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Abstract

Recent embedding-based methods in
bilingual lexicon induction show good
results, but do not take advantage of
orthographic features, such as edit dis-
tance, which can be helpful for pairs of
related languages. This work extends
embedding-based methods to incorporate
these features, resulting in significant
accuracy gains for related languages.

1 Introduction

Over the past few years, new methods for bilingual
lexicon induction have been proposed that are ap-
plicable to low-resource language pairs, for which
very little sentence-aligned parallel data is avail-
able. Parallel data can be very expensive to create,
so methods that require less of it or that can utilize
more readily available data are desirable.

One prevalent strategy involves creating multi-
lingual word embeddings, where each language’s
vocabulary is embedded in the same latent space
(Vulić and Moens, 2013; Mikolov et al., 2013a;
Artetxe et al., 2016); however, many of these
methods still require a strong cross-lingual signal
in the form of a large seed dictionary.

More recent work has focused on reducing that
constraint. Vulić and Moens (2016) and Vulic
and Korhonen (2016) use document-aligned data
to learn bilingual embeddings instead of a seed
dictionary. Artetxe et al. (2017) use a very small,
automatically-generated seed lexicon of identi-
cal numerals as the initialization in an iterative
self-learning framework to learn a linear mapping
between monolingual embedding spaces; Zhang
et al. (2017) use an adversarial training method to
learn a similar mapping. Lample et al. (2018a)
use a series of techniques to align monolingual
embedding spaces in a completely unsupervised

way; their method is used by Lample et al. (2018b)
as the initialization for a completely unsupervised
machine translation system.

These recent advances in unsupervised bilin-
gual lexicon induction show promise for use in
low-resource contexts. However, none of them
make use of linguistic features of the languages
themselves (with the arguable exception of syn-
tactic/semantic information encoded in the word
embeddings). This is in contrast to work that
predates many of these embedding-based meth-
ods that leveraged linguistic features such as edit
distance and orthographic similarity: Dyer et al.
(2011) and Berg-Kirkpatrick et al. (2010) inves-
tigate using linguistic features for word align-
ment, and Haghighi et al. (2008) use linguis-
tic features for unsupervised bilingual lexicon in-
duction. These features can help identify words
with common ancestry (such as the English-Italian
pair agile-agile) and borrowed words (macaroni-
maccheroni).

The addition of linguistic features led to in-
creased performance in these earlier models, es-
pecially for related languages, yet these features
have not been applied to more modern methods.
In this work, we extend the modern embedding-
based approach of Artetxe et al. (2017) with ortho-
graphic information in order to leverage similari-
ties between related languages for increased accu-
racy in bilingual lexicon induction.

2 Background

This work is directly based on the work of Artetxe
et al. (2017). Following their work, let X ∈
R|Vs|×d and Z ∈ R|Vt|×d be the word embedding
matrices of two distinct languages, referred to re-
spectively as the source and target, such that each
row corresponds to the d-dimensional embedding
of a single word. We refer to the ith row of one of
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these matrices as Xi∗ or Zi∗. The vocabularies for
each language are Vs and Vt, respectively. Also
let D ∈ {0, 1}|Vs|×|Vt| be a binary matrix repre-
senting a dictionary such that Dij = 1 if the ith
word in the source language is aligned with the
jth word in the target language. We wish to find
a mapping matrix W ∈ Rd×d that maps source
embeddings onto their aligned target embeddings.
Artetxe et al. (2017) define the optimal mapping
matrix W ∗ with the following equation,

W ∗ = arg min
W

∑
i

∑
j

Dij ‖Xi∗W − Zj∗‖2

which minimizes the sum of the squared Euclidean
distances between mapped source embeddings and
their aligned target embeddings.

By normalizing and mean-centering X and Z,
and enforcing that W be an orthogonal matrix
(W TW = I), the above formulation becomes
equivalent to maximizing the dot product between
the mapped source embeddings and target embed-
dings, such that

W ∗ = arg max
W

Tr(XWZTDT )

where Tr(·) is the trace operator, the sum of all di-
agonal entries. The optimal solution to this equa-
tion is W ∗ = UV T , where XTDZ = UΣV T is
the singular value decomposition of XTDZ.

This formulation requires a seed dictionary. To
reduce the need for a large seed dictionary, Artetxe
et al. (2017) propose an iterative, self-learning
framework that determines W as above, uses it to
calculate a new dictionary D, and then iterates un-
til convergence. In the dictionary induction step,
they set Dij = 1 if j = arg maxk (Xi∗W ) · Zk∗
and Dij = 0 otherwise.

We propose two methods for extending this sys-
tem using orthographic information, described in
the following two sections.

3 Orthographic Extension of Word
Embeddings

This method augments the embeddings for all
words in both languages before using them in the
self-learning framework of Artetxe et al. (2017).
To do this, we append to each word’s embedding
a vector of length equal to the size of the union
of the two languages’ alphabets. Each position in
this vector corresponds to a single letter, and its
value is set to the count of that letter within the

spelling of the word. This letter count vector is
then scaled by a constant before being appended
to the base word embedding. After appending, the
resulting augmented vector is normalized to have
magnitude 1.

Mathematically, let A be an ordered set of char-
acters (an alphabet), containing all characters ap-
pearing in both language’s alphabets:

A = Asource ∪Atarget

Let Osource and Otarget be the orthographic
extension matrices for each language, containing
counts of the characters appearing in each word
wi, scaled by a constant factor ce:

Oij = ce · count(Aj , wi), O ∈ {Osource, Otarget}

Then, we concatenate the embedding matrices
and extension matrices:

X
′

= [X;Osource], Z
′

= [Z;Otarget]

Finally, in the normalized embedding matrices
X

′′
and Z

′′
, each row has magnitude 1:

X
′′
i∗ =

X
′
i∗

‖X ′
i∗‖

, Z
′′
i∗ =

Z
′
i∗

‖Z ′
i∗‖

These new matrices are used in place of X and
Z in the self-learning process.

4 Orthographic Similarity Adjustment

This method modifies the similarity score for each
word pair during the dictionary induction phase
of the self-learning framework of Artetxe et al.
(2017), which uses the dot product of two words’
embeddings to quantify similarity. We modify
this similarity score by adding a measure of or-
thographic similarity, which is a function of the
normalized string edit distance of the two words.

The normalized edit distance is defined as the
Levenshtein distance (L(·, ·)) (Levenshtein, 1966)
divided by the length of the longer word. The Lev-
enshtein distance represents the minimum number
of insertions, deletions, and substitutions required
to transform one word into the other. The normal-
ized edit distance function is denoted as NL(·, ·).

NL(w1, w2) =
L(w1, w2)

max(|w1|, |w2|)

We define the orthographic similarity of two
words w1 and w2 as log(2.0−NL(w1, w2)). These
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(a) Embedding Extension
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(b) Similarity Adjustment

Figure 1: Performance on development data vs. scaling factors ce and cs. The lowest tested value for
both was 10−6.

similarity scores are used to form an orthographic
similarity matrix S, where each entry corresponds
to a source-target word pair. Each entry is first
scaled by a constant factor cs. This matrix is added
to the standard similarity matrix, XWZT .

Sij = cs·log(2.0−NL(wi, wj)), wi ∈ Vs, wj ∈ Vt

The vocabulary for each language is 200,000
words, so computing a similarity score for each
pair would involve 40 billion edit distance cal-
culations. Also, the vast majority of word pairs
are orthographically very dissimilar, resulting in a
normalized edit distance close to 1 and an ortho-
graphic similarity close to 0, having little to no ef-
fect on the overall estimated similarity. Therefore,
we only calculate the edit distance for a subset of
possible word pairs.

Thus, the actual orthographic similarity matrix
that we use is as follows:

S
′
ij =

{
Sij 〈wi, wj〉 ∈ symDelete(Vt,Vs,k)
0 otherwise

This subset of word pairs was chosen using
an adaptation of the Symmetric Delete spelling
correction algorithm described by Garbe (2012),
which we denote as symDelete(·,·,·). This al-
gorithm takes as arguments the target vocabulary,
source vocabulary, and a constant k, and identifies
all source-target word pairs that are identical af-
ter k or fewer deletions from each word; that is,
all pairs where each is reachable from the other
with no more than k insertions and k deletions.
For example, the Italian-English pair moderno-
modern will be identified with k = 1, and the pair
tollerante-tolerant will be identified with k = 2.

The algorithm works by computing all strings
formed by k or fewer deletions from each target

word, stores them in a hash table, then does the
same for each source word and generates source-
target pairs that share an entry in the hash table.
The complexity of this algorithm can be expressed
as O(|V |lk), where V = Vt ∪ Vs is the combined
vocabulary and l is the length of the longest word
in V . This is linear with respect to the vocabu-
lary size, as opposed to the quadratic complexity
required for computing the entire matrix. How-
ever, the algorithm is sensitive to both word length
and the choice of k. In our experiments, we found
that ignoring all words of length greater than 30
allowed the algorithm to complete very quickly
while skipping less than 0.1% of the data. We also
used small values of k (0 < k < 4), and used
k = 1 for our final results, finding no significant
benefit from using a larger value.

5 Experiments

We use the datasets used by Artetxe et al. (2017),
consisting of three language pairs: English-
Italian, English-German, and English-Finnish.
The English-Italian dataset was introduced in
Dinu and Baroni (2014); the other datasets were
created by Artetxe et al. (2017). Each dataset
includes monolingual word embeddings (trained
with word2vec (Mikolov et al., 2013b)) for both
languages and a bilingual dictionary, separated
into a training and test set. We do not use the
training set as the input dictionary to the system,
instead using an automatically-generated dictio-
nary consisting only of numeral identity transla-
tions (such as 2-2, 3-3, et cetera) as in Artetxe
et al. (2017).1 However, because the methods pre-
sented in this work feature tunable hyperparame-
ters, we use a portion of the training set as devel-

1https://github.com/artetxem/vecmap
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Method English-German English-Italian English-Finnish
Artetxe et al. (2017) 40.27 39.40 26.47

Artetxe et al. (2017) + identity 51.73 44.07 42.63
Embedding extension, ce = 1

8
50.33 48.40 29.63

Embedding extension + identity, ce = 1
8

55.40 47.13 43.54
Similarity adjustment, cs = 1 43.73 39.93 28.16

Similarity adjustment + identity, cs = 1 52.20 44.27 41.99
Combined, ce = 1

8
, cs = 1 53.53 49.13 32.51

Combined + identity, ce = 1
8

, cs = 1 55.53 46.27 41.78

Table 1: Comparison of methods on test data. Scaling constants ce and cs were selected based on
performance on development data over all three language pairs. The last two rows report the results of
using both methods together.

Source Word Our Prediction (Language) Incorrect Baseline Prediction (Translation)
caesium cäsium (German) isotope (isotope)
unevenly ungleichmäßig (German) gleichmäßig (evenly)

Ethiopians Äthiopier (German) Afrikaner (Africans)
autumn autunno (Italian) primavera (spring)

Brueghel Bruegel (Italian) Dürer (Dürer)
Latvians latvialaiset (Finnish) ukrainalaiset (Ukrainians)

Table 2: Examples of pairs correctly identified by our embedding extension method that were incorrectly
translated by the system of Artetxe et al. (2017). Our system can disambiguate semantic clusters created
by word2vec.

opment data.2 In all experiments, a single target
word is predicted for each source word, and full
points are awarded if it is one of the listed correct
translations. On average, the number of transla-
tions for each source (non-English) word was 1.2
for English-Italian, 1.3 for English-German, and
1.4 for English-Finnish.

6 Results and Discussion

For our experiments with orthographic extension
of word embeddings, each embedding was ex-
tended by the size of the union of the alphabets
of both languages. The size of this union was 199
for English-Italian, 200 for English-German, and
287 for English-Finnish.

These numbers are perhaps unintuitively high.
However, the corpora include many other char-
acters, including diacritical markings and various
symbols (%, [, !, etc.) that are an indication that
tokenization of the data could be improved. We
did not filter these characters in this work.

For our experiments with orthographic similar-
ity adjustment, the heuristic identified approxi-
mately 2 million word pairs for each language pair
out of a possible 40 billion, resulting in significant
computation savings.

2We use all source-target pairs containing one of 1,000
randomly-selected target words.

Figure 1 shows the results on the development
data. Based on these results, we selected ce = 1

8
and cs = 1 as our hyperparameters. The local op-
tima were not identical for all three languages, but
we felt that these values struck the best compro-
mise among them.

Table 1 compares our methods against the sys-
tem of Artetxe et al. (2017), using scaling factors
selected based on development data results. Be-
cause approximately 20% of source-target pairs
in the dictionary were identical, we also extended
all systems to guess the identity translation if the
source word appeared in the target vocabulary.
This improved accuracy in most cases, with some
exceptions for English-Italian. We also experi-
mented with both methods together, and found that
this was the best of the settings that did not in-
clude the identity translation component; with the
identity component included, however, the embed-
ding extension method alone was best for English-
Finnish. The fact that Finnish is the only language
here that is not in the Indo-European family (and
has fewer words borrowed from English or its an-
cestors) may explain why the performance trends
for English-Finnish were different than those of
the other two language pairs.

In addition to identifying orthographically sim-
ilar words, the extension method is capable of
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learning a mapping between source and target let-
ters, which could partially explain its improved
performance over our edit distance method.

Table 2 shows some correct translations from
our system that were missed by the baseline.

7 Conclusion and Future Work

In this work, we presented two techniques (which
can be combined) for improving embedding-based
bilingual lexicon induction for related languages
using orthographic information and no parallel
data, allowing their use with low-resource lan-
guage pairs. These methods increased accuracy in
our experiments, with both the combined and em-
bedding extension methods providing significant
gains over the baseline system.

In the future, we want to extend this work to
related languages with different alphabets (experi-
menting with transliteration or phonetic transcrip-
tion) and to extend other unsupervised bilingual
lexicon induction systems, such as that of Lample
et al. (2018a).
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