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Abstract

Verb–noun combinations (VNCs) — e.g.,
blow the whistle, hit the roof, and see stars
— are a common type of English idiom
that are ambiguous with literal usages. In
this paper we propose and evaluate models
for classifying VNC usages as idiomatic or
literal, based on a variety of approaches to
forming distributed representations. Our
results show that a model based on aver-
aging word embeddings performs on par
with, or better than, a previously-proposed
approach based on skip-thoughts. Id-
iomatic usages of VNCs are known to ex-
hibit lexico-syntactic fixedness. We fur-
ther incorporate this information into our
models, demonstrating that this rich lin-
guistic knowledge is complementary to the
information carried by distributed repre-
sentations.

1 Introduction

Multiword expressions (MWEs) are combinations
of multiple words that exhibit some degree of id-
iomaticity (Baldwin and Kim, 2010). Verb–noun
combinations (VNCs), consisting of a verb with a
noun in its direct object position, are a common
type of semantically-idiomatic MWE in English
and cross-lingually (Fazly et al., 2009). Many
VNCs are ambiguous between MWEs and literal
combinations, as in the following examples of see
stars, in which 1 is an idiomatic usage (i.e., an
MWE), while 2 is a literal combination.1

1. Hereford United were seeing stars at Gilling-
ham after letting in 2 early goals

2. Look into the night sky to see the stars
1These examples, and idiomaticity judgements, are taken

from the VNC-Tokens dataset (Cook et al., 2008).

MWE identification is the task of automati-
cally determining which word combinations at
the token-level form MWEs (Baldwin and Kim,
2010), and must be able to make such distinctions.
This is particularly important for applications such
as machine translation (Sag et al., 2002), where
the appropriate meaning of word combinations in
context must be preserved for accurate translation.

In this paper, following prior work (e.g., Salton
et al., 2016), we frame token-level identification of
VNCs as a supervised binary classification prob-
lem, i.e., idiomatic vs. literal. We consider a
range of approaches to forming distributed rep-
resentations of the context in which a VNC oc-
curs, including word embeddings (Mikolov et al.,
2013), word embeddings tailored to representing
sentences (Kenter et al., 2016), and skip-thoughts
sentence embeddings (Kiros et al., 2015). We
then train a support vector machine (SVM) on
these representations to classify unseen VNC in-
stances. Surprisingly, we find that an approach
based on representing sentences as the average of
their word embeddings performs comparably to,
or better than, the skip-thoughts based approach
previously proposed by Salton et al. (2016).

VNCs exhibit lexico-syntactic fixedness. For
example, the idiomatic interpretation in example
1 above is typically only accessible when the verb
see has active voice, the determiner is null, and the
noun star is in plural form, as in see stars or seeing
stars. Usages with a determiner (as in example 2),
a singular noun (e.g., see a star), or passive voice
(e.g., stars were seen) typically only have the lit-
eral interpretation.

In this paper we further incorporate knowl-
edge of the lexico-syntactic fixedness of VNCs
— automatically acquired from corpora using the
method of Fazly et al. (2009) — into our various
embedding-based approaches. Our experimental
results show that this leads to substantial improve-
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ments, indicating that this rich linguistic knowl-
edge is complementary to that available in dis-
tributed representations.

2 Related work

Much research on MWE identification has fo-
cused on specific kinds of MWEs (e.g., Patrick
and Fletcher, 2005; Uchiyama et al., 2005), in-
cluding English VNCs (e.g., Fazly et al., 2009;
Salton et al., 2016), although some recent work
has considered the identification of a broad range
of kinds of MWEs (e.g., Schneider et al., 2014;
Brooke et al., 2014; Savary et al., 2017).

Work on MWE identification has leveraged rich
linguistic knowledge of the constructions under
consideration (e.g., Fazly et al., 2009; Fothergill
and Baldwin, 2012), treated literal and idiomatic
as two senses of an expression and applied ap-
proaches similar to word-sense disambiguation
(e.g., Birke and Sarkar, 2006; Hashimoto and
Kawahara, 2008), incorporated topic models (e.g.,
Li et al., 2010), and made use of distributed repre-
sentations of words (Gharbieh et al., 2016).

In the most closely related work to ours, Salton
et al. (2016) represent token instances of VNCs by
embedding the sentence that they occur in using
skip-thoughts (Kiros et al., 2015) — an encoder–
decoder model that can be viewed as a sentence-
level counterpart to the word2vec (Mikolov et al.,
2013) skip-gram model. During training the target
sentence is encoded using a recurrent neural net-
work, and is used to predict the previous and next
sentences. Salton et al. then use these sentence
embeddings, representing VNC token instances,
as features in a supervised classifier. We treat this
skip-thoughts based approach as a strong baseline
to compare against.

Fazly et al. (2009) formed a set of eleven lexico-
syntactic patterns for VNC instances capturing the
voice of the verb (active or passive), determiner
(e.g., a, the), and number of the noun (singular or
plural). They then determine the canonical form,
C(v, n), for a given VNC as follows:2

C(v, n) = {ptk ∈ P |z(v, n, ptk) > Tz} (1)

where P is the set of patterns, Tz is a predeter-
mined threshold, which is set to 1, and z(v, n, ptk)
is calculated as follows:

z(v, n, ptk) =
f(v, n, ptk)− f

s
(2)

2In a small number of cases a VNC is found to have a
small number of canonical forms, as opposed to just one.

where f(·) is the frequency of a VNC occurring in
a given pattern in a corpus,3 and f and s are the
mean and standard deviations for all patterns for
the given VNC, respectively.

Fazly et al. (2009) showed that idiomatic usages
of a VNC tend to occur in that expression’s canon-
ical form, while literal usages do not. This ap-
proach provides a strong, linguistically-informed,
unsupervised baseline, referred to as CForm, for
predicting whether VNC instances are idiomatic
or literal. In this paper we incorporate knowl-
edge of canonical forms into embedding-based ap-
proaches to VNC token classification, and show
that this linguistic knowledge can be leveraged to
improve such approaches.

3 Models

We describe the models used to represent VNC
token instances below. For each model, a linear
SVM classifier is trained on these representations.

3.1 Word2vec

We trained word2vec’s skip-gram model (Mikolov
et al., 2013) on a snapshot of Wikipedia from
September 2015, which consists of approximately
2.6 billion tokens. We used a window size of ±8
and 300 dimensions. We ignore all words that oc-
cur less than fifteen times in the training corpus,
and did not set a maximum vocabulary size. We
perform negative sampling and set the number of
training epochs to five. We used batch processing
with approximately 10k words in each batch.

To embed a given a sentence containing a VNC
token instance, we average the word embeddings
for each word in the sentence, including stop-
words.4 Prior to averaging, we normalize each
embedding to have unit length.

3.2 Siamese CBOW

The Siamese CBOW model (Kenter et al., 2016)
learns word embeddings that are better able to
represent a sentence through averaging than con-
ventional word embeddings such as skip-gram or
CBOW. We use a Siamese CBOW model that
was pretrained on a snapshot of Wikipedia from
November 2012 using randomly initialized word

3Fazly et al. (2009) used the British National Corpus
(Burnard, 2000).

4Preliminary experiments showed that models performed
better when stopword removal was not applied.
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embeddings.5 Similarly to the word2vec model,
to embed a given sentence containing a VNC in-
stance, we average the word embeddings for each
word in the sentence.

3.3 Skip-thoughts
We use a publicly-available skip-thoughts model,
that was pre-trained on a corpus of books.6 We
represent a given sentence containing a VNC in-
stance using the skip-thoughts encoder. Note that
this approach is our re-implementation of the skip-
thoughts based method of Salton et al. (2016), and
we use it as a strong baseline for comparison.

4 Data and evaluation

In this section, we discuss the dataset used in our
experiments, and the evaluation of our models.

4.1 Dataset
We use the VNC-Tokens dataset (Cook et al.,
2008) — the same dataset used by Fazly et al.
(2009) and Salton et al. (2016) — to train and eval-
uate our models. This dataset consists of sentences
containing VNC usages drawn from the British
National Corpus (Burnard, 2000),7 along with a
label indicating whether the VNC is an idiomatic
or literal usage (or whether this cannot be deter-
mined, in which case it is labelled “unknown”).

VNC-Tokens is divided into DEV and TEST sets
that each include fourteen VNC types and a to-
tal of roughly six hundred instances of these types
annotated as literal or idiomatic. Following Salton
et al. (2016), we use DEV and TEST, and ignore all
token instances annotated as “unknown”.

Fazly et al. (2009) and Salton et al. (2016) struc-
tured their experiments differently. Fazly et al. re-
port results over DEV and TEST separately. In this
setup TEST consists of expressions that were not
seen during model development (done on DEV).
Salton et al., on the other hand, merge DEV and
TEST, and create new training and testing sets,
such that each expression is present in the training
and testing data, and the ratio of idiomatic to lit-
eral usages of each expression in the training data
is roughly equal to that in the testing data.

We borrowed ideas from both of these ap-
proaches in structuring our experiments. We retain

5https://bitbucket.org/TomKenter/
siamese-cbow

6https://github.com/ryankiros/
skip-thoughts

7http://www.natcorp.ox.ac.uk

Model
Penalty cost

0.01 0.1 1 10 100
Word2vec 0.619 0.654 0.818 0.830 0.807
Siamese CBOW 0.619 0.621 0.665 0.729 0.763
Skip-thoughts 0.661 0.784 0.803 0.800 0.798

Table 1: Accuracy on DEV while tuning the
penalty cost for the SVM for each model. The
highest accuracy for each model is shown in bold-
face.

the type-level division of Fazly et al. (2009) into
DEV and TEST. We then divide each of these into
training and testing sets, using the same ratios of
idiomatic to literal usages for each expression as
Salton et al. (2016). This allows us to develop and
tune a model on DEV, and then determine whether,
when retrained on instances of unseen VNCs in
(the training portion of) TEST, that model is able
to generalize to new VNCs without further tuning
to the specific expressions in TEST.

4.2 Evaluation

The proportion of idiomatic usages in the testing
portions of both DEV and TEST is 63%. We there-
fore use accuracy to evaluate our models following
Fazly et al. (2009) because the classes are roughly
balanced. We randomly divide both DEV and TEST

into training and testing portions ten times, follow-
ing Salton et al. (2016). For each of the ten runs,
we compute the accuracy for each expression, and
then compute the average accuracy over the ex-
pressions. We then report the average accuracy
over the ten runs.

5 Experimental results

In this section we first consider the effect of tun-
ing the cost parameter of the SVM for each model
on DEV, and then report results on DEV and TEST

using the tuned models.

5.1 Parameter tuning

We tune the SVM for each model on DEV by car-
rying out a linear search for the penalty cost from
0.01–100, increasing by a factor of ten each time.
Results for this parameter tuning are shown in
Table 1. These results highlight the importance
of choosing an appropriate setting for the penalty
cost. For example, the accuracy of the word2vec
model ranges from 0.619–0.830 depending on the
cost setting. In subsequent experiments, for each

https://bitbucket.org/TomKenter/siamese-cbow
https://bitbucket.org/TomKenter/siamese-cbow
https://github.com/ryankiros/skip-thoughts
https://github.com/ryankiros/skip-thoughts
http://www.natcorp.ox.ac.uk
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Model
DEV TEST

−CF +CF −CF +CF
CForm - 0.721 - 0.749
Word2vec 0.830 0.854 0.804 0.852
Siamese CBOW 0.763 0.774 0.717 0.779
Skip-thoughts 0.803 0.827 0.786 0.842

Table 2: Accuracy on DEV and TEST for each
model, without (−CF) and with (+CF) the canon-
ical form feature. The highest accuracy for each
setting on each dataset is shown in boldface.

model, we use the penalty cost that achieves the
highest accuracy in Table 1.

5.2 DEV and TEST results

In Table 2 we report results on DEV and TEST for
each model, as well as the unsupervised CForm
model of Fazly et al. (2009), which simply labels a
VNC as idiomatic if it occurs in its canonical form,
and as literal otherwise. We further consider each
model (other than CForm) in two setups. −CF
corresponds to the models as described in Sec-
tion 3. +CF further incorporates lexico-syntactic
knowledge of canonical forms into each model
by concatenating the embedding representing each
VNC token instance with a one-dimensional vec-
tor which is one if the VNC occurs in its canonical
form, and zero otherwise.

We first consider results for the −CF setup.
On both DEV and TEST, the accuracy achieved
by each supervised model is higher than that
of the unsupervised CForm approach, except for
Siamese CBOW on TEST. The word2vec model
achieves the highest accuracy on DEV and TEST

of 0.830 and 0.804, respectively. The difference
between the word2vec model and the next-best
model, skip-thoughts, is significant using a boot-
strap test (Berg-Kirkpatrick et al., 2012) with 10k
repetitions for DEV (p = 0.006), but not for TEST

(p = 0.051). Nevertheless, it is remarkable that
the relatively simple approach to averaging word
embeddings used by word2vec performs as well
as, or better than, the much more complex skip-
thoughts model used by Salton et al. (2016).8

8The word2vec and skip-thoughts models were trained on
different corpora, which could contribute to the differences
in results for these models. We therefore carried out an ad-
ditional experiment in which we trained word2vec on Book-
Corpus, the corpus on which skip-thoughts was trained. This
new word2vec model achieved accuracies of 0.825 and 0.809,
on DEV and TEST, respectively, which are also higher accu-

Turning to the +CF setup, we observe that, for
both DEV and TEST, each model achieves higher
accuracy than in the −CF setup.9 All of these
differences are significant using a bootstrap test
(p < 0.002 in each case). In addition, each method
outperforms the unsupervised CForm approach on
both DEV and TEST. These findings demonstrate
that the linguistically-motivated, lexico-syntactic
knowledge encoded by the canonical form fea-
ture is complementary to the information from
a wide range of types of distributed representa-
tions. In the +CF setup, the word2vec model
again achieves the highest accuracy on both DEV

and TEST of 0.854 and 0.852, respectively.10 The
difference between the word2vec model and the
next-best model, again skip-thoughts, is signifi-
cant for both DEV and TEST using a bootstrap test
(p < 0.05 in each case).

To better understand the impact of the canonical
form feature when combined with the word2vec
model, we compute the average precision, recall,
and F1 score for each MWE for both the positive
(idiomatic) and negative (literal) classes, for each
run on TEST.11 For a given run, we then compute
the average precision, recall, and F1 score across
all MWEs, and then the average over all ten runs.
We do this using CForm, and the word2vec model
with and without the canonical form feature. Re-
sults are shown in Table 3. In line with the findings
of Fazly et al. (2009), CForm achieves higher pre-
cision and recall on idiomatic usages than literal
ones. In particular, the relatively low recall for the
literal class indicates that many literal usages oc-
cur in a canonical form. Comparing the word2vec
model with and without the canonical form fea-
ture, we see that, when this feature is used, there
is a relatively larger increase in precision and re-
call (and F1 score) for the literal class, than for the
idiomatic class. This indicates that, although the

racies than those obtained by the skip-thoughts model.
9In order to determine that this improvement is due to the

information about canonical forms carried by the additional
feature in the +CF setup, and not due to the increase in num-
ber of dimensions, we performed additional experiments in
which we concatenated the embedding representations with
a random binary feature, and with a randomly chosen value
between 0 and 1. For each model, neither of these approaches
outperformed that model using the +CF setup.

10In the +CF setup, the word2vec model using embed-
dings that were trained on the same corpus as skip-thoughts
achieved accuracies of 0.846 and 0.851, on DEV and TEST,
respectively. These are again higher accuracies than the cor-
responding setup for the skip-thoughts model.

11We carried out the same analysis on DEV. The findings
were similar.
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Model
Idiomatic Literal

Ave. F
P R F P R F

CForm 0.766 0.901 0.794 0.668 0.587 0.576 0.685
Word2vec −CF 0.815 0.879 0.830 0.627 0.542 0.556 0.693
Word2vec +CF 0.830 0.892 0.848 0.758 0.676 0.691 0.770

Table 3: Precision (P), recall (R), and F1 score (F), for the idiomatic and literal classes, as well as average
F1 score (Ave. F), for TEST.

canonical form feature itself performs relatively
poorly on literal usages, it provides information
that enables the word2vec model to better identify
literal usages.

6 Conclusions

Determining whether a usage of a VNC is id-
iomatic or literal is important for applications such
as machine translation, where it is vital to preserve
the meanings of word combinations. In this paper
we proposed two approaches to the task of clas-
sifying VNC token instances as idiomatic or lit-
eral based on word2vec embeddings and Siamese
CBOW. We compared these approaches against
a linguistically-informed unsupervised baseline,
and a model based on skip-thoughts previously ap-
plied to this task (Salton et al., 2016). Our exper-
imental results show that a comparatively simple
approach based on averaging word embeddings
performs at least as well as, or better than, the ap-
proach based on skip-thoughts. We further pro-
posed methods to combine linguistic knowledge
of the lexico-syntactic fixedness of VNCs — so-
called “canonical forms”, which can be automat-
ically acquired from corpora via statistical meth-
ods — with the embedding based approaches. Our
findings indicate that this rich linguistic knowl-
edge is complementary to that available in dis-
tributed representations.

Alternative approaches to embedding sentences
containing VNC instances could also be consid-
ered, for example, FastSent (Hill et al., 2016).
However, all of the models we used represent the
context of a VNC by the sentence in which it oc-
curs. In future work we therefore also intend to
consider approaches such as context2vec (Mela-
mud et al., 2016) which explicitly encode the con-
text in which a token occurs. Finally, one known
challenge of VNC token classification is to de-
velop models that are able to generalize to VNC
types that were not seen during training (Gharbieh
et al., 2016). In future work we plan to explore

this experimental setup.
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