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Abstract

In this work, we discuss the importance of
external knowledge for performing Named
Entity Recognition (NER). We present a
novel modular framework that divides the
knowledge into four categories according
to the depth of knowledge they convey.
Each category consists of a set of features
automatically generated from different in-
formation sources, such as a knowledge-
base, a list of names, or document-specific
semantic annotations. Further, we show
the effects on performance when incre-
mentally adding deeper knowledge and
discuss effectiveness/efficiency trade-offs.

1 Introduction

Named Entity Recognition (NER) is the task of
detecting named entity mentions in text and as-
signing them to their corresponding type. It is a
crucial component in a wide range of natural lan-
guage understanding tasks, such as named entity
disambiguation (NED), question answering, etc.

Previous work (Ratinov and Roth, 2009) ar-
gued that NER is a knowledge-intensive task and
used prior knowledge with outstanding results. In
this work, we attempt to quantify to which extent
external knowledge influences NER performance.
Even though recent approaches have excelled in
end-to-end neural methods, this paper aims to
give transparency and user-comprehensible ex-
plainability. This is especially significant for in-
dustrial sectors (e.g., those heavily regulated) that
require the use of transparent methods for which a
particular decision is explainable.

We perform the study by devising a simple
modular framework to exploit different sources of
external knowledge. We divide the information

sources into four different categories according to
the depth of knowledge they convey, each one car-
rying more information than the previous. Each
category is composed of a set of features that re-
flect the degree of knowledge contained in each
source. Then, we feed a linear chain CRF, a trans-
parent, widely used method used for NER.

We perform our experiments on two standard
datasets by testing various combinations of knowl-
edge categories. Our results indicate that the
amount of knowledge is highly correlated with
NER performance. The configurations with more
external knowledge systematically outperform the
more agnostic ones.

2 Knowledge Augmented NER

In the following section, we describe the four
knowledge categories in detail. Table 1 gives an
overview of the features on the categories that use
external knowledge. The features were used to
train a linear chain CRF, a simple and explain-
able method, proven to work well for NER (Finkel
et al., 2005; Jun’ichi and Torisawa, 2007; Ratinov
and Roth, 2009; Passos et al., 2014; Radford et al.,
2015).

2.1 Knowledge Agnostic (A)
This category contains the “local” features, which
can be extracted directly from text without any ex-
ternal knowledge. They are mostly of a lexical,
syntactic or linguistic nature and have been well-
studied in literature. We implement most of the
features described in (Finkel et al., 2005):

(1) The current word and words in a window of
size 2; (2) Word shapes of the current word and
words in a window of size 2; (3) POS tags in a
window of size 2; (4) Prefixes (length three and
four) and Suffixes (length one to four); (5) Pres-
ence of the current word in a window of size 4; (6)
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Cat. Feature Description Example

Name Mention tokens Some tokens are strongly associated to NEs county,john,school,station,. . .
POS-tag Multi-word NEs tend to share POS patterns Organization of American States
sequence ! NNP IN NNP NNP

KB
Type gazetteers Names that are associated to types Florida ! location
Wiki. link prob. Tokens that are associated to NEs “Florida” linked in Wikipedia
Type prob. Probability of token to type associations Obama ! person;

Entity Doc. gazetteers NE presence indicates other NEs European Union ! EU

Table 1: Features by category (novel features are highlighted)
Beginning of sentence.

2.2 Name-Based Knowledge (Name)
Here, the knowledge is extracted from a list of
named entity names. These features attempt to
identify patterns in names and exploit the fact
that the set of distinct names is limited. We ex-
tracted a total of more than 20 million names from
YAGO (Suchanek et al., 2007) and derived the fol-
lowing features:

Frequent mention tokens. Reflects the fre-
quency of a given token in a list of entity names.
We tokenized the list and computed frequencies.
The feature assigns a weight to each token in the
text corresponding to their normalized frequency.
High weights should be assigned to tokens that in-
dicate named entities. For instance, the top-5 to-
kens we found in English were “county”, “john”,
“school”, “station” and “district”. All tokens with-
out occurrences are assigned 0 weight.

Frequent POS Tag Sequences. Intends to iden-
tify POS sequences common to named entities.
For example, person names tend to be described
as a series of proper nouns, while organizations
may have richer patterns. Both “Organization
of American States” and “Union for Ethical Bio-
trade” share the pattern NNP-IN-NNP-NNP. We
ranked the name POS tag sequences and kept the
top 100. The feature is implemented by finding
the longest matching sequences in the input text
and marking whether the current token belongs to
a frequent sequence or not.

2.3 Knowledge-Base-Based Knowledge (KB)
This category groups features extracted from a KB
or an entity annotated corpus. They encode knowl-
edge about named entities themselves or their us-
ages. We implemented three features:

Type-infused Gazetteer Match. Finds the
longest occurring token sequence in a type-
specific gazetteer. It adds a binary indicator to
each token, depending on whether the token is

part of a sequence. We use 30 dictionaries dis-
tributed by (Ratinov and Roth, 2009) containing
type-name information for English. These dictio-
naries can also be created automatically by map-
ping each dictionary to a set of KB types and ex-
tracting the corresponding names. This automatic
generation is useful in multilingual settings, which
we discuss in Section 3.5.

Wikipedia Link Probability. This feature mea-
sures the likelihood of a token being linked to a
named entity Wikipedia page. The intuition is that
tokens linked to named entity pages tend to be in-
dicative of named entities. For instance, the to-
ken “Obama” is usually linked while “box” is not.
The list of pages referring to named entities is ex-
tracted from YAGO. Given a token in the text, it is
assigned the probability of being linked according
to Eq. 1, where linkd(t) equals 1, if token t in doc-
ument d is linked to another Wikipedia document.
presentd equals 1 if t occurs in d.

PWiki(t) =

P
d2D linkd(t)P

d2D presentd(t)
(1)

Type Probability. Encodes the likelihood of a
token belonging to a given type. It captures the
idea that, for instance, the token “Obama” is more
likely a person than a location. Given a set of enti-
ties E in YAGO with mentions Me and tokens Tem

we calculate the probability of a class c 2 C given
a token t as in Eq. 2, where c(e) = 1 if entity
e belongs to class c and c(e) = 0 otherwise. For
each token in the text, we create one feature per
type with the respective probability as its value.

P (c|t) =
PE

e

PMe
me

PTem
tem c(e)

PE
e

PMe
me

PTem
tem

PC
ci
ci(e)

(2)

Token Type Position. Reflects that tokens may
appear in different positions according to the en-
tity type. For instance, “Supreme Court of the
United States”, is an organization and “United”
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occurs at the end. In “United States”, a location,
it occurs at the beginning. This helps with nested
named entities.

This is implemented using the BILOU (Begin,
Inside, Last, Outside, Unit) encoding (Ratinov
and Roth, 2009), which tags each token with re-
spect to the position in which it occurs. The num-
ber of features depends on the number of types in
the dataset (4 BILU positions times n classes + O
position). For each token, each feature receives
the probability of a class given the token and po-
sition. The class probabilities are calculated as in
Equation 2, incorporating also the token position.

As a result, for each token we now have a proba-
bility distribution over 4n+1 classes. Take for in-
stance the token “Obama”. We would expect it to
have high probability for classes “B-Person” (i.e.,
last name in combination with first name) and “U-
Person” (i.e., last name without first name). The
probabilities for all other classes would be close to
zero. In comparison, the word “box” should have
high probability for class “O” and close to zero for
all others, since we would not expect it to occur in
many named entities.

2.4 Entity-Based Knowledge (Entity)

This category encodes document-specific knowl-
edge about the entities found in text to exploit
the association between NER and NED. Previous
work showed that the flow of information between
these generates significant performance improve-
ments (Radford et al., 2015; Luo et al., 2015).

Comparatively, this module needs significantly
more computational resources. It requires a first
run of NED to generate document specific fea-
tures, based on the disambiguated named entities.
These features are used in a second run of NER.

Following (Radford et al., 2015), after the first
run of NED, we create a set of document-specific
gazetteers derived from the disambiguated enti-
ties. This information helps in the second round
to find new named entities that were previously
missed. Take the sentence “Some citizens of the
European Union working in the United Kingdom
do not meet visa requirements for non-EU work-
ers after the uk leaves the bloc”. We can imagine
that in the first round of NED European Union and
United Kingdom can be easily identified but “EU”
or the wrongly capitalized “uk” might be missed.
After the disambiguation, we know that both enti-
ties are organizations and have the aliases EU and

UK respectively. Then, in a second round it may
be easier to spot mentions “EU” and “uk”.

After a first run of NER+NED, we extract
all surface forms of the identified entities from
YAGO. These are tokenized and assigned the type
of the corresponding entity plus its BILOU po-
sition. For example, the surface form “Barack
Obama” results in “Barack” and “Obama”, as-
signed to “B-Person” and “L-Person”. There are
17 binary features (BILU tags multiplied by four
coarse-grained types + O tag), which fire when a
token is part of a list that contains the mappings
from tokens to type-BILOU pairs.

3 Evaluation

3.1 Experimental Setup
System Setup. To perform our study we use a lin-
ear chain CRF(Lafferty et al., 2001). CRFs are
transparent and widely used for NER (Finkel et al.,
2005; Jun’ichi and Torisawa, 2007; Ratinov and
Roth, 2009; Passos et al., 2014; Radford et al.,
2015; Luo et al., 2015). The entity-based com-
ponent was implemented using the AIDA (Hoffart
et al., 2011) entity disambiguation system.

Datasets. We evaluate on two standard NER
datasets CoNLL2003. (Sang and Meulder, 2003),
a collection of English newswires covering enti-
ties with four types (PER, ORG, LOC, MISC)
and MUC-7, a set of New York Times articles
(Chinchor and Robinson, 1997) with annotations
on three types of entities (PER, ORG, LOC).

3.2 Incremental knowledge
Here we analyze the impact of incrementally
adding external knowledge. Fig. 1a shows four
variants. Each contains the features correspond-
ing to a given category plus all those from the
lighter categories to the left. In all cases adding
knowledge boosts F1 performance. The effect is
particularly strong for MUC-7-test which regis-
tered an overall increment of almost 10 points. In
both datasets, the biggest boost is registered when
the KB-based features are added. As a reference
point, one of the best systems to date (Chiu and
Nichols, 2016) (neural-based) achieves F1 91.62
on CoNLL2013-test, while our full-knowledge
CRF reaches F1 91.12.

Fig. 1c shows the performance for each entity
type on CoNLL2003. Again, there is a boost in all
cases, especially organizations. Persons also im-
prove significantly: At first they perform similar to
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(d) Type-based NER F1 score on MUC-7-test

Figure 1: Evaluation results by type CoNLL2003-test and MUC-7-test.

locations, but the successive increment is sharper.
F1 for persons achieves F1 96.03 and locations F1

92.13. The positive effect is quite significant for
organizations (F1 80.86 to F1 89.32), while it is
moderate for miscellaneous. Fig. 1d shows results
by type for MUC-7-test. The positive effect is par-
ticularly strong for persons, improving more than
15 F1 points (78.70 to 94.28). Interestingly, lo-
cations register a slight decline between KB and
Entity (0.56 F1 points).

Finally, Fig. 1b shows the performance over
span detection, which is the span where the named
entity occurs without taking type information into
account. This is especially important for appli-
cations such as named entity disambiguation. It
drops slightly for the name-based category, but it
increases again as more knowledge is added. The
effect is similar on both datasets.

3.3 Ablation

Table 2 shows different combinations of knowl-
edge categories. The relatively small improvement

from KB to Entity suggests that KB features are
subsumed by the later. This is somehow expected
as the entity specific information is extracted from
the same KB and both rely on entity types. How-
ever, as we will see, this comes at a cost.

Feature Categories F1

A, Name, KB 88.73
A, Name, Entity 89.32
A, KB, Entity 91.09
All 91.12

Table 2: : Ablation study by categories on
CoNLL2003-test

3.4 Timing

The Entity-based component is by far the most
expensive concerning timing performance. We
measure 314ms, 494ms, 693ms, and 4139ms for
A, Name, KB and Entity based features, respec-
tively (Figure 2). Since KB-based features are
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comparable in performance to the Entity-based
features, but the latter are much more expensive,
these findings allow practitioners to carefully de-
cide whether the additional computational cost is
worth the relatively small performance improve-
ments. The modularity of our feature classes al-
lows for optimal tuning of a system regarding ef-
fectiveness/efficiency trade-offs.
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Figure 2: Timing experiments for CoNLL2003e-
test in average milliseconds per document

3.5 Multilingualism
In order to demonstrate the general applicability
of our approach, we implement our NER system
for two additional languages, namely German and
Spanish. All features for the Name, KB and Entity
knowledge classes are derived from the respective
language’s Wikipedia. Performance is evaluated
on CoNLL2003g (Sang and Meulder, 2003) for
German and CoNLL2002 (Tjong Kim Sang, 2002)
for Spanish. Results can be found in Figure 3.
Similar to the performance on English data, we
can see that adding more external knowledge im-
proves performance. For reference, we found that
performance is close to the state-of-the art in both
languages. Our system lags only 1.56 F1 points
on (Lample et al., 2016) in German and 1.98 F1

points on (Yang et al., 2016) in Spanish.

4 Related Work

NER is a widely studied problem. Most of previ-
ous work rely on the use of CRFs (Finkel et al.,
2005; Jun’ichi and Torisawa, 2007; Ratinov and
Roth, 2009; Passos et al., 2014; Radford et al.,
2015; Luo et al., 2015). A recent trend has
achieved particularly good results modeling NER
as an end-to-end task using neural networks (dos
Santos and Guimarães, 2015; Chiu and Nichols,
2016; Lample et al., 2016; Yang et al., 2016;
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Figure 3: NER F1 for German on CoNLL2003g
dataset and Spanish on CoNLL2002 dataset.

Gillick et al., 2016). While this constitutes a big
step forward, certain applications (e.g., in heavily
regulated sectors) require a degree of explainabil-
ity that neural approaches cannot yet provide.

Previous work has already regarded NER as
a knowledge intensive task (Florian et al., 2003;
Zhang and Johnson, 2003; Jun’ichi and Torisawa,
2007; Ratinov and Roth, 2009; Lin and Wu, 2009;
Passos et al., 2014; Radford et al., 2015; Luo
et al., 2015). Most of these works incorporate
background knowledge in the form of entity-type
gazetteers (Florian et al., 2003; Zhang and John-
son, 2003; Jun’ichi and Torisawa, 2007; Ratinov
and Roth, 2009; Passos et al., 2014). Others, used
external knowledge by exploiting the association
between NER and NED (Durrett and Klein, 2014;
Radford et al., 2015; Luo et al., 2015; Nguyen
et al., 2016). In this study, we attempt to bring
more light on the issue by quantifying the effect
of different degrees of external knowledge. Our
modular framework allows to test this intuition via
novel feature sets that reflect the degree of knowl-
edge contained in available knowledge sources.

5 Conclusion

We investigated the importance of external knowl-
edge for performing Named Entity Recognition
by defining four feature categories, each of which
conveys a different amount of knowledge. In addi-
tion to commonly used features in existing litera-
ture, we defined four novel features that we incor-
porated into our category scheme. We experimen-
tally showed that although more external knowl-
edge leads to performance improvements, it comes
at a considerable performance trade-off.
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