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Abstract

While Recurrent Neural Networks
(RNNs) are famously known to be Turing
complete, this relies on infinite precision
in the states and unbounded computation
time. We consider the case of RNNs with
finite precision whose computation time
is linear in the input length. Under these
limitations, we show that different RNN
variants have different computational
power. In particular, we show that the
LSTM and the Elman-RNN with ReLU
activation are strictly stronger than the
RNN with a squashing activation and the
GRU. This is achieved because LSTMs
and ReLU-RNNs can easily implement
counting behavior. We show empirically
that the LSTM does indeed learn to
effectively use the counting mechanism.

1 Introduction

Recurrent Neural Network (RNNs) emerge as very
strong learners of sequential data. A famous re-
sult by Siegelmann and Sontag (1992; 1994), and
its extension in (Siegelmann, 1999), demonstrates
that an Elman-RNN (Elman, 1990) with a sigmoid
activation function, rational weights and infinite
precision states can simulate a Turing-machine in
real-time, making RNNs Turing-complete. Re-
cently, Chen et al (2017) extended the result to
the ReLU activation function. However, these
constructions (a) assume reading the entire in-
put into the RNN state and only then perform-
ing the computation, using unbounded time; and
(b) rely on having infinite precision in the net-
work states. As argued by Chen et al (2017),
this is not the model of RNN computation used in
NLP applications. Instead, RNNs are often used
by feeding an input sequence into the RNN one

item at a time, each immediately returning a state-
vector that corresponds to a prefix of the sequence
and which can be passed as input for a subse-
quent feed-forward prediction network operating
in constant time. The amount of tape used by a
Turing machine under this restriction is linear in
the input length, reducing its power to recogni-
tion of context-sensitive language. More impor-
tantly, computation is often performed on GPUs
with 32bit floating point computation, and there is
increasing evidence that competitive performance
can be achieved also for quantized networks with
4-bit weights or fixed-point arithmetics (Hubara
et al., 2016). The construction of (Siegelmann,
1999) implements pushing 0 into a binary stack by
the operation g ← g/4 + 1/4. This allows push-
ing roughly 15 zeros before reaching the limit of
the 32bit floating point precision. Finally, RNN
solutions that rely on carefully orchestrated math-
ematical constructions are unlikely to be found us-
ing backpropagation-based training.

In this work we restrict ourselves to input-
bound recurrent neural networks with finite-
precision states (IBFP-RNN), trained using back-
propagation. This class of networks is likely to co-
incide with the networks one can expect to obtain
when training RNNs for NLP applications. An
IBFP Elman-RNN is finite state. But what about
other RNN variants? In particular, we consider the
Elman RNN (SRNN) (Elman, 1990) with squash-
ing and with ReLU activations, the Long Short-
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) and the Gated Recurrent Unit (GRU)
(Cho et al., 2014; Chung et al., 2014).

The common wisdom is that the LSTM and
GRU introduce additional gating components that
handle the vanishing gradients problem of train-
ing SRNNs, thus stabilizing training and making it
more robust. The LSTM and GRU are often con-
sidered as almost equivalent variants of each other.
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(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations — c for LSTM and h for GRU — for networks trained on anbn and anbncn. The
LSTM has clearly learned to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.1

1Is the ability to perform unbounded counting relevant to
“real world” NLP tasks? In some cases it might be. For ex-
ample, processing linearized parse trees (Vinyals et al., 2015;
Choe and Charniak, 2016; Aharoni and Goldberg, 2017) re-
quires counting brackets and nesting levels. Indeed, previous
works that process linearized parse trees report using LSTMs

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht−1

and returns a state vector ht:

ht = R(xt, ht−1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let Σ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN
acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN
recognizes a language L⊆ Σ∗ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn ∈ L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),

and not GRUs for this purpose. Our work here suggests that
this may not be a coincidence.
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the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht−1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can
be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht−1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating
mechanism, taking the form:

zt = σ(W zxt + U zht−1 + bz) (4)

rt = σ(W rxt + U rht−1 + br) (5)

h̃t = tanh(W hxt + Uh(rt ◦ ht−1) + bh)(6)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t (7)

Where σ is the sigmoid function and ◦ is the
Hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = σ(W fxt + Ufht−1 + bf ) (8)

it = σ(W ixt + U iht−1 + bi) (9)

ot = σ(W oxt + Uoht−1 + bo) (10)

c̃t = tanh(W cxt + U cht−1 + bc) (11)

ct = ft ◦ ct−1 + it ◦ c̃t (12)

ht = ot ◦ g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 1,ot = 1, and ft = 0. This is easily
achieved by setting the matricesW andU to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computa-
tion is allowed, a 2-counter machine has Turing
power. However, for computation bound by in-
put length (real-time) there is a more interesting
hierarchy. In particular, real-time counting lan-
guages cut across the traditional Chomsky hierar-
chy: real-time k-counter machines can recognize
at least one context-free language (anbn), and at
least one context-sensitive one (anbncn). How-
ever, they cannot recognize the context free lan-
guage given by the grammar S → x|aSa|bSb
(palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,2 an SKCM is a finite-state automaton
extended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
with proofs provided in the supplementary mate-
rial.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht−1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the

2Formal definition is given in the supplementary material.
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counter’s value to 0.3

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht−1 + b)

ht[i] = tanh(

dx∑
j=1

Wijx[j]+

dh∑
j=1

Uijht−1[j]+b[i])

By properly setting U and W, one can get cer-
tain dimensions of h to update according to the
value of x, by ht[i] = tanh(ht−1[i] +wix+ b[i]).
However, this counting behavior is within a tanh
activation. Theoretically, this means unbounded
counting cannot be achieved without infinite pre-
cision. Practically, this makes the counting behav-
ior inherently unstable, and bounded to a relatively
narrow region. While the network could adapt to
set w to be small enough such that counting works
for the needed range seen in training without over-
flowing the tanh, attempting to count to larger n
will quickly leave this safe region and diverge.

IRNN Finite-precision IRNNs can perform un-
bounded counting conditioned on input symbols.
This requires representing each counter as two di-
mensions, and implementing INC as incrementing
one dimension, DEC as incrementing the other,
and COMP0 as comparing their difference to 0. In-
deed, Appendix A in (Chen et al., 2017) provides
concrete IRNNs for recognizing the languages
anbn and anbncn. This makes IBFP-RNN with

3Some further remarks on the LSTM: LSTM supports
both increment and decrement in a single dimension. The
counting dimensions in ct are exposed through a function
g. For both g(x) = x and g(x) = tanh(x), it is trivial
to do compare 0. Another operation of interest is compar-
ing two counters (for example, checking the difference be-
tween them). This cannot be reliably achieved with g(x) =
tanh(x), due to the non-linearity and saturation properties
of the tanh function, but is possible in the g(x) = x case.
LSTM can also easily set the value of a counter to 0 in one
step. The ability to set the counter to 0 gives slightly more
power for real-time recognition, as discussed by Fischer et al.
(1968).

Relation to known architectural variants: Adding peep-
hole connections (Gers and Schmidhuber, 2000) essentially
sets g(x) = x and allows comparing counters in a stable
way. Coupling the input and the forget gates (it = 1 − ft)
(Greff et al., 2017) removes the single-dimension unbounded
counting ability, as discussed for the GRU.

ReLU activation more powerful than IBFP-RNN
with a squashing activation. Practically, ReLU-
activated RNNs are known to be notoriously hard
to train because of the exploding gradient problem.

GRU Finite-precision GRUs cannot implement
unbounded counting on a given dimension. The
tanh in equation (6) combined with the interpola-
tion (tying zt and 1 − zt) in equation (7) restricts
the range of values in h to between -1 and 1, pre-
cluding unbounded counting with finite precision.
Practically, the GRU can learn to count up to some
bound m seen in training, but will not generalize
well beyond that.4 Moreover, simulating forms of
counting behavior in equation (7) require consis-
tently setting the gates zt, rt and the proposal h̃t
to precise, non-saturated values, making it much
harder to find and maintain stable solutions.

Summary We show that LSTM and IRNN
can implement unbounded counting in dedicated
counting dimensions, while the GRU and SRNN
cannot. This makes the LSTM and IRNN at least
as strong as SKCMs, and strictly stronger than the
SRNN and the GRU.5

5 Experimental Results

Can the LSTM indeed learn to behave as a k-
counter machine when trained using backpropaga-
tion? We show empirically that:

1. LSTMs can be trained to recognize anbn and
anbncn.

2. These LSTMs generalize to much higher n
than seen in the training set (though not in-
finitely so).

3. The trained LSTM learn to use the per-
dimension counting mechanism.

4. The GRU can also be trained to recognize
anbn and anbncn, but they do not have clear

4One such mechanism could be to divide a given dimen-
sion by k > 1 at each symbol encounter, by setting zt = 1/k

and h̃t = 0. Note that the inverse operation would not be
implementable, and counting down would have to be realized
with a second counter.

5One can argue that other counting mechanisms—
involving several dimensions—are also possible. Intuitively,
such mechanisms cannot be trained to perform unbounded
counting based on a finite sample as the model has no means
of generalizing the counting behavior to dimensions beyond
those seen in training. We discuss this more in depth in the
supplementary material, where we also prove that an SRNN
cannot represent a binary counter.
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counting dimensions, and they generalize to
much smaller n than the LSTMs, often fail-
ing to generalize correctly even for n within
their training domain.

5. Trained LSTM networks outperform trained
GRU networks on random test sets for the
languages anbn and anbncn.

Similar empirical observations regarding the
ability of the LSTM to learn to recognize anbn and
anbncn are described also in (Gers and Schmidhu-
ber, 2001).

We train 10-dimension, 1-layer LSTM and
GRU networks to recognize anbn and anbncn. For
anbn the training samples went up to n = 100 and
for anbncn up to n = 50.6

Results On anbn, the LSTM generalizes well up
to n = 256, after which it accumulates a devia-
tion making it reject anbn but recognize anbn+1

for a while, until the deviation grows.7 The GRU
does not capture the desired concept even within
its training domain: accepting anbn+1 for n > 38,
and also accepting anbn+2 for n > 97. It stops
accepting anbn for n > 198.

On anbncn the LSTM recognizes well until n =
100. It then starts accepting also anbn+1cn. At
n > 120 it stops accepting anbncn and switches
to accepting anbn+1cn, until at some point the de-
viation grows. The GRU accepts already a9b10c12,
and stops accepting anbncn for n > 63.

Figure 1a plots the activations of the 10 dimen-
sions of the anbn-LSTM for the input a1000b1000.
While the LSTM misclassifies this example, the
use of the counting mechanism is clear. Fig-
ure 1b plots the activation for the anbncn LSTM
on a100b100c100. Here, again, the two counting
dimensions are clearly identified—indicating the
LSTM learned the canonical 2-counter solution—
although the slightly-imprecise counting also
starts to show. In contrast, Figures 1c and 1d

6Implementation in DyNet, using the SGD Optimizer.
Positive examples are generated by sampling n in the desired
range. For negative examples we sample 2 or 3 n values in-
dependently, and ensuring at least one of them differs from
the others. We dedicate a portion of the examples as the dev
set, and train up to 100% dev set accuracy.

7These fluctuations occur as the networks do not fully sat-
urate their gates, meaning the LSTM implements an imper-
fect counter that accumulates small deviations during com-
putation, e.g.: increasing the counting dimension by 0.99 but
decreasing only by 0.98. Despite this, we see that the its so-
lution remains much more robust than that found by the GRU
— the LSTM has learned the essence of the counting based
solution, but its implementation is imprecise.

show the state values of the GRU-networks. The
GRU behavior is much less interpretable than the
LSTM. In the anbn case, some dimensions may be
performing counting within a bounded range, but
move to erratic behavior at around t = 1750 (the
network starts to misclassify on sequences much
shorter than that). The anbncn state dynamics are
even less interpretable.

Finally, we created 1000-sample test sets for
each of the languages. For anbn we used words
with the form an+ibn+j where n ∈ rand(0, 200)
and i, j ∈ rand(−2, 2), and for anbncn we use
words of the form an+ibn+jcn+k where n ∈
rand(0, 150) and i, j, k ∈ rand(−2, 2). The
LSTM’s accuracy was 100% and 98.6% on anbn

and anbncn respectively, as opposed to the GRU’s
87.0% and 86.9%, also respectively.

All of this empirically supports our result,
showing that IBFP-LSTMs can not only theoret-
ically implement “unbounded” counters, but also
learn to do so in practice (although not perfectly),
while IBFP-GRUs do not manage to learn proper
counting behavior, even when allowing floating
point computations.

6 Conclusions

We show that the IBFP-LSTM can model a real-
time SKCM, both in theory and in practice. This
makes it more powerful than the IBFP-SRNN
and the IBFP-GRU, which cannot implement un-
bounded counting and are hence restricted to rec-
ognizing regular languages. The IBFP-IRNN can
also perform input-dependent counting, and is
thus more powerful than the IBFP-SRNN.

We note that in addition to theoretical distinc-
tions between architectures, it is important to con-
sider also the practicality of different solutions:
how easy it is for a given architecture to discover
and maintain a stable behavior in practice. We
leave further exploration of this question for future
work.
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Birkhäuser Basel.

Hava T. Siegelmann. 1996. Recurrent neural networks
and finite automata. Computational Intelligence,
12:567–574.

Hava T. Siegelmann and Eduardo D. Sontag. 1992. On
the computational power of neural nets. In Pro-
ceedings of the Fifth Annual ACM Conference on
Computational Learning Theory, COLT 1992, Pitts-
burgh, PA, USA, July 27-29, 1992., pages 440–449.

Hava T. Siegelmann and Eduardo D. Sontag. 1994.
Analog computation via neural networks. Theor.
Comput. Sci., 131(2):331–360.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Proceedings of the
28th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’15, pages
2773–2781, Cambridge, MA, USA. MIT Press.

http://aclweb.org/anthology/P17-2021
http://aclweb.org/anthology/P17-2021
http://arxiv.org/abs/1711.05408
http://arxiv.org/abs/1711.05408
https://aclweb.org/anthology/D16-1257
https://aclweb.org/anthology/D16-1257
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1007/BF01694011
https://doi.org/10.1007/BF01694011
https://doi.org/10.1109/72.963769
https://doi.org/10.1109/72.963769
https://doi.org/10.1109/72.963769
https://doi.org/10.1109/IJCNN.2000.861302
https://doi.org/10.1109/IJCNN.2000.861302
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1109/TNNLS.2016.2582924
http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf
http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf
https://doi.org/10.1007/978-1-4612-0707-8
https://doi.org/10.1007/978-1-4612-0707-8
https://doi.org/10.1111/j.1467-8640.1996.tb00277.x
https://doi.org/10.1111/j.1467-8640.1996.tb00277.x
https://doi.org/10.1145/130385.130432
https://doi.org/10.1145/130385.130432
https://doi.org/10.1016/0304-3975(94)90178-3
http://dl.acm.org/citation.cfm?id=2969442.2969550
http://dl.acm.org/citation.cfm?id=2969442.2969550

