2Doc module to keep infor-
mation flowing from entity back to tokens in the
context. Therefore the text span pertaining to the
answers can be localized in the context.

Using the same binary matrix M as described
above, the previous token embeddings in Ct−1 are
concatenated with the associated entity embedding
corresponding to the token. Each row in M corre-
sponds to one token, therefore we use it to select
one entity’s embedding from Et if the token par-
ticipates in the entity’s mention. This information
is further processed with a LSTM layer (Hochre-
iter and Schmidhuber, 1997) to produce the next-
level context representation:

C(t) = LSTM([C(t−1),ME(t)>]) (10)

where ; refers to concatenation and C(t) ∈ RM×d2

serves as the input of the next fusion block. At this
time, the reasoning information of current sub-
graph has been propagated onto the whole context.

3.5 Prediction
We follow the same structure of prediction layers
as (Yang et al., 2018). The framework has four
output dimensions, including 1. supporting sen-
tences, 2. the start position of the answer, 3. the
end position of the answer, and 4. the answer type.
We use a cascade structure to solve the output de-
pendency, where four isomorphic LSTMs Fi are
stacked layer by layer. The context representation
of the last fusion block is sent to the first LSTM
F0. EachFi outputs a logit O ∈ RM×d2 and com-
putes a cross entropy loss over these logits.

Osup = F0(C
(t)) (11)

Ostart = F1([C
(t),Osup]) (12)

Oend = F2([C
(t),Osup,Ostart]) (13)

Otype = F3([C
(t),Osup,Oend]) (14)

We jointly optimize these four cross entropy
losses. Each loss term is weighted by a coefficient.

L = Lstart + Lend + λsLsup + λtLtype (15)

Weak Supervision. In addition, we introduce a
weakly supervised signal to induce the soft masks
at each fusion block to match the heuristic masks.
For each training case, the heuristic masks con-
tain a start mask detected from the query, and ad-
ditional BFS masks obtained by applying breadth-
first search (BFS) on the adjacent matrices give the
start mask. A binary cross entropy loss between
the predicted soft masks and the heuristics is then
added to the objective. We skip those cases whose
start masks cannot be detected from the queries.

4 Experiments

We evaluate our Dynamically Fused Graph Net-
work (DFGN) on HotpotQA (Yang et al., 2018)
in the distractor setting. For the full wiki setting
where the entire Wikipedia articles are given as
input, we consider the bottleneck is about infor-
mation retrieval, thus we do not include the full
wiki setting in our experiments.

4.1 Implementation Details
In paragraph selection stage, we use the uncased
version of BERT Tokenizer (Devlin et al., 2018)
to tokenize all passages and questions. The encod-
ing vectors of sentence pairs are generated from a
pre-trained BERT model (Devlin et al., 2018). We
set a relatively low threshold during selection to
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Model
Answer Sup Fact Joint

EM F1 EM F1 EM F1
Baseline Model 45.60 59.02 20.32 64.49 10.83 40.16
GRN∗ 52.92 66.71 52.37 84.11 31.77 58.47
DFGN(Ours) 55.17 68.49 49.85 81.06 31.87 58.23
QFE∗ 53.86 68.06 57.75 84.49 34.63 59.61
DFGN(Ours)† 56.31 69.69 51.50 81.62 33.62 59.82

Table 1: Performance comparison on the private test set of HotpotQA in the distractor setting. Our DFGN is the
second best result on the leaderboard before submission (on March 1st). The baseline model is from Yang et al.
(2018) and the results with ∗ is unpublished. DFGN(Ours)† refers to the same model with a revised entity graph,
whose entities are recognized by a BERT NER model. Note that the result of DFGN(Ours)† is submitted to the
leaderboard during the review process of our paper.

Setting EM F1
DFGN (2-layer) 55.42 69.23
- BFS Supervision 54.48 68.15
- Entity Mask 54.64 68.25
- Query Update 54.44 67.98
- E2T Process 53.91 67.45
- 1 Fusion Block 54.14 67.70
- 2 Fusion Blocks 53.44 67.11
- 2 Fusion Blocks & Bi-attn 50.03 62.83
gold paragraphs only 55.67 69.15
supporting facts only 57.57 71.67

Table 2: Ablation study of question answering perfor-
mances in the development set of HotpotQA in the dis-
tractor setting. We use a DFGN with 2-layer fusion
blocks as the origin model. The upper part is the model
ablation results and the lower part is the dataset abla-
tion results.

keep a high recall (97%) and a reasonable preci-
sion (69%) on supporting facts.

In graph construction stage, we use a pre-
trained NER model from Stanford CoreNLP
Toolkits1 (Manning et al., 2014) to extract named
entities. The maximum number of entities in a
graph is set to be 40. Each entity node in the entity
graphs has an average degree of 3.52.

In the encoding stage, we also use a pre-trained
BERT model as the encoder, thus d1 is 768. All
the hidden state dimensions d2 are set to 300. We
set the dropout rate for all hidden units of LSTM
and dynamic graph attention to 0.3 and 0.5 respec-
tively. For optimization, we use Adam Optimizer
(Kingma and Ba, 2015) with an initial learning
rate of 1e−4.

1https://nlp.stanford.edu/software/
CRF-NER.shtml

4.2 Main Results
We first present a comparison between baseline
models and our DFGN2. Table 1 shows the per-
formance of different models in the private test
set of HotpotQA. From the table we can see that
our model achieves the second best result on the
leaderboard now3 (on March 1st). Besides, the an-
swer performance and the joint performance of our
model are competitive against state-of-the-art un-
published models. We also include the result of
our model with a revised entity graph whose enti-
ties are recognized by a BERT NER model (De-
vlin et al., 2018). We fine-tune the pre-trained
BERT model on the dataset of the CoNLL’03 NER
shared task (Sang and De Meulder, 2003) and use
it to extract named entities from the input para-
graphs. The results show that our model achieves
a 1.5% gain in the joint F1-score with the entity
graph built from a better entity recognizer.

To evaluate the performance of different com-
ponents in our DFGN, we perform ablation study
on both model components and dataset segments.
Here we follow the experiment setting in Yang
et al. (2018) to perform the dataset ablation study,
where we only use golden paragraphs or support-
ing facts as the input context. The ablation re-
sults of QA performances in the development set
of HotpotQA are shown in Table 2. From the table
we can see that each of our model components can
provide from 1% to 2% relative gain over the QA
performance. Particularly, using a 1-layer fusion
block leads to an obvious performance loss, which
implies the significance of performing multi-hop
reasoning in HotpotQA. Besides, the dataset abla-

2Our code is available in https://github.com/
woshiyyya/DFGN-pytorch.

3The leaderboard can be found on https:
//hotpotqa.github.io

https://nlp.stanford.edu/software/CRF-NER.shtml
https://nlp.stanford.edu/software/CRF-NER.shtml
https://github.com/woshiyyya/DFGN-pytorch
https://github.com/woshiyyya/DFGN-pytorch
https://hotpotqa.github.io
https://hotpotqa.github.io
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tion results show that our model is not very sen-
sitive to the noisy paragraphs comparing with the
baseline model which can achieve a more than 5%
performance gain in the “gold paragraphs only”
and “supporting facts only” settings. (Yang et al.,
2018).

4.3 Evaluation on Graph Construction and
Reasoning Chains

The chain of reasoning is a directed path on the
entity graph, so high-quality entity graphs are the
basis of good reasoning. Since the limited accu-
racy of NER model and the incompleteness of our
graph construction, 31.3% of the cases in the de-
velopment set are unable to perform a complete
reasoning process, where at least one supporting
sentence is not reachable through the entity graph,
i.e. no entity is recognized by NER model in this
sentence. We name such cases as “missing sup-
porting entity”, and the ratio of such cases can
evaluate the quality of graph construction. We fo-
cus on the rest 68.7% good cases in the following
analysis.

In the following, we first give several defini-
tions before presenting ESP (Entity-level Support)
scores.

Path A path is a sequence of entities vis-
ited by the fusion blocks, denoting as P =
[ep1 , . . . , ept+1 ] (suppose t-layer fusion blocks).

Path Score The score of a path is acquired by
multiplying corresponding soft masks and atten-
tion scores along the path, i.e. score(P ) =∏t

i=1m
(i)
pi α

(i)
pi,pi+1 (Eq. (3), (7)).

Hit Given a path and a supporting sentence, if at
least one entity of the supporting sentence is vis-
ited by the path, we call this supporting sentence
is hit4.

Given a case with m supporting sentences, we
select the top-k paths with the highest scores as
the predicted reasoning chains. For each support-
ing sentence, we use the k paths to calculate how
many supporting sentences are hit.

In the following, we introduce two metrics
to evaluate the quality of multi-hop reasoning
through entity-level supporting (ESP) scores.

4A supporting sentence may contain irrelevant informa-
tion, thus we do not have to visit all entities in a supporting
sentence. Besides, due to the fusion mechanism of DFGN,
the entity information will be propagated to the whole sen-
tence. Therefore, we define a “hit” occurs when at least one
entity of the supporting sentence is visited.

k 1 2 5 10
ESP EM(≤ 40) 7.4% 15.5% 29.8% 41.0%
ESP EM(≤ 80) 7.1% 14.7% 29.9% 44.8%

ESP Recall(≤ 40) 37.3% 46.1% 58.4% 66.4%
ESP Recall(≤ 80) 34.9% 44.6% 59.1% 70.0%

Table 3: Evaluation of reasoning chains by ESP scores
on two versions of the entity graphs in the develop-
ment set. ≤ 40 and ≤ 80 indicate to the maximum
number of nodes in entity graphs. Note that ≤ 40
refers to the entity graph whose entities are extracted
by Stanford CoreNLP, while ≤ 80 refers to the en-
tity graph whose entities are extracted by the aforemen-
tioned BERT NER model.

ESP EM (Exact Match) For a case withm sup-
porting sentences, if all them sentences are hit, we
call this case exact match. The ESP EM score is
the ratio of exactly matched cases.

ESP Recall For a case with m supporting sen-
tences and h of them are hit, this case has a recall
score of h/m. The averaged recall of the whole
dataset is the ESP Recall.

We train a DFGN with 2 fusion blocks to se-
lect paths with top-k scores. In the development
set, the average number of paths of length 2 is
174.7. We choose k as 1, 2, 5, 10 to compute ESP
EM and ESP Recall scores. As we can see in Ta-
ble 3, regarding the supporting sentences as the
ground truth of reasoning chains, our framework
can predict reliable information flow. The most in-
formative flow can cover the supporting facts and
help produce reliable reasoning results. Here we
present the results from two versions of the entity
graphs. The results with a maximum number of
nodes ≤ 40 are from the entity graph whose en-
tities are extracted by Stanford CoreNLP. The re-
sults with a maximum number of nodes ≤ 80 are
from the entity graph whose entities are extracted
by the aforementioned BERT NER model. Since
the BERT NER model performs better, we use a
larger maximum number of nodes.

In addition, as the size of an entity graph gets
larger, the expansion of reasoning chain space
makes a Hit even more difficult. However, the
BERT NER model still keeps comparative and
even better performance on metrics of EM and Re-
call. Thus the entity graph built from the BERT
NER model is better than the previous version.
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Supporting Fact 1: 
"Farrukhzad Khosrau V was briefly king of the Sasanian Empire from March 631 to ..." 
Supporting Fact 2: 
"The Sasanian Empire, which succeeded the Parthian Empire, was recognised as ... the 
Roman-Byzantine Empire, for a period of more than 400 years."  

Q2: From March 631 to April 631, Farrukhzad Khosrau V was the king of an empire that succeeded 
which empire? 
Answer: the Parthian Empire    Prediction: Parthian Empire   Top 1 Reasoning Chain:  n/a

Supporting Fact 1: 
"Barrack buster is the colloquial name given to several improvised mortars, developed in the 1990s 
by the engineering group of the Provisional Irish Republican Army (IRA)."  
Supporting Fact 2: 
" On 20 March 1994, a British Army Lynx helicopter was shot down by the Provisional Irish 
Republican Army (IRA) in Northern Ireland."

Q1:  Who used a Barrack buster to shoot down a British Army Lynx helicopter?      
Answer: IRA Prediction: IRA
Top 1 Reasoning Chain: British Army Lynx, Provisional Irish Republican Army, IRA

Mask1   Mask2     End

Supporting Fact 1: 
"George Archainbaud (May 7, 1890 ? February 20, 1959) was a French-born American film and 
television director."  
Supporting Fact 2: 
"Ralph Murphy (May 1, 1895 ? February 10, 1967) was an American film director."

Q3:  Who died first, George Archainbaud or Ralph Murphy?     
Answer: George Archainbaud Prediction: Ralph Murphy
Top 1 Reasoning Chain: Ralph Murphy, May 1, 1895, Ralph Murphy

Figure 5: Case study of three samples in the development set. We train a DFGN with 2-layer fusion blocks to
produce the results. The numbers on the left side indicate the importance scores of the predicted masks. The text
on the right side include the queries, answers, predictions, predicted top-1 reasoning chains and the supporting
facts of three samples with the recognized entities highlighted by different colors.

4.4 Case Study

We present a case study in Figure 5. The first case
illustrates the reasoning process in a DFGN with
2-layer fusion blocks. At the first step, by com-
paring the query with entities, our model generates
Mask1 as the start entity mask of reasoning, where
“Barrack” and “British Army Lynx” are detected
as the start entities of two reasoning chains. Infor-
mation of two start entities is then passed to their
neighbors on the entity graph. At the second step,
mentions of the same entity “IRA” are detected
by Mask2, serving as a bridge for propagating in-
formation across two paragraphs. Finally, two rea-
soning chains are linked together by the bridge en-
tity “IRA”, which is exactly the answer.

The second case in Figure 5 is a bad case. Due
to the malfunction of the NER module, the only
start entity, “Farrukhzad Khosrau V”, was not
successfully detected. Without the start entities,
the reasoning chains cannot be established, and
the further information flow in the entity graph is
blocked at the first step.

The third case in Figure 5 is also a bad case,
which includes a query of the Comparison query
type. Due to the lack of numerical computation
ability of our model, it fails to give a correct an-
swer, although the query is just a simple compar-

ison between two days “February 20, 1959” and
“February 10, 1967”. It is an essential problem
to incorporate numerical operations for further im-
proving the performance in cases of the compari-
son query type.

5 Conclusion

We introduce Dynamically Fused Graph Network
(DFGN) to address multi-hop reasoning. Specif-
ically, we propose a dynamic fusion reasoning
block based on graph neural networks. Different
from previous approaches in QA, DFGN is capa-
ble of predicting the sub-graphs dynamically at
each reasoning step, and the entity-level reason-
ing is fused with token-level contexts. We evaluate
DFGN on HotpotQA and achieve leading results.
Besides, our analysis shows DFGN can produce
reliable and explainable reasoning chains. In the
future, we may incorporate new advances in build-
ing entity graphs from texts, and solve more diffi-
cult reasoning problems, e.g. the cases of compar-
ison query type in HotpotQA.
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