
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4536–4546
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

4536

EigenSent: Spectral sentence embeddings using higher-order Dynamic
Mode Decomposition

Subhradeep Kayal George Tsatsaronis
Elsevier B.V.

Amsterdam, NL.
subhradeep.kayal@gmail.com

Abstract

Distributed representation of words, or word
embeddings, have motivated methods for cal-
culating semantic representations of word se-
quences such as phrases, sentences and para-
graphs. Most of the existing methods to do
so either use algorithms to learn such repre-
sentations, or improve on calculating weighted
averages of the word vectors. In this work,
we experiment with spectral methods of signal
representation and summarization as mech-
anisms for constructing such word-sequence
embeddings in an unsupervised fashion. In
particular, we explore an algorithm rooted in
fluid-dynamics, known as higher-order Dy-
namic Mode Decomposition, which is de-
signed to capture the eigenfrequencies, and
hence the fundamental transition dynamics, of
periodic and quasi-periodic systems. It is em-
pirically observed that this approach, which
we call EigenSent, can summarize transitions
in a sequence of words and generate an em-
bedding that can represent well the sequence
itself. To the best of the authors’ knowledge,
this is the first application of a spectral decom-
position and signal summarization technique
on text, to create sentence embeddings. We
test the efficacy of this algorithm in creating
sentence embeddings on three public datasets,
where it performs appreciably well. More-
over it is also shown that, due to the positive
combination of their complementary proper-
ties, concatenating the embeddings generated
by EigenSent with simple word vector averag-
ing achieves state-of-the-art results.

1 Introduction
1.1 Relevant concepts

Word embeddings are dense vectors that capture
the semantic and contextual information of a word,
and are ubiquitous in natural language processing
tasks across many domains (Camacho-Collados
and Pilehvar, 2018). Several different algorithms

and models for constructing these embeddings
have been proposed and evaluated in literature
(Perone et al., 2018).

A natural next step is to extend the notion of
word embeddings to the level of a sentence (or
paragraph, or document). Such representations
are known as sentence embeddings, often inter-
changeably used with the terms paragraph embed-
dings or document embeddings, and should, ide-
ally, capture the meaning of a sentence (Le and
Mikolov, 2014).

More recently, the concept of universal sen-
tence embeddings has gained traction, as they
leverage models trained on large text corpuses in
a way which is task-agnostic. These pre-trained
models can then be used in a wide array of down-
stream tasks, often performing better in those tasks
when little training data is available (Subramanian
et al., 2018).

1.2 A brief review of literature

Word embedding methods vary from complex
neural language models (Bengio et al., 2003) and
semi-supervised approaches (Turian et al., 2010),
to simpler and faster methods such as Word2Vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014), ELMo (Peters et al., 2018) and BERT (De-
vlin et al., 2019), that can be trained on much
larger volumes of data.

In order to learn high-quality word embeddings,
a method must capture the contextually-relevant
semantic meaning of a word. This is often done
by training a language model on a dataset; an ex-
ample is the method known as Embedding from
Language Models or ELMo (Peters et al., 2018),
which uses representations from the internal layers
of a bi-directional LSTM that is trained with a lan-
guage model objective. Very recently, Devlin et al.
(2019) introduced another generalizable language
model, named as BERT or bi-directional Encoder

4537

Representations from Transformers, consisting of
layers of transformers (Vaswani et al., 2017) with
bi-directional self-attention, which delivered state-
of-the-art results in numerous benchmarks.

Similar to word embeddings, there has been
a substantial amount of research on constructing
sentence embeddings, in recent years. Several
self-supervised approaches have been proposed,
such as the extension of the Word2Vec model to
include sentences and learn their representations
(Le and Mikolov, 2014), and encoder-decoder ap-
proaches that try to reconstruct the surrounding
sentences of an encoded passage (Kiros et al.,
2015). Recently, bi-directional LSTM models
were trained in a strongly supervised fashion on
the Stanford Natural Language Inference (SNLI)
dataset (Bowman et al., 2015) by Conneau et al.
(2017). This method, known as InferSent, has pro-
duced state-of-the-art results, as a universal sen-
tence encoder, on various other downstream tasks.

Aside from these state-of-the-art approaches
which require some sort of model training, a com-
mon approach to embed sentences is to simply
compute the dimension-wise arithmetic mean of
the embeddings of the words in a particular sen-
tence. Further improvements were made, using
weighted averages of the word embeddings and
modifying them using singular-value decomposi-
tion, by Arora et al. (2017) and, recently, power-
mean embeddings (Rücklé et al., 2018). These
methods have narrowed the performance deficit to
other complex sentence embedding methods such
as InferSent.

1.3 Hypothesis and contribution of this work

As a complement to most of the aforementioned
work, in this paper, we aim at utilizing spectral
methods in order to construct sentence embed-
dings. Spectral analysis is widely used in signal
processing to decompose a signal into its com-
ponent frequencies, thereby revealing the impor-
tant dynamics that make up the signal and sum-
marizing the transitions in it. The hypothesis of
this paper is: if we could use similar techniques
on sentences, which are also composed of mean-
ingful transitions (between words), as we do with
signals, then it should be possible to capture the
important transitional dynamics that make up the
respective sentences. The first step towards our
goal is to represent a sentence as a signal, which
has some meaningful transitional properties that
we can capture. In order to do this, we rely on

the word embeddings.
A key observation which motivates the use of

word embeddings to represent a sentence as a sig-
nal, is the fascinating property of word vectors to
approximately obey the laws of algebra, as they
seem to capture word relationships and analogies.
The original paper by Mikolov et al. (2013) pre-
sented an example wherein vector(”King”) - vec-
tor(”Man”) + vector(”Woman”) results in a vec-
tor that is most similar to the representation for the
word Queen. Following this observation, we posit
that using spectral techniques, it should be pos-
sible to capture the dynamic properties of a sen-
tence by treating it as a multi-dimensional signal
over time, where the vector representation of each
word in the sentence is a single point in the signal.

The major innovation introduced in this paper
is the use of the higher-order Dynamic Mode De-
composition (HODMD) (Le Clainche and Vega,
2017) algorithm to exploit the temporal dynamics
in a sequence of word vectors, in order to con-
struct sentence embeddings. HODMD is an effi-
cient extension of the basic Dynamic Mode De-
composition (DMD) algorithm, which has been
widely used in fluid dynamics in order to cap-
ture the fundamental frequencies of complex fluid
flows (Schmid, 2010). We compare the gener-
ated sentence embeddings using the said method
against state-of-the-art methods such as BERT
(Devlin et al., 2019), ELMo (Peters et al., 2018)
and p-means (Rücklé et al., 2018), followed
by comparisons with Discrete Cosine Transform
(DCT) (Ahmed et al., 1974), which is a spec-
tral method that has been used widely for data
compression, and Principal Components Analy-
sis (PCA) (Hotelling, 1933), by extensive exper-
iments on three public datasets. We also show
that by concatenating the embeddings generated
by HODMD, which captures the dynamics of a se-
quence, with a method such as word vector averag-
ing, which grasps the notion of scale, we can fur-
ther improve the resultant embeddings for down-
stream tasks.

1.4 Paper structure

Having introduced the key concepts and motiva-
tors of this work in Section 1, we proceed by de-
scribing the higher-order Dynamic Mode Decom-
position algorithm and the other relevant bench-
mark methods in Section 2. Section 3 outlines
the datasets and the software implementations that
have been used in this paper, followed by the ex-

4538

perimental procedures being stated in Section 4.1
and the results being analyzed in Section 4.2. Fi-
nally, in Section 5 we summarize the important
conclusions of this paper.

2 Methodology
This section introduces the relevant concepts per-
taining to higher-order Dynamic Mode Decom-
position, the algorithm that has been used in this
work to construct sentence embeddings, as well as
competing methods that are being tested against.

2.1 Higher-order Dynamic Mode
Decomposition and motivation for use

2.1.1 Preliminaries

Let SN
1 be a sentence composed of words

w1, ..., wN , where wi is the ith word in the sen-
tence. A word, wi, can be replaced by a pre-
trained word embedding, such as the one provided
by Mikolov et al. (2013)1, or can be learned
for the experiment dataset itself, using any of the
methods mentioned in Section 1.2. Then the sen-
tence can be written as a multidimensional signal
as follows:

SN
1 = [w1, w2, ..., wN] =

w1
1 w1

2 . . . w1
N

...
...

. . .
wm
1 wm

2 wm
N

(1)

where, m is the dimension of the word vector and
N is the number of words in a sentence.

In order to apply standard DMD (Schmid, 2010)
to such a signal, the first-order Koopman assump-
tion is employed, which can be written in multiple
different forms:

wk ≈ A.wk−1

SN
1 ≈ [w1, A.w1, A

2.w1, ..., A
N−1.w1]

(2)

where k = 2, ..., N and A is a m×m square ma-
trix.

Thus, the assumption is that each sentence has
words in it which lie in a constant subspace gen-
erated by A (Brunton et al., 2016), or that the
words in a sentence transition from one another
smoothly, transformed by the constant operator A.
This assumption can be seen as an extension of
the observation that word vectors seem to approx-
imately obey the laws of simple algebra. The oper-
ator A then captures the overall transition dynam-
ics of the sentence and summarizing A would lead

1https://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit

to the construction of the desired sentence embed-
ding.

The first-order Koopman assumption, although
a good starting point, constrains a snapshot of a
system, i.e., a word in a sentence in our case, to
transition solely from the previous one. To further
relax this constraint in an attempt to make our as-
sumption more realistic, we look towards the work
of Le Clainche and Vega (2017), who propose a
higher-order Koopman assumption:

wk ≈ A1.wk−d+A2.wk−d+1+...+Ad.wk−1 (3)

where k = 2, ..., N−d+1 and d can be understood
as the order parameter.

This may also be written in a form similar to
equation 2:

w̃k ≈ Ã.w̃k−1 (4)

where,

w̃k =

wk

wk+1
...

wk+d−2

wk+d−1

Ã =

0 I 0 . . . 0 0
0 0 I . . . 0 0
.
0 0 0 . . . I 0
A1 A2 A3 . . . Ad−1 Ad

(5)

with I being a m × m identity matrix. Further-
more, the modified sentence matrix can be written
as:

S̃N
1 = [w̃1, w̃2, ..., w̃N] (6)

With this relaxation, a particular word in a sen-
tence is not only related to the preceding word, but
to a number of preceding words in a window of
size d, which is tunable, and d = 1 falls back to
the first-order case. This, more realistic, relaxation
to the original DMD algorithm is what motivates
us to use HODMD in order to capture the transi-
tion dynamics in a sentence in order to construct
sentence embeddings.

2.1.2 Generating sentence embeddings

The starting point is the following, which is a ma-
trix form of equation 4:

S̃N
2 ≈ Ã.S̃N−1

1 (7)

Performing SVD on SN−1
1 gives us:

S̃N−1
1 = U.Σ.T T (8)

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit

4539

Algorithm 1: HODMD algorithm for con-
structing a sentence embedding, EigenSent
Data: Sequence of word vectors in a sentence

SN
1 = [w1, w2, ..., wN], order

parameter d, number of dynamic
modes to choose n

Result: Sentence embedding, V
1 Declare S̃N

1 = [w̃1, w̃2, ..., w̃N], where w̃k is
given by equation 5;

2 Perform SVD: S̃N−1
1 = U.Σ.T T ;

3 higher-order Koopman operator:
Ã ≈ S̃N

2 .T.Σ−1.UT ;
4 Eigendecomposition of Koopman operator:

[EigV ec,EigV al] = eigendecomp(Ã),
where EigV ec contains the eigenvectors,
one per column, sorted by the magnitude of
the eigenvalues in EigV al;

5 Sentence embedding:
V = EigV ec1 ⊕ EigV ec2...⊕ EigV ecn,
where a⊕ b signifies concatenation of
vectors a and b;

where Σ is the diagonal matrix containing the
SVD singular values, sorted in decreasing order,
while the columns in U and T are the spatial and
temporal SVD-modes.

Using equations 7 and 8, we can derive:

Ã ≈ S̃N
2 .T.Σ−1.UT (9)

as, T T = T−1 and UT = U−1

Now that we have characterized the higher-
order Koopman operator, Ã, using equation 9,
the dynamic modes and mode amplitudes can sim-
ply be calculated by obtaining its eigenvalues and
eigenvectors using any eigendecomposition tech-
nique. Since the dynamic modes (or eigenvectors)
corresponding to the largest dynamic mode ampli-
tudes (or eigenvalues) capture the largest-scale dy-
namics present in the sequence of words, the top-
K modes, as sorted by the mode amplitudes, are
concatenated, to be used as the sentence embed-
ding for the corresponding sentence.

The overall process is depicted in Algorithm 1.
For a chosen order d, the size of the sentence

embedding is m ∗ d.

2.2 Competing Methods

2.2.1 State-of-the-art

We compare our method, as explained in Algo-
rithm 1, to three recent state-of-the-art methods.

The first one, p-means (Rücklé et al., 2018), is a
method that concatenates different types of means,
known as power-means (Hardy et al., 1952), of
the word embeddings in a sentence. The hypoth-
esis of the authors of (Rücklé et al., 2018) is that
the average of word vectors is only one type of
order-statistic and there are several others avail-
able, which might add useful information when
constructing sentence embeddings.

The second method, ELMo (Peters et al., 2018),
trains a bi-directional LSTM, using word level and
sub-word level features, with a language model
objective on a large dataset, and then uses the
representations of words from its internal layers
to provide rich and contextual word embeddings.
A pre-trained model, trained on the One Billion
Words benchmark (Chelba et al., 2013), was used
for our experiments, and an averaging bag-of-
words scheme was employed to produce the sen-
tence embeddings based on the word representa-
tion features from all three layers of the ELMo
model.

The final approach, BERT (Devlin et al.,
2019), aims to produce a general-purpose lan-
guage model by training a deep network of bi-
directional transformers with self attention, using
a masked language-model objective. By taking
bi-directionality into account, it improves on pre-
vious efforts, such as the Generative Pre-trained
Transformer (Radford et al., 2018), which were
unidirectional. For our experiments, a pre-trained
model, trained on the concatenation of BooksCor-
pus (Zhu et al., 2015) and English Wikipedia,
was used. Sentence embeddings were constructed
by averaging the token representations from the
second-to-last hidden layer of the model, as this
approach produced good results in the original
work.

2.2.2 Discrete Cosine Transform and PCA

Aside from comparing EigenSent to the state-of-
the-art, it is also prudent to compare the pro-
posed method to other approaches rooted in the
frequency domain. Two very popular methods
for summarizing or compressing information are
Discrete Cosine Transform (DCT) (Ahmed et al.,
1974) and Principal Components Analysis (PCA)
(Hotelling, 1933).

DCT is a special case of the Fourier transform,
which aims to decompose a signal into the fre-
quencies that make up the signal. In the case
of DCT the basis vectors are infinite-scale cosine

4540

Dataset #classes #train docs #test docs #total docs
20 newsgroups (20-NG) 20 11293 7528 18821

Reuters-8 (R-8) 8 5485 2189 7674
Stanford Sentiment Treebank (SST-5) 5 8534 2209 10743

Table 1: Metadata information describing the datasets used in our experiments.

functions of increasing frequencies. The goal of
DCT in the multidimensional case is to determine
a set of vectors (or components) which can be used
to linearly combine the cosine functions to retrieve
the original signal. The DCT components are ar-
ranged in order of importance in recreating the
original signal and the top-K components are con-
catenated to form the embedding of a correspond-
ing sentence on which DCT is performed.

The comparison to PCA is only natural, as
DMD works analogously to it. However, DMD
contains information about the transition dynam-
ics of a sequence, whereas PCA lacks this property
(Schmid, 2010). This is because DMD is based on
the eigendecomposition performed on the Koop-
man operator derived from the multidimensional
signal, which captures the transition dynamics in
that signal, whereas PCA is based on the covari-
ance matrix produced from the signal, which does
not. In a fashion similar to above, the top-K prin-
cipal components are concatenated to form the
sentence embedding.

We choose the aforementioned methods to
benchmark EigenSent against because together
they provide a significant coverage of logical com-
peting ideas. The p-means method is based on the
algebraic manipulation of the sequence of word
embeddings, in order to create a sentence em-
bedding, and does not require training, much like
other methods such as (Arora et al., 2017). ELMo
is another state-of-the-art method and it represents
other such methods which leverage language mod-
els in order to capture contextual information to
form embeddings. As for DCT and PCA, they
are well-studied methods which are used for the
spectral representation of a signal. DCT is a non-
adaptive method, in a sense that it fixes the ba-
sis vectors to be cosine functions, whereas PCA is
adaptive and learns a set of orthogonal bases.

3 Datasets and resources
3.1 Datasets

In order to compare the embeddings generated by
our method to the benchmark methods, described
in Section 2.2, we use three public datasets, per-

taining to text and sentiment classification, of
varying degrees of complexity.

The 20 newsgroups (20-NG) and the Reuters-
8 (R-8)2 are popular text classification datasets
which have been widely used in literature, com-
prising documents that appeared in the Reuters
newswire in 1987. The former has 20 different
conceptual classes for the textual content to be
classified into, while the latter has 8.

The Stanford Sentiment Treebank (SST-5)3

(Socher et al., 2013) is a dataset for sentiment
categorization where a corpus of movie review
excerpts from the rottentomatoes.com are
categorized either 5 classes representing senti-
ments varying from very positive to very negative.

More metadata information about these datasets
are provided in Table 1.

3.2 Software and resources

Resources: In order to construct sentence embed-
dings, all the competing methods except ELMo
require a set of word vectors. In this work, we
use the pre-trained set of word embeddings pro-
vided by Mikolov et al4. For experimenting with
ELMo and evaluating it on the chosen datasets,
we use a pre-trained model5, trained on the One
Billion Words benchmark (Chelba et al., 2013).
In the case of BERT, we use the BERT-Large,
Uncased6 model, which is a 24-layer deep trans-
former network that was trained on Wikipedia and
the BooksCorpus (Zhu et al., 2015) for 1 million
update steps.

Implementations: For DCT, we use an imple-
mentation provided in the SciPy Python library
(Jones et al., 2001–)7, which uses Fast Fourier
Transform (FFT) to get the cosine transform com-
ponents, while PCA is made available in scikit-

2https://www.cs.umb.edu/˜smimarog/
textmining/datasets/

3https://nlp.stanford.edu/sentiment/index.
html

4https://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit

5https://tfhub.dev/google/elmo/2
6https://storage.googleapis.com/bert_

models/2018_10_18/uncased_L-24_H-1024_A-16.
zip

7https://docs.scipy.org/doc/scipy-0.14.0/
reference/generated/scipy.fftpack.dct.html

rottentomatoes.com
https://www.cs.umb.edu/~smimarog/textmining/datasets/
https://www.cs.umb.edu/~smimarog/textmining/datasets/
https://nlp.stanford.edu/sentiment/index.html
https://nlp.stanford.edu/sentiment/index.html
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
https://tfhub.dev/google/elmo/2
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-1024_A-16.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-1024_A-16.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-1024_A-16.zip
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html

4541

Model Configurations

pmeans
The power parameter, p, is varied between 1, [1,2], [1,3] and [1,6], where [1,6] means
that the sentence embedding is produced by concatenating the power-means for the
values 1, 2, 3, 4, 5 and 6.

BERT
Pre-trained model fetched as mentioned in Section 3.2; sentence embeddings were
constructed based on word representation features from the second-to-last layer of the
BERT-Large, Uncased model.

ELMo
Model downloaded as mentioned in Section 3.2 and sentence embeddings were
constructed based on word representation features from all three layers of the ELMo
model.

DCT Components were varied from 1 to 6, after which performance plateaued or diminished.
PCA Components were varied from 1 to 3, after which performance plateaued or diminished.

EigenSent
There are two components to tune for the HODMD algorithm: the window, d, and the
number of components to retain, n, as described in Algorithm 1. d is varied between 1, 2, 3,
[1-2], [1-3] and [1-6], while n is chosen as 1 or 2.

Linear SVM L2 regularization parameter is varied between 0.001, 0.1, 1, 10 and 100.

Table 2: Algorithm configurations tested in our experiments.

learn package8 (Pedregosa et al., 2011). We use
the p-means implementation provided by Rücklé
et al. themselves9 (2018) and leverage Tensorflow
graphs (Abadi et al., 2016) in order to use ELMo.
For BERT, we leverage a fast in-memory message-
queue based implementation, bert-as-service10.
Finally, for an implementation of higher-order Dy-
namic Mode Decomposition (HODMD), we look
towards a Python implementation by Demo et al.11

(2018).
In order to foster reproducibility and openness,

all of the experimental code is released12 and re-
sults can easily be reproduced by re-running the
provided code.

4 Experiments and results
4.1 Experiments

In this work, we perform extensive experiments
to compare the performance of our EigenSent
method to the other competing methods. Our ex-
perimental protocol is described clearly next:

1. We choose an algorithm (EigenSent, p-
means, BERT, ELMo, DCT or PCA) and a
set of hyperparameter values pertaining to it
(e.g., the number of components to keep in
PCA, or the powers in p-means) to evaluate.

2. Then, choose a dataset (20-NG, R-8 or SST-
5). For every word in every sentence in the
train and test splits of the dataset, retrieve

8https://scikit-learn.org/stable/modules/
generated/sklearn.decomposition.PCA.html

9https://github.com/UKPLab/
arxiv2018-xling-sentence-embeddings/blob/
master/model/sentence_embeddings.py

10https://bert-as-service.readthedocs.io
11https://mathlab.github.io/PyDMD/hodmd.

html
12https://github.com/DeepK/

hoDMD-experiments

the corresponding word vector using the pre-
trained model stated in Section 3.2.

3. Followed by the application an algorithm-
hyperparameter combination on the sequence
of word vectors constructed in the previous
step to create sentence embeddings.

4. Finally, we train a simple linear-kernel sup-
port vector machine (Cortes and Vapnik,
1995) using the created sentence embeddings
corresponding to the train-split of a dataset,
and evaluate the trained model on the test-
split, by calculating Precision, Recall and
their harmonic mean, the F1-score.

Table 2 holds more metadata details about the
experiments performed, for the purposes of repro-
ducibility.

4.2 Results

The results of experiments, corresponding to the
configurations listed in Table 2 and shown in Table
3, are analyzed next.

4.2.1 Dataset analysis

Amongst the datasets, the Reuters-8 dataset is rel-
atively easier to tackle, as shown by the con-
sistently high F1-scores across all the methods
and configurations. The 20 newsgroups dataset is
slightly more complex, owing to the much larger
number of classes that it contains.

Finally, the Stanford Sentiment Treebank
dataset is observed to be very nuanced and it is
much harder to manage high scores on it. As an
example of the degree of complexity of the SST-5
dataset, consider the following training sentence,
which is labeled as very positive: ”The entire
movie establishes a wonderfully creepy mood”.
While the word wonderfully is usually used with a

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://github.com/UKPLab/arxiv2018-xling-sentence-embeddings/blob/master/model/sentence_embeddings.py
https://github.com/UKPLab/arxiv2018-xling-sentence-embeddings/blob/master/model/sentence_embeddings.py
https://github.com/UKPLab/arxiv2018-xling-sentence-embeddings/blob/master/model/sentence_embeddings.py
https://bert-as-service.readthedocs.io
https://mathlab.github.io/PyDMD/hodmd.html
https://mathlab.github.io/PyDMD/hodmd.html
https://github.com/DeepK/hoDMD-experiments
https://github.com/DeepK/hoDMD-experiments

4542

DCT 20-NG R-8 SST-5
Cmp. Dim. P R F1 P R F1 P R F1

1 300 45.98 43.94 44.41 47.99 43.76 45.22 22.39 21.00 20.78
2 600 55.03 53.98 54.25 57.37 56.60 56.71 23.30 23.89 23.14
3 900 57.43 55.91 56.35 72.01 72.82 72.17 25.03 25.34 24.70
4 1200 59.37 58.03 58.45 82.54 83.28 82.55 30.11 30.09 29.53
5 1500 60.88 59.03 59.64 87.56 88.07 87.42 28.39 28.51 28.21
6 1800 61.07 59.16 59.78 90.41 90.78 90.38 28.13 27.82 27.82

PCA 20-NG R-8 SST-5
Cmp. Dim. P R F1 P R F1 P R F1

1 300 52.95 49.87 50.39 80.39 77.43 78.38 26.47 25.08 25.23
2 600 55.43 54.67 54.77 82.86 81.82 82.10 26.39 24.99 25.14
3 900 53.93 53.00 53.25 83.83 83.42 83.41 25.13 23.94 24.18

pmeans 20-NG R-8 SST-5
Power(s) Dim. P R F1 P R F1 P R F1

1 300 68.72 68.19 68.25 96.34 96.30 96.27 27.88 26.44 24.81
[1-2] 600 71.27 70.69 70.82 96.69 96.67 96.65 32.14 31.55 31.49
[1-3] 900 71.85 71.37 71.48 96.13 96.11 96.07 33.32 33.59 33.03
[1-6] 1800 72.20 71.65 71.79 96.08 96.03 95.99 33.77 33.41 33.26

Language Model 20-NG R-8 SST-5
type dim. P R F1 P R F1 P R F1

BoW averaging of
word vectors obtained

from ELMo
1024 71.20 71.79 71.36 94.54 91.32 92.37 42.35 41.51 41.54

Average of token
representations from

the second-to-last
hidden layer of BERT

1024 70.89 70.79 70.88 95.52 95.39 95.39 39.92 39.38 39.35

EigenSent 20-NG R-8 SST-5
n d Dim. P R F1 P R F1 P R F1
1 1 300 60.00 59.00 59.01 93.71 93.15 93.33 33.80 31.98 32.12
1 2 300 61.62 60.39 60.47 94.62 94.20 94.30 34.54 32.58 32.88
1 3 300 61.48 59.99 60.05 94.43 93.92 94.05 34.14 30.99 31.29
1 [1-2] 600 63.69 62.92 62.97 95.03 96.03 95.99 34.49 32.95 33.17
1 [1-3] 900 64.47 64.05 64.10 95.27 95.11 95.14 34.67 33.00 33.18
1 [1-6] 1800 65.74 65.03 65.17 95.81 95.70 95.70 35.32 33.69 33.91
2 1 600 62.12 61.23 61.24 93.30 92.78 92.93 32.44 33.13 32.19
2 2 600 63.59 62.29 62.57 93.58 93.28 93.37 33.79 31.81 32.04
2 3 600 62.72 61.39 61.70 93.23 92.50 92.70 33.65 31.43 31.62
2 [1-2] 1200 65.47 64.54 64.76 95.30 95.20 95.19 33.79 32.38 32.71
2 [1-3] 1800 66.31 65.48 65.69 95.91 95.80 95.76 33.75 32.38 32.75
2 [1-6] 3600 66.98 66.40 66.54 96.85 95.73 95.71 32.81 31.64 31.98

Table 3: This shows the results of the experiments performed with the DCT, PCA, pmeans, ELMo, BERT and
EigenSent on the 3 stated datasets. Note that [a,b] means that the sentence embedding is the result of concatenation
of the embeddings produced by varying the corresponding hyperparameter from a to b. P, R and F1 indicate the
percentage values of Precision, Recall and F-score. Bold indicates the best result in for that particular metric
(column).

4543

positive intent, creepy is most often negative. It is
their combination, i.e., wonderfully creepy, which
makes the description an example of a very posi-
tive sentiment.

4.2.2 Analysis of the competing methods

The results obtained for the benchmark methods
can be observed to follow intuition. P-means,
BERT and ELMo outperform PCA and DCT-
based embedding creation techniques; the two lat-
ter methods do achieve respectable results, given
that they are not attuned to creating embeddings,
but are simply decomposing a sequence of word
vectors into components, which we use to con-
struct embeddings. It can be seen that the DCT-
based embedding creation technique needs more
components to achieve reasonable performance, as
compared to PCA, because PCA learns the basis
vectors in a data-driven way while DCT assumes
cosine functions as bases. However, since it does
not need to learn the bases, and therefore makes
less errors than PCA, DCT is more performant
than PCA when we utilize more components.

Among ELMo, BERT and p-means, ELMo per-
forms better on the SST-5 dataset because it takes
context into account in a much more sophisiticated
way (owing to the bi-directional LSTM-based lan-
guage model), than p-means. The performance
of BERT is in-between the two. Both BERT and
ELMo have not been fine-tuned in any way, for
them to be fairly comparable to the other meth-
ods discussed in this work, none of which are task-
specific.

4.2.3 Analysis of EigenSent

We thoroughly analyze our proposed method,
next, from various different perspectives.

Choice of higher-order DMD vs standard
DMD: Observing the results of the EigenSent

method in Table 3, it is clear that the exploiting the
higher-order assumption (see Equation 3) is bene-
ficial, since the results are unanimously better for
higher values of the order parameter, d.

Effect of adding more dynamic modes: Re-
call that in Algorithm 1, the number of dynamic
modes to choose n was a parameter. This de-
termines the number of eigenvectors that are re-
tained after performing eigendecomposition on the
Koopman operator (see Section 2.1.2). It can be
observed that retaining the fundamental eigenvec-
tor, or the largest mode, is enough to secure a good
performance, when it comes to constructing sen-
tence embeddings with EigenSent, with small im-
provements made with choosing the first two, at
the cost of embedding dimensionality.

Performance with respect to PCA and DCT:
EigenSent, using HODMD, is consistently supe-
rior, as compared to the other spectral techniques
tested in this work. This is because it captures in-
formation about the sequential behaviour of the
word vectors which form a sentence, while the
other methods do not.

Performance with respect to state-of-the-art:
HODMD is designed to capture the dynamics in a
multidimensional sequence but it does not directly
capture the scale, which methods like p-means (or
simply averaging the word vectors) do. This is
reflected in the performance of EigenSent on the
datasets tested with, as its performance is some-
what between ELMo (or BERT) and p-means. For
the SST-5 dataset, which exhibits more complex
behaviour and interplay amongst words, it per-
forms better than p-means (and much better than
simple averaging), because of its ability to capture
the dynamics, which is probably the more impor-
tant attribute in this case.

Concatenating with word vector average:

20-NG R-8 SST-5
method P R F1 P R F1 P R F1

PCA 55.43 54.67 54.77 83.83 83.42 83.41 26.47 25.08 25.23
DCT 61.07 59.16 59.78 90.41 90.78 90.38 30.11 30.09 29.53

Avg. vec. 68.72 68.19 68.25 96.34 96.30 96.27 27.88 26.44 24.81
p-means 72.20 71.65 71.79 96.69 96.67 96.65 33.77 33.41 33.26
ELMo 71.20 71.79 71.36 94.54 91.32 91.32 42.35 41.51 41.54
BERT 70.89 70.79 70.88 95.52 95.39 95.39 39.92 39.38 39.35

EigenSent 66.98 66.40 66.54 95.91 95.80 95.76 35.32 33.69 33.91
EigenSent
⊕ avg. 72.24 71.62 71.78 97.18 97.13 97.14 42.77 41.67 41.81

Table 4: A summary table of methods studied in this paper and the best results obtained. In addition, the final row
contains the result of the embeddings constructed by concatenating the average word vector embedding with the
EigenSent embedding. Bold indicates the best result for a particular metric, while italic is the second-best.

4544

Query Sentence Best Match Cosine
Similarity

The storylines are woven together skilfully, the
magnificent swooping aerial shots are breathtaking,
and the overall experience is awesome.

The camera soars above the globe in dazzling panoramic
shots that make the most of the large-screen format, before
swooping down on a string of exotic locales, scooping the
whole world up in a joyous communal festival of rhythm.

0.796

What ’s most memorable about Circuit is that it’s
shot on digital video, whose tiny camera enables
Shafer to navigate spaces both large ...and small...
with considerable aplomb.

The large-format film is well suited to capture these
musicians in full regalia and the incredible IMAX sound
system lets you feel the beat down to your toes.

0.771

George Lucas returns as a visionary with a tale full
of nuance and character dimension.

The script by David Koepp is perfectly serviceable and
because he gives the story some soul ...he elevates the
experience to a more mythic level.

0.758

Table 5: Examples of best-matching sentences based on the cosine-similarity between the embeddings obtained
using EigenSent

The intuitions of dynamics and scale, corroborated
with the performance observed in Table 3, as ex-
plained above, led us to combine the embeddings
generated by EigenSent with those by simply av-
eraging the word vectors, to capture both of these
properties in a sentence.

The summary of results is provided in Table
4, where the best results for each method are
provided. It also has an additional result where
the most performant EigenSent-based embeddings
have been concatenated with the average word
vector embedding for a sentence. It can be readily
seen that this concatenation significantly improves
performance, as the resultant embeddings can now
capture both the scale and dynamics of a sentence.

Examples of similar sentences with
EigenSent: Apart from the extensive quanti-
tative evaluation of the proposed method, we
provide motivating examples of similar sentences
from the Stanford Sentiment Treebank dataset,
as deemed by our method, in Table 5. It can
be noted that none of the sentence-pairs share
common words, apart from stop-words, and the
similarity is semantic. The first example shows
sentences which are similar because they both
praise the camerawork in a movie, while in the
second example, the commonality is about the
video format. In the last example, the sentences
point to movies having interesting characters, soul
and depth. All of these examples suggest that
EigenSent can capture the very nuanced qualities
of a sentence.

5 Conclusion
In this paper, we have proposed a novel method
to construct sentence embeddings, by exploiting
the dynamic properties of a sequence of word vec-
tors that the sentence is made up of. We do this

using a spectral decomposition method rooted in
fluid-dynamics, known as higher-order Dynamic
Mode Decomposition, which is known to capture
the fundamental transition dynamics of a multidi-
mensional signal. Thorough empirical validation
of the proposed method, which we call EigenSent,
against known state-of-the-art methods shows the
promise of this technique in capturing the dy-
namics of a word vector sequence to distill sen-
tence embeddings, which may be concatenated
with word vector average embeddings to state-of-
the-art performance.

The main contributions of the paper are:
1. We use signal summarization as an approach

for creating sentence embeddings, a first to
the best of our knowledge, using an algorithm
from fluid dynamics called higher-order Dy-
namic Mode Decomposition (HODMD).

2. The rationale and intuition behind using the
said method to capture the dynamic prop-
erties of a sentence are motivated, and the
mathematical preliminaries of HODMD in
the context of constructing sentence embed-
dings are clearly delineated.

3. A detailed experimental validation of
EigenSent, is performed on three public
datasets, of varying degrees of complex-
ity and purpose, and against algorithms
which are both state-of-the-art and diverse,
to formulate general conclusions about
EigenSent.

4. We postulate, and later observe, that our
method can successfully capture the dynam-
ics present in a sentence. In cases where dy-
namics alone does not capture the essence of
a sentence, our embeddings may be concate-
nated with those obtained via word vector av-
eraging to obtain state-of-the-art results.

4545

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
Tensorflow: A system for large-scale machine learn-
ing. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation,
pages 265–283.

Nasir Ahmed, T. Natarajan, and Kamisetty R. Rao.
1974. Discrete cosine transfom. IEEE Transactions
on Computers, 23:90–93.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3:1137–1155.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 632–642.

Steven L. Brunton, Bingni W. Brunton, Joshua L. Proc-
tor, and J. Nathan Kutz. 2016. Koopman invariant
subspaces and finite linear representations of non-
linear dynamical systems for control. PLOS ONE,
11:1–19.

Jose Camacho-Collados and Mohammad T. Pilehvar.
2018. From word to sense embeddings: A survey on
vector representations of meaning. Journal of Arti-
ficial Intelligence Research, 63:743–788.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. Tech-
nical report.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 670–680.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine Learning, 20(3):273–
297.

Nicola Demo, Marco Tezzele, and Gianluigi Rozza.
2018. PyDMD: Python Dynamic Mode Decompo-
sition. The Journal of Open Source Software, 3.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the North American
Chapter of the Association for Computational Lin-
guistics (NAACL).

Godfrey H. Hardy, John E. Littlewood, and George
Pólya. 1952. Inequalities. Cambridge University
Press.

Harold Hotelling. 1933. Analysis of a complex of sta-
tistical variables into principal components. Journal
of Educational Psychology, 24.

Eric Jones, Travis Oliphant, Pearu Peterson, et al.
2001–. SciPy: Open source scientific tools for
Python.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in Neural Information Processing Systems
28, pages 3294–3302.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of the 31st International Conference on Inter-
national Conference on Machine Learning (ICML),
pages II–1188–II–1196.

Soledad Le Clainche and Jos Vega. 2017. Higher or-
der dynamic mode decomposition. SIAM Journal
on Applied Dynamical Systems, 16:882–925.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems,
pages 3111–3119.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

Christian S. Perone, Roberto Silveira, and Thomas S.
Paula. 2018. Evaluation of sentence embed-
dings in downstream and linguistic probing tasks.
arXiv:1806.06259.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the North American
Chapter of the Association for Computational Lin-
guistics (NAACL), pages 2227–2237.

http://www.scipy.org/
http://www.scipy.org/

4546

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. Technical re-
port.

Andreas Rücklé, Steffen Eger, Maxime Peyrard, and
Iryna Gurevych. 2018. Concatenated power mean
embeddings as universal cross-lingual sentence rep-
resentations. arXiv:1803.01400.

Peter J. Schmid. 2010. Dynamic mode decomposi-
tion of numerical and experimental data. Journal
of Fluid Mechanics, 656:5–28.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1631–1642.

Sandeep Subramanian, Adam Trischler, Yoshua Ben-
gio, and Christopher J. Pal. 2018. Learning gen-
eral purpose distributed sentence representations via
large scale multi-task learning. In International
Conference on Learning Representations (ICLR).

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A simple and general method
for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 384–394.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the 2015
IEEE International Conference on Computer Vision
(ICCV), pages 19–27.

