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Abstract

The purpose of the research is to answer
the question whether linguistic information is
retained in vector representations of sentences.
We introduce a method of analysing the con-
tent of sentence embeddings based on univer-
sal probing tasks, along with the classification
datasets for two contrasting languages. We per-
form a series of probing and downstream ex-
periments with different types of sentence em-
beddings, followed by a thorough analysis of
the experimental results. Aside from depen-
dency parser-based embeddings, linguistic in-
formation is retained best in the recently pro-
posed LASER sentence embeddings.

1 Introduction

Modelling natural language with neural networks
has been an extensively researched area for sev-
eral years now. On the one hand, deep learning
enormously reduced the cost of feature engineer-
ing. On the other hand, we are largely unaware of
features that are used in estimating a neural model
and, therefore, kinds of information that a trained
neural model relies most heavily on. Since neu-
ral network-based models work very well in many
NLP tasks and often provide state-of-the-art re-
sults, it is extremely interesting and desirable to
understand which properties of words, phrases or
sentences are retained in their embeddings. An ap-
proach to investigate whether linguistic properties
of English sentences are encoded in their embed-
dings is proposed by Shi et al. (2016), Adi et al.
(2017), and Conneau et al. (2018). It consists in
designing a series of classification problems focus-
ing on linguistic properties of sentences, so called
probing tasks (Conneau et al., 2018). In a probing
task, sentences are labelled according to a particu-
lar linguistic property. Given a model that generates
an embedding vector for any sentence, the model
is applied to the probing sentences. A classifier is

then trained with the resulting embeddings as in-
puts and probing labels as targets. The performance
of the resulting classifier is considered a proxy for
how well the probing property is retained in the sen-
tence embeddings.

We propose an extension and generalisation of
the methodology of the probing tasks-based experi-
ments. First, the current experiments are conducted
on two typologically and genetically different lan-
guages: English, which is an isolating Germanic
language and Polish, which is a fusional Slavic
one. Our motivation for conducting experiments
on two contrasting languages is as follows. English
is undoubtedly the most prominent language with
multiple resources and tools. However, English lan-
guage processing is only a part of NLP in general.
Methods designed for English are not guaranteed
to be universal. In order to verify whether an NLP
algorithm is powerful, it is not enough to evaluate
it solely on English. Evaluation on additional lan-
guages can shed light on an investigated method.
We select Polish as our contrasting language for
pragmatic reasons, i.e. there is a Polish dataset –
CDSCorpus (Wróblewska and Krasnowska-Kieraś,
2017) – which is comparable to the SICK relat-
edness/entailment corpus (Bentivogli et al., 2014).
Both datasets are used in downstream evaluation.

Second, the designed probing tests are universal
for both tested languages. For syntactic processing
of both languages, we use the Universal Dependen-
cies schema (UD, Nivre et al., 2016).1 Since we
use automatically parsed UD trees for generating
probing datasets, analogous tests can be generated
for any language with a UD treebank on which
a parser can be trained.

1The Universal Dependencies initiative aims at developing
a cross-linguistically consistent morphosyntactic annotation
schema and at building a large multilingual collection of tree-
banks annotated according to this schema. It is worth nothing
that the UD schema has become the de facto standard for
syntactic annotation in the recent years.
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The contributions of this work are twofold.
(1) We introduce a method of analysing the content
of sentence embeddings based on universal probing
tasks, along with the classification datasets for two
contrasting languages. (2) We carry out a series of
empirical experiments based on publicly released
probing datasets2 created within the described work
and the obtainable downstream task datasets with
different types of sentence embeddings, followed
by a thorough analysis of the experimental results.

We test sentence embeddings obtained with max-
pooling and mean-pooling operations over word
embeddings or contextualised word embeddings,
sentence embeddings estimated on small corpora,
and sentence embeddings estimated on large mono-
lingual or multilingual corpora.

2 Experimental Methodology

The purpose of the research is to answer the ques-
tion whether linguistic information is retained in
vector representations of sentences. Assessment of
the linguistic content in sentence embeddings is not
a trivial task and we verify whether it is possible
with a probing task-based method (see Section 2.1).
Probing sentence embeddings for individual lin-
guistic properties do not examine the overall perfor-
mance of embeddings in composing the meaning
of the represented sentence. We therefore provide
two downstream tasks for a general evaluation (see
Section 2.2).

2.1 Probing Task-based Method

A probing task can be defined as “a classification
problem that focuses on simple linguistic proper-
ties of sentences” (Conneau et al., 2018). A probing
dataset contains the pairs of sentences and their cat-
egories. For example, the dataset for the Passive
probing task (the binary classification) consists of
two types of the pairs: 〈a passive voice sentence,
1〉 and 〈a non-passive (active) voice sentence, 0〉.
The sentence–category pairs are automatically ex-
tracted from a corpus of dependency parsed sen-
tences. The extraction procedure is based on a set of
rules compatible with the Universal Dependencies
annotation schema. The proposed rules of creat-
ing the probing task datasets are thus universal for
languages with the UD style dependency treebanks.

A classifier is trained and tested on vector repre-
sentations of the probing sentences generated with

2http://git.nlp.ipipan.waw.pl/Scwad/

SCWAD-probing-data

a sentence embedding model. If a linguistic prop-
erty is encoded in the sentence embeddings and
the classifier learns how this property is encoded, it
will correctly classify the test sentence embeddings.
The efficiency of the classifiers for each probing
task is measured with accuracy. The probing tasks
are described in Section 3.

2.2 Downstream Task-based Method

Two downstream tasks are proposed in our experi-
ments: Relatedness and Entailment. The seman-
tic relatedness3 task is to measure the degree of
any kind of lexical or functional association be-
tween two terms, phrases or sentences. The effi-
ciency of the classifier for semantic relatedness is
measured with Pearson’s r and Spearman’s ρ co-
efficients. The textual entailment task is to assess
whether the meaning of one sentence is entailed by
the meaning of another sentence. There are three
entailment classes: entailment, contradiction, and
neutral. The efficiency of the classifier for entail-
ment, in turn, is measured with accuracy.

3 Probing Tasks

The point of reference for designing our probing
tasks is the work by Conneau et al. (2018). The au-
thors propose several probing tasks and divide them
into those pertaining to surface, syntactic and se-
mantic phenomena. However, we decide to discard
the ‘syntactic versus semantic’ distinction and con-
sider all tasks either surface (see Section 3.1) or
compositional (see Section 3.2).

This decision is motivated by the fact that both
syntactic and semantic principles are undoubtedly
compositional by their nature. The syntax admitting
well-formed expressions on the basis of the lexicon
works in tandem with the semantics. According to
Jacobson’s notion of Direct Compositionality (Ja-
cobson, 2014, 43), “each syntactic rule which pre-
dicts the existence of some well-formed expression
(as output) is paired with a semantic rule which
gives the meaning of the output expression in terms
of the meaning(s) of the input expressions”.

3.1 Tests on Surface Properties

The tests investigate whether surface properties of
sentences (i.e. sentence length and lexical content)

3Semantic relatedness is not equivalent to semantic simi-
larity. Semantic similarity is only a special case of semantic
relatedness, e.g. CAR and AUTO are similar terms and CAR
and GARAGE are related terms.

http://git.nlp.ipipan.waw.pl/Scwad/SCWAD-probing-data
http://git.nlp.ipipan.waw.pl/Scwad/SCWAD-probing-data
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ROOT She has starred with many leading actors .
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Figure 1: An example UD tree of the sentence She has starred with many leading actors.

are retained in their embeddings. We follow the def-
inition of surface probing tasks and the procedure
of preparing training data as described by Conneau
et al. (2018).

SentLen (sentence length) This task consists in
classifying sentences by their length. There are 6
sentence length classes with the following token
intervals: 0: (3, 5), 1: (6, 8), 2: (9, 11), 3: (12, 14),
4: (15, 17), 5: (18, 20), 6: (21, 23).
Example: The sentence from Figure 1 has the cate-
gory 1, since it contains 8 tokens.

WC (word content) This task consists in a 750-
way classification of sentences containing exactly
one of pre-selected 750 target words (i.e. the cat-
egories correspond to the 750 words). The words
are selected based on their frequency ranking in
the corpus from which the probing datasets were
extracted: top 2000 words are discarded and the
next 750 words are used as task categories.4

3.2 Compositional Tests

The tests on compositional principles are signifi-
cantly modified (e.g. TreeDepth, TopDeps, Tense)
with respect to Conneau et al. (2018) or designed
anew (i.e. Passive and SentType), because the ba-
sis for preparing probing datasets is constituted by
dependency trees.5

4Conneau et al. (2018) use 1000 target words selected
in a similar manner, but since our datasets are smaller, we
proportionally decreased this number in order to maintain the
same number of training/validation/testing instances per target
word.

5We reject the bigram shift task (BShift) as it is applicable
only for isolating languages and practically useless for fu-
sional languages with relatively free word order. This task con-
sists in detecting sentences with two random, adjacent words
switched. According to Conneau et al. (2018), such shift gener-
ally leads to an erroneous utterance (acceptable sentences can
be generated accidentally). However, given a language with
less strict word order, the intuition is that the BShift procedure
could produce too many correct sentences. A very prelim-
inary case study involving several shift strategies and one
sentence (Autorka we wszystkich książkach każe bohaterom
szukać tożsamości. ‘The author tells the characters in her all

TreeDepth (dependency tree depth) This task
consists in classifying sentences based on the depth
of the corresponding dependency trees. The task
is defined similarly to Conneau et al. (2018), but
dependency trees are used instead of constituent
trees. Similarly to the original TreeDepth task, the
data is decorrelated with respect to sentence length.
Example: The dependency tree in Figure 1 has
a depth of 3, because the path from the root node
to any token node contains 3 tokens at most.

TopDeps (top dependency schema) The idea of
this task is based on TopConst task6 (Conneau
et al., 2018), but adapted to dependency trees.
The task consists in predicting a multiset of the de-
pendency types labelling the relations between
the top-most node (the ROOT’s only dependent)
and all its children, barring punct relations. The po-
sition of a phrase in an English sentence largely
determines its grammatical function. In Polish, in
turn, word order is relatively free and therefore
not a strong determinant of grammatical functions.
We thus extract multisets of dependency types, not
taking into account the text order of their respec-
tive phrases. The extracted multisets roughly corre-
spond to predicate-argument structures. There are
20 classes for each language: 19 most common top
dependency schemata and the class {OTHER}.
Example: The TopDeps class of the sentence in
Figure 1 is {aux nsubj obl}.

Passive (passive voice) This is a binary classifica-
tion task where the goal is to predict whether a sen-
tence embedding represents a passive voice sen-
tence (the class 1) or an active sentence (the class

books to look for identity.’, lit. ‘The author in her all books
tells the characters to look for identity.’) confirmed this intu-
ition, as most of BShift-modified sentences were accepted by
Polish speakers.

6In the original TopConst task, the classifier learns to detect
one of 19 most common top constructions or <OTHER>, e.g.
the top construction sequence of the tree for [Then][very dark
gray letters on a black screen][appeared][.] consists of four
constituent labels: <ADVP NP VP .>.
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0). In case of complex sentences only the voice
of the matrix (main) clause is detected.7 In order
to identify passive voice sentences, we adhere to
the following procedure: the predicate of a passive
voice sentence governs an auxiliary verb and the re-
lation is labelled aux:pass. Furthermore, the predi-
cate (part-of-speech VERB or ADJ) has the fea-
tures Voice=Pass and VerbForm=Part. The de-
pendency nsubj:pass (passive nominal subject) can
be helpful, but as the subject may be dropped in
Polish, it is not sufficient.
Example: The active voice sentence in Figure 1 is
classified as 0.

Tense (grammatical tense) This is a binary clas-
sification of sentences by the grammatical tense
of their main predicates. The sentence predi-
cates can be marked for the present (the pres
class) or past (the past class) grammatical tense.
The present tense predicates have the following
properties: the UD POS tag VERB and the fea-
ture Tense=Pres. The past tense predicates have
the following properties: the UD POS tag VERB
and the feature Tense=Past.
Example: The sentence in Figure 1 is classified as
past.

SubjNum (grammatical number of subjects) In
this binary classification task, sentences are clas-
sified by the grammatical number of nominal sub-
jects (marked with the UD label nsubj) of main
predicates. There are two classes: sing (the UD
POS tag NOUN and the feature Number=Sing)
and plur (the UD POS tag NOUN and the feature
Number=Plur).
Example: The sentence in Figure 1 is categorised
as sing.

ObjNum (grammatical number of objects) This
binary classification task is analogous to the one
above, but this time sentences are classified by
the grammatical number of direct objects of main
predicates. The classes are again sing to repre-
sent the singular nominal objects (the obj label,
the NOUN tag, and the feature Number=Sing),
and plur for the plural/mass ones (the obj label,
the NOUN tag, and the feature Number=Plur).

7The sentence Although the announcement was probably
made to show progress in identifying and breaking up terror
cells, I don’t find the news that the Baathists continue to
penetrate the Iraqi government very hopeful. is classified as 0,
even if it contains the passive voice subordinate clause.

SentType (sentence type) This is a new probing
task consisting in classifying sentences by their
types. There are three classes: inter for interrogatve
sentences (e.g. Do you like him?), imper for imper-
ative sentences (e.g. Get out of here!), and other
for declarative sentences (e.g. He likes her.) and
exclamatory sentences (e.g. What a liar!).

4 Experiments

4.1 SentEval Toolkit

We use the SentEval toolkit (Conneau and Kiela,
2018) in our experiments. The toolkit provides
utility for testing any vector representation of sen-
tences in probing and downstream scenarios. Given
a function f mapping a list of sentences to a list
of vectors (serving as an interface to the tested
sentence embedding model), a task and a dataset
(with sentences or pairs of sentences as input data),
SentEval performs evaluation in the context of
the task. More specifically, it generates vectors for
the dataset sentences using f , trains a classifier with
vectors as inputs and task-specific labels as outputs,
and evaluates it. Applying an identical evaluation
procedure with the same dataset to different sen-
tence embedding models provides the meaningful
comparison of the models.

For the purpose of our tests, the probing datasets
provided with the toolkit are replaced with our
own, the CDS downstream task dataset is added
and the SICK dataset is retained. Other SentEval
downstream tasks are not used, having no Polish
counterparts. In all experiments we use SentEval’s
Multilayer Perceptron classifier.8

4.2 Probing Datasets

For English and Polish, 9 probing datasets are ex-
tracted from Paralela9 (Pęzik, 2016), the largest
Polish-English parallel corpus with nearly 4M sen-
tence pairs. An important objective is to make
the probing datasets in both languages maximally
similar. The choice of a parallel corpus as their
source allows to draw probing sentences from col-
lections of texts that have analogous distributions of
genre, style, sentence complexity etc. Note that we
do not extract parallel sentence pairs (sharing com-
mon target classes) for individual probing datasets
(sentences are often not translated literally), but we
construct English and Polish datasets separately.

8With parameters as follows: kfold=10, batch_size=128,
nhid=50, optim=adam, tenacity=5, epoch_size=4.

9http://paralela.clarin-pl.eu

http://paralela.clarin-pl.eu
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The sentences are tokenised with UDPipe10

(Straka and Straková, 2017) and POS-tagged and
dependency parsed with COMBO11 (Rybak and
Wróblewska, 2018). The UDPipe and COMBO

models are trained on the UD English-EWT tree-
bank12 (Silveira et al., 2014) with 16k trees (254k
tokens) and on the Polish PDB-UD treebank13

(Wróblewska, 2018) with 22k trees (351k to-
kens). The set of UD-based rules is applied to
dependency-parsed sentences to extract the final
probing datasets for both languages.

Following Conneau et al. (2018), for the probing
tasks constructed by determining selected proper-
ties of a certain dependency tree node (e.g. main
predicate’s tense, direct object’s number, etc.),
the division into training, validation and test sets
ensures that all data instances, where the rele-
vant token of the sentence (target token) bears the
same word form, are not distributed into different
sets. For example, all SubjNum instances, where
the subject phrase is headed by the token cats (and
the plur class is determined based on the features
of this token), are assigned into the same set.

For each probing dataset, only relevant sentences
are included (sentences with no subject are irrele-
vant for SubjNum, utterances with no main predi-
cate in present/past tense are irrelevant for Tense
etc.). Moreover, the target tokens are filtered based
on their frequency (most and least frequent are dis-
carded) and the number of occurrences of any target
token is limited (to prevent the more frequent ones
from dominating the datasets). Finally, the datasets
are balanced with relation to the target class.

With the above restrictions implemented, we are
able to extract datasets consisting of 90k exam-
ples each (75k for training, 7.5k for validation and
testing). The dataset sizes are smaller than 120k
examples proposed by Conneau et al. (2018), but
remain in the same order of magnitude. The lower
number of examples per dataset is due to the fact
that we strive to build comparable datasets for both
investigated languages based on the parallel corpus.

4.3 Downstream Datasets

Two datasets for evaluation of compositional dis-
tributional semantic models are used in our experi-

10https://github.com/ufal/udpipe/releases/tag/v1.2.0
11https://github.com/360er0/COMBO
12https://github.com/UniversalDependencies/UD_

English-EWT
13http://git.nlp.ipipan.waw.pl/alina/PDBUD

ments. The SICK corpus14 (Bentivogli et al., 2014)
consists of 10k pairs of English sentences. Each
sentence pair is human-annotated for relatedness
in meaning and entailment. The relatedness score
indicates the extent to which meanings of two sen-
tences are related and is calculated as the average
of ten human ratings collected for this sentence pair
on the 5-point Likert scale. The entailment relation
between two sentences, in turn, is labelled with
entailment, contradiction, or neutral, selected by
the majority of human annotators.

CDSCorpus15 (Wróblewska and Krasnowska-
Kieraś, 2017) is a comparable corpus of 10k pairs
of Polish sentences human-annotated for related-
ness and entailment. The degree of semantic re-
latedness between two sentences is calculated as
the average of six human ratings on the 0-5-point
scale. As an entailment relation between two sen-
tences doesn’t have to be symmetric, sentence pairs
are annotated with bi-directional entailment labels,
i.e. pairs of entailment, contradiction, and neutral.

4.4 Sentence Embeddings

Three types of sentence embeddings are tested
in our experiments: (1) sentence embeddings ob-
tained with max-pooling and mean-pooling over
pre-trained word embeddings or contextualised
word embeddings, (2) sentence embeddings esti-
mated on small comparable corpora, and (3) pre-
trained sentence embeddings estimated on large
monolingual or multilingual corpora.

Max/Mean-pool Sentence Embeddings Words
can be represented as continuous vectors in a low-
dimensional space, i.e. word embeddings. Word
embeddings are assumed to capture linguistic (e.g.
morphological, syntactic, semantic) properties of
words. Recently, they are often learnt as part
of a neural network trained on an unsupervised
or semi-supervised objective task using massive
amounts of data (e.g. Mikolov et al., 2013; Grave
et al., 2018).16

In our experiments, we test FASTTEXT embed-
dings17 (Grave et al., 2018) and contextualised
word embeddings provided with the multi-layer

14http://clic.cimec.unitn.it/composes/materials/SICK.

zip
15http://git.nlp.ipipan.waw.pl/Scwad/SCWAD-CDSCorpus
16Embeddings can also be estimated by dimensionality re-

duction on a co-occurrence counts matrix (e.g. Pennington
et al., 2014).

17Pre-trained models from https://fasttext.cc.

https://github.com/ufal/udpipe/releases/tag/v1.2.0
https://github.com/360er0/COMBO
https://github.com/UniversalDependencies/UD_English-EWT
https://github.com/UniversalDependencies/UD_English-EWT
http://git.nlp.ipipan.waw.pl/alina/PDBUD
http://clic.cimec.unitn.it/composes/materials/SICK.zip
http://clic.cimec.unitn.it/composes/materials/SICK.zip
http://git.nlp.ipipan.waw.pl/Scwad/SCWAD-CDSCorpus
https://fasttext.cc
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bidirectional transformer encoder BERT18 (Devlin
et al., 2018) for English and Polish.19 Apart from
the FASTTEXT and BERT models, we use parts of
the dependency parsing models of COMBO to gener-
ate sentence embeddings. COMBO has a BiLSTM-
based module that produces contextualised word
embeddings based on concatenations of word level
embeddings and character level embeddings. As
the contextualised word embeddings are originally
used to predict dependency trees, they should be lin-
guistic information-rich. Since there is some over-
lap between the PDB-UD treebank (used to train
COMBO parsing model for Polish) and CDSCorpus
(source of downstream datasets for Polish), a sepa-
rate COMBO model20 is trained on PDB-UD data
without the overlapping sentences. The model is
used to obtain the embeddings for both probing and
downstream evaluations.21

For all three models listed above, sentence em-
beddings are obtained by mean or max pooling over
individual word embeddings. For FASTTEXT and
COMBO, the UDPipe tokenisation of the probing
sentences is used and a sequence of embedding
vectors is obtained by model lookup and reading
the outputs of the parser’s BiLSTM module respec-
tively. In the case of BERT (which uses its own to-
kenisation mechanism), whole sentences are passed
to the module and outputs of its penultimate layer
are treated as token embeddings.

Small Corpora-based Sentence Embeddings
English and Polish sentence embeddings are es-
timated on Paralela corpus. The sentences that
are included in any probing dataset are to be ex-
cluded from any data used for training sentence em-
beddings. Furthermore, Paralela corpus contains
not only 1-to-1 sentence alignments, but also 1-to-
many or even many-to-many. As we aim at esti-
mating sentence embedding models, only proper
sentences are selected from the corpus. English
and Polish sentence embedding models are trained

18Pre-trained language model from https://storage.

googleapis.com/bert_models/2018_11_23/multi_cased_

L-12_H-768_A-12.zip.
19We also tested BPEmb embeddings (Heinzerling and

Strube, 2018) from https://nlp.h-its.org/bpemb. Sentence
embeddings estimated on these word embeddings were of
a comparable or worse quality, so we do not give the results.

20http://mozart.ipipan.waw.pl/~alina/Polish_

dependency_parsing_models/190520_COMBO_PDBUD_noCDS_

nosem.pkl
21This overlap is in fact only relevant for downstream

tasks evaluation. Therefore, for creating the probing datasets,
a model based on full PDB-UD treebank is used.

on 3M sentences with the SENT2VEC library22

(Pagliardini et al., 2018). The SENT2VEC models
are estimated with a neural architecture which re-
sembles the CBOW model architecture by Mikolov
et al. (2013). The tested models (SENT2VECNS) are
estimated on unigrams and bigrams with the loss
function coupled with negative sampling, to im-
prove training efficiency.

Pre-trained Sentence Embeddings We test En-
glish sentence embeddings provided by the pre-
trained SENT2VEC and USE models, and multilin-
gual sentence embeddings generated by the LASER

model.
The SENT2VECORIG model23 trained on the Toronto
Book corpus24 (70M sentences) outputs 700-
dimensional sentence embeddings. The Univer-
sal Sentence Encoder model25 (USE, Cer et al.,
2018) was estimated in a multi-task learning sce-
nario on a variety of data sources26 with a Trans-
former encoder. It takes a variable length English
text (e.g. sentence, phrase, or short paragraph)
as input and produces a 512-dimensional vector.
The Language-Agnostic SEntence Representations
model27 (LASER, Artetxe and Schwenk, 2018) was
trained on 223M parallel sentences (93 languages)
from various sources. The encoder is implemented
as a 5-layer BiLSTM network that represents a sen-
tence as a 1,024-dimensional vector (max-pooling
over the last hidden states of the BiLSTM).

5 Results

Results reported by SentEval are summarised in
Table 1. The best result for each task in each lan-
guage is highlighted in grey. For almost all prob-
ing tasks, the most accurate embedding is one of
the two COMBO-based representations. This is not
surprising as the contextualised vector representa-
tions produced by COMBO are learnt in the con-
text of dependency parsing. Moreover, the target
classes in the probing tasks are derived from trees
produced by a parser that uses virtually the same
neural model, which can be considered a kind of

22https://github.com/epfml/sent2vec
23https://drive.google.com/file/d/

0B6VhzidiLvjSdENLSEhrdWprQ0k
24http://www.cs.toronto.edu/~mbweb/
25https://tfhub.dev/google/

universal-sentence-encoder-large/3
26Estimated on Wikipedia, web news, web question-answer

pages, discussion forums, and the Stanford Natural Language
Inference corpus (SNLI, Bowman et al., 2015).

27https://github.com/facebookresearch/LASER

https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
https://nlp.h-its.org/bpemb
http://mozart.ipipan.waw.pl/~alina/Polish_dependency_parsing_models/190520_COMBO_PDBUD_noCDS_nosem.pkl
http://mozart.ipipan.waw.pl/~alina/Polish_dependency_parsing_models/190520_COMBO_PDBUD_noCDS_nosem.pkl
http://mozart.ipipan.waw.pl/~alina/Polish_dependency_parsing_models/190520_COMBO_PDBUD_noCDS_nosem.pkl
https://github.com/epfml/sent2vec
https://drive.google.com/file/d/0B6VhzidiLvjSdENLSEhrdWprQ0k
https://drive.google.com/file/d/0B6VhzidiLvjSdENLSEhrdWprQ0k
http://www.cs.toronto.edu/~mbweb/
https://tfhub.dev/google/universal-sentence-encoder-large/3
https://tfhub.dev/google/universal-sentence-encoder-large/3
https://github.com/facebookresearch/LASER
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TopDeps E a 60.49 71.11 78.20 79.33 93.99 93.87 75.77 65.31 83.33 63.88
P a 65.45 70.67 71.68 75.28 88.16 88.53 73.44 — 78.84 —

Passive E a 84.13 89.47 89.77 92.40 98.48 98.41 88.73 89.04 92.85 86.61
P a 85.19 91.92 92.16 94.77 98.41 98.71 92.44 — 95.37 —

Tense E a 75.04 84.47 89.32 90.89 96.65 96.64 83.19 85.25 92.19 85.64
P a 81.56 88.89 93.73 96.09 97.35 97.47 87.36 — 96.87 —

SubjNum E a 73.87 81.43 88.43 90.75 93.19 93.37 82.27 80.88 94.21 81.65
P a 76.73 87.01 89.89 91.51 94.20 95.03 87.84 — 93.79 —

ObjNum E a 71.75 79.24 85.16 86.89 93.23 94.71 77.23 80.12 89.33 79.61
P a 69.41 76.05 80.24 82.64 90.27 90.31 74.77 — 82.53 —

SentType E a 96.23 96.20 97.39 97.76 96.85 96.04 97.17 93.76 97.84 85.25
P a 90.61 96.09 98.36 98.57 98.53 98.56 98.09 — 98.39 —

Relatedness
E

p 75.71 76.02 74.23 76.54 58.94 59.38 73.43 79.81 84.54 86.86
s 69.35 69.20 68.61 69.54 58.35 58.59 67.97 70.64 79.03 80.80

P
p 76.10 78.06 78.46 83.08 77.40 77.44 76.53 — 88.09 —
s 77.01 79.31 78.91 83.65 77.81 77.98 76.72 — 89.30 —

Entailment E a 76.72 76.86 77.71 77.11 72.82 72.58 78.59 78.26 83.26 81.77
P a 86.10 87.40 86.70 83.90 84.70 86.10 83.80 — 87.80 —

Table 1: Probing and downstream task results. Languages: P=Polish, E=English, measures: a=accuracy,
p=Pearson’s r, s=Spearman’s ρ. All measures are expressed in %.

information leak.
With COMBO models excluded from the ranking

due to their obvious handicap, the best-performing
sentence embeddings (shown in boldface) for 17
task-language pairs in 22 are yielded by LASER.
The exceptions are ObjNum and SentType for
Polish (where the advantage of BERTMEAN is so
small it might be insignificant), Relatedness for
English (suggesting that a comparable USE model
could beat LASER in the Polish version of the task
as well) and WC (where SENT2VEC performs vis-
ibly better than all other, even if it is trained on
a relatively small corpus).

An interesting observation is that among
the pooled embeddings, the MEAN variants quite
consistently outperform their MAX counterparts.

Figure 2 visualises the results yielded by se-
lected models in the particular tasks. The mod-
els shown are BERTMEAN (the best pooled model),
SENT2VECNS (trained on Paralela corpus) and
LASER (best-performing apart from COMBO, pre-

trained on massive multilingual data). The plots are
very similar in shape, the only striking difference
being the discrepancy in WC results, with LASER

and SENT2VECNS faring similarly (and better than
BERTMEAN) for English and SENT2VECNS yielding
visibly best results for Polish.

We also measure the correlations between re-
sults for Polish and English in two ways. First, for
each embedding model we compare the results it
yielded in all Polish tasks and all English tasks.
Second, for each task type we compare the results
obtained using all models in the Polish and English
variant of the task.28 The corresponding correlation
coefficients are plotted in Figure 3.

All the per-model correlations are high, which
strongly suggests that given embeddings encode
a given property similarly well (or poorly) relative
to other properties regardless of the language. In
the case of per-task correlations, there are three

28SENT2VECORIG and USE models are excluded from both
calculations as they were only tested for English.
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Figure 2: Results in probing and downstream tasks for 3 selected embedding models (left: English, right: Polish).
The measure is accuracy (except for Relatedness, where Spearman’s ρ is shown). All measures are expressed in %.
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Figure 3: Correlation (measured by Spearman’s ρ and Pearson’s r) between results for Polish and English (left: per
model, right: per task).

tasks with visibly lower correlations: SentType
and the two downstream tasks. Therefore, for these
tasks, the relative performance of individual mod-
els differs more between languages. For the down-
stream tasks this might be partially due to the fact
that their respective datasets were created entirely
independently and are expected to differ more. As
far as SentType is concerned, the accuracies ob-
tained for this task are generally very high and most
of them fit within a small range.

6 Related Work

Our study follows a research trend in exploring
sentence embeddings by means of probing meth-
ods, initiated by Shi et al. (2016) and Adi et al.
(2017), and continued by Conneau et al. (2018).

Investigating NMT systems, Shi et al. (2016) found
out that LSTM-based encoders can learn source-
language syntax storing different syntactic proper-
ties (e.g. voice, tense, top level constituents, part-
of-speech tags) in different layers of NMT models.
Adi et al. (2017) designed probing tasks for sur-
face properties of sentences (i.e. sentence length,
word content, and word order). Two types of sen-
tence embeddings were tested: averaging of CBOW
word embeddings and sentence representation out-
put by a LSTM encoder. Conneau et al. (2018) car-
ried out a series of the large-scale experiments on
understanding English sentence embeddings with
human-validated upper bounds for all probing tasks.
They designed 10 probing tasks capturing simple
linguistic properties of sentences, tested various
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sentence encoding architectures (i.e. BiLSTM and
gated convolutional network), and various training
objectives (e.g. neural machine translation, autoen-
coding, SkipThought). Following the mentioned
approaches, we examine how much linguistic infor-
mation is retained in sentence embeddings using 9
similar probing tasks. However, Universal Depen-
dency trees instead of constituent trees are the core
of our probing tasks. Furthermore, our experiments
are carried out on two contrasting languages, to ver-
ify the validity of the evaluation method proposed
for English in another language experimental sce-
nario.

Ettinger et al. (2018) considered a very impor-
tant aspect of sentence meaning – composition.
They proposed a method of assessing composi-
tional meaning content in sentence embeddings
on the examples of semantic role and negation
phenomena. This study has drawn our attention to
the compositional dimension of our probing tasks.

Related works by Linzen et al. (2016) and
Warstadt and Bowman (2019) proposed evaluation
of sentence encoders (e.g. LSTM, transformers) in
terms of their ability to learn grammatical infor-
mation, e.g. to assess sentences as grammatically
correct or not (i.e. acceptability judgments).

Finally, several studies were devoted to explor-
ing morphosyntactic properties of sentence embed-
dings in neural machine translation systems (e.g.
Shi et al., 2016; Belinkov et al., 2017).

7 Conclusion

We presented a methodology of empirical re-
search on retention of linguistic information in
sentence embeddings using probing and down-
stream tasks. In the probing-based scenario, a set
of language-independent tests was designed and
probing datasets were generated for two contrast-
ing languages – English and Polish. The procedure
of generating probing datasets is based on the Uni-
versal Dependency schema. It is thereby universal
for all languages with a UD treebank on which
a natural language pre-processing system can be
trained. In the downstream-based scenario, the pub-
licly available datasets for semantic relatedness and
entailment were used.

We performed a series of probing and down-
stream experiments with three types of sentence
embeddings in the SentEval environment, fol-
lowed by a thorough analysis of the linguistic con-
tent of sentence embeddings. We found out that

the COMBO-based embeddings designed to con-
vey morphosyntax encode linguistic information
in the most accurate way. Aside from COMBO em-
beddings, linguistic information is retained most
exactly in the recently proposed LASER sentence
embeddings, provided by an encoder designed with
a relatively simple BiLSTM architecture, but es-
timated on tremendous multilingual data. Further
research is required to find out in what lies the suc-
cess of LASER embeddings: in the embedding size,
in the magnitude of training data, or maybe in
the multitude of used languages.
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