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Abstract

Natural Language Inference (NLI) datasets of-
ten contain hypothesis-only biases—artifacts
that allow models to achieve non-trivial per-
formance without learning whether a premise
entails a hypothesis. We propose two prob-
abilistic methods to build models that are
more robust to such biases and better trans-
fer across datasets. In contrast to standard
approaches to NLI, our methods predict the
probability of a premise given a hypothesis
and NLI label, discouraging models from ig-
noring the premise. We evaluate our meth-
ods on synthetic and existing NLI datasets by
training on datasets containing biases and test-
ing on datasets containing no (or different)
hypothesis-only biases. Our results indicate
that these methods can make NLI models more
robust to dataset-specific artifacts, transferring
better than a baseline architecture in 9 out of
12 NLI datasets. Additionally, we provide an
extensive analysis of the interplay of our meth-
ods with known biases in NLI datasets, as well
as the effects of encouraging models to ignore
biases and fine-tuning on target datasets.1

1 Introduction

Natural Language Inference (NLI) is often used to
gauge a model’s ability to understand a relation-
ship between two texts (Cooper et al., 1996; Dagan
et al., 2006). In NLI, a model is tasked with deter-
mining whether a hypothesis (a woman is sleep-
ing) would likely be inferred from a premise (a
woman is talking on the phone).2 The develop-
ment of new large-scale datasets has led to a flurry
of various neural network architectures for solv-
ing NLI. However, recent work has found that

∗∗ Equal contribution
1Our code is available at https://github.com/

azpoliak/robust-nli.
2This hypothesis contradicts the premise and would likely

not be inferred.

many NLI datasets contain biases, or annotation
artifacts, i.e., features present in hypotheses that
enable models to perform surprisingly well using
only the hypothesis, without learning the relation-
ship between two texts (Gururangan et al., 2018;
Poliak et al., 2018b; Tsuchiya, 2018).3 For in-
stance, in some datasets, negation words like “not”
and “nobody” are often associated with a relation-
ship of contradiction. As a ramification of such
biases, models may not generalize well to other
datasets that contain different or no such biases.

Recent studies have tried to create new NLI
datasets that do not contain such artifacts, but
many approaches to dealing with this issue remain
unsatisfactory: constructing new datasets (Sharma
et al., 2018) is costly and may still result in other
artifacts; filtering “easy” examples and defin-
ing a harder subset is useful for evaluation pur-
poses (Gururangan et al., 2018), but difficult to do
on a large scale that enables training; and compil-
ing adversarial examples (Glockner et al., 2018)
is informative but again limited by scale or diver-
sity. Instead, our goal is to develop methods that
overcome these biases as datasets may still contain
undesired artifacts despite annotation efforts.

Typical NLI models learn to predict an en-
tailment label discriminatively given a premise-
hypothesis pair (Figure 1a), enabling them to learn
hypothesis-only biases. Instead, we predict the
premise given the hypothesis and the entailment
label, which by design cannot be solved using
data artifacts. While this objective is intractable,
it motivates two approximate training methods for
standard NLI classifiers that are more resistant to
biases. Our first method uses a hypothesis-only
classifier (Figure 1b) and the second uses negative
sampling by swapping premises between premise-
hypothesis pairs (Figure 1c).

3We use artifacts and biases interchangeably.

https://github.com/azpoliak/robust-nli
https://github.com/azpoliak/robust-nli
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(a) Baseline (b) Method 1 (c) Method 2

Figure 1: Illustration of (a) the baseline NLI architecture, and our two proposed methods to remove hypothesis
only-biases from an NLI model: (b) uses a hypothesis-only classifier, and (c) samples a random premise. Arrows
correspond to the direction of propagation. Green or red arrows respectively mean that the gradient sign is kept
as is or reversed. Gray arrow indicates that the gradient is not back-propagated - this only occurs in (c) when we
randomly sample a premise, otherwise the gradient is back-propagated. f and g represent encoders and classifiers.

We evaluate the ability of our methods to gener-
alize better in synthetic and naturalistic settings.
First, using a controlled, synthetic dataset, we
demonstrate that, unlike the baseline, our methods
enable a model to ignore the artifacts and learn to
correctly identify the desired relationship between
the two texts. Second, we train models on an NLI
dataset that is known to be biased and evaluate on
other datasets that may have different or no bi-
ases. We observe improved results compared to
a fully discriminative baseline in 9 out of 12 tar-
get datasets, indicating that our methods generate
models that are more robust to annotation artifacts.

An extensive analysis reveals that our methods
are most effective when the target datasets have
different biases from the source dataset or no no-
ticeable biases. We also observe that the more we
encourage the model to ignore biases, the better
it transfers, but this comes at the expense of per-
formance on the source dataset. Finally, we show
that our methods can better exploit small amounts
of training data in a target dataset, especially when
it has different biases from the source data.

In this paper, we focus on the transferability of
our methods from biased datasets to ones having
different or no biases. Elsewhere (Belinkov et al.,
2019), we have analyzed the effect of these meth-
ods on the learned language representations, sug-
gesting that they may indeed be less biased. How-
ever, we caution that complete removal of biases
remains difficult and is dependent on the tech-
niques used. The choice of whether to remove bias
also depends on the goal; in an in-domain scenario
certain biases may be helpful and should not nec-
essarily be removed.

In summary, in this paper we make the follow-

ing contributions:
• Two novel methods to train NLI models that

are more robust to dataset-specific artifacts.
• An empirical evaluation of the methods on a

synthetic dataset and 12 naturalistic datasets.
• An extensive analysis of the effects of our

methods on handling bias.

2 Motivation

A training instance for NLI consists of a hypothe-
sis sentence H , a premise statement P , and an in-
ference label y. A probabilistic NLI model aims to
learn a parameterized distribution pθ(y |P,H) to
compute the probability of the label given the two
sentences. We consider NLI models with premise
and hypothesis encoders, fP,θ and fH,θ, which
learn representations of P and H , and a classifi-
cation layer, gθ, which learns a distribution over
y. Typically, this is done by maximizing this dis-
criminative likelihood directly, which will act as
our baseline (Figure 1a).

However, many NLI datasets contain biases that
allow models to perform non-trivially well when
accessing just the hypotheses (Tsuchiya, 2018;
Gururangan et al., 2018; Poliak et al., 2018b). This
allows models to leverage hypothesis-only biases
that may be present in a dataset. A model may per-
form well on a specific dataset, without identifying
whether P entails H . Gururangan et al. (2018) ar-
gue that “the bulk” of many models’ “success [is]
attribute[d] to the easy examples”. Consequently,
this may limit how well a model trained on one
dataset would perform on other datasets that may
have different artifacts.

Consider an example where P andH are strings
from {a, b, c}, and an environment where P en-
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tails H if and only if the first letters are the same,
as in synthetic dataset A. In such a setting, a model
should be able to learn the correct condition for P
to entail H .4

Synthetic dataset A
(a, a)→ TRUE (a, b)→ FALSE

(b, b)→ TRUE (b, a)→ FALSE

Imagine now that an artifact c is appended to
every entailed H (synthetic dataset B). A model
of y with access only to the hypothesis side can
fit the data perfectly by detecting the presence or
absence of c in H , ignoring the more general pat-
tern. Therefore, we hypothesize that a model that
learns pθ(y |P,H) by training on such data would
be misled by the bias c and would fail to learn the
relationship between the premise and the hypoth-
esis. Consequently, the model would not perform
well on the unbiased synthetic dataset A.

Synthetic dataset B (with artifact)
(a, ac)→ TRUE (a, b)→ FALSE

(b, bc)→ TRUE (b, a)→ FALSE

Instead of maximizing the discriminative likeli-
hood pθ(y |P,H) directly, we consider maximiz-
ing the likelihood of generating the premise P
conditioned on the hypothesis H and the label y:
p(P |H, y). This objective cannot be fooled by
hypothesis-only features, and it requires taking the
premise into account. For example, a model that
only looks for c in the above example cannot do
better than chance on this objective. However, as
P comes from the space of all sentences, this ob-
jective is much more difficult to estimate.

3 Training Methods

Our goal is to maximize log p(P |H, y) on the
training data. While we could in theory directly
parameterize this distribution, for efficiency and
simplicity we instead write it in terms of the stan-
dard pθ(y |P,H) and introduce a new term to ap-
proximate the normalization:

log p(P | y,H) = log
pθ(y |P,H)p(P |H)

p(y |H)
.

Throughout we will assume p(P |H) is a fixed
constant (justified by the dataset assumption that,
lacking y, P and H are independent and drawn at
random). Therefore, to approximately maximize
this objective we need to estimate p(y |H). We
propose two methods for doing so.

4 This is equivalent to XOR and is learnable by a MLP.

3.1 Method 1: Hypothesis-only Classifier

Our first approach is to estimate the term p(y |H)
directly. In theory, if labels in an NLI dataset
depend on both premises and hypothesis (which
Poliak et al. (2018b) call “interesting NLI”), this
should be a uniform distribution. However, as dis-
cussed above, it is often possible to correctly pre-
dict y based only on the hypothesis. Intuitively,
this model can be interpreted as training a classi-
fier to identify the (latent) artifacts in the data.

We define this distribution using a shared repre-
sentation between our new estimator pφ,θ(y |H)
and pθ(y |P,H). In particular, the two share
an embedding of H from the hypothesis encoder
fH,θ. The additional parameters φ are in the fi-
nal layer gφ, which we call the hypothesis-only
classifier. The parameters of this layer φ are up-
dated to fit p(y |H) whereas the rest of the param-
eters in θ are updated based on the gradients of
log p(P | y,H).

Training is illustrated in Figure 1b. This inter-
play is controlled by two hyper-parameters. First,
the negative term is scaled by a hyper-parameter
α. Second, the updates of gφ are weighted by
β. We therefore minimize the following multitask
loss functions (shown for a single example):

max
θ
L1(θ) = log pθ(y |P,H)− α log pφ,θ(y |H)

max
φ

L2(φ) = β log pφ,θ(y |H)

We implement these together with a gradient re-
versal layer (Ganin & Lempitsky, 2015). As il-
lustrated in Figure 1b, during back-propagation,
we first pass gradients through the hypothesis-only
classifier gφ and then reverse the gradients going
to the hypothesis encoder gH,θ (potentially scaling
them by β).5

3.2 Method 2: Negative Sampling

As an alternative to the hypothesis-only classifier,
our second method attempts to remove annotation
artifacts from the representations by sampling al-
ternative premises. Consider instead writing the

5This approach may also be seen as adversarial training
with respect to the hypothesis, akin to domain-adversarial
neural networks (Ganin et al., 2016). However, our meth-
ods encourage robustness to latent hypothesis biases, without
requiring a domain label.
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normalization term above as,

− log p(y |H) = − log
∑
P ′

p(P ′ |H)p(y |P ′, H)

= − logEP ′p(y |P ′, H)

≥ −EP ′ log p(y |P ′, H),

where the expectation is uniform and the last step
is from Jensen’s inequality.6 As in Method 1, we
define a separate pφ,θ(y |P ′, H) which shares the
embedding layers from θ, fP,θ and fH,θ. However,
as we are attempting to unlearn hypothesis bias,
we block the gradients and do not let it update the
premise encoder fP,θ.7 The full setting is shown
in Figure 1c.

To approximate the expectation, we use uniform
samples P ′ (from other training examples) to re-
place the premise in a (P , H)-pair, while keep-
ing the label y. We also maximize pθ,φ(y |P ′, H)
to learn the artifacts in the hypotheses. We use
α ∈ [0, 1] to control the fraction of randomly sam-
pled P ’s (so the total number of examples remains
the same). As before, we implement this using
gradient reversal scaled by β.

max
θ
L1(θ) = (1− α) log pθ(y |P,H)

− α log pθ,φ(y |P ′, H)

max
φ

L2(φ) = β log pθ,φ(y |P ′, H)

Finally, we share the classifier weights between
pθ(y |P,H) and pφ,θ(y |P ′, H). In a sense this is
counter-intuitive, since pθ is being trained to un-
learn bias, while pφ,θ is being trained to learn it.
However, if the models are trained separately, they
may learn to co-adapt with each other (Elazar &
Goldberg, 2018). If pφ,θ is not trained well, we
might be fooled to think that the representation
does not contain any biases, while in fact they are
still hidden in the representation. For some evi-
dence that this indeed happens when the models
are trained separately, see Belinkov et al. (2019).8

6There are more developed and principled approaches
in language modeling for approximating this partition func-
tion without having to make this assumption. These in-
clude importance sampling (Bengio & Senecal, 2003), noise-
contrastive estimation (Gutmann & Hyvärinen, 2010), and
sublinear partition estimation (Rastogi & Van Durme, 2015).
These are more difficult to apply in the setting of sampling
full sentences from an unknown set. We hope to explore
methods for applying them in future work.

7A reviewer asked about gradient blocking. Our motiva-
tion was that, for a random premise, we do not have reliable
information to update its encoder. However, future work can
explore different configurations of gradient blocking.

8 A similar situation arises in neural cryptography (Abadi

4 Experimental Setup

To evaluate how well our methods can overcome
hypothesis-only biases, we test our methods on a
synthetic dataset as well as on a wide range of ex-
isting NLI datasets. The scenario we aim to ad-
dress is when training on a source dataset with bi-
ases and evaluating on a target dataset with differ-
ent or no biases. We first describe the data and
experimental setup before discussing the results.

Synthetic Data We create a synthetic dataset
based on the motivating example in Section 2,
where P entails H if and only if their first let-
ters are the same. The training and test sets have
1K examples each, uniformly distributed among
the possible entailment relations. In the test set
(dataset A), each premise or hypothesis is a sin-
gle symbol: P,H ∈ {a, b}, where P entails H iff
P = H . In the training set (dataset B), a letter c
is appended to the hypothesis side in the TRUE ex-
amples, but not in the FALSE examples. In order to
transfer well to the test set, a model that is trained
on this training set needs to learn the underlying
relationship—that P entails H if and only if their
first letter is identical—rather than relying on the
presence of c in the hypothesis side.

Common NLI datasets Moving to existing NLI
datasets, we train models on the Stanford Natural
Language Inference dataset (SNLI; Bowman et al.,
2015), since it is known to contain significant an-
notation artifacts. We evaluate the robustness of
our methods on other, target datasets.

As target datasets, we use the 10 datasets inves-
tigated by Poliak et al. (2018b) in their hypothesis-
only study, plus two test sets: GLUE’s diagnos-
tic test set, which was carefully constructed to
not contain hypothesis-biases (Wang et al., 2018),
and SNLI-hard, a subset of the SNLI test set
that is thought to have fewer biases (Gururangan
et al., 2018). The target datasets include human-
judged datasets that used automatic methods to
pair premises and hypotheses, and then relied on
humans to label the pairs: SCITAIL (Khot et al.,
2018), ADD-ONE-RTE (Pavlick & Callison-
Burch, 2016), Johns Hopkins Ordinal Common-

& Andersen, 2016), where an encryptor Alice and a decryp-
tor Bob communicate while an adversary Eve tries to eaves-
drop on their communication. Alice and Bob are analogous to
the hypothesis embedding and pθ , while Eve is analogous to
pφ,θ . In their asymmetric encryption experiments, Abadi &
Andersen observed seemingly secret communication, which
on closer look the adversary was able to eavesdrop on.
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α

β 0.1 0.25 0.5 1 2.5 5

0.1 50 50 50 50 50 50
0.5 50 50 50 50 50 50
1 50 50 50 50 50 50
1.5 50 50 50 50 50 100
2 50 50 50 50 100 100
2.5 50 50 100 75 100 100
3 50 100 100 100 100 100
3.5 100 100 100 100 100 100
4 100 100 100 100 100 100
5 100 100 100 100 100 100
10 100 100 100 100 100 100
20 100 100 100 100 100 100

(a) Method 1

α

β 0.1 0.25 0.5 0.75 1

0.1 50 50 50 50 50
0.5 50 50 50 50 50
1 50 50 50 50 50
1.5 50 50 50 50 50
2 50 50 50 50 50
2.5 50 50 50 50 50
3 50 50 100 50 50
3.5 50 50 100 50 50
4 50 100 100 50 50
5 50 50 100 100 50∗

10 75 100 100 100 50∗

20 100 100 100 50∗ 50∗

(b) Method 2

Table 1: Accuracies on the synthetic dataset, when training on the biased training set and evaluating on the unbiased
test set. Darker boxes represent higher accuracies. ∗ indicates failure to learn the biased training set; all other
configurations learned the training set perfectly.

sense Inference (JOCI; Zhang et al., 2017),
Multiple Premise Entailment (MPE; Lai et al.,
2017),and Sentences Involving Compositional
Knowledge (SICK; Marelli et al., 2014). The tar-
get datasets also include datasets recast by White
et al. (2017) to evaluate different semantic phe-
nomena: FrameNet+ (FN+; Pavlick et al., 2015),
Definite Pronoun Resolution (DPR; Rahman &
Ng, 2012), and Semantic Proto-Roles (SPR;
Reisinger et al., 2015).9 As many of these datasets
have different label spaces than SNLI, we define
a mapping (Appendix A.1) from our models’ pre-
dictions to each target dataset’s labels. Finally, we
also test on the Multi-genre NLI dataset (MNLI;
Williams et al., 2018), a successor to SNLI.10

Baseline & Implementation Details We use
InferSent (Conneau et al., 2017) as our base-
line model because it has been shown to work well
on popular NLI datasets and is representative of
many NLI models. We use separate BiLSTM en-
coders to learn vector representations of P and
H .11 The vector representations are combined fol-
lowing Mou et al. (2016),12 and passed to an MLP
classifier with one hidden layer. Our proposed

9Detailed descriptions of these datasets can be found in
Poliak et al. (2018b).

10We leave additional NLI datasets, such as the Diverse
NLI Collection (Poliak et al., 2018a), for future work.

11Many NLI models encode P and H sepa-
rately (Rocktäschel et al., 2016; Mou et al., 2016; Liu
et al., 2016; Cheng et al., 2016; Chen et al., 2017), al-
though some share information between the encoders via
attention (Parikh et al., 2016; Duan et al., 2018).

12Specifically, representations are concatenated, sub-
tracted, and multiplied element-wise.

methods for mitigating biases use the same tech-
nique for representing and combining sentences.
Additional implementation details are provided in
Appendix A.2.

For both methods, we sweep hyper-parameters
α, β over {0.05, 0.1, 0.2, 0.4, 0.8, 1.0}. For each
target dataset, we choose the best-performing
model on its development set and report results on
the test set.13

5 Results

5.1 Synthetic Experiments

To examine how well our methods work in a con-
trolled setup, we train on the biased dataset (B),
but evaluate on the unbiased test set (A). As ex-
pected, without a method to remove hypothesis-
only biases, the baseline fails to generalize to the
test set. Examining its predictions, we found that
the baseline model learned to rely on the pres-
ence/absence of the bias term c, always predicting
TRUE/FALSE respectively.

Table 1 shows the results of our two proposed
methods. As we increase the hyper-parameters
α and β, our methods initially behave like the
baseline, learning the training set but failing on
the test set. However, with strong enough hyper-
parameters (moving towards the bottom in the
tables), they perform perfectly on both the bi-
ased training set and the unbiased test set. For
Method 1, stronger hyper-parameters work better.

13For MNLI, since the test sets are not available, we tune
on the matched dev set and evaluate on the mismatched dev
set, or vice versa. For GLUE, we tune on MNLI matched.
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Test On Target Dataset Test On SNLI

Target Test Dataset Baseline ∆ Method 1 ∆ Method 2 ∆ Method 1 ∆ Method 2

SCITAIL 58.14 -0.47 — -7.06 — -0.18 — -9.06 —
ADD-ONE-RTE 66.15 0.00 — 17.31 — -2.29 — -49.63 —
JOCI 41.50 0.24 — -1.87 — -0.44 — -5.92 —
MPE 57.65 0.45 — -5.30 — -0.57 — -0.54 —
DPR 49.86 1.10 — -0.45 — -0.73 — -7.81 —
MNLI matched 45.86 1.38 — -2.10 — -1.25 — -8.93 —
FN+ 50.87 1.61 — 6.16 — -1.94 — -0.44 —
MNLI mismatched 47.57 1.67 — -3.91 — -1.25 — -8.93 —
SICK 25.64 1.80 — 31.11 — -0.57 — -8.93 —
GLUE 38.50 1.99 — 4.71 — -1.25 — -8.93 —
SPR 52.48 6.51 — 12.94 — -1.76 — -14.01 —

SNLI-hard 68.02 -1.75 — -12.42 —

Table 2: Accuracy results of transferring representations to new datasets. In all cases the models are trained on
SNLI. Left: baseline results on target test sets and differences between the proposed methods and the baseline.
Right: test results on SNLI with the models that performed best on each target dataset’s dev set. ∆ are absolute
differences between the method and the baseline on each target test set (left) or between the method and the
baseline performance (84.22) on SNLI test (right). Black rectangles show relative changes in each column.

Method 2, in particular, breaks down with too
many random samples (increasing α), as expected.
We also found that Method 1 did not require as
strong β as Method 2. From the synthetic experi-
ments, it seems that Method 1 learns to ignore the
bias c and learn the desired relationship between P
and H across many configurations, while Method
2 requires much stronger β.

5.2 Results on existing NLI datasets

Table 2 (left block) reports the results of our
proposed methods compared to the baseline in
application to the NLI datasets. The method
using the hypothesis-only classifier to remove
hypothesis-only biases from the model (Method
1) outperforms the baseline in 9 out of 12 target
datasets (∆ > 0), though most improvements are
small. The training method using negative sam-
pling (Method 2) only outperforms the baseline in
5 datasets, 4 of which are cases where the other
method also outperformed the baseline. These
gains are much larger than those of Method 1.

We also report results of the proposed meth-
ods on the SNLI test set (right block). As our re-
sults improve on the target datasets, we note that
Method 1’s performance on SNLI does not drasti-
cally decrease (small ∆), even when the improve-
ment on the target dataset is large (for example, in
SPR). For this method, the performance on SNLI
drops by just an average of 1.11 (0.65 STDV). For
Method 2, there is a large decrease on SNLI as re-
sults drop by an average of 11.19 (12.71 STDV).
For these models, when we see large improvement

on a target dataset, we often see a large drop on
SNLI. For example, on ADD-ONE-RTE, Method
2 outperforms the baseline by roughly 17% but
performs almost 50% lower on SNLI. Based on
this, as well as the results on the synthetic dataset,
Method 2 seems to be much more unstable and
highly dependent on the right hyper-parameters.

6 Analysis

Our results demonstrate that our approaches may
be robust to many datasets with different types
of bias. We next analyze our results and explore
modifications to the experimental setup that may
improve model transferability across NLI datasets.

6.1 Interplay with known biases
A priori, we expect our methods to provide
the most benefit when a target dataset has no
hypothesis-only biases or such biases that differ
from ones in the training data. Previous work
estimated the amount of bias in NLI datasets by
comparing the performance of a hypothesis-only
classifier with the majority baseline (Poliak et al.,
2018b). If the classifier outperforms the baseline,
the dataset is said to have hypothesis-only biases.
We follow a similar idea for estimating how sim-
ilar the biases in a target dataset are to those in
the source dataset. We compare the performance
of a hypothesis-only classifier trained on SNLI
and evaluated on each target dataset, to a majority
baseline of the most frequent class in each target
dataset’s training set (Maj). We also compare to
a hypothesis-only classifier trained and tested on
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Figure 2: Accuracies of majority and hypothesis-only
baselines on each dataset (x-axis). The datasets are
generally ordered by increasing difference between a
hypothesis-only model trained on the target dataset
(green) compared to trained on SNLI (yellow).

each target dataset.14

Figure 2 shows the results. When the
hypothesis-only model trained on SNLI is tested
on the target datasets, the model performs be-
low Maj (except for MNLI), indicating that these
target datasets contain different biases than those
in SNLI. The largest difference is on SPR: a
hypothesis-only model trained on SNLI performs
over 50% worse than one trained on SPR. Indeed,
our methods lead to large improvements on SPR
(Table 2), indicating that they are especially help-
ful when the target dataset contains different bi-
ases. On MNLI, this hypothesis-only model per-
forms 10% above Maj, and roughly 20% worse
compared to when trained on MNLI, suggesting
that MNLI and SNLI have similar biases. This
may explain why our methods only slightly out-
perform the baseline on MNLI (Table 2).

The hypothesis-only model trained on each tar-
get dataset did not outperform Maj on DPR, ADD-
ONE-RTE, SICK, and MPE, suggesting that these
datasets do not have noticeable hypothesis-only
biases. Here, as expected, we observe improve-
ments when our methods are tested on these
datasets, to varying degrees (from 0.45 on MPE
to 31.11 on SICK). We also see improvements on
datasets with biases (high performance of train-
ing on each dataset compared to the correspond-
ing majority baseline), most noticeably SPR. The
only exception seems to be SCITAIL, where we
do not improve despite it having different biases
than SNLI. However, when we strengthen α and β
(below), Method 1 outperforms the baseline.

14A reviewer noted that this method may miss similar bias
“types” that are achieved through different lexical items. We
note that our use of pre-trained word embeddings might mit-
igate this concern.

Dataset Base Method 1 ∆

JOCI 41.50 39.29 -2.21 —
SNLI 84.22 82.40 -1.82 —
DPR 49.86 49.41 -0.45 —
MNLI matched 45.86 46.12 0.26 —
MNLI mismatched 47.57 48.19 0.62 —
MPE 57.65 58.60 0.95 —
SCITAIL 58.14 60.82 2.68 —
ADD-ONE-RTE 66.15 68.99 2.84 —
GLUE 38.50 41.58 3.08 —
FN+ 50.87 56.31 5.44 —
SPR 52.48 58.68 6.20 —
SICK 25.64 36.59 10.95 —

SNLI-hard 68.02 63.81 -4.21 —

Table 3: Results with stronger hyper-parameters for
Method 1 vs. the baseline. ∆’s are absolute differences.

Finally, both methods obtain improved results
on the GLUE diagnostic set, designed to be bias-
free. We do not see improvements on SNLI-hard,
indicating it may still have biases – a possibility
acknowledged by Gururangan et al. (2018).

6.2 Stronger hyper-parameters

In the synthetic experiment, we found that increas-
ing α and β improves the models’ ability to gener-
alize to the unbiased dataset. Does the same apply
to natural NLI datasets? We expect that strength-
ening the auxiliary losses (L2 in our methods) dur-
ing training will hurt performance on the original
data (where biases are useful), but improve on the
target data, which may have different or no biases
(Figure 2). To test this, we increase the hyper-
parameter values during training; we consider
the range {1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}.15

While there are other ways to strengthen our meth-
ods, e.g., increasing the number or size of hidden
layers (Elazar & Goldberg, 2018), we are inter-
ested in the effect of α and β as they control how
much bias is subtracted from our baseline model.

Table 3 shows the results of Method 1 with
stronger hyper-parameters on the existing NLI
datasets. As expected, performance on SNLI test
sets (SNLI and SNLI-hard in Table 3) decreases
more, but many of the other datasets benefit from
stronger hyper-parameters

(compared with Table 2). We see the largest im-
provement on SICK, achieving over 10% increase
compared to the 1.8% gain in Table 2. As for
Method 2, we found large drops in quality even

15The synthetic setup required very strong hyper-
parameters, possibly due to the clear-cut nature of the task.
In the natural NLI setting, moderately strong values sufficed.
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Figure 3: Effect of fine-tuning with the baseline and the proposed methods on MNLI (left) and SICK (right).

in our basic configurations (Appendix A.3), so we
do not increase the hyper-parameters further. This
should not be too surprising, adding too many ran-
dom premises will lead to a model’s degradation.

6.3 Fine-tuning on target datasets

Our main goal is to determine whether our meth-
ods help a model perform well across multiple
datasets by ignoring dataset-specific artifacts. In
turn, we did not update the models’ parameters on
other datasets. But, what if we are given different
amounts of training data for a new NLI dataset?

To determine if our approach is still helpful,
we updated four models on increasing sizes of
training data from two target datasets (MNLI and
SICK). All three training approaches—the base-
line, Method 1, and Method 2—are used to pre-
train a model on SNLI and fine-tune on the target
dataset. The fourth model is the baseline trained
only on the target dataset. Both MNLI and SICK
have the same label spaces as SNLI, allowing us to
hold that variable constant. We use SICK because
our methods resulted in good gains on it (Table 2).
MNLI’s large training set allows us to consider a
wide range of training set sizes.16

Figure 3 shows the results on the dev sets.
In MNLI, pre-training is very helpful when fine-
tuning on a small amount of new training data, al-
though there is little to no gain from pre-training
with either of our methods compared to the base-
line. This is expected, as we saw relatively small
gains with the proposed methods on MNLI, and
can be explained by SNLI and MNLI having simi-
lar biases. In SICK, pre-training with either of our

16We hold out 10K examples from the training set for dev
as gold labels for the MNLI test set are not publicly available.
We evaluate on MNLI’s matched dev set to assure consistent
domains when fine-tuning.

methods is better in most data regimes, especially
with very small amounts of target training data.17

7 Related Work

Biases and artifacts in NLU datasets Many
natural language undersrtanding (NLU) datasets
contain annotation artifacts. Early work on NLI,
also known as recognizing textual entailment
(RTE), found biases that allowed models to per-
form relatively well by focusing on syntactic clues
alone (Snow et al., 2006; Vanderwende & Dolan,
2006). Recent work also found artifacts in new
NLI datasets (Tsuchiya, 2018; Gururangan et al.,
2018; Poliak et al., 2018b).

Other NLU datasets also exhibit biases. In ROC
Stories (Mostafazadeh et al., 2016), a story cloze
dataset, Schwartz et al. (2017b) obtained a high
performance by only considering the candidate
endings, without even looking at the story con-
text. In this case, stylistic features of the can-
didate endings alone, such as the length or cer-
tain words, were strong indicators of the cor-
rect ending (Schwartz et al., 2017a; Cai et al.,
2017). A similar phenomenon was observed in
reading comprehension, where systems performed
non-trivially well by using only the final sen-
tence in the passage or ignoring the passage alto-
gether (Kaushik & Lipton, 2018). Finally, multi-
ple studies found non-trivial performance in visual
question answering (VQA) by using only the ques-
tion, without access to the image, due to question
biases (Zhang et al., 2016; Kafle & Kanan, 2016,
2017; Goyal et al., 2017; Agrawal et al., 2017).

17Note that SICK is a small dataset (10K examples), which
explains why the model without pre-training does not benefit
from more data, barely surpassing the majority baseline.
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Transferability across NLI datasets It has
been known that many NLI models do not transfer
across NLI datasets. Chen Zhang’s thesis (Zhang,
2010) focused on this phenomena as he demon-
strated that “techniques developed for textual en-
tailment“ datasets, e.g., RTE-3, do not transfer
well to other domains, specifically conversational
entailment (Zhang & Chai, 2009, 2010). Bowman
et al. (2015) and Williams et al. (2018) demon-
strated (specifically in their respective Tables 7
and 4) how models trained on SNLI and MNLI
may not transfer well across other NLI datasets
like SICK. Talman & Chatzikyriakidis (2018) re-
cently reported similar findings using many ad-
vanced deep-learning models.

Improving model robustness Neural networks
are sensitive to adversarial examples, primarily in
machine vision, but also in NLP (Jia & Liang,
2017; Belinkov & Bisk, 2018; Ebrahimi et al.,
2018; Heigold et al., 2018; Mudrakarta et al.,
2018; Ribeiro et al., 2018; Belinkov & Glass,
2019). A common approach to improving robust-
ness is to include adversarial examples in train-
ing (Szegedy et al., 2014; Goodfellow et al., 2015).
However, this may not generalize well to new
types of examples (Xiaoyong Yuan, 2017; Tramr
et al., 2018).

Domain-adversarial neural networks aim to in-
crease robustness to domain change, by learning
to be oblivious to the domain using gradient re-
versals (Ganin et al., 2016). Our methods rely
similarly on gradient reversals when encouraging
models to ignore dataset-specific artifacts. One
distinction is that domain-adversarial networks re-
quire knowledge of the domain at training time,
while our methods learn to ignore latent artifacts
and do not require direct supervision in the form
of a domain label.

Others have attempted to remove biases from
learned representations, e.g., gender biases in
word embeddings (Bolukbasi et al., 2016) or sen-
sitive information like sex and age in text represen-
tations (Li et al., 2018). However, removing such
attributes from text representations may be diffi-
cult (Elazar & Goldberg, 2018). In contrast to this
line of work, our final goal is not the removal of
such attributes per se; instead, we strive for more
robust representations that better transfer to other
datasets, similar to Li et al. (2018).

Recent work has applied adversarial learning
to NLI. Minervini & Riedel (2018) generate ad-

versarial examples that do not conform to logi-
cal rules and regularize models based on those ex-
amples. Similarly, Kang et al. (2018) incorporate
external linguistic resources and use a GAN-style
framework to adversarially train robust NLI mod-
els. In contrast, we do not use external resources
and we are interested in mitigating hypothesis-
only biases. Finally, a similar approach has re-
cently been used to mitigate biases in VQA (Ra-
makrishnan et al., 2018; Grand & Belinkov, 2019).

8 Conclusion

Biases in annotations are a major source of con-
cern for the quality of NLI datasets and systems.
We presented a solution for combating annotation
biases by proposing two training methods to pre-
dict the probability of a premise given an entail-
ment label and a hypothesis. We demonstrated
that this discourages the hypothesis encoder from
learning the biases to instead obtain a less bi-
ased representation. When empirically evaluating
our approaches, we found that in a synthetic set-
ting, as well as on a wide-range of existing NLI
datasets, our methods perform better than the tra-
ditional training method to predict a label given
a premise-hypothesis pair. Furthermore, we per-
formed several analyses into the interplay of our
methods with known biases in NLI datasets, the
effects of stronger bias removal, and the possibil-
ity of fine-tuning on the target datasets.

Our methodology can be extended to handle bi-
ases in other tasks where one is concerned with
finding relationships between two objects, such as
visual question answering, story cloze completion,
and reading comprehension. We hope to encour-
age such investigation in the broader community.
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A Appendix

A.1 Mapping labels
Each premise-hypothesis pair in SNLI is labeled
as ENTAILMENT, NEUTRAL, or CONTRADIC-
TION. MNLI, SICK, and MPE use the same label
space. Examples in JOCI are labeled on a 5-way
ordinal scale. We follow Poliak et al. (2018b) by
converting it “into 3-way NLI tags where 1 maps
to CONTRADICTION, 2-4 maps to NEUTRAL, and
5 maps to ENTAILMENT.” Since examples in SCI-
TAIL are labeled as ENTAILMENT or NEUTRAL,
when evaluating on SCITAIL, we convert the
model’s CONTRADICTION to NEUTRAL. ADD-
ONE-RTE and the recast datasets also model NLI
as a binary prediction task. However, their label
sets are ENTAILED and NOT-ENTAILED. In these
cases, when the models predict ENTAILMENT, we
map the label to ENTAILED, and when the models
predict NEUTRAL or CONTRADICTION, we map
the label to NOT-ENTAILED.

A.2 Implementation details
For our experiments on the synthetic dataset,
the characters are embedded with 10-dimensional
vectors. Input strings are represented as a sum of
character embeddings, and the premise-hypothesis
pair is represented by a concatenation of these
embeddings. The classifiers are single-layer
MLPs of size 20 dimensions. We train these
models with SGD until convergence. For the
traditional NLI datasets, we use pre-computed
300-dimensional GloVe embeddings (Penning-
ton et al., 2014).18 The sentence representa-
tions learned by the BiLSTM encoders and the
MLP classifier’s hidden layer have a dimension-
ality of 2048 and 512 respectively. We follow
InferSent’s training regime, using SGD with
an initial learning rate of 0.1 and optional early
stopping. See Conneau et al. (2017) for details.

A.3 Hyper-parameter sweeps
Here we provide 10-fold cross-validation results
on a subset of the SNLI training data (50K
sentences) with different settings of our hyper-
parameters. Figure 4b shows the dev set results
with different configurations of Method 2. No-
tice that performance degrades quickly when we
increase the fraction of random premises (large α).
In contrast, the results with Method 1 (Figure 4a)
are more stable.

18Specifically, glove.840B.300d.zip.

(a) Method 1

(b) Method 2

Figure 4: Cross-validation results.


