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Abstract

We propose an efficient method to gen-
erate white-box adversarial examples to
trick a character-level neural classifier. We
find that only a few manipulations are
needed to greatly decrease the accuracy.
Our method relies on an atomic flip op-
eration, which swaps one token for an-
other, based on the gradients of the one-
hot input vectors. Due to efficiency of our
method, we can perform adversarial train-
ing which makes the model more robust
to attacks at test time. With the use of a
few semantics-preserving constraints, we
demonstrate that HotFlip can be adapted
to attack a word-level classifier as well.

1 Introduction

Adversarial examples are inputs to a predictive
machine learning model that are maliciously de-
signed to cause poor performance (Goodfellow
et al., 2015). Adversarial examples expose re-
gions of the input space where the model performs
poorly, which can aid in understanding and im-
proving the model. By using these examples as
training data, adversarial training learns models
that are more robust, and may even perform bet-
ter on non-adversarial examples. Interest in under-
standing vulnerabilities of NLP systems is grow-
ing (Jia and Liang, 2017; Zhao et al., 2018; Be-
linkov and Bisk, 2018; Iyyer et al., 2018). Previous
work has focused on heuristics for creating adver-
sarial examples in the black-box setting, without
any explicit knowledge of the model parameters.
In the white-box setting, we use complete knowl-
edge of the model to develop worst-case attacks,
which can reveal much larger vulnerabilities.

We propose a white-box adversary against dif-
ferentiable text classifiers. We find that only a few

South Africa’s historic Soweto township marks its
100th birthday on Tuesday in a mood of optimism.
57% World
South Africa’s historic Soweto township marks its
100th birthday on Tuesday in a mooP of optimism.
95% Sci/Tech
Chancellor Gordon Brown has sought to quell spec-
ulation over who should run the Labour Party and
turned the attack on the opposition Conservatives.
75% World
Chancellor Gordon Brown has sought to quell spec-
ulation over who should run the Labour Party and
turned the attack on the oBposition Conservatives.
94% Business

Table 1: Adversarial examples with a single character change,
which will be misclassified by a neural classifier.

manipulations are needed to greatly increase the
misclassification error. Furthermore, fast genera-
tion of adversarial examples allows feasible ad-
versarial training, which helps the model defend
against adversarial examples and improve accu-
racy on clean examples. At the core of our method
lies an atomic flip operation, which changes one
token to another by using the directional deriva-
tives of the model with respect to the one-hot vec-
tor input.

Our contributions are as follows:

1. We propose an efficient gradient-based opti-
mization method to manipulate discrete text
structure at its one-hot representation.

2. We investigate the robustness of a classifier
trained with adversarial examples, by study-
ing its resilience to attacks and its accuracy
on clean test data.

2 Related Work

Adversarial examples are powerful tools to in-
vestigate the vulnerabilities of a deep learning
model (Szegedy et al., 2014). While this line of
research has recently received a lot of attention in
the deep learning community, it has a long history
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in machine learning, going back to adversarial at-
tacks on linear spam classifiers (Dalvi et al., 2004;
Lowd and Meek, 2005). Hosseini et al. (2017)
show that simple modifications, such as adding
spaces or dots between characters, can drasti-
cally change the toxicity score from Google’s
perspective API 1. Belinkov and Bisk (2018)
show that character-level machine translation sys-
tems are overly sensitive to random character ma-
nipulations, such as keyboard typos. They manipu-
late every word in a sentence with synthetic or nat-
ural noise. However, throughout our experiments,
we care about the degree of distortion in a sen-
tence, and look for stronger adversaries which can
increase the loss within a limited budget. Instead
of randomly perturbing text, we propose an effi-
cient method, which can generate adversarial text
using the gradients of the model with respect to
the input.

Adversarial training interleaves training with
generation of adversarial examples (Goodfellow
et al., 2015). Concretely, after every iteration of
training, adversarial examples are created and
added to the mini-batches. A projected gradient-
based approach to create adversarial examples by
Madry et al. (2018) has proved to be one of the
most effective defense mechanisms against adver-
sarial attacks for image classification. Miyato et
al. (2017) create adversarial examples by adding
noise to word embeddings, without creating real-
world textual adversarial examples. Our work is
the first to propose an efficient method to generate
real-world adversarial examples which can also be
used for effective adversarial training.

3 HotFlip

HotFlip is a method for generating adversarial ex-
amples with character substitutions (“flips”). Hot-
Flip also supports insertion and deletion opera-
tions by representing them as sequences of charac-
ter substitutions. It uses the gradient with respect
to a one-hot input representation to efficiently es-
timate which individual change has the highest es-
timated loss, and it uses a beam search to find a set
of manipulations that work well together to con-
fuse a classifier.

3.1 Definitions

We use J(x,y) to refer to the loss of the model
on input x with true output y. For example,

1https://www.perspectiveapi.com

for classification, the loss would be the log-loss
over the output of the softmax unit. Let V be
the alphabet, x be a text of length L charac-
ters, and xij ∈ {0, 1}|V | denote a one-hot vector
representing the j-th character of the i-th word.
The character sequence can be represented by

x = [(x11,.. x1n);..(xm1,.. xmn)]
wherein a semicolon denotes explicit segmenta-
tion between words. The number of words is de-
noted by m, and n is the number of maximum
characters allowed for a word.

3.2 Derivatives of Operations

We represent text operations as vectors in the
input space and estimate the change in loss by
directional derivatives with respect to these op-
erations. Based on these derivatives, the adver-
sary can choose the best loss-increasing direction.
Our algorithm requires just one function evalua-
tion (forward pass) and one gradient computation
(backward pass) to estimate the best possible flip.

A flip of the j-th character of the i-th word
(a→ b) can be represented by this vector:

~vijb = (~0 ,..;(~0 ,..(0,..-1,0,..,1,0)j ,..~0 )i; ~0 ,..)

where -1 and 1 are in the corresponding po-
sitions for the a-th and b-th characters of the
alphabet, respectively, and x

(a)
ij = 1. A first-order

approximation of change in loss can be obtained
from a directional derivative along this vector:

∇~vijb
J(x,y) = ∇xJ(x,y)

T · ~vijb

We choose the vector with biggest increase
in loss:

max∇xJ(x,y)
T · ~vijb = max

ijb

∂J

∂xij

(b)

− ∂J

∂xij

(a)

(1)

Using the derivatives as a surrogate loss, we sim-
ply need to find the best change by calling the
function mentioned in eq. 1, to estimate the best
character change (a → b). This is in contrast to
a naive loss-based approach, which has to query
the classifier for every possible change to compute
the exact loss induced by those changes. In other
words, apart from the overhead of calling the func-
tion in eq. 1, one backward pass saves the adver-
sary a large number of forward passes.
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Character insertion2 at the j-th position of the
i-th word can also be treated as a character flip,
followed by more flips as characters are shifted to
the right until the end of the word.

max∇xJ(x,y)
T ·~vijb = max

ijb

∂J

∂xij

(b)

− ∂J

∂xij

(a)

+
n∑

j′=j+1

(
∂J

∂xij′

(b
′
)

− ∂J

∂xij′

(a
′
))

where x
(a

′
)

ij′
= 1 and x

(b
′
)

ij′−1 = 1. Similarly, char-
acter deletion can be written as a number of char-
acter flips as characters are shifted to the left.
Since the magnitudes of direction vectors (oper-
ations) are different, we normalize by the L2 norm
of the vector i.e., ~v√

2N
, where N is the number of

total flips.

3.3 Multiple Changes
We explained how to estimate the best single
change in text to get the maximum increase in loss.
A greedy or beam search of r steps will give us an
adversarial example with a maximum of r flips, or
more concretely an adversarial example within an
L0 distance of r from the original example. Our
beam search requires only O(br) forward passes
and an equal number of backward passes, with r
being the budget and b, the beam width. We elab-
orate on this with an example: Consider the loss
function J(.), input x0, and an individual change
cj . We estimate the score for the change as ∂J(x0)

∂cj
.

For a sequence of 3 changes [c1,c2,c3], we evalu-
ate the “score” as follows.

score([c1, c2, c3]) =
∂J(x0)

∂c1
+

∂J(x1)

∂c2
+

∂J(x2)

∂c3

where x1 and x2 are the modified input after ap-
plying [c1] and [c1, c2] respectively. We need b
forward and backward passes to compute deriva-
tives at each step of the path, leading to O(br)
queries. In contrast, a naive loss-based approach
requires computing the exact loss for every possi-
ble change at every stage of the beam search, lead-
ing to O(brL|V |) queries.

4 Experiments

In principle, HotFlip could be applied to any dif-
ferentiable character-based classifier. Here, we fo-
cus on the CharCNN-LSTM architecture (Kim

2For ease in exposition, we assume that the word size is at
most n-1, leaving at least one position of padding at the end.

et al., 2016), which can be adapted for classifica-
tion via a single dense layer after the last recur-
rent hidden unit. We use the AG’s news dataset3,
which consists of 120,000 training and 7,600 test
instances from four equal-sized classes: World,
Sports, Business, and Science/Technology. The ar-
chitecture consists of a 2-layer stacked LSTM with
500 hidden units, a character embedding size of
25, and 1000 kernels of width 6 for temporal
convolutions. This classifier was able to outper-
form (Conneau et al., 2017), which has achieved
the state-of-the-art result on some benchmarks, on
AG’s news. The model is trained with SGD and
gradient clipping, and the batch size was set to 64.
We used 10% of the training data as the develop-
ment set, and trained for a maximum of 25 epochs.
We only allow character changes if the new word
does not exist in the vocabulary, to avoid changes
that are more likely to change the meaning of text.
The adversary uses a beam size of 10, and has a
budget of maximum of 10% of characters in the
document. In Figure 1, we plot the success rate
of the adversary against an acceptable confidence
score for the misclassification. That is, we con-
sider the adversary successful only if the classifier
misclassifies the instance with a given confidence
score. For this experiment, we create adversarial
examples for 10% of the test set.

We compare with a (greedy) black-box adver-
sary, which does not have access to model param-
eters, and simply queries the classifier with ran-
dom character changes. Belinkov and Bisk (2018)
define an attack, Key, in which a character is re-
placed with an adjacent character in the keyboard.
We allow a stronger black-box attacker to change a
character to any character in the alphabet, and we
call it Key∗. As expected a white-box adversary
is much more damaging, and has a higher success
rate. As can be seen, the beam-search strategy is
very effective in fooling the classifier even with
an 0.9 confidence constraint, tricking the classi-
fier for more than 90% of the instances. A greedy
search is less effective especially in producing
high-confidence scores. We use a maximum of
10% of characters in the document as the budget
for the adversary, but our adversary changes an av-
erage of 4.18% of the characters to trick the clas-
sifier at confidence 0.5. The adversary picks the
flip operation around 80% of the times, and favors
delete over insert by two to one.

3https://www.di.unipi.it/˜gulli/



34

0.5 0.6 0.7 0.8 0.9
confidence of prediction

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u
c
c
e
s
s
 r

a
te

HotFlip-beam search

HotFlip-greedy

BlackBox (Key*)

Figure 1: Adversary’s success as a function of confidence.

4.1 Robustness

For our adversarial training, we use only use the
flip operation, and evaluate models’ robustness
to this operation only. This is because insert and
delete manipulations are n times slower to gener-
ate, where n is the number of maximum charac-
ters allowed for a word. For these experiments, we
have no constraint on confidence score. We flip r
characters for each training sample, which was set
to 20% of the characters in text after tuning, based
on the accuracy on the development set. In addi-
tion, for faster generation of adversarial examples,
we directly apply the top r flips after the first back-
ward pass, simultaneously4.

We use the full test set for this experiment, and
we compare HotFlip adversarial training with the
white-box (supervised) adversarial training (Miy-
ato et al., 2017) that perturbs word embeddings,
which we adapt to work with character embed-
dings. Specifically, the adversarial noise per char-
acter is constrained by the Frobenius norm of the
embedding matrix composed of the sequence of
characters in the word. We also create another
baseline where instead of white-box adversarial
examples, we add black-box adversarial examples
(Key∗) to the mini-batches. As shown in Table
2, our approach decreases misclassification error
and dramatically decreases the adversary’s success
rate. In particular, adversarial training on real ad-
versarial examples generated by HotFlip, is more
effective than training on pseudo-adversarial ex-
amples created by adding noise to the embeddings.

The current error of our adversarially trained
model is still beyond an acceptable rate; this is
mainly because the adversary that we use at test
time, which uses beam search, is strictly stronger
than our model’s internal adversary. This has been
observed in computer vision where strongest ad-

4The adversary at test time would still use beam search.

Method Misc. error Success rate
Baseline 8.27% 98.16%

Adv-tr (Miyato et al., 2017) 8.03% 87.43%
Adv-tr (black-box) 8.60% 95.63%
Adv-tr (white-box) 7.65% 69.32%

Table 2: Comparison based on misclassification error on
clean data and adversary’s success rate.

versaries are not efficient enough for adversarial
training, but can break models trained with weaker
adversaries (Carlini and Wagner, 2017).

4.2 Human Perception
Our human evaluation experiment shows that our
character-based adversarial examples rarely alter
the meaning of a sentence. We conduct an experi-
ment of annotating 600 randomly-picked instances
annotated by at least three crowd workers in Ama-
zon Mechanical Turk. This set contains 150 ex-
amples of each class of AG’s-news dataset, all of
which are correctly classified by the classifier. We
manipulate half of this set by our algorithm, which
can successfully trick the classifier to misclassify
these 300 adversarial examples. The median accu-
racy of our participants decreased by 1.78% from
87.49% on clean examples to 85.71% on adversar-
ial examples. Similar small drops in human perfor-
mance have been reported for image classification
(Papernot et al., 2016) and text comprehension (Jia
and Liang, 2017).

5 HotFlip at Word-Level

HotFlip can naturally be adapted to generate ad-
versarial examples for word-level models, by com-
puting derivatives with respect to one-hot word
vectors. After a few character changes, the mean-
ing of the text is very likely to be preserved or
inferred by the reader (Rawlinson, 1976), which
was also confirmed by our human subjects study.
By contrast, word-level adversarial manipulations
are much more likely to change the meaning of
text, which makes the use of semantics-preserving
constraints necessary. For example, changing the
word good to bad changes the sentiment of the
sentence “this was a good movie”. In fact, we ex-
pect the model to predict a different label after
such a change.

To showcase the applicability of HotFlip to a
word-level classifier, we use Kim’s CNN (2014)
trained for binary sentiment classification on the
SST dataset (Socher et al., 2013). In order to create
adversarial examples, we add constraints so that
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one hour photo is an intriguing (interesting) snapshot of one man and his delusions it’s just too bad it doesn’t have
more flashes of insight.
‘enigma’ is a good (terrific) name for a movie this deliberately obtuse and unapproachable.
an intermittently pleasing (satisfying) but mostly routine effort.
an atonal estrogen opera that demonizes feminism while gifting the most sympathetic male of the piece with a nice
(wonderful) vomit bath at his wedding.
culkin exudes (infuses) none of the charm or charisma that might keep a more general audience even vaguely inter-
ested in his bratty character.

Table 3: Adversarial examples for sentiment classification. The bold words replace the words before them.

past→ pas!t Alps→ llps talk→ taln local→ loral you→ yoTu ships→ hips actor→ actr lowered→ owered
pasturing lips tall moral Tutu dips act powered
pasture laps tale Moral Hutu hops acting empowered
pastor legs tales coral Turku lips actress owed
Task slips talent morals Futurum hits acts overpowered

Table 4: Nearest neighbor words (based on cosine similarity) of word representations from CharCNN-LSTM, picked at the
output of the highway layers. A single adversarial change in the word often results in a big change in the embedding, which
would make the word more similar to other words, rather than to the original word.

the resulting sentence is likely to preserve the orig-
inal meaning; we only flip a word wi to wj only if
these constraints are satisfied:

1. The cosine similarity between the embedding
of words is bigger than a threshold (0.8).

2. The two words have the same part-of-speech.

3. We disallow replacing of stop-words, as for
many of the stop-words, it is difficult to find
cases where replacing them will still render
the sentence grammatically correct. We also
disallow changing a word to another word
with the same lexeme for the same purpose.

Table 3 shows a few adversarial examples with
only one word flip. In the second and the fourth
examples, the adversary flips a positive word (i.e.,
good, nice) with highly positive words (i.e., ter-
rific, wonderful) in an overall very negative re-
view. These examples, albeit interesting and intu-
itive, are not abundant, and thus pose less threat
to an NLP word-level model. Specifically, given
the strict set of constraints, we were able to create
only 41 examples (2% of the correctly-classified
instances of the SST test set) with one or two flips.

For a qualitative analysis of relative brittleness
of character-level models, we study the change in
word embedding as an adversarial flip, insert, or
delete operation occurs in Table 4. We use the out-
put of the highway layer as the word representa-
tion, and report the embedding for a few adver-
sarial words, for which the original word is not
among their top 5 nearest neighbors.

In a character-level model, the lookup opera-
tion to pick a word from the vocabulary is re-
placed by a character-sequence feature extractor

which gives an embedding for any input, includ-
ing OOV words which would be mapped to an
UNK token in a word-level model. This makes the
embedding space induced in character-level rep-
resentation more dense, which makes character-
level models more likely to misbehave under small
adversarial perturbations.

6 Conclusion and Future Work

White-box attacks are among the most serious
forms of attacks an adversary can inflict on a ma-
chine learning model. We create white-box adver-
sarial examples by computing derivatives with re-
spect to a few character-edit operations (i.e., flip,
insert, delete), which can be used in a beam-search
optimization. While character-edit operations have
little impact on human understanding, we found
that character-level models are highly sensitive to
adversarial perturbations. Employing these adver-
sarial examples in adversarial training renders the
models more robust to such attacks, as well as
more robust to unseen clean data.

Contrasting and evaluating robustness of differ-
ent character-level models for different tasks is an
important future direction for adversarial NLP. In
addition, the discrete nature of text makes it a more
challenging task to understand the landscape of
adversarial examples. Research in this direction
can shed light on vulnerabilities of NLP models.
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