
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3362–3367
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

3362

The Effectiveness of Simple Hybrid Systems for Hypernym Discovery

William Held and Nizar Habash
Computational Approaches to Modeling Language Lab

New York University Abu Dhabi, UAE
{wbh230,nizar.habash}@nyu.edu

Abstract

Hypernymy modeling has largely been sep-
arated according to two paradigms, pattern-
based methods and distributional methods.
However, recent works utilizing a mix of these
strategies have yielded state-of-the-art results.
This paper evaluates the contribution of both
paradigms to hybrid success by evaluating the
benefits of hybrid treatment of baseline mod-
els from each paradigm. Even with a simple
methodology for each individual system, uti-
lizing a hybrid approach establishes new state-
of-the-art results on two domain-specific En-
glish hypernym discovery tasks and outper-
forms all non-hybrid approaches in a general
English hypernym discovery task.

1 Introduction

Discovering word-level hierarchies has long been
an important step in constructing language tax-
onomies. The most important of these hierar-
chical relationships is hypernymy or the ISA-
relationship, i.e. ‘chihuahua’ is a ‘dog’, which
forms the backbone of word-level taxonomies,
most notably WordNet (Fellbaum, 1998).

Early works on the modeling of this relation-
ship focused on the practical task of discover-
ing new instances of the hypernymy relationship
given a vocabulary and an existing resource with
labeled data about hypernymy, described as hy-
pernym discovery by Camacho-Collados (2017).
For the purposes of discovery, Hearst (1992) de-
veloped a landmark set of lexico-syntactic patterns
which indicated hypernymy.

There have been many follow-ups on this con-
cept of identifying and utilizing patterns to iden-
tify hypernym pairs (Caraballo, 1999; Mann,
2002; Snow et al., 2005, 2006). However, by re-
stricting the sentences of interest to only those
which match patterns, even very large datasets
with very loose pattern matching will often return

small co-occurrence numbers, especially for more
indirectly connected hypernym pairs.

To tackle the sparsity of pattern-based ap-
proaches, recent focus has turned to distribu-
tional models of hypernymy. Distributional mod-
els are attractive since they use signals drawn from
every sentence of training data. Distributional
approaches have focused on discovering spatial
properties of embedding space which capture the
hypernymy relationship (Kotlerman et al., 2010;
Yamane et al., 2016; Shwartz et al., 2017; Nickel
and Kiela, 2017; Vulic and Mrksic, 2017). The
performance of distributional approaches in hy-
pernymy detection shows promise to create a more
broad picture of the hypernymy relationship space.

Recently, hybrid models of hypernymy, in both
discovery and detection, have surpassed the per-
formance of either paradigm individually. Simi-
larly, the current state-of-the-art in hypernymy de-
tection was set by a classifier which integrated
information from both pattern data and distribu-
tional word embeddings (Shwartz et al., 2016). In
hypernym discovery, where purely distributional
methods have struggled, a model which utilized
a hybrid approach of patterns and distributional
representations far and away led the results of a
recent SemEval Task (Camacho-Collados et al.,
2018; Bernier-Colborne and Barriere, 2018).

In this paper, we study the benefits of hybrid
strategies of hypernymy via a hybrid of extremely
simple models of pattern-based and distributional
hypernym discovery. We evaluate this model on
the English sub-tasks of SemEval 2018 Task 9 for
Hypernym Discovery. Overall, our results show
that these paradigms have an almost directly com-
plementary effect even when individual models
are simple, a result which we support using the
degrees of hypernymy each paradigm captures ef-
fectively.
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2 Pattern-Based Model

In order to make our pattern-based approach return
a reasonable number of candidate hypernyms, we
apply two separate methods to increase the num-
ber of candidate hypernyms presented by the pat-
tern based model.

Extended Pattern Use First, we utilize a set of
47 extended Hearst Patterns as collected in Seit-
ner et al. (2016). Additionally, we consider n-
gram terms from our vocabulary to inherently con-
tain a pattern co-occurrence with their sub-terms,
e.g., nuclear physics →hyponym physics. In En-
glish, this construction is common and accounts
for a high number of “co-occurrences” between
hyponyms and hypernyms.

All input sentences are tested by regular expres-
sion representations of these 47 patterns, yield-
ing a table of candidates for the hypernymy re-
lationship, in the form of xhypo, yhyper, and the
number of times the pairs co-occurred in any of
the extended Hearst Patterns. This stage is fully
unsupervised but aims to extract lexico-syntactic
information which indicates direct hypernymy.
This raw co-occurrence table can be used to dis-
cover hypernym terms, with hypernym candidates
scored based on their raw counts.

Hearst Matrix Singular Value Decomposition
While this raw co-occurrence table can be used to
discover candidate hypernyms, it still suffers from
a high amount of sparsity even for terms which
occur in patterns. Roller et al. (2018) showed
exactly that performing singular value decompo-
sition on co-occurrence tables can yield recall
improvements, oftentimes outperforming state-of-
the-art distributional methods for the hypernym
detection task.

To modify this method for the hypernym dis-
covery task, we simply sort all vocabulary terms
that occur in Hearst Patterns according to the fol-
lowing metric:

sp(x, y) = UT
x ΣrVy

where U , Σ, and V are taken from the singu-
lar value decomposition of the Hearst Pattern co-
occurrence matrix and Ux, Vy are the row vector
and the column vector for the hyponym and the
hypernym respectively. Then, a similarity cutoff
is tuned to maximize the F1 score of our predicted
hypernyms on any labeled data that we have.

For words which never occur in any patterns,
we still lack the ability to generate any reasonable
candidates which causes this approach to still suf-
fer from low total recall due to query terms never
seen in patterns.

3 Distributional Modeling with
Hypernyms from Nearest Neighbor

For our distributional methodology, we choose
the simplest possible supervised approach to hy-
pernym discovery - a single nearest neighbor ap-
proach - in which the hypernyms for each query
term are transferred from their nearest neighbor in
the training data. This approach is motivated by
the work of Snow et al. (2006) where linking a
new hyponym to a similar known hyponym was
shown to effectively encode an enormous amount
of signal about correct hypernyms.

Our method is as follows. Suppose we have
a training set H consisting of a number of hy-
ponyms and their corresponding hypernyms.

H : {Hypoi : Hyper1i ...Hyperji }

For a given query term Q, we find the nearest
neighbor Hyponn from the training set by the
cosine similarity of vector representations of the
words. The hypernyms of the nearest neighbor are
then sorted by descending frequency in the train-
ing set, such that the words which served as hy-
pernyms to more known terms in the training data
come first.

This sorting metric serves as a heuristic of the
generality of the hypernyms of the nearest neigh-
bor. Since the nearest neighbor is unlikely to be
an exact synonym, it is more likely that the query
and its nearest neighbor share more general hyper-
nyms, those that would appear at a lower depth in
a taxonomy, than they are to share extremely spe-
cific hypernyms.

Additionally, a similarity cutoff point is trained
on tuning data, such that if there is no nearest
neighbor with greater similarity the cutoff point,
the nearest neighbors strategy simply returns the
most frequent hypernyms from the entire training
set. Contrasting to the Hearst Patterns, our distri-
butional method instead tries to provide as many
reasonable guesses to hypernyms as possible un-
less the nearest neighbor is very far away.

Embedding Methodology Details In theory,
any word embedding model can be used for this
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General Medical Music
Model Variant MAP MRR P@5 MAP MRR P@5 MAP MRR P@5
Count Hearst Patterns 4.60 11.70 4.10 14.99 43.18 13.70 7.65 26.14 6.76
SVD Hearst Patterns 6.19 15.12 5.65 15.80 47.01 14.53 8.89 29.63 8.05
Hypernyms of Nearest Neighbor 9.85 24.56 8.76 29.57 48.18 34.10 38.65 72.77 38.45
Hybrid of Raw Count & NN 14.82 32.61 13.80 35.29 63.59 38.73 28.22 61.26 30.67
Hybrid of SVD & NN 15.97 34.07 15.00 37.85 64.47 40.19 54.62 77.24 55.08

Table 1: Comparison of model variants on all three sub-tasks of SemEval 2018 Task 9.

nearest neighbor task as it does not explicitly take
advantage of any particular features of a partic-
ular word embedding. However, in practice, we
found that the FastText (Bojanowski et al., 2016)
algorithm is preferable since even out of vocabu-
lary query words are able to be given reasonable
embeddings due to the meaningful embeddings
of sub-strings that FastText provides. This guar-
antees that the nearest neighbor approach always
gives some form of candidate hypernyms, even
for words which are out of vocabulary or word
n-grams which don’t have specific embeddings.
For the purposes of evaluation, we used 100-
dimensional embeddings with common n-grams
joined together.

4 Hybrid Approach

Ultimately, we combine the methods in order to
capture the valuable elements of each. While
pattern-based approaches suffer from sparseness,
they do tend to generate high precision results
when available. Conversely, the nearest neigh-
bor approach almost always generates a fair num-
ber of candidate hypernyms but suffers from low
precision unless the nearest neighbor is an ex-
act synonym. Therefore, we propose the follow-
ing ordering rule for candidate hypernyms. When
the pattern-based approach yields results, we rank
them as first. Then, the hypernyms of the near-
est neighbor are added until our total desired num-
ber of candidates is reached. Since this is a super-
vised setting, we tune a cutoff similarity value for
the pattern-based approaches as described in Sec-
tion 2.

5 Experiments & Results

We evaluate our model on SemEval 2018 Task 9,
the only existing benchmark for the hypernym dis-
covery task. Specifically, we focus on the 3 En-
glish sub-tasks: general English, Medical litera-
ture, and Music literature. Each task comes with a

separate corpus of unlabeled text data, training and
trial data of hyponyms labeled with their complete
list of hypernyms, and a vocabulary of valid hyper-
nyms. The final results of a model are tested on a
dataset of equal size to the training data. Further
details can be found in Camacho-Collados et al.
(2018)’s paper describing the tasks and their re-
spective data.

For each sub-task, we only use the data from the
specific sub-task we are evaluating. The provided
trial dataset is used to tune our cutoff points for
Hearst Pattern frequency and minimum similar-
ity for the nearest neighbor hypernyms approach.
For each query word, we propose 15 candidates
ranked as described in Section 4.

Our initial experiments, shown in Table 1, com-
pare all variations of our described systems on all
tasks. The hybrid models consistently outperform
the individual independent models by a significant
margin, except for the Music task where the raw
count method seems to negatively impact the hy-
pernyms of nearest neighbor approach. The fact
that our simple combination of these two models
yields improved results is a positive indication that
they each contribute separate signals to the model.

For the three English sub-tasks, we evaluate
our model using the evaluation script from the
SemEval task, and compare our results on Mean
Average Precision, Mean Reciprocal Rank, and
Precision at 5, the metrics primarily discussed
in the original task. We compare our system to
the CRIM (Bernier-Colborne and Barriere, 2018),
300-sparsans (Berend et al., 2018), vanilla Tax-
oembed (Espinosa-Anke et al., 2016), and most
frequent hypernym systems. The first two were
the only systems to achieve state-of-the-art results
on the above metrics for the three English sub-
tasks, while the latter two represent the best base-
lines from the shared task. The comparison against
these models on all three sub-tasks can be found in
Table 2.
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General Medical Music
Model MAP MRR P@5 MAP MRR P@5 MAP MRR P@5
Hybrid of SVD & NN(Our Model) 15.97 34.07 15.00 37.85 64.47 40.19 54.62 77.24 55.08
CRIM (Bernier-Colborne and Barriere, 2018) 19.78 36.10 19.03 34.05 54.64 36.77 40.97 60.93 41.31
vTE∗ (Espinosa-Anke et al., 2016) 10.60 23.83 9.91 18.84 41.07 20.71 12.99 39.36 12.41
300-sparsans (Berend et al., 2018) 8.95 19.44 8.63 20.75 40.60 21.43 29.54 46.43 28.86
Most Frequent Hypernym∗ 8.77 21.39 7.81 28.93 35.80 34.20 33.32 51.48 35.76

Table 2: Results for all three English sub-tasks in SemEval 2018 Task 9. Baselines are marked with *, state-of-
the-art is marked in bold.

Our simple hybrid model outperforms all sys-
tems in the competition on the general English hy-
pernym discovery task except for CRIM. In the
general task, we find it worth noting that there
is a significant performance gap between our hy-
brid approach and all non-hybrid models, despite
the simplicity of our model. The state-of-the-art
model, CRIM, is also a hybrid model, but it makes
much more robust use of the larger training set
provided in the general English sub-task.

Perhaps more surprising, our model yields new
state-of-the-art results for the Music and Medical
sub-domain tasks. As these approaches are both
much smaller tasks with around 1/3rd of the train-
ing data, we see that our model is able to make
effective use out of smaller datasets as well.

6 Analysis

In our goal of evaluating hybrid models in
isolation, we quantitatively analyze why these
paradigms are beneficial in concert and manually
analyze where these models fail and perform well.

Hypernymy Distance Analysis In order to ex-
plain the high degree of compatibility the hybrid
model highlights, we explore the idea that each
model is modeling not only signal in support of the
same hypernyms but tends to model wholly differ-
ent types of hypernymy.

In Section 3, we discussed the intuitions be-
hind our sorting method that optimizes the nearest
neighbor to rank general hypernyms first, as these
are more likely to also apply to the query term. By
contrast, the Hearst Patterns are more likely to oc-
cur when the query and hypernym are directly re-
lated. Our intuitions about the type of information
captured by each model state that nearest neigh-
bors should effectively yield higher portions of the
taxonomy, while Hearst Patterns will link direct
hypernyms.

In Table 3, we support this by calculating the

average length of the shortest path between the
hyponym and the proposed hypernym for each
model. The metric is not dramatic but it clearly
separates the two approaches. Correctly predicted
hypernyms from the nearest neighbor approach lie
on average around one step further away on Word-
net from their query words than our correctly pre-
dicted hypernyms from the Hearst Patterns.1

Manual Error Analysis In order to more fully
understand the contributions of each model to our
results, we perform manual error analysis on a ran-
domly selected subset of the test data. 100 ex-
amples were selected from the General sub-task
and 50 examples each were taken from the Mu-
sic and Medical sub-tasks. Results are in Table
4. Within these examples, each candidate is la-
beled with which system yielded the answer. We
also categorize certain types of error into their own
class.

Overall, Hearst Pattern candidates account for
20% of all candidates and have a precision of 18%.
Nearest Neighbor candidates are 80% of all candi-
dates and also have a precision of 18%. The full
Hearst Pattern precision numbers are 10%, 38%
and 68% for the General, Music and Medical sub-
tasks, respectively. The Nearest Neighbor preci-
sion numbers are 9%, 20%and 29%, respectively.

In all datasets, Hearst Patterns alone almost
never capture all hypernyms, but especially in
special topic fields they show high precision re-
sults, as projected by previous work. In the
general subtask, Hearst Patterns struggle more,
generally when the query term is a term that is
used in versions of the patterns that do not trans-
late well to actual hypernymy, e.g., consump-
tion→bad pattern hyponym factor from the phrase

1This distance is calculated when both terms exist in
WordNet. For terms which lie in the other knowledge graphs
used to construct the SemEval Task 9 dataset, we don’t cal-
culate a distance.
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Model All Predictions Correct Predictions
Raw Hearst Patterns 6.33 3.64
SVD Hearst Patterns 6.33 3.63
Nearest Neighbor 7.54 4.81

Table 3: Average length of shortest path between predicted hypernyms and their input hyponyms.

Correct Incorrect Near Miss Gold Error
Dataset HP NN HP NN HP NN HP NN
General (100) 24 58 384 893 33 39 25 39
Music (50) 30 188 50 468 7 0 5 2
Medical (50) 21 141 8 558 2 0 3 0

Table 4: Error analysis of all all candidate hypernyms in a random sub-sample (number of queries in parentheses).

”Consumption is a factor in...”.

Altogether, our best answers largely come from
either very similar nearest neighbors, or hybrid in-
stances where the Hearst Patterns capture a few
specific hypernyms and rough hypernyms are cap-
tured by the nearest neighbor. We view the lat-
ter instances as ideal, since they depend neither
on a perfect nearest neighbor nor on patterns
capturing indirect hypernyms. For example, the
query Fudan University has three gold hypernyms
{university, school, educational institution}, uni-
versity and school are returned by the Hearst Pat-
terns and educational institution is returned by the
nearest neighbor.

In the general sub-task, the selection of a bad
nearest neighbor when no Hearst Patterns are
found is the source of a large number of major
failures. Qualitative analysis generally shows that
this occurs when the embedding for a rarely used
query word must rely on its sub-string embedding
from fastText, leading to a very incorrect nearest
neighbor that still has high confidence, e.g., Queen
Elizabeth→bad nearest neighborElizabeth Einstein.
In the more specific sub-tasks, this type of error
is less common as the domain is constrained in
scope, making wildly incorrect nearest neighbors
less common. However, in these more specific
tasks, outliers with no strong nearest neighbor are
much more frequent as the number of low confi-
dence nearest neighbors increases in these tasks.
In these cases, the model defaults to giving the
most frequent hypernyms from training since the
confidence cutoffs of neither Hearst Patterns nor
the nearest neighbor similarity are met.

We also separate out two interesting categories
of error: gold errors (occurring 2.5% of the time)

and near misses (occurring 2.9% of the time).
These categories have similar properties and gen-
erally form within specific queries. The prior oc-
curs primarily when a different sense is captured
than the sense in the gold data itself, e.g., ce-
real→gold false negative{crop, grain, snack, food-
stuff, carbohydrate}. The latter occurs primar-
ily when an incorrect, but close, family of hy-
pernyms is obtained from the data, e.g., mi-
croscope→near miss candidates{technology, facil-
ity, observer, measuring device}.

7 Conclusions and Future Work

We studied the impact of utilizing a hybrid of
pattern-based and distributional models for hy-
pernym discovery by hybridizing simple models
from each paradigm. Our results show that hybrid
models of even simple systems are able to per-
form surprisingly well, consistently outperform-
ing more robust single strategy models. Interest-
ingly, a manual error analysis and metrics taken
from WordNet suggests each paradigm models
different types of hypernymy. We conclude that
further work in hypernym discovery should uti-
lize signals taken from both historical paradigms
of hypernymy modeling, not only to improve con-
fidence in answers but also to capture both direct
and indirect hypernym relationships.
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