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Abstract

The reordering model plays an important role
in phrase-based statistical machine translation.
However, there are few works that exploit
the reordering information in neural machine
translation. In this paper, we propose a
reordering mechanism to learn the reordering
embedding of a word based on its contextual
information. These reordering embeddings are
stacked together with self-attention networks
to learn sentence representation for machine
translation. The reordering mechanism can be
easily integrated into both the encoder and the
decoder in the Transformer translation system.
Experimental results on WMT’14 English-to-
German, NIST Chinese-to-English, and WAT
ASPEC Japanese-to-English translation tasks
demonstrate that the proposed methods can
significantly improve the performance of the
Transformer translation system.

1 Introduction

The reordering model plays an important role in
phrase-based statistical machine translation (PB-
SMT), especially for translation between distant
language pairs with large differences in word
order, such as Chinese-to-English and Japanese-
to-English translations (Galley and Manning,
2008; Goto et al., 2013). Typically, the traditional
PBSMT learns large-scale reordering rules from
parallel bilingual sentence pairs in advance to
form a reordering model. This reordering
model is then integrated into the translation
decoding process to ensure a reasonable order of
translations of the source words (Chiang, 2005;
Xiong et al., 2006; Galley and Manning, 2008).
In contrast to the explicit reordering model for
PBSMT, the RNN-based NMT (Sutskever et al.,
2014; Bahdanau et al., 2015) depends on neural
networks to implicitly encode order dependencies
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between words in a sentence to generate a fluent
translation. Inspired by a distortion method
originating in SMT (Brown et al., 1993; Koehn
et al., 2003; Al-Onaizan and Papineni, 2006),
there is a quite recent preliminary exploration
work for NMT (Zhang et al., 2017). They
distorted the existing content-based attention by
an additional position-based attention inside the
fixed-size window, and reported a considerable
improvement on the classical RNN-based NMT.
This means that the word reordering information
is also beneficial to the NMT.

The Transformer (Vaswani et al., 2017) trans-
lation system relies on self-attention networks
(SANs), and has attracted growing interesting
in the machine translation community. The
Transformer generates an ordered sequence of
positional embeddings by a positional encoding
mechanism (Gehring et al., 2017a) to explicitly
encode the order of dependencies between words
in a sentence. The Transformer is adept
at parallelizing of performing (multi-head) and
stacking (multi-layer) SANs to learn the sentence
representation to predict translation, and has
delivered state-of-the-art performance on various
translation tasks (Bojar et al., 2018; Marie et al.,
2018). However, these positional embeddings
focus on sequentially encoding order relations
between words, and does not explicitly consider
reordering information in a sentence, which
may degrade the performance of Transformer
translation systems. Thus, the reordering problem
in NMT has not been studied extensively,
especially in Transformer.

In this paper, we propose a reordering mech-
anism for the Transformer translation system.
We dynamically penalize the given positional
embedding of a word depending on its contextual
information, thus generating a reordering embed-
ding for each word. The reordering mechanism
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is then stacked together with the existing SANs
to learn the final sentence representation with
word reordering information. The proposed
method can be easily integrated into both the
encoder and the decoder in the Transformer.
Experimental results on the WMT14 English-
to-German, NIST Chinese-to-English, and WAT
ASPEC Japanese-to-English translation tasks
verify the effectiveness and universality of the
proposed approach. This paper primarily makes
the following contributions:

• We propose a reordering mechanism to
learn the reordering embedding of a word
based on its contextual information, and
thus these learned reordering embeddings
are added to the sentence representation for
archiving reordering of words. To the best
of our knowledge, this is the first work to
introduce the reordering information to the
Transformer translation system.

• The proposed reordering mechanism can be
easily integrated into the Transformer to learn
reordering-aware sentence representation for
machine translation. The proposed transla-
tion models outperform the state-of-the-art
NMT baselines systems with a similar num-
ber of parameters and achieve comparable
results compared to NMT systems with much
more parameters.

2 Related Work

2.1 Reordering Model for PBSMT

In PBSMT, there has been a substantial amount
of research works about reordering model, which
was used as a key component to ensure the
generation of fluent target translation. Bisazza and
Federico (2016) divided these reordering models
into four groups:

Phrase orientation models (Tillman, 2004;
Collins et al., 2005; Nagata et al., 2006; Zens and
Ney, 2006; Galley and Manning, 2008; Cherry,
2013), simply known as lexicalized reordering
models, predict whether the next translated source
span should be placed on the right (monotone), the
left (swap), or anywhere else (discontinuous) of
the last translated one.

Jump models (Al-Onaizan and Papineni, 2006;
Green et al., 2010) predict the direction and
length of the jump that is performed between

consecutively translated words or phrases, with
the goal of better handling long-range reordering.

Source decoding sequence models (Feng
et al., 2010, 2013) address this issue by directly
modeling the reordered sequence of input words,
as opposed to the reordering operations that
generated it.

Operation sequence models are n-gram mod-
els that include lexical translation operations and
reordering operations in a single generative story,
thereby combining elements from the previous
three model families (Durrani et al., 2011, 2013,
2014). Their method were further extended by
source syntax information (Chen et al., 2017c,
2018b) to improve the performance of SMT.

Moreover, to address data sparsity (Guta et al.,
2015) caused by a mass of reordering rules, Li
et al. (2013, 2014) modeled ITG-based reordering
rules in the translation by using neural networks.
In particular, the NN-based reordering models can
not only capture semantic similarity but also ITG
reordering constraints (Wu, 1996, 1997) in the
translation context. This neural network modeling
method is further applied to capture reordering
information and syntactic coherence.

2.2 Modeling Ordering for NMT

The attention-based NMT focused on neural
networks themselves to implicitly capture order
dependencies between words (Sutskever et al.,
2014; Bahdanau et al., 2015; Wang et al., 2017a,b,
2018; Zhang et al., 2018). Coverage model can
partially model the word order information (Tu
et al., 2016; Mi et al., 2016). Inspired
by a distortion method (Brown et al., 1993;
Koehn et al., 2003; Al-Onaizan and Papineni,
2006) originated from SMT, Zhang et al. (2017)
proposed an additional position-based attention
to enable the existing content-based attention to
attend to the source words regarding both semantic
requirement and the word reordering penalty.

Pre-reordering, a pre-processing to make the
source-side word orders close to those of the target
side, has been proven very helpful for the SMT in
improving translation quality. Moreover, neural
networks were used to pre-reorder the source-
side word orders close to those of the target
side (Du and Way, 2017; Zhao et al., 2018b;
Kawara et al., 2018), and thus were input to
the existing RNN-based NMT for improving the
performance of translations. Du and Way (2017)
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and Kawara et al. (2018) reported that the pre-
reordering method had an negative impact on the
NMT for the ASPEC JA-EN translation task. In
particular, Kawara et al. (2018) assumed that one
reason is the isolation between pre-ordering and
NMT models, where both models are trained using
independent optimization functions.

In addition, several research works have been
proposed to explicitly introduce syntax structure
into the RNN-based NMT for encoding syntax
ordering dependencies into sentence representa-
tions (Eriguchi et al., 2016; Li et al., 2017;
Chen et al., 2017a,b; Wang et al., 2017b; Chen
et al., 2018a). Recently, the neural Transformer
translation system (Vaswani et al., 2017), which
relies solely on self-attention networks, used a
fixed order sequence of positional embeddings to
encode order dependencies between words in a
sentence.

3 Background

3.1 Positional Encoding Mechanism

Transformer (Vaswani et al., 2017) typically
uses a positional encoding mechanism to encode
order dependencies between words in a sentence.
Formally, given a embedding sequence of source
sentence of length J , X={x1, · · · , xJ}, the
positional embedding is computed based on the
position of each word by Eq.(1):

pe(j,2i) = sin(j/100002i/dmodel),

pe(j,2i+1) = cos(j/100002i/dmodel),
(1)

where j is the word’s position index in the
sentence and i is the number of dimensions of the
position index. As a result, there is a sequence of
positional embeddings:

PE = {pe1, · · · ,peJ}. (2)

Each pej is then added to the corresponding word
embedding xj as an combined embedding vj :

vj = xj + pej . (3)

Finally, a sequence of embeddings {v1, · · · , vJ} is
the initialized sentence representation H0. Later,
H0 will be input to the self-attention layer to learn
the sentence representation.

3.2 Self-Attention Mechanism

Following the positional embedding layer, self-
attention mechanism is used to learn sentence
representation over the H0 obtained in the
previous section. Generally, the self-attention
mechanism is a stack of N identical layers in
the Transformer architecture. Each identical
layer consists of two sub-layers: self-attention
network, and position-wise fully connected feed-
forward network. A residual connection (He et al.,
2016) is employed around each of two sub-layers,
followed by layer normalization (Ba et al., 2016).
Formally, the stack of learning the final sentence
representation is organized as follows:[

Hn
= LN(SelfAttn(Hn−1) + Hn−1)

Hn = LN(FFNn(Hn
) + Hn

)

]
N

, (4)

where SelfAttn(·), LN(·), and FFNn(·) are self-
attention network, layer normalization, and feed-
forward network for the n-th identical layer,
respectively. [· · · ]N denotes the stack of N
identical layer. In the encoder and decoder of
Transformer, SelfAttn(·) computes attention over
the output Hn−1 of the n-1 layer:

SelfAttn(Hn−1) = softmax(
QK>√
dk

)V. (5)

where {Q, K, V} are query, key and value vectors
that are transformed from the input representations
Hn−1. dk is the dimension size of the query and
key vectors. As a result, the output of the N -th
layer HN is the final sentence representation for
machine translation.

4 Reordering Mechanism

Intuitively, when a human translates a sentence,
he or she often adjusts word orders based on the
global meaning of the original sentence or its
context, thus gaining one synonymous sentence
which is easier to be understood and translated. It
is thus clear that the reordering of a given word
relies heavily on the global or contextual meaning
of the sentence. Motivated by this, we use the
word and its global contextual information of the
sentence to gain a Reordering Embedding for each
word (as shown in Figure 1), thus modeling the
above human reordering process. The reordering
mechanism is then stacked with the SAN layer to
learn a reordering-aware sentence representation.
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Figure 1: Learning reordering embeddings for the n-th
layer in the stack.

4.1 Reordering Embeddings

To capture reordering information, we first learn
a positional penalty vector based on the given
word and its global context of the sentence. The
positional penalty vector is then used to penalize
the given positional embedding of the word to
generate a new, reordering embedding. Finally,
these reordering embeddings are added to the
intermediate sentence representation to achieve
the reordering of words. We divide the process
into the following three steps:

Positional Penalty Vectors: The self-attention
mechanism focuses on global dependencies
between words to learn an intermediate sentence
representation Hn, which is regarded as the
expected global context of the sentence as
reordered by a human translator. Therefore, given
a sentence of J words, we use the output Hn−1

of the previous layer in the stack together with the
new intermediate global context representation Hn

to learn positional penalty vectors PPn for the n-th
layer of the stack [· · · ]N :

PPn = sigmoid(Vn · tanh(Wn ·Hn−1+Wn ·Hn
)),
(6)

where Wn∈Rdmodel×dmodel , Wn∈Rdmodel×dmodel ,
and Vn∈Rdmodel×dmodel are the parameters of
model. dmodel is the dimension of the model. Each
element of PPn∈RJ×dmodel is a real value between
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Figure 2: The architecture of Transformer with
reordering embeddings.

zero and one.
Reordering Embeddings: PPn is used to

penalize the original positional embeddings PE:

REn = PE · PPn, (7)

where REn is called reordered embedding (RE)
because each element of PE is multiplied by a
probability between zero and one.

Achieving Reordering: The learned REn

is further added to Hn to achieve reordering
operations for the current sentence hidden state
Hn:

Cn = LN(Hn
+ REn), (8)

where LN is a layer normalization. As a result,
there is a reordering-aware sentence hidden state
representation Cn.

4.2 Stacking SANs with Reordering
Embeddings

The original positional embeddings of a sentence
allow the Transformer to avoid having to recur-
rently capture the order of dependencies between
words, thus relying entirely on the stacked
SANs to parallel learn sentence representations.
The learned REs are similar to the original
positional embeddings. This means that these
learned reordering embeddings can be also easily
stacked together with the existing SANs to learn
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the final reordering-aware sentence representation
for machine translation. According to Eq.(4),
stacking SANs with reordering embeddings is
formalized as the following Eq.(9):

 Hn
= LN(SelfAttn(Hn−1) + Hn−1)

PPn = sigmoid(Vn · tanh(Wn · Hn−1 + Wn · Hn
))

Cn = LN(Hn
+ PE · PPn)

Hn = LN(FFNn(Cn) + Hn
),


N

(9)

where H0 is the initialized sentence representation
as in the Section 3.1. Finally, there is a reordering-
aware sentence representation HN for predicting
translations.

5 Neural Machine Translation with
Reordering Mechanism

Based on the proposed approach to learning sen-
tence representation, we design three Transformer
translation models: Encoder REs, Decoder REs,
and Both REs, all of which enable reordering
knowledge to improve the translation performance
of Transformer.
Encoder REs: The proposed reordering mecha-
nism is only applied to the encoder of Transformer
to learn the representation of the source sentence,
as shown in the Encoder of Figure 2.
Decoder REs: Similarly, the proposed reordering
mechanism is only introduced into the SAN layer
of Transformer related to the representation of
the target sentence, as shown in the Decoder of
Figure 2.
Both REs: To further enhance translation per-
formance, we simultaneously apply the proposed
method to the source and target sentences to
learn their sentence representations, as shown in
Figure 2.

Note that the reordering model in PBSMT is
an independent model and therefore needs to
consider information concerning both the source
and target. In NMT, the reordering embedding
is jointly trained with the entire NMT model.
Although it is only applied to the encoder (or
decoder), it can still obtain information about the
target (or source) from the decoder (or encoder) by
neural network feedback. Therefore, the proposed
reordering mechanism makes use of information
concerning both the source and the target.

6 Experiments

6.1 Datasets
The proposed method was evaluated on three tasks
from the WMT14 English-to-German (EN-DE),
NIST Chinese-to-English (ZH-EN), and WAT AS-
PEC Japanese-to-English (JA-EN) benchmarks.

1) For the EN-DE translation task, 4.43 million
bilingual sentence pairs of the WMT14 dataset
were used as training data, including Common
Crawl, News Commentary, and Europarl v7. The
newstest2013 and newstest2014 datasets were
used as the dev set and test set, respectively.

2) For the ZH-EN translation task, the training
dataset consisted of 1.28 million bilingual
sentence pairs from LDC corpus consisting of
LDC2002E18, LDC2003E07, LDC2003E14,
and Hansard’s portions of LDC2004T07,
LDC2004T08, and LDC2005T06. The MT06 and
the MT02/MT03/MT04/MT05/MT08 datasets
were used as the dev set and test set, respectively.

3) For the JA-EN translation task, the training
dataset consisted of two million bilingual sentence
pairs from the ASPEC corpus (Nakazawa et al.,
2016). The dev set consisted of 1,790 sentence
pairs and the test set of 1,812 sentence pairs.

6.2 Baseline Systems
These baseline systems included:

Transformer: a vanilla Transformer with
absolute positional embedding (Vaswani et al.,
2017), for example Transformer (base) and
Transformer (big) models.

Relative PE (Shaw et al., 2018): incorporates
relative positional embeddings into the self-
attention mechanism of Transformer.

Additional PE (control experiment): uses orig-
inal absolute positional embeddings to enhance
the position information of each SAN layer instead
of the proposed reordering embeddings.

Pre-reordering: a pre-ordering method (Goto
et al., 2013) for JA-EN translation task was used
to adjust the order of Japanese words in both the
training, dev, and test datasets, and thus reordered
each source sentence into the similar order as its
target sentence.

6.3 System Setting
For all models (base), the byte pair encoding
algorithm (Sennrich et al., 2016) was adopted and
the size of the vocabulary was set to 32,000. The
number of dimensions of all input and output
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System Architecture newstest2014 #Speed1 #Speed2 #Params

Existing NMT systems
Wu et al. (2016) GNMT 26.3 N/A N/A N/A
Gehring et al. (2017b) CONVS2S 26.36 N/A N/A N/A
Vaswani et al. (2017) Transformer (base) 27.3 N/A N/A 65.0M
Vaswani et al. (2017) Transformer (big) 28.4 N/A N/A 213.0M

Our NMT systems

this work

Transformer (base) 27.24 9910 181 97.6M
+Additional PEs 27.10 9202 179 97.6M
+Relative PEs 27.63 4418 146 97.6M
+Encoder REs 28.03++ 8816 179 102.1M
+Decoder REs 27.61+ 9101 175 102.1M
+Both REs 28.22++ 8605 174 106.8M

Transformer (big) 28.34 4345 154 272.8M
+Both REs 29.11++ 3434 146 308.2M

Table 1: Comparison with existing NMT systems on WMT14 EN-DE Translation Task. “#Speed1” and “#Speed2”
denote the training and decoding speed measured in source tokens per second, respectively. In Table 1, 2 and 3,
“++/+” after score indicate that the proposed method was significantly better than the corresponding baseline
Transformer (base or big) at significance level p<0.01/0.05.

layers was set to 512, and that of the inner feed-
forward neural network layer was set to 2048.
The heads of all multi-head modules were set to
eight in both encoder and decoder layers. In each
training batch, a set of sentence pairs contained
approximately 4096×4 source tokens and 4096×4
target tokens. During training, the value of label
smoothing was set to 0.1, and the attention dropout
and residual dropout were p = 0.1. The Adam
optimizer (Kingma and Ba, 2014) was used to tune
the parameters of the model. The learning rate
was varied under a warm-up strategy with warmup
steps of 8,000. For evaluation, we validated the
model with an interval of 1,000 batches on the dev
set. Following the training of 200,000 batches,
the model with the highest BLEU score of the
dev set was selected to evaluate on the test sets.
During the decoding, the beam size was set to
four. All models were trained and evaluated on
a single P100 GPU. SacreBELU (Post, 2018) was
used as the evaluation metric of EN-DE, and the
multi-bleu.perl1 was used the evaluation metric of
ZH-EN and JA-EN tasks. The signtest (Collins
et al., 2005) was as statistical significance test.
We re-implemented all methods (“this work” in
the tables) on the OpenNMT toolkit (Klein et al.,

1https://github.com/moses-
smt/mosesdecoder/tree/RELEASE-4.0/scripts/generic/multi-
bleu.perl

2017).

6.4 Main Results

To validate the effectiveness of our methods,
the proposed models were first evaluated on the
WMT14 EN-DE translation task as in the original
Transformer translation system (Vaswani et al.,
2017). The main results of the translation are
shown in Tables 1. We made the following
observations:

1) The baseline Transformer (base) in this
work outperformed GNMT, CONVS2S, and
Transformer (base)+Relative PEs, and achieved
performance comparable to the original Trans-
former (base). This indicates that it is a strong
baseline NMT system.

2) The three proposed models significantly out-
performed the baseline Transformer (base). This
indicates that the learned reordering embeddings
were beneficial for the Transformer. Meanwhile,
our models outperformed the comparison system
+Additional PEs (control experiment), which
means that these improvements in translation
derived from the learned REs instead of the
original PEs. +Encoder REs and +Both REs were
superior to +Relative PEs, which means that the
REs better captured reordering information than
+Relative PEs.

3) Of the proposed models, +Encoder REs
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System Architecture
Test Sets

#Param
MT02 MT03 MT04 MT05 MT08

Existing NMT systems
Vaswani et al. (2017) Transformer N/A N/A N/A N/A N/A N/A
Zhang et al. (2017) RNNsearch+Distortion N/A 38.33 40.40 36.81 N/A N/A
Meng and Zhang (2018) DTMT#1 46.90 45.85 46.78 45.96 36.58 170.5M
Meng and Zhang (2018) DTMT#4 47.03 46.34 47.52 46.70 37.61 208.4M
Kong et al. (2018) RNN-based NMT N/A 38.62 41.98 37.42 N/A 87.9M
Zhao et al. (2018a) RNN-based NMT+MEM N/A 44.98 45.51 43.95 33.33 N/A

Our NMT systems

this work

Transformer (base) 46.45 45.33 45.82 45.57 35.57 78.3M
+Additional PEs 46.66 45.35 46.11 45.40 35.75 78.3M
+Relative PEs 46.41 45.94 46.54 46.21 36.14 78.3M
+Encoder REs 47.47++ 45.87++ 46.82++ 46.58++ 36.42++ 83.0M
+Decoder REs 46.80 45.43 46.23++ 46.11++ 36.02+ 83.0M
+Both REs 47.54++ 46.56++ 47.27++ 46.88++ 36.77++ 87.6M

Transformer (Big) 47.76 46.66 47.51 47.71 37.73 244.7M
+Both REs 48.42++ 47.32++ 48.22++ 48.56++ 38.19+ 269.7M

Table 2: Results on NIST ZH-EN Translation Task.

performed slightly better than +Decoder REs.
This indicates that the reordering information of
the source sentence was slightly more useful than
that of the target sentence. +Both REs which
combined reordering information for both source
and target further improved performance and
were significantly better than +Encoder REs and
+Decoder REs. This indicates that the reordering
information of source and target can be used
together to improve predicted translation.

4) We also evaluated the best performing
method (+Both REs) in big Transformer model
settings (Vaswani et al., 2017). Compared
with Transformer (base), Transformer (big)
contains approximately three times parameters
and obtained one BLEU score improvement.
The Transformer (big)+Both REs further achieved
0.77 BLEU score improvement.

5) The proposed models contains approx-
imately 5%∼10% additional parameters and
decreased 10%∼15% training speed, compared
to the corresponding baselines. Transformer
(base)+Both REs achieved comparable results
compared to Transformer (big) which has much
more parameters. This indicates that the
improvement of the proposed methods is not from
more parameters.

6) In Table 3, the +Pre-ordering performed
worse that the baseline Transformer (base) for
the WAT JA-EN translation task. We assume
that the simple +pre-ordering strategy has negative
impact on the translation performance of NMT
model, which is in line with the functional

Systems testset #Param
Transformer (base) 30.33 73.9M

+Pre-Reordering 28.93 73.9M
+Additional PEs 30.16 73.9M
+Relative PEs 30.42 73.9M
+Encoder REs 31.12++ 78.6M
+Decoder REs 30.78+ 78.6M
+Both REs 31.41++ 84.4M

Transformer (big) 31.21 234.6M
+Both REs 31.93++ 273.7M

Table 3: Results for WAT JA-EN Translation Task.

similarity findings in (Du and Way, 2017; Kawara
et al., 2018). Conversely, the proposed methods
performed better than the Transformer (base),
especially the +pre-ordering. This means that
because this pre-ordering operation is isolated
with the existing NMT, these generated pre-
ordered data are not conducive to model source
translation knowledge for the NMT framework.

In addition, Tables 2 and 3 show that the
proposed models yielded similar improvements
over the baseline system and the compared
methods on the NIST ZH-EN and WAT JA-EN
translation tasks. These results indicate that our
method can effectively improve the NIST ZH-EN
and WAT JA-EN translation tasks. In other words,
our approach is a universal method for improving
the translation of other language pairs.
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6.5 Effect of Reordering Embeddings

Unlike the reordering model in PBSMT, which
can be illustrated explicitly, it is challenging
to explicitly show the effect of reordering
embedding. To further analyze this effect, we
simulated a scenario where the word order of a
sentence was partially incorrect and reordering
was needed for NMT. We randomly swapped
words of a source sentence in the test set according
to different percentages of incorrectly swapped
words in a sentence. For example, “10%”
indicates that there were 10% randomly swapped
words for each source sentence in the test set.
We evaluated Transformer (base) and +Both REs
(base) on these test set for three translation tasks
and the results are as shown in Figure 3, 4, and 5.

1) We observed that when the ratio of swapped
words gradually increased, the performances
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Figure 5: The effect of reordering in the test set where
the word orders are partially wrong for test set of ZH-
EN.

of Transformer (base) and +Both REs (base)
significantly degraded. This indicates that correct
ordering information has an important effect on
the Transformer system.

2) When the percentage of swapped words was
less than 40%, the NMT systems still delivered
reasonable performance. The gap between
+Both REs (base) and Transformer (base) was
approximately 2-3 BLEU scores. This indicates
that +Both REs (base) dealt better than the vanilla
baseline with this scenario. In other words,
the learned REs retrained part of reordering
information in a sentence.

3) When the percentage of swapped words
was greater than 40%, Transformer (base) and
+Both REs (base) yielded poor performance on
translation. We infer that excessive exchanges
of word order may increase the ambiguity of the
source sentence such that Transformer (base) and
+Both REs (base) struggled to convert the original
meaning of the source sentence into the target
translation.

6.6 Cases Analysis

Figure 6 shows two translation examples, which
were generated by Transformer (base) model and
+Both REs (base) model, respectively.

For the first sample, +Both REs (base) trans-
lated the Chinese phrase “继续[continue] 改
革[reform] 的[to] 努力[efforts]” into the “the
efforts to continue the reform” while Transformer
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Ref1: the efforts to continue reform will enhance the economic recovery

Src1:     继续 改革 的 努力 将 促成 经济 复苏

[continue] [reform] [to] [efforts] [will] [enhance] [economic] [recovery]

Transformer (base): continued reform efforts will bring about economic recovery

+Both_REs (base): the efforts to continue the reform will promote economic recovery

Ref2: nine people were killed in the incident

Src2:    这 起 事件 造成 九 人 丧生

[the] [    ]  [incident]  [    ] [nine] [people] [killed]

Transformer (base): the incident killed nine people

+Both_REs (base): nine people were killed in the incident

Figure 6: Two translation examples for ZH-EN task. In each example, the English phrases in color indicate they
are translations from the corresponding Chinese phrase with the same color.

(base) translated the Chinese phrase into “con-
tinued reform efforts”. Although both of them
covered the meanings of main words, the order
of the former translation is closer to the natural
English word order.

For the second sample, Transformer (base)
generated a puzzling translation “the incident
killed nine people”. It seems to be an English
sentence in Chinese word order. In comparison,
the +Both REs (base) translated it into “nine
people were killed in the incident” which is the
same as the reference.

These two examples show that the proposed
model with reordering embeddings was conducive
to generating a translation in line with the target
language word order.

7 Conclusion and Future Work

Word ordering is an important issue in translation.
However, it has not been extensively studied in
NMT. In this paper, we proposed a reordering
mechanism to capture knowledge of reordering. A
reordering embedding was learned by considering
the relationship between the positional embedding
of a word and that of the entire sentence. The
proposed reordering embedding can be easily
introduced to the existing Transformer translation
system to predict translations. Experiments
showed that our method can significantly improve
the performance of Transformer.

In future work, we will further explore the
effectiveness of the reordering mechanism and
apply it to other natural language processing tasks,
such dependency parsing (Zhang et al., 2016; Li
et al., 2018), and semantic role labeling (He et al.,
2018; Li et al., 2019).
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