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Abstract

Modern question answering systems have
been touted as approaching human perfor-
mance. However, existing question an-
swering datasets are imperfect tests. Ques-
tions are written with humans in mind, not
computers, and often do not properly ex-
pose model limitations. To address this,
we develop an adversarial writing setting,
where humans interact with trained mod-
els and try to break them. This annota-
tion process yields a challenge set, which
despite being easy for trivia players to
answer, systematically stumps automated
question answering systems. Diagnosing
model errors on the evaluation data pro-
vides actionable insights to explore in de-
veloping robust and generalizable question
answering systems.

1 Introduction

Proponents of modern machine learning systems
have claimed human parity on difficult tasks such
as question answering.1 Datasets such as SQuAD
and TriviaQA (Rajpurkar et al., 2016; Joshi et al.,
2017) have certainly advanced the state of the art,
but are they providing the right examples to mea-
sure how well machines can answer questions?

Many of the existing question answering
datasets are written and evaluated with humans
in mind, not computers. Though the way com-
puters solve NLP tasks is fundamentally different
than humans. They train on hundreds of thousands
of questions, rather than looking at small groups
of them in isolation. This allows models to pick
up on superficial patterns that may occur in data
crawled from the internet (Chen et al., 2016) or

1https://rajpurkar.github.io/
SQuAD-explorer/

from biases in the crowd-sourced annotation pro-
cess (Gururangan et al., 2018). Additionally, be-
cause existing test sets do not provide specific di-
agnostic information for improving models, it can
be difficult to get proper insight into a system’s ca-
pabilities or its limitations. Unfortunately, when
rigorous evaluations are not performed, strikingly
simple model limitations can be overlooked (Be-
linkov and Bisk, 2018; Ettinger et al., 2017; Jia
and Liang, 2017).

To address this lacuna, we ask trivia
enthusiasts—who write new questions for
scholastic and open circuit tournaments—to cre-
ate examples that specifically challenge Question
Answering (QA) systems. We develop a user in-
terface (Section 2) that allows question writers to
adversarially craft these questions. This interface
provides a model’s predictions and its evidence
from the training data to facilitate a model-driven
annotation process.

Humans find the resulting challenge questions
easier than regular questions (Section 3), but
strong QA models struggle (Section 4). Unlike
many existing QA test sets, our questions highlight
specific phenomena that humans can capture but
machines cannot (Section 5). We release our QA

challenge set to better evaluate models and sys-
tematically improve them.2

2 A Model-Driven Annotation Process

This section introduces our framework for tai-
loring questions to challenge computers, the sur-
rounding community of trivia enthusiasts that cre-
ate thousands of questions annually, and how we
expose QA algorithms to this community to help
them craft questions that challenge computers.

2www.qanta.org

https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
www.qanta.org
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The protagonist of this opera describes the fu-
ture day when her lover will arrive on a boat
in the aria “Un Bel Di” or “One Beautiful
Day.” The only baritone role in this opera is
the consul Sharpless who reads letters for the
protagonist, who has a maid named Suzuki.
That protagonist blindfolds her child Sorrow
before stabbing herself when her lover B.F.
Pinkerton returns with a wife. For 10 points,
name this Giacomo Puccini opera about an
American lieutenants affair with the Japanese
woman Cio-Cio San.
ANSWER: Madama Butterfly

Figure 1: An example Quiz Bowl question. The
question becomes progressively easier to answer
later on; thus, more knowledgeable players can an-
swer after hearing fewer clues.

2.1 The Quiz Bowl Community: Writers of
Questions

The “gold standard” of academic competitions be-
tween universities and high schools is Quiz Bowl.
Unlike other question answering formats such as
Jeopardy! or TriviaQA (Joshi et al., 2017), Quiz
Bowl questions are designed to be interrupted.
This allows more knowledgeable players to “buzz
in” before their opponent knows the answer. This
style of play requires questions to be structured
“pyramidally”: questions start with difficult clues
and get progressively easier (Figure 1).

However, like most existing QA datasets, Quiz
Bowl questions are written with humans in mind.
Unfortunately, the heuristics that question writers
use to select clues do not always apply to comput-
ers. For example, humans are unlikely to mem-
orize every song in every opera by a particular
composer. This, however, is trivial for a com-
puter. In particular, a simple baseline QA system
easily solves the example in Figure 1 from see-
ing the reference to “Un Bel Di”. Other questions
contain uniquely identifying “trigger words”. For
example, “Martensite” only appears in questions
on Steel. For these types of examples, a QA sys-
tem needs to understand no additional information
other than an if–then rule. Surprisingly, this is true
for many different answers: in these cases, QA de-
volves into trivial pattern matching. Consequently,
information retrieval systems are strong baselines
for this task, even capable of defeating top high

school and collegiate players. Well-tuned neural
based QA systems (Yamada et al., 2018) can give
small improvements over the baselines and have
even defeated teams of expert humans in live Quiz
Bowl events.

Although, other types of Quiz Bowl questions
are fiendishly difficult for computers. Many ques-
tions have complicated coreference patterns (Guha
et al., 2015), require reasoning across multiple
types of knowledge, or involve wordplay. Given
that these difficult types of question truly chal-
lenge models, how can we generate and analyze
more of them?

2.2 Adversarial Question Writing
One approach to evaluate models beyond a typical
test set is through adversarial examples (Szegedy
et al., 2013) and other types of intentionally dif-
ficult inputs. However, language data is hard
to modify (e.g., replacing word tokens) without
changing the meaning of the input. Past work
side-steps this difficulty by modifying examples
in a simple enough manner to preserve meaning
(Jia and Liang, 2017; Belinkov and Bisk, 2018).
Though it is hard to generate complex examples
that expose richer phenomena through automatic
means. Instead, we propose to use human adver-
saries in a process we call adversarial writing.

In this setting, question writers are tasked with
generating challenge questions that break exist-
ing QA systems but are still answerable by hu-
mans. To facilitate this breaking process, we ex-
pose model predictions and interpretation methods
to question writers through a user interface. This
allows writers to see what changes should be made
to confuse the system and visualize the resulting
effects. For example, our system highlights the re-
vealing “Un Bel Di” clue in bright red.

This results in a small, model-driven challenge
set that is explicitly designed to expose a model’s
limitations. While the regular held-out test set for
Quiz Bowl provides questions that are likely to
be asked in an actual tournament, these challenge
questions highlight rare and difficult QA phenom-
ena that models can’t handle.

2.3 User Interface
The interface (Figure 2) provides the top five
predictions (Guesses) from a simple non-neural
model, the baseline system from a NIPS 2017
competition that used Quiz Bowl as a shared
task (Boyd-Graber et al., 2018). This model uses
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Figure 2: The writer inputs a question (top right), the system provides guesses (left), and explains why
it’s making those guesses (bottom right). The writer can then adapt their question to “trick” the model.

an inverted index built using the shared task train-
ing data (which consists of Quiz Bowl questions
and Wikipedia pages).

We select an information retrieval model as it
enables us to extract meaningful reasoning behind
the model’s predictions. In particular, the Elastic-
search Highlight API (Gormley and Tong, 2015)
visually highlights words in the Evidence section
of the interface. This helps users understand which
words and phrases are present in the training data
and may be revealing the answer. Though the
users never see outputs from a neural system, the
questions they write are quite challenging for them
(Section 4).

2.4 Farmed from the Maddeningly Smart
Crowd

In contrast to crowd-sourced datasets, our data
comes from the fecund pool of thousands of
questions written annually for Quiz Bowl tour-
naments (Jennings, 2006). We connect with the
question writers of these tournaments, who find
the adversarial writing process useful to help write
high quality, original questions.

The current dataset (we intend to have twice-
yearly competitions to continually collect data)
consists of 651 questions made of 3219 sentences.
A few of the writers have indicated that they plan
to use their question submissions in an upcoming
tournament. We will release these questions after
those respective tournaments have completed.

3 Validating Written Questions

We next verify the validity of the challenge ques-
tions. We do not want to collect questions that are
a jumble of random characters or contain insuf-
ficient information to discern the answer. Thus,
we first automatically filter out invalid questions
based on length, the presence of vulgar statements,
or repeated submissions (including re-submissions
from the Quiz Bowl training or evaluation data).
Next, we manually verify all of the resulting ques-
tions appear legitimate and that no obviously in-
valid questions made it into the challenge set.

We further wish to investigate not only the va-
lidity, but also the difficulty of the challenge ques-
tions according to human Quiz Bowl players. To
do so, we play a portion of the submitted questions
in a live Quiz Bowl event, using intermediate and
expert players (current and former collegiate Quiz
Bowl players) as the human baseline. We sample
60 challenge questions from categories that match
typical tournament distributions. As a baseline,
we additionally select 60 unreleased high school
tournament questions (to ensure no player has seen
them before).

When answering in Quiz Bowl, a player must
interrupt the question with a buzz. The earlier that
a player buzzes, the less of a chance their oppo-
nent has to answer the question before them. To
capture this, we consider two metrics to evaluate
performance, the average buzz position (as a per-
centage of the question seen) and the correspond-
ing answer accuracy. We randomly shuffle the
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baseline and challenge questions, play them, and
record these two metrics. On average for the chal-
lenge set, humans buzz with 41.6% of the ques-
tion remaining and an accuracy of 89.7%. On the
baseline questions, humans buzz with 28.3% of
the question remaining and an accuracy of 84.2%.
The difference in accuracy between the two types
of questions is not significantly different (p = 0.16
using Fisher’s exact test), but the buzzing position
is significantly earlier for the challenge questions
(a two-sided t-test yields p = 0.0047). Humans
find the challenge questions easier on average than
the regular test examples (they buzz much earlier).
We expect human performance to be comparable
on the questions not played, as all questions went
through the same submission and post-processing
stages.

4 Models and Experiments

In this section, we evaluate numerous QA systems
on the challenge questions. We consider a diverse
set of models: ones based on recurrent networks,
feed-forward networks, and IR systems to prop-
erly explore the difficulty of the examples.

We consider two neural models: a recurrent
neural network (RNN) and Deep Averaging Net-
work (Iyyer et al., 2015, DAN). The two models
treat the problem as text classification and predict
which of the answer entities the question is about.
The RNN is a bidirectional GRU (Cho et al., 2014)
and the DAN uses fully connected layers with a
word vector average as input.

To train the systems, we collect the data used
at the 2017 NIPS Human-Computer Question An-
swering competition (Boyd-Graber et al., 2018).
The dataset consists of about 70,000 questions
with 13,500 answer options. We split the data into
validation and test sets to provide baseline evalu-
ations for the models. We also report results on
the baseline system (IR) shown to users during the
writing process. For evaluation, we report the ac-
curacy as a function of the question position (to
capture the incremental nature of the game). The
accuracy varies as the words are fed in (mostly im-
proving, but occasionally degrading).

The buzz position of all models significantly de-
grades on the challenge set. We compare the accu-
racy on the original test set (Test Questions) to the
challenge questions in Figure 3.

For both the challenge and original test data,
the questions begin with abstract clues that are

difficult to answer (accuracy at or below 10%).
However, during the crucial middle portions of
the questions (after revealing 25% to 75%), where
buzzes in Quiz Bowl matches most frequently oc-
cur, the accuracy on original test questions rises
significantly quicker than the challenge ones. For
both questions, the accuracy rises towards the end
as the “give-away” clues arrive. Despite users
never observing the output of a neural system,
the two neural models decreased more in absolute
accuracy than the IR system. The DAN model
had the largest absolute accuracy decrease (from
54.1% to 32.4% on the full question), likely be-
cause a vector average isn’t capable of capturing
the difficult wording of the challenge questions.

The human results are displayed on the left of
Figure 3 and show a different trend. For both ques-
tion types, human accuracy rises very quickly after
about 50% of the question has been seen. We sus-
pect this occurs because the “give-aways”, which
often contain common sense or simple knowledge
clues, are easy for humans but quite difficult for
computers. The reverse is true for the early clues.
They contain quotes and entities that models can
retrieve but humans struggle to remember.

5 Challenge Set Reveals Model
Limitations

In this section, we conduct an analysis of the chal-
lenge questions to better understand the source
of their difficulty. We harvest recurring pat-
terns using the user edit logs and corresponding
model predictions, grouping the questions into
linguistically-motivated clusters (Table 1).

These groups provide an informative analysis of
model errors on a diverse set of phenomena. In our
dataset, we additionally provide the most similar
training questions for each challenge question.

A portion of the examples contain clues that
are unseen during training time. Many of these
clues are quite interesting, for example, the com-
mon knowledge clue “this man is on the One Dol-
lar Bill”. However, because we experiment with
systems that are not able to capture open-domain
information, we do not investigate these examples
further as they trivially break systems.

5.1 Understanding Changes in Language

The first categories of challenge questions contain
previously seen clues that have been written in a
misleading manner. Table 1 shows snippets of ex-
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Figure 3: Both types of questions (challenge questions and original test set questions) begin with abstract
clues the models are unable to capture, but the challenge questions are significantly harder during the
crucial middle portions (0.25 to 0.75) of the question. The human results (displayed on the left of the
figure) show their performance on a sample of the challenge questions and a separate test set.

emplar challenge questions for each category.

Paraphrases A common adversarial writing
strategy is to paraphrase clues to remove exact n-
gram matches from the training data. This renders
an IR system useless but also hurts neural models.

Entity Type Distractors One key component
for QA is determining the answer type that is de-
sired from the question. Writers often take advan-
tage of this by providing clues that lead the system
into selecting a wrong answer type. For example,
in the second question of Table 1, the “lead in” im-
plies the answer may be an actor. This triggers the
model to answer Don Cheadle despite previously
seeing the Bill Clinton “Saxophone” clue.

5.2 Composing Existing Knowledge
The other categories of challenge questions re-
quire composing knowledge from multiple exist-
ing clues. Table 2 shows snippets of exemplar
challenge questions for each category.

Triangulation In these questions, entities that
have a first order relationship to the correct answer
are given. The system must then triangulate the
correct answer by “filling in the blank”. For ex-
ample, in the first question of Table 2, the place
of death and the brother of the entity are given.
The training data contains a clue about the place
of death (The Battle of Thames) reading “though

stiff fighting came from their Native American al-
lies under Tecumseh, who died at this battle”. The
system must connect these two clues to answer.

Operator One extremely difficulty question
type requires applying a mathematical or logical
operator to the text. For example, the training data
contains a clue about the Battle of Thermopylae
reading “King Leonidas and 300 Spartans died at
the hands of the Persians” and the second question
in Table 2 requires one to add 150 to the number
of Spartans.

Multi-Step Reasoning The final type of ques-
tions requires a model to make multiple reason-
ing steps between entities. For example, in the
last question of Table 2, a model needs to make
a reasoning step first from the “I Have A Dream”
speech to the Lincoln Memorial and an additional
step to reach president Abraham Lincoln.

6 Related Work

Creating evaluation datasets to get fine-grained
analysis of particular linguistics features or model
attributes has been explored in past work. The
LAMBADA dataset tests a model’s ability to under-
stand the broad contexts present in book passages
(Paperno et al., 2016). Linzen et al. (2016) create
a dataset to evaluate if language models can learn
subject-verb number agreement. The most closely
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Set Question Answer Rationale
Training Name this sociological phenomenon, the taking of

one’s own life.
Suicide

Paraphrase

Challenge Name this self-inflicted method of death. Arthur Miller
Training Clinton played the saxophone on The Arsenio Hall

Show
Bill Clinton Entity Type

Distractor
Challenge He was edited to appear in the film “Contact”. . .

For ten points, name this American president who
played the saxophone on an appearance on the Ar-
senio Hall Show.

Don Cheadle

Table 1: Snippets from challenge questions show the difficulty in retrieving previously seen evidence.
Training questions indicate relevant snippets from the training data. Answer displays the RNN Reader’s
answer prediction (always correct on Training, always incorrect on Challenge).

Question Prediction Answer Rationale
This man, who died at the Battle of the
Thames, experienced a setback when
his brother Tenskwatawa’s influence
over their tribe began to fade

Battle of Tippecanoe Tecumseh Triangulation

This number is one hundred and fifty
more than the number of Spartans at
Thermopylae.

Battle of Thermopylae 450 Operator

A building dedicated to this man was
the site of the “I Have A Dream”
speech

Martin Luther King Jr. Abraham Lincoln Multi-Step
Reasoning

Table 2: Snippets from challenge questions show examples of composing existing evidence. Answer
displays the RNN Reader’s answer prediction. For these examples, connecting the training and challenge
clues is quite simple for humans but very difficult for models.

related work to ours is Ettinger et al. (2017) who
also consider using humans as adversaries. Our
work differs in that we use model interpretation
methods to facilitate breaking a specific system.

Other methods have found very simple input
modifications can break neural models. For ex-
ample, adding character level noise drastically re-
duces machine translation quality (Belinkov and
Bisk, 2018), while paraphrases can fool natural
language inference systems (Iyyer et al., 2018).
Jia and Liang (2017) placed distracting sentences
at the end of paragraphs and caused QA systems
to incorrectly pick up on the misleading informa-
tion. These types of input modifications can evalu-
ate one specific type of phenomenon and are com-
plementary to our approach.

7 Conclusion

It is difficult to automatically expose the limi-
tations of a machine learning system, especially
when that system reaches very high performance

metrics on a held-out evaluation set. To address
this, we have introduced a human driven evalua-
tion setting, where users try to break a trained sys-
tem. By facilitating this process with interpreta-
tion methods, users can understand what a model
is doing and how to create challenging examples
for it. An analysis of the resulting data can re-
veal unknown model limitations and provide in-
sight into improving a system.
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