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Abstract

Task-oriented dialog systems increasingly rely
on deep learning-based slot filling models,
usually needing extensive labeled training data
for target domains. Often, however, little to no
target domain training data may be available,
or the training and target domain schemas may
be misaligned, as is common for web forms
on similar websites. Prior zero-shot slot filling
models use slot descriptions to learn concepts,
but are not robust to misaligned schemas. We
propose utilizing both the slot description and
a small number of examples of slot values,
which may be easily available, to learn seman-
tic representations of slots which are transfer-
able across domains and robust to misaligned
schemas. Our approach outperforms state-of-
the-art models on two multi-domain datasets,
especially in the low-data setting.

1 Introduction

Goal-oriented dialog systems assist users with
tasks such as finding flights, booking restaurants
and, more recently, navigating user interfaces,
through natural language interactions. Slot fill-
ing models, which identify task-specific parame-
ters/slots (e.g. flight date, cuisine) from user ut-
terances, are key to the underlying spoken lan-
guage understanding (SLU) systems. Advances in
SLU have enabled virtual assistants such as Siri,
Alexa and Google Assistant. There is also signif-
icant interest in adding third-party functionality to
these assistants. However, supervised slot fillers
(Young, 2002; Bellegarda, 2014) require abundant
labeled training data, more so with deep learning
enhancing accuracy at the cost of being data inten-
sive (Mesnil et al., 2015; Kurata et al., 2016).

Asterisk (*) denotes equal contribution. Research conducted
when all authors were at Google Research.

Figure 1: Misaligned schemas for flight booking from
kayak.com (top) and southwest.com (bottom):
slot name depart in the two schemas refers to depar-
ture date and departure city respectively, hence models
trained on one schema may falter on the other.

Two key challenges with scaling slot fillers
to new domains are adaptation and misaligned
schemas (here, slot name mismatches). Extent of
supervision may vary across domains: there may
be ample data for Flights but none for Hotels, re-
quiring models to leverage the former to learn se-
mantics of reusable slots (e.g. time, destination).
In addition, schemas for overlapping domains may
be incompatible by way of using different names
for the same slot or the same name for different
slots. This is common with web form filling: two
sites in the same domain may have misaligned
schemas, as in Figure 1, precluding approaches
that rely on schema alignment.

Zero-shot slot filling, typically, either relies on
slot names to bootstrap to new slots, which may be
insufficient for cases like in Figure 1, or uses hard-
to-build domain ontologies/gazetteers. We counter
that by supplying a small number of example val-
ues in addition to the slot description to condition
the slot filler. This avoids negative transfer from
misaligned schemas and further helps identify un-
seen slots while retaining cross-domain transfer
ability. Besides, example values for slots can ei-
ther be crawled easily from existing web forms or
specified along with the slots, with little overhead.

Given as few as 2 example values per slot, our
model surpasses prior work in the zero/few-shot
setting on the SNIPS dataset by an absolute 2.9%
slot F1, and is robust to misaligned schemas, as ex-
periments on another multi-domain dataset show.

kayak.com
southwest.com
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Figure 2: Illustration of the overall model with all inputs and outputs shown.

2 Related Work
Settings with resource-poor domains are typically
addressed by adapting from resource-rich domains
(Blitzer et al., 2006; Pan et al., 2010; Chen et al.,
2018; Guo et al., 2018; Shah et al., 2018). To this
end approaches such as domain adversarial learn-
ing (Liu and Lane, 2017) and multi-task learning
(Jaech et al., 2016; Goyal et al., 2018; Siddhant
et al., 2018) have been adapted to SLU and related
tasks (Henderson et al., 2014). Work targeting do-
main adaptation specifically for this area includes,
modeling slots as hierarchical concepts (Zhu and
Yu, 2018) and using ensembles of models trained
on data-rich domains (Gašić et al., 2015; Kim
et al., 2017; Jha et al., 2018).

The availability of task descriptions has made
zero-shot learning (Norouzi et al., 2013; Socher
et al., 2013) popular. In particular, work on zero-
shot utterance intent detection has relied on varied
resources such as click logs (Dauphin et al., 2013)
and manually defined domain ontologies (Kumar
et al., 2017), as well as models such as deep struc-
tured semantic models (Chen et al., 2016) and cap-
sule networks (Xia et al., 2018). Zero-shot seman-
tic parsing is addressed in Krishnamurthy et al.
(2017) and Herzig and Berant (2018) and specifi-
cally for SLU utilizing external resources such as
label ontologies in Ferreira et al. (2015a,b) and
handwritten intent attributes in Yazdani and Hen-
derson (2015); Chen et al. (2015). Our work is
closest in spirit to Bapna et al. (2017) and Lee
and Jha (2018), who employ textual slot descrip-
tions to scale to unseen intents/slots. Since slots
tend to take semantically similar values across ut-
terances, we augment our model with example
values, which are easier for developers to define
than manual alignments across schemas (Li et al.,
2011).

3 Problem Statement

We frame our conditional sequence tagging task as
follows: given a user utterance with T tokens and
a slot type, we predict inside-outside-begin (IOB)
tags {y1, y2 . . . yT } using 3-way classification per
token, based on if and where the provided slot type
occurs in the utterance. Figure 3 shows IOB tag
sequences for one positive (slot service, present in
the utterance) and one negative (slot timeRange,
not present in the utterance) instance each.

service O O O B I
↑ ↑ ↑ ↑ ↑

Play Imagine on iHeart Radio
↓ ↓ ↓ ↓ ↓

timeRange O O O O O
Figure 3: Example semantic frame with IOB slot an-
notations for a positive and a negative instance.

4 Model Architecture

Figure 2 illustrates our model architecture where
a user utterance is tagged for a provided slot. To
represent the input slot, along with a textual slot
description as in Bapna et al. (2017), we supply a
small set of example values for this slot, to pro-
vide a more complete semantic representation.1

Detailed descriptions of each component follow.

Inputs: We use as input dwc-dimensional embed-
dings for 3 input types: T user utterance tokens
{ui ∈ Rdwc , 1≤i≤T}, S input slot description to-
kens {di ∈ Rdwc , 1≤i≤S}, andK example values
for the slot, with the Nk token embedding for the
kth example denoted by {eki ∈ Rdwc , 1≤i≤Nk}.
Utterance encoder: We encode the user utterance
using a den-dimensional bidirectional GRU recur-
1Note that the slot description is still needed since example
slot values alone cannot distinguish slots which take seman-
tically similar values (e.g. departDate vs returnDate).
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Intent Slot Names (Training and Evaluation)
AddToPlaylist artist, entityName, musicItem, playlist, playlistOwner
BookRestaurant city, cuisine, partySizeNumber, restaurantName, restaurantType, servedDish, spatialRelation, state. . .
GetWeather city, conditionDescription, country, geographicPoi, spatialRelation, state, timeRange. . .
PlayMusic album, artist, genre, musicItem, playlist, service, sort, track, year
RateBook bestRating, objectName, objectPartOfSeriesType, objectSelect, objectType, ratingUnit, ratingValue
SearchCreativeWork objectName, objectType
FindScreeningEvent locationName, movieName, movieType, objectLocationType, objectType, spatialRelation, timeRange

Intent Training Slot Names Evaluation Slot Names
BookBus from, to, leaving, returning, travelers,

tripType, departureTime
from, to, departOn, addReturnTrip, tripType, promoCode,
discountOptions, children, adults, seniors

FindFlights from, to, depart, return, cabinClass, flightType depart, arrive, departDate, returnDate, searchType, promoCode
BookRoom where, checkIn, checkOut, guests, homeType,

propertyType, priceRange, amenities
location, hotelName, checkIn, checkOut, rooms, roomType,
pricePerNight, rating, amenities

Table 1: Intents and training/evaluation slot schemas for SNIPS (top) and XSchema (bottom) datasets.

rent neural network (RNN) (Chung et al., 2014).
We denote the set of per-token RNN hidden states
by H = {hi ∈ Rden , 1≤i≤T}, which are used as
contextual utterance token encodings.

H = BiGRU({ui, 1≤i≤T}) (1)

Slot description encoder: We obtain an encoding
ds ∈ Rdwc of the slot description by mean-pooling
the embeddings for the S slot description tokens.

ds =
1

S

S∑
i=1

di (2)

Slot example encoder: We first obtain encod-
ings {exk ∈ Rdwc , 1≤k≤K} for each slot example
value by mean-pooling the Nk token embeddings.
Then, we compute an attention weighted encod-
ing of all K slot examples {eai ∈ Rdwc , i≤1≤T}
for each utterance token, with the utterance token
encoding as attention context. Here, αx

i ∈ RK de-
notes attention weights over all K slot examples
corresponding to the ith utterance token, obtained
with general cosine similarity (Luong et al., 2015).

exk =
1

Nk

Nk∑
i=1

eki , 1≤k≤K (3)

αx
i = softmax({hiWae

x
k ∀k}), 1≤i≤T (4)

eai =

K∑
k=1

αx
ik
× exk (5)

Tagger: We feed the concatenated utterance,
slot description and example encodings to a den-
dimensional bidirectional LSTM. The output hid-
den states X = {xi ∈ Rden , 1≤i≤T} are used for
a 3-way IOB tag classification per token.

X = BiLSTM({hi ⊕ ds ⊕ eai , 1≤i≤T}) (6)

yi = softmax(Wtxi + bt), 1≤i≤T (7)

Parameters: We use fixed dw=128-dim pre-
trained word embeddings2 for all tokens. We also
train per-character embeddings, fed to a 2-layer
convolutional neural network (Kim, 2014) to get
a dc=32-dim token embedding. For all inputs, the
dwc=160-dim final embedding is the concatena-
tion of the word and char-CNN embeddings. The
RNN encoders have hidden state size den=128.
All trainable weights are shared across intents and
slots. The model relies largely on fixed word em-
beddings to generalize to new intents/slots.

5 Datasets and Experiments
In this section we describe the datasets used for
evaluation, baselines compared against, and more
details on the experimental setup.

Datasets: In order to evaluate cross-domain
transfer learning ability and robustness to mis-
aligned schemas, respectively, we use the follow-
ing two SLU datasets to evaluate all models.

• SNIPS: This is a public SLU dataset (Coucke
et al., 2018) of crowdsourced user utterances
with 39 slots across 7 intents and ∼2000 train-
ing instances per intent. Since 11 of these slots
are shared (see Table 1), we use this dataset to
evaluate cross-domain transfer learning.

• XSchema: This is an in-house crowdsourced
dataset with 3 intents (500 training instances
each). Training and evaluation utterances are
annotated with different schemas (Table 1) from
real web forms to simulate misaligned schemas.

Baselines: We compare with two strong zero-
shot baselines: Zero-shot Adaptive Transfer
(ZAT) (Lee and Jha, 2018) and Concept Tagger

2https://tfhub.dev/google/nnlm-en-dim128/1
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Target training e.g. 0 50
Intent ↓ Model → CT ZAT +2Ex LSTM CT ZAT +10Ex
AddToPlaylist 53.3 46.8 55.2 59.4 74.4 73.4 76.2*
BookRestaurant 45.7 46.6 48.6* 57.5 63.8 63.5 63.6
GetWeather 63.5 60.7 66.0* 75.7 72.1 71.1 77.5*
PlayMusic 28.7 30.1 33.8* 49.3 56.4 56.0 58.8
RateBook 24.5 31.0 28.5 85.1* 82.9 83.8 82.2
SearchCreativeWork 24.7 26.7 26.2 52.9 62.8 63.7 65.9
FindScreeningEvent 23.7 19.7 25.5* 60.8 64.9 64.6 67.0*
Average 37.7 37.4 40.6* 62.8 68.2 68.0 70.1*

Table 2: Slot F1 scores for baselines (CT, ZAT, LSTM)
and our best models (with 2 slot values for zero-shot
and 10 values for 50 train instances) on SNIPS. Rows
represent different train-test splits, defined in Section
5. Our model consistently outperforms the baselines,
with ∼3% absolute gain in the zero-shot setting.3

(CT) (Bapna et al., 2017), in addition to a 2-
layer multi-domain bidirectional LSTM baseline
(Hakkani-Tür et al., 2016) for non-zero-shot
setups. ZAT and CT condition slot filling only on
slot descriptions, with ZAT adding slot description
attention, char embeddings and CRFs on top of
CT. Since labor-intensive long text descriptions
are unavailable for our data, we use tokenized slot
names in their place, as in Bapna et al. (2017).

Experimental Setup: We use SNIPS to test
zero/few-shot transfer: for each target intent I , we
train on all ∼2000 training instances from intents
other than I , and varying amounts of training data
for I , evaluating exclusively on I . For XSchema,
we train and evaluate on a single intent, specifi-
cally evaluating cross-schema performance.

We sample positive and negative instances (Fig-
ure 3) in a ratio of 1:3. Slot values input dur-
ing training and evaluation are randomly picked
from values taken by the input slot in the rele-
vant domain’s training set, excluding ones that are
also present in the evaluation set. In practice, it
is usually easy to obtain such example values for
each slot either using automated methods (such as
crawling from existing web forms) or have them
be provided as part of the slot definition, with neg-
ligible extra effort.

To improve performance on out-of-vocabulary
entity names, we randomly replace slot value to-
kens in utterances and slot examples with a special
token, and raise the replacement rate linearly from
0 to 0.3 during training (Rastogi et al., 2018).

The final cross-entropy loss, averaged over
all utterance tokens, is optimized using ADAM
(Kingma and Ba, 2014) for 150K training steps.

Target training e.g. 0 50
Intent ↓ Model → CT ZAT +10Ex CT ZAT +10Ex
BookBus 70.9 70.1 74.1* 86.8 85.2 89.4
FindFlights 43.5 44.8 53.2* 62.3 59.7 69.2*
BookRoom 23.6 23.4 33.0* 49.7 52.1 58.7*

Table 3: Slot F1 scores on the XSchema dataset4. We
train and evaluate on a single intent, but with different
schemas, thus precluding the LSTM baseline.

Slot F1 score (Sang and Buchholz, 2000) is our
final metric, reported after 3-fold cross-validation.

6 Results

For the SNIPS dataset, Table 2 shows slot F1
scores for our model trained with randomly-
picked slot value examples in addition to slot de-
scriptions vis-à-vis the baselines. Our best model
consistently betters the zero-shot baselines CT and
ZAT, which use only slot descriptions, overall and
individually for 5 of 7 intents. The average gain
over CT and ZAT is ∼3% in the zero-shot case.
In the low-data setting, all zero-shot models gain
≥5% over the multi-domain LSTM baseline (with
the 10-example-added model further gaining∼2%
on CT/ZAT). All models are comparable when all
target data is used for training, with F1 scores of
87.8% for the LSTM, and 86.9% and 87.2% for
CT and our model with 10 examples respectively.

Table 3 shows slot F1 scores for XSchema data.
Our model trained with 10 example values is ro-
bust to varying schemas, with gains of ∼3% on
BookBus, and ∼10% on FindFlights and Book-
Room in the zero-shot setting.

For both datasets, as more training data for the
target domain is added, the baselines and our ap-
proach perform more similarly. For instance, our
approach improves upon the baseline by ∼0.2%
on SNIPS when 2000 training examples are
used for the target domain, affirming that adding
example values does not hurt in the regular setting.

Results by slot type: Example values help the
most with limited-vocabulary slots not encoun-
tered during training: our approach gains ≥20%
on slots such as conditionDescription, bestRating,
service (present in intents GetWeather, RateBook,
PlayMusic respectively). Intents PlayMusic and
GetWeather, with several limited-vocabulary slots,
see significant gains in the zero-shot setting.

3Asterisk (*) indicates a statistically significant gain over the
second-best model as per McNemar’s test (p < 0.05).
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Figure 4: Variation of overall slot F1 score with number
of slot value examples input to the model, with varying
number of target intent training instances for SNIPS.

For compositional open-vocabulary slots (city,
cuisine), our model also compares favorably - e.g.
53% vs 27% slot F1 for unseen slot cuisine (in-
tent BookRestaurant) - since the semantic similar-
ity between entity and possible values is easier to
capture than between entity and description.

Slots with open, non-compositional vocabular-
ies (such as objectName, entityName) are hard to
infer from slot descriptions or examples, even if
these are seen during training but in other contexts,
since utterance patterns are lost across intents. All
models are within 5% slot F1 of each other for
such slots. This is also observed for unseen open-
vocabulary slots in the XSchema dataset (such as
promoCode and hotelName).

For XSchema experiments, our model does
significantly better on slots which are confusing
across schemas (evidenced by gains of >20% on
depart in FindFlights, roomType in BookRoom).

Effect of number of examples: Figure 4 shows
the number of slot value examples used versus
performance on SNIPS. For the zero-shot case,
using 2 example values per slot works best,
possibly due to the model attending to perfect
matches during training, impeding generalization
when more example values are used. In the
few-shot and normal-data settings, using more
example values helps accuracy, but the gain drops
with more target training data. For XSchema, in
contrast, adding more example values consistently
improves performance, possibly due to more slot
name mistmatches in the dataset. We avoid using
over 10 example values, in contrast to prior work
(Krishnamurthy et al., 2017; Naik et al., 2018)
since it may be infeasible to easily provide or
extract a large number of values for unseen slots.

Ablation: Slot replacement offsets overfitting in
our model, yielding gains of 2−5% for all models
incl. baselines. Fine-tuning the pretrained word
embeddings and removing character embeddings
yielded losses of ∼1%. We tried more complex
phrase embeddings for the slot description and ex-
ample values, but since both occur as short phrases
in our data, a bag-of-words approach worked well.

Comparison with string matching: A train-
ing and evaluation setup including example val-
ues for slots may lend itself well to adding string
matching-based slot fillers for suitable slots (for
example, slots taking numeric values or having a
small set of possible values). However, this is not
applicable to our exact setting since we ensure that
the slot values to be tagged during evaluation are
never provided as input during training or evalua-
tion. In addition, it is difficult to distinguish two
slots with the same expected semantic type using
such an approach, such as for slots ratingValue and
bestRating from SNIPS intent RateBook.

7 Conclusions and Future Work

We show that extending zero-shot slot filling mod-
els to use a small number of easily obtained exam-
ple values for slots, in addition to textual slot de-
scriptions, is a scalable solution for zero/few-shot
slot filling tasks on similar and heterogenous do-
mains, while resistant to misaligned overlapping
schemas. Our approach surpasses prior state-of-
the-art models on two multi-domain datasets.

The approach can, however, be inefficient for
intents with many slots, as well as potentially
sacrificing accuracy in case of overlapping pre-
dictions. Jointly modeling multiple slots for the
task is an interesting future direction. Another di-
rection would be to incorporate zero-shot entity
recognition (Guerini et al., 2018), thus eliminating
the need for example values during inference.

In addition, since high-quality datasets for
downstream tasks in dialogue systems (such as di-
alogue state tracking and dialogue management)
are even more scarce, exploring zero-shot learn-
ing approaches to these problems is of immense
value in building generalizable dialogue systems.
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