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Abstract

Intelligent systems require common sense,
but automatically extracting this knowl-
edge from text can be difficult. We
propose and assess methods for extract-
ing one type of commonsense knowledge,
object-property comparisons, from pre-
trained embeddings. In experiments, we
show that our approach exceeds the ac-
curacy of previous work but requires sub-
stantially less hand-annotated knowledge.
Further, we show that an active learning
approach that synthesizes common-sense
queries can boost accuracy.

1 Introduction

Automatically extracting common sense from text
is a long-standing challenge in natural language
processing (Schubert, 2002; Van Durme and Schu-
bert, 2008; Vanderwende, 2005). As argued by
Forbes and Yejin (2017), typical language use
may reflect common sense, but the commonsense
knowledge itself is not often explicitly stated, due
to reporting bias (Gordon and Van Durme, 2013).
Thus, additional human knowledge or annotated
training data are often used to help systems learn
common sense.

In this paper, we study methods for reducing
the amount of human input needed to learn com-
mon sense. Specifically, we focus on learning
relative comparisons of (one-dimensional) object
properties, such as the fact that a cantaloupe is
more round than a hammer. Methods for learn-
ing this kind of common sense have been devel-
oped previously (e.g. Forbes and Choi, 2017), but
the best-performing methods in that previous work
requires dozens of manually-annotated frames for
each comparison property, to connect the property
to how it is indirectly reflected in text—e.g., if

text asserts that “x carries y,” this implies that x
is probably larger than y.

Our architecture for relative comparisons fol-
lows the zero-shot learning paradigm (Palatucci
et al., 2009). It takes the form of a neural network
that compares a projection of embeddings for each
of two objects (e.g. “elephant” and “tiger”) to the
embeddings for the two poles of the target dimen-
sion of comparison (e.g., “big” and ”small” for the
size property). The projected object embeddings
are trained to be closer to the appropriate pole, us-
ing a small training set of hand-labeled compar-
isons. Our experiments reveal that our architec-
ture outperforms previous work, despite using less
annotated data. Further, because our architecture
takes the property (pole) labels as arguments, it
can extend to the zero-shot setting in which we
evaluate on properties not seen in training. We
find that in zero-shot, our approach outperforms
baselines and comes close to supervised results,
but providing labels for both poles of the relation
rather than just one is important. Finally, because
the number of properties we wish to learn is large,
we experiment with active learning (AL) over a
larger property space. We show that synthesizing
AL queries can be effective using an approach that
explicitly models which comparison questions are
nonsensical (e.g., is Batman taller than Democ-
racy?). We release our code base and a new com-
monsense data set to the research community.1

2 Problem Definition and Methods

We define the task of comparing object properties
in two different ways: a three-way classification
task, and a four-way classification task. In the
three-way classification task, we want to estimate
the following conditional probability:

P (L|O1,O2,Property),L ∈ { < , > , ≈ }.
1https://github.com/yangyiben/PCE

https://github.com/yangyiben/PCE
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For example, Prob(An elephant is larger than a
dog) can be expressed as P (L = > |O1 =
”elephant”,O2 = ”dog”,Property = ”size”).
The three-way classification task has been ex-
plored in previous work (Forbes and Choi, 2017)
and is only performed on triples where both ob-
jects have the property, so that the comparison is
meaningful. In applications, however, we may not
know in advance which comparisons are meaning-
ful. Thus, we also define a four-way classification
task to include ”not applicable” as the fourth label,
so that inference can be performed on any object-
property triples. In the four-way task, the system
is tasked with identifying the nonsensical compar-
isons. Formally, we want to estimate the following
conditional probability:

P (L|O1,O2,Property),L∈{ < , > , ≈ , N/A }.

2.1 Three-way Model
For each comparison property, we pick an adjec-
tive and its antonym to represent the { < , > }
labels. For example, for the property size, we pick
”big” and ”small”. The adjective ”similar” serves
as the label for ≈ for all properties. Under this
framework, a relative comparison question, for in-
stance, ”Is a dog bigger than an elephant?”, can
be formulated as a quintuple query to the model,
namely {dog, elephant, small, similar, big}. De-
noting the word embeddings for tokens in a quin-
tuple query as X , Y , R<, R≈, R>, our three-way
model is defined as follows:

P (L = s|Q) = softmax(Rs · σ((X ⊕ Y )W )),

for s ∈ {<, >, ≈}, where Q is an quintuple
query, σ(·) is an activation function and W is a
learnable weight matrix. The symbol ⊕ represents
concatenation. We refer to this method as PCE
(Property Comparison from Embeddings) for the
3-way task. We also experiment with generat-
ing label representations from just a single ad-
jective (property) embedding R<, namely R≈ =
σ(R<W2), R> = σ(R<W3). We refer to this
simpler method as PCE(one-pole).

We note that in both the three- and four-way
settings, the question ”A>B?” is equivalent to
”B<A?”. We leverage this fact at test time by
feeding our network a reversed object pair, and
taking the average of the aligned network outputs
before the softmax layer to reduce prediction vari-
ance. We refer to our model without this technique
as PCE(no reverse).

The key distinction of our method is that it
learns a projection from the object word embed-
ding space to the label embedding space. This
allows the model to leverage the property label
embeddings to perform zero-shot prediction on
properties not observed in training. For example,
from a training example ”dogs are smaller than
elephants”, the model will learn a projection that
puts ”dogs” relatively closer to ”small,” and far
from ”big” and ”similar.” Doing so may also re-
sult in projecting ”dog” to be closer to ”light” than
to ”heavy,” such that the model is able to predict
”dogs are lighter than elephants” despite never be-
ing trained on any weight comparison examples.

2.2 Four-way Model
Our four-way model is the same as our three-way
model, with an additional module to learn whether
the comparison is applicable. Keeping the other
output nodes unchanged, we add an additional
component into the softmax layer to output the
probability of ”N/A”:

hx = σ(XWa), hy = σ(YWa),

Ai = hi ·R> + hi ·R<,

P (L = N/A |Q) ∝ exp(Ax +Ay).

2.3 Synthesis for Active Learning
We propose a method to synthesize informative
queries to pose to annotators, a form of active
learning (Settles, 2009). We use the common
heuristic that an informative training example will
have a high uncertainty in the model’s predictive
distribution. We adopt the confidence measure
(Culotta and McCallum, 2005) to access the un-
certainty of a given example:

Uncertainty(x) = 1−max
y

P (y|x,Dtrain).

Good candidates for acquisition should have
high uncertainty measure, but we also want to
avoid querying outliers. As the vocabulary is fi-
nite, it is possible to evaluate the uncertainty mea-
sures for all possible inputs to synthesize the most
uncertain query. However, such a greedy policy is
expensive and prone to selecting outliers. Hence,
we adopt a sampling based synthesis strategy: at
each round, we generate one random object pair
per property, and query the one that achieves the
highest uncertainty measure.

A classical difficulty faced by synthesis ap-
proaches to active learning is that they may pro-
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duce unnatural queries that are difficult for a hu-
man to label (Baum and Lang, 1992). However,
our task formulation includes ”similar” and ”N/A”
classes that encompass many of the more difficult
or confusing comparisons, which we believe aids
the effectiveness of the synthesis approach.

3 Experiments

We now present our experimental results on both
the three-way and four-way tasks.

3.1 Data Sets

We test our three-way model on the VERB
PHYSICS data set from (Forbes and Choi, 2017).
As there are only 5 properties in VERB PHYSICS,
we also develop a new data set we call PROP-
ERTY COMMON SENSE. We select 32 com-
monsense properties to form our property set (e.g.,
value, roundness, deliciousness, intelligence, etc.).
We extract object nouns from the McRae Feature
Norms dataset (McRae et al., 2005) and add se-
lected named entities to form a object vocabulary
of 689 distinct objects. We randomly generate
3148 object-property triples, label them and re-
serve 45% of the data for the test set. We fur-
ther add 5 manually-selected applicable compar-
ison examples per property to our test set, in order
to make sure each property has some applicable
testing examples. To verify the labeling, we have a
second annotator redundantly label 200 examples
and find a Cohen’s Kappa of 0.64, which indicates
good annotator agreement (we analyze the source
of the disagreements in Section 4.1). The training
set is used for the passive learning and pool-based
active learning, and a human oracle provides la-
bels in the synthesis active learning setting.

3.2 Experimental Setup

We experiment with three types of embeddings:
GloVe, normalized 300-dimensional embeddings
trained on a corpus of 6B tokens (Penning-
ton et al., 2014) (the F&C method (Forbes and
Choi, 2017) uses the 100-dimensional version,
as it achieves the highest validation accuracy
for their methods); Word2vec, normalized 300-
dimensional embeddings trained on 100B tokens
(Mikolov et al., 2013); and LSTM, the normalized
1024-dimensional weight matrix from the softmax
layer of the Google 1B LSTM language model
(Jozefowicz et al., 2016).

For training PCE, we use an identity activa-
tion function and apply 50% dropout. We use the
Adam optimizer with default settings to train the
models for 800 epochs, minimizing cross entropy
loss. For zero-shot learning, we adopt a hold-one-
property-out scheme to test our models’ zero-shot
performance.

Finally, for active learning, we use Word2vec
embeddings. All the models are trained on 200
random training examples to warm up. We train
for 20 epochs after each label acquisition. To
smooth noise, we report the average of 20 differ-
ent runs of random (passive learning) and least
confident (LC) pool-based active learning (Cu-
lotta and McCallum, 2005) baselines. We report
the average of only 6 runs for an expected model
change (EMC) pool-based active learning (Cai
et al., 2013) baseline due to its high computational
cost, and of only 2 runs for our synthesis active
learning approach due to its high labeling cost.
The pool size is 1540 examples.

3.3 Results

In Table 1, we compare the performance of the
three-way PCE model against the existing state
of the art on the VERB PHYSICS data set. The
use of LSTM embeddings in PCE yields the best
accuracy for all properties. Across all embed-
ding choices, PCE performs as well or better
than F&C, despite the fact that PCE does not use
the annotated frames that F&C requires (approx-
imately 188 labels per property). Thus, our ap-
proach matches or exceeds the performance of
previous work using significantly less annotated
knowledge. The lower performance of ”no re-
verse” shows that the simple method of averaging
over the reversed object pair is effective.

Table 2 evaluates our models on properties not
seen in training (zero-shot learning). We compare
against a random baseline, and an Emb-Similarity
baseline that classifies based on the cosine simi-
larity of the object embeddings to the pole label
embeddings (i.e., without the projection layer in
PCE). PCE outperforms the baselines. Although
the one-pole method was shown to perform simi-
larly to the two-pole method for properties seen in
training (Table 1), we see that for zero-shot learn-
ing, using two poles is important.

In Table 3, we show that our four-way mod-
els with different embeddings beat both the ma-
jority and random baselines on the PROPERTY
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Model Development Test
size weight stren rigid speed overall size weight stren rigid speed overall

Majority 0.50 0.54 0.51 0.50 0.53 0.51 0.51 0.55 0.52 0.49 0.50 0.51
F&C 0.75 0.74 0.71 0.68 0.66 0.71 0.75 0.76 0.72 0.65 0.61 0.70

PCE(LSTM) 0.79 0.81 0.75 0.71 0.72 0.76 0.80 0.79 0.76 0.71 0.71 0.76
PCE(GloVe) 0.75 0.75 0.71 0.67 0.69 0.71 0.76 0.75 0.71 0.68 0.68 0.72

PCE(Word2vec) 0.76 0.76 0.73 0.70 0.68 0.73 0.76 0.76 0.73 0.68 0.66 0.72
PCE(one-pole) 0.80 0.81 0.77 0.65 0.72 0.75 0.79 0.79 0.77 0.65 0.72 0.75

PCE(no reverse) 0.72 0.74 0.71 0.67 0.67 0.70 0.73 0.75 0.72 0.65 0.68 0.71

Table 1: Accuracy on the VERB PHYSICS data set. PCE outperforms the F&C model from previous
work. PCE(one-pole) and PCE(no reverse) use LSTM embeddings.

Model Development Test
size weight stren rigid speed size weight stren rigid speed

Random 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
Emb-Similarity 0.43 0.55 0.51 0.43 0.35 0.37 0.53 0.48 0.43 0.35
PCE(one-pole) 0.73 0.71 0.67 0.53 0.34 0.74 0.72 0.68 0.53 0.32

PCE 0.76 0.72 0.71 0.62 0.60 0.74 0.73 0.70 0.62 0.58

Table 2: Accuracy of zero-shot learning on the VERB PHYSICS data set(using LSTM embeddings).
PCE outperforms the baselines, and using both poles is important for accuracy.

Model Test
Random 0.25

Majority Class 0.51
PCE(GloVe) 0.63

PCE(Word2vec) 0.67
PCE(LSTM) 0.67

Table 3: Accuracy on the four-way task on the
PROPERTY COMMON SENSE data.

COMMON SENSE data. Here, the LSTM em-
beddings perform similarly to the Word2vec em-
beddings, perhaps because the PROPERTY COM-
MON SENSE vocabulary consists of less fre-
quent nouns than in VERB PHYSICS. Thus, the
Word2vec embeddings are able to catch up due to
their larger vocabulary and much larger training
corpus.

Finally, in Figure 1, we evaluate in the active
learning setting. The synthesis approach performs
best, especially later in training when the train-
ing pool for the pool-based methods has only un-
informative examples remaining. Figure 2 helps
explain the relative advantage of the synthesis ap-
proach: it is able to continue synthesizing infor-
mative (uncertain) queries throughout the entire
training run.

4 Discussion

4.1 Sources of annotator disagreement

As noted above, we found a “good” level of agree-
ment (Cohen’s Kappa of 0.64) for our PROPERTY
COMMON SENSE data, which is lower than one
might expect for task aimed at common sense. We

Figure 1: Test accuracy as a function of the num-
ber of queried training examples. The synthesis
approach performs best.

analyzed the disagreements and found that they
stem from two sources of subjectivity in the task.
The first is that different labelers may have differ-
ent thresholds for what counts as similar—a spi-
der and an ant might be marked similar in size
for one labeler, but not for another labeler. In
our data, 58% of the disagreements are cases in
which one annotator marks similar while the other
says not similar. The second is that different la-
belers have different standards for whether a com-
parison is N/A. For example, in our data set, one
labeler labels that a toaster is physically stronger
than alcohol, and the other labeler says the com-
parison is N/A. 37% of our disagreements are due
to this type of subjectivity. The above two types of
subjectivity account for almost all disagreements
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Figure 2: The uncertainty measure of each queried
training example. As training proceeds, the syn-
thesis approach continues to select more uncertain
examples.

(95%), and the remaining 5% are due to annota-
tion errors (one of the annotators makes mistake).

4.2 Model Interpretation

Since we adopt an identity activation function and
a single layer design, it is possible to simplify the
mathematical expression of our model to make it
more interpretable. After accounting for model
averaging, we have the following equality:

P (L =< |Q) ∝
exp(R< · ((X ⊕ Y )W ) +R> · ((Y ⊕X)W ))

= exp(RT
<(XW1 + YW2) +RT

>(YW1 +XW2))

∝ exp((R< −R>)
T (XW1 +XW2)),

where W = W1 ⊕W2. So we can define a score
of ”R<” for a object with embedding X as the fol-
lowing:

score(X,R<) = (R< −R>)
T (XW1 +XW2).

An object with a higher score for R< is more asso-
ciated with the R< pole than the R> one. For ex-
ample, score(”elephant”,”small”) represents how
small an elephant is—a larger score indicates a
smaller object. Table 4 shows smallness scores
for 5 randomly picked objects from the VERB
PHYSICS data set. PCE tends to assign higher
scores to the smaller objects in the set.

4.3 Sensitivity to pole labels

PCE requires labels for the poles of the target ob-
ject property. Table 5 presents a limited sensitivity

Object Smallness
restaurant 0.077

gully 0.416
lung 1.182
bow 4.036

scissors 14.492

Table 4: Scores of smallness for 5 randomly
picked objects in VERB PHYSICS data set

Word choice Trained Zero
fast vs. slow 0.71 0.58
speedy vs. slow 0.71 0.56
fast vs. plodding 0.72 0.48
speedy vs. plodding 0.72 0.51
big vs. small 0.80 0.74
large vs. small 0.80 0.76
big vs. little 0.80 0.71
large vs. little 0.80 0.69

Table 5: Trained and zero-shot accuracies for dif-
ferent word choices

analysis to pole labels, evaluating the test accu-
racy of PCE as the pole label varies among dif-
ferent combinations of synonyms for the size and
speed relations. We evaluate in both the trained
setting (comparable to the results in Table 1) and
the zero-shot setting (comparable to Table 2). We
see that the trained accuracy remains essentially
unchanged for different pole labels. In the zero-
shot setting, all combinations achieve accuracy
that beats the baselines in Table 2, but the accuracy
value is somewhat sensitive to the choice of pole
label. Exploring how to select pole labels and ex-
perimenting with richer pole representations such
as textual definitions are items of future work.

5 Conclusion

In this paper, we presented a method for extracting
commonsense knowledge from embeddings. Our
experiments demonstrate that the approach is ef-
fective at performing relative comparisons of ob-
ject properties using less hand-annotated knowl-
edge than in previous work. A synthesis active
learner was found to boost accuracy, and further
experiments with this approach are an item of fu-
ture work.

Acknowledgments

This work was supported in part by NSF Grant
IIS-1351029. We thank the anonymous reviewers
for helpful comments.



649

References
Eric B Baum and Kenneth Lang. 1992. Query learning

can work poorly when a human oracle is used. In
International joint conference on neural networks,
volume 8, page 8.

W. Cai, Y. Zhang, and J. Zhou. 2013. Maximizing ex-
pected model change for active learning in regres-
sion. In 2013 IEEE 13th International Conference
on Data Mining, pages 51–60.

Aron Culotta and Andrew McCallum. 2005. Reduc-
ing labeling effort for structured prediction tasks. In
AAAI, pages 746–751. AAAI Press / The MIT Press.

Maxwell Forbes and Yejin Choi. 2017. Verb physics:
Relative physical knowledge of actions and objects.
arXiv preprint arXiv:1706.03799.

Jonathan Gordon and Benjamin Van Durme. 2013. Re-
porting bias and knowledge acquisition. In Proceed-
ings of the 2013 workshop on Automated knowledge
base construction, pages 25–30. ACM.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410.

Ken McRae, George S. Cree, Mark S. Seidenberg, and
Chris Mcnorgan. 2005. Semantic feature production
norms for a large set of living and nonliving things.
Behavior Research Methods, 37(4):547–559.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Mark Palatucci, Dean Pomerleau, Geoffrey E Hinton,
and Tom M Mitchell. 2009. Zero-shot learning with
semantic output codes. In Y. Bengio, D. Schuur-
mans, J. D. Lafferty, C. K. I. Williams, and A. Cu-
lotta, editors, Advances in Neural Information Pro-
cessing Systems 22, pages 1410–1418. Curran Asso-
ciates, Inc.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Lenhart Schubert. 2002. Can we derive general world
knowledge from texts? In Proceedings of the second
international conference on Human Language Tech-
nology Research, pages 94–97. Morgan Kaufmann
Publishers Inc.

B. Settles. 2009. Active learning literature survey.
Computer Sciences Technical Report 1648, Univer-
sity of Wisconsin–Madison.

Benjamin Van Durme and Lenhart Schubert. 2008.
Open knowledge extraction through compositional
language processing. In Proceedings of the 2008
Conference on Semantics in Text Processing, pages
239–254. Association for Computational Linguis-
tics.

Lucy Vanderwende. 2005. Volunteers created the web.
In AAAI Spring Symposium: Knowledge Collection
from Volunteer Contributors, pages 84–90.

https://doi.org/10.1109/ICDM.2013.104
https://doi.org/10.1109/ICDM.2013.104
https://doi.org/10.1109/ICDM.2013.104
http://dblp.uni-trier.de/db/conf/aaai/aaai2005.html#CulottaM05
http://dblp.uni-trier.de/db/conf/aaai/aaai2005.html#CulottaM05
https://doi.org/10.3758/BF03192726
https://doi.org/10.3758/BF03192726
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/3650-zero-shot-learning-with-semantic-output-codes.pdf
http://papers.nips.cc/paper/3650-zero-shot-learning-with-semantic-output-codes.pdf
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

