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Abstract

Motivated by the positive impact of empty

categories on syntactic parsing, we study

neural models for pre- and in-parsing de-

tection of empty categories, which has not

previously been investigated. We find sev-

eral non-obvious facts: (a) BiLSTM can

capture non-local contextual information

which is essential for detecting empty cat-

egories, (b) even with a BiLSTM, syntac-

tic information is still able to enhance the

detection, and (c) automatic detection of

empty categories improves parsing quality

for overt words. Our neural ECD mod-

els outperform the prior state-of-the-art by

significant margins.

1 Introduction

Encoding unpronounced nominal elements, such

as dropped pronouns and traces of dislocated ele-

ments, the empty category is an important piece

of machinery in representing the (deep) syntac-

tic structure of a sentence (Carnie, 2012). Fig-

ure 1 shows an example. In linguistic theory,

e.g. Government and Binding (GB; Chomsky,

1981), empty category is a key concept bridging

S-Structure and D-Structure, due to its possible

contribution to trace movements. In practical tree-

banking, empty categories have been used to in-

dicate long-distance dependencies, discontinuous

constituents, and certain dropped elements (Mar-

cus et al., 1993; Xue et al., 2005). Recently, there

has been an increasing interest in automatic empty

category detection (ECD; Johnson, 2002; Seeker

et al., 2012; Xue and Yang, 2013; Wang et al.,

2015). And it has been shown that ECD is able to

improve the linear model-based dependency pars-

ing (Zhang et al., 2017b).

There are two key dimensions of approaches

Pre-Parsing In-Parsing Post-Parsing

Linear ✔ ✔ ✔

Neural ✘ ✘ ✔

Table 1: ECD approaches that have been investi-

gated.

for ECD: the relationship with parsing and sta-

tistical disambiguation. Considering the relation-

ship with parsing, we can divide ECD models into

three types: (1) Pre-parsing approach (e.g. Di-

enes and Dubey (2003)) where empty categories

are identified without using syntactic analysis, (2)

In-parsing approach (e.g. Cai et al. (2011); Zhang

et al. (2017b)) where detection is integrated into a

parsing model, and (3) Post-parsing approach (e.g.

Johnson (2002); Wang et al. (2015)) where parser

outputs are utilized as clues to determine the ex-

istence of empty categories. For disambiguation,

while early work on dependency parsing focused

on linear models, recent work started exploring

deep learning techniques for the post-parsing ap-

proach (Wang et al., 2015). From the above two

dimensions, we show all existing systems for ECD

in Table 1. Neural models for pre- and in-parsing

ECD have not been studied yet. In this paper, we

fill this gap in the literature.

It is obvious that empty categories are highly

related to surface syntactic analysis. To deter-

mine the existence of empty elements between two

overt words relies on not only the sequential con-

texts but also the hierarchical contexts. Traditional

linear structured prediction models, e.g. condi-

tional random fields (CRF), for sequence struc-

tures are rather weak to capture hierarchical con-

textual information which is essentially non-local

for their architectures. Accordingly, pre-parsing

models based on linear disambiguation techniques

fail to produce comparable accuracy to the other

two models. In striking contrast, RNN based se-
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上海 浦东 最近 颁布 了 ∅1 ∅2 涉及 经济 领域 的 七十一 件 法规性 文件

Shanghai Pudong recently issue AS involve economic field DE 71 M regulatory document

root

Figure 1: An example from CTB: Shanghai Pudong recently enacted 71 regulatory documents involving

the economic fields. The dependency structure is according to Xue (2007). “∅1” indicates a null operator

that represents empty relative pronouns. “∅2” indicates a trace left by relativization.

quence labeling models have been shown very

powerful to capture non-local information, and

therefore have great potential to advance the pre-

parsing approach for ECD. In this paper, we pro-

pose a new bidirectional LSTM (BiLSTM) model

for pre-parsing ECD using information about con-

textual words.

Previous studies highlight the usefulness of syn-

tactic analysis for ECD. Furthermore, syntactic

parsing of overt words can benefit from detection

of empty elements and vice versa (Zhang et al.,

2017b). In this paper, we follow Zhang et al.’s en-

couraging results obtained with linear models and

study first- and second-order neural models for in-

parsing ECD. The main challenge for neural in-

parsing ECD is to encode empty element candi-

dates and integrate the corresponding embeddings

into a parsing model. We focus on the state-of-

the-art parsing architecture developed by Kiper-

wasser and Goldberg (2016) and Dozat and Man-

ning (2016), which use BiLSTMs to extract fea-

tures from contexts followed by a nonlinear trans-

formation to perform local scoring.

To evaluate the effectiveness of deep learning

techniques for ECD, we conduct experiments on

a pro-drop language, i.e. Chinese. The empirical

evaluation indicates some non-obvious facts:

1. Neural ECD models outperform the prior

state-of-the-art by significant margins. Even

a pre-parsing model without any syntactic in-

formation outperforms the best existing lin-

ear in-parsing and post-parsing ECD models.

2. Incorporating empty elements can help neu-

ral dependency parsing. This parallels Zhang

et al.’s investigation on linear models.

3. Our in-parsing neural models obtain better

predictions than the pre-parsing model.

The implementation of all models is available

at https://github.com/draplater/

empty-parser.

2 Pre-Parsing Detection

2.1 Context of Empty Categories

Sequential Context Perhaps, it is the most intu-

itive idea to view a natural language sentence as a

word-by-word sequence. Analyzing contextual in-

formation by modeling neighboring words accord-

ing to this sequential structure is a very basic view

for dealing with a large number of NLP tasks, e.g.

POS tagging and syntactic parsing. It is also im-

portant to consider sequential contexts for ECD to

derive the horizontal features that exploit the lexi-

cal context of the current pending point, presented

as one or more preceding and following word to-

kens, as well as their part-of-speech tags (POS).

Hierarchical Context The detection of ECs re-

quires broad contextual knowledge. Besides one-

dimensional representation, vertical features are

equally essential to express the empty element.

The hierarchical structure is a compact reflection

of the syntactic content. By integrating the hierar-

chical context, we can analyze the regular distri-

butional pattern of ECs in a syntactic tree. More

specifically, it means considering the head infor-

mation of the EC and relevant dependencies to

augment the prediction.

Both sequential and hierarchical contexts are

essential to determine the existence of empty ele-

ments between two overt words. Even words close

to each other in a hierarchical structure may ap-

pear far apart in sequential representations, which

makes it hard for linear sequential tagging models

to catch the hierarchical contextual information.

RNN based sequence models have been proven

very powerful to capture non-local features. In this

paper, we show that LSTM is able to advance the

pre-parsing ECD significantly.

https://github.com/draplater/empty-parser
https://github.com/draplater/empty-parser
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Interspace: @@ 颁布(issue) @@ 了(AS) @@ 涉及(involve) @@ 经济(economic)
O VV O AS *OP**T* VV O NN

Pre2 and Pre3: 颁布(issue) 了(AS) 涉及(involve) 经济(economic)
VV AS VV#pre1=*T*#pre2=*OP* NN

Prepost: 颁布(issue) 了(AS) 涉及(involve) 经济(economic)
VV AS#post=*OP* VV#pre1=*T* NN

Figure 2: An example of four kinds of annotations. The phrase is cut out from the sentence in Figure 1.

”@@” means interspaces between words.

2.2 A Sequence-Oriented Model

In the sequence-oriented model, we formulate

ECD as a sequence labeling problem. In general,

we attach ECs to surrounding overt tokens to rep-

resent their identifications, i.e. their locations and

types. We explore four sets of annotation spec-

ifications, denoted as Interspace, Pre2, Pre3 and

Prepost, respectively. Following is the detailed de-

scriptions.

Interspace We convert ECs’ information into

different tags of the interspaces between words.

The assigned tag is the concatenation of ECs be-

tween the two words. If there is no EC, we just

tag the interspace as O. Specially, according to our

observation that only one EC occurs at the end of

the sentence in our data set, we simply count on

the heading space of sentences instead of the one

standing at the end. Assume that there are n words

in a given sentence, then there will be 2 ∗ n items

(n words and n interspaces) to tag.

Pre2 and Pre3 We stick ECs to words following

them. In experiments using POS information, ECs

are attached to the POS of the next word, while

the normal words are just tagged with their POS.

In experiments without POS information, ECs are

straightly regarded as the label of the following

words. Words without ECs ahead are consistently

tagged using an empty marker. Similar to Inter-

space, linearly consecutive ECs are concatenated

as a whole. Pre2 means that at most two preceding

consecutive ECs are considered while Pre3 limits

the considered continuous length to three. The de-

termination of window lengths are grounded in the

distribution of ECs’ continuous lengths as shown

in Table 2.

Prepost Considering that it may be a challenge

to capture long-distance features, we introduce an-

other labeling rule called Prepost. Different from

Pre2 and Pre3, the responsibility for presenting

ECs will be shared by both the preceding and the

1 2 3 4

Train 7499 3702 142 5

Dev 530 233 10 0

Test 900 433 19 0

Table 2: The distribution of ECs’ continuous

lengths in training, development and test data.

following words. Whereas, tags heading sentences

will remain unchanged. Particularly, if the amount

of consecutive ECs in the current position is an

odd number, we choose to attach the extra EC to

the following word for consistency and clarity.

Take part of the sentence in Figure 1 as an ex-

ample. As described above, the four kinds of rep-

resentations are depicted in Figure 2. To investi-

gate the effect of POS in the tagging process, we

also conduct experiments by integrating POS to

the tagging process. For Interspace, POS tags are

individual output labels, while for other represen-

tations, the POS information is used to divide an

empty category integrated tag into subtypes.

2.3 Tagging Based on LSTM-CRF

In order to capture long-range syntactic informa-

tion for accurate disambiguation in pre-parsing

phase, we build a LSTM-CRF model inspired by

the neural network proposed in Ma and Hovy

(2016). A BiLSTM layer is set up on charac-

ter embeddings for extracting character-level rep-

resentations of each word, which is concatenated

with the pre-trained word embedding before feed-

ing into another BiLSTM layer to capture contex-

tual information. Thus we have obtained dense

and continuous representations of the words in

given sentences. The last part is to decode with

linear chain CRF which can optimize the out-

put sequence by factoring in local characteristics.

Dropout layers both before and after the sentence-

level network serve to prevent over-fitting.



2690

3 In-Parsing Detection

Zhang et al. (2017b) designs novel algorithms to

produce dependency trees in which empty ele-

ments are allowed. Their results show that inte-

grating empty categories can augment the pars-

ing of overt tokens when structured perceptron, a

global linear model, is applied for disambiguation.

From a different perspective, by jointing ECD and

dependency parsing, we can utilize full syntactic

information in the process of detecting ECs. Paral-

lel to their work, we explore the effect of ECD on

the neural dependency based parsing in this sec-

tion.

3.1 Joint ECD and Dependency Parsing

To perform ECD and dependency parsing in a uni-

fied framework, we formulate the issue as an op-

timization problem. Assume that we are given a

sentence s with n normal words. We use an in-

dex set Io = {(i, j)|i, j ∈ {1, · · · , n}} to de-

note all possible overt dependency edges, and use

Ic = {(i, φj)|i, j ∈ {1, · · · , n}} to denote all

possible covert dependency edges. φj denotes an

empty node that precede the jth word. Then a de-

pendency parse with empty nodes can be repre-

sented as a vector:

z = {z(i, j) : (i, j) ∈ Io ∪ Ic}.

Let Z denote the set of all possible z, and

PART(z) denote the factors in the dependency

tree, including edges (and edge siblings in the

second-order model). Then parsing with ECD can

be defined as a search for the highest-scored z
∗(s)

in all compatible analyses, just like parsing with-

out empty elements:

z
∗(s) = arg max

z∈Z(s)
SCORE(s, z)

= arg max
z∈Z(s)

∑

p∈PART(z)

SCOREPART(s, p)

The graph-based parsing algorithms proposed

by Zhang et al. are based on two properties: ECs

can only serve as dependents and the number of

successive ECs is limited. The latter trait makes

it reasonable to treat consecutive ECs governed by

the same head as one word. We also follow this

set-up.

3.2 Scoring Based on BiLSTM

Kiperwasser and Goldberg (2016) proposed a sim-

ple yet effective architecture to implement neural

Bi-LSTMs

Embedding

i

It PRP

. . .

. . .

Bi-LSTMs

Embedding

j

Black NNP

Bi-LSTMs

Embedding

j + 1

Monday NNP

. . .

. . .

MLPovert edge

SCOREDEP(i, j)

MLPcovert edge

SCOREEMPTY(i, φj+1)

MLPovert both sibling

SCOREOVERTBOTH(i, j, j + 1)

Figure 3: The neural network structure when pars-

ing sentence ”It wasn’t Black Monday.” 5 MLPs

is used for overt edges (i, j), covert edges (i, φj),
overt-both siblings (i, j, k), covert-inside siblings

(i, φj , k) and covert-outside siblings (i, j, φk) re-

spectively, and 3 of them are shown in the graph.

dependency parsers. In particular, a BiLSTM is

utilized as a powerful feature extractor to assist

a dependency parser. Mainstream data-driven de-

pendency parsers, including both transition- and

graph-based ones, can apply useful word vec-

tors provided by a BiLSTM to conduct the dis-

ambiguation. Following Kiperwasser and Gold-

berg (2016)’s experience on graph-based depen-

dency parser, we implement such a parser to re-

cover empty categories and to evaluate the impact

of empty categories on surface parsing.

Here we present details of the design of our

parser. A vector is associated with each word or

POS-tag to transform them into continuous and

dense representations. We use pre-trained word

embeddings and random initialized POS-tag em-

beddings.

The concatenation of the word embedding and

the POS-tag embedding of each word in a specific

sentence is used as the input of BiLSTMs to ex-

tract context related feature vectors ri.

r1:n = BiLSTM(s; 1 : n)

The context related feature vectors are fed into

a non-linear transformation to perform scoring.

3.3 A First-Order Model

In the first-order model, we only consider the head

and the dependent of the possible dependency arc.

The two feature vectors of each word pair is scored

with a non-linear transformation g as the first-

order score. When words i and j are overt words,
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we define the score function in sentence s as fol-

lows,

SCOREDEP(s, i, j)
= W2 · g(W1,1 · ri +W1,2 · rj + b)

W2, W1,1 and W1,2 denote the weight matrices in

linear transformations. The score of covert edge

from word i to word φj is calculated in a similar

way with different parameters:

SCOREEMPTY(s, i, φj)
= W

′
2 · g(W

′
1,1 · ri +W

′
1,2 · rj + b

′)

These non-linear transformations are also

known as Multiple Layer Perceptrons(MLPs). The

total score in our first-order model is defined as

follows,

SCORE(s, z) =
∑

(i,j)∈DEP(z)

SCOREDEP(s, i, j)

+
∑

(i,φj)∈DEPEMPTY(z)

SCOREEMPTY(s, i, φj)

DEP(z) and DEPEMPTY(z) denote all overt

and covert edges in z respectively. Because each

overt and covert edge is selected independently

of the others, the decoding process can be seen

as calculating the maximum subtree from overt

edges(we use Eisner Algorithm in our experi-

ments) and appending each covert edge (i, φj)
when SCOREEMPTY(i, φj) > 0.

3.4 A Second-Order Model

In the second-order model, we also consider sib-

ling arcs. We extend the neural network in sec-

tion 3.3 to perform the second-order parsing. We

calculate second-order scores(scores defined over

sibling arcs) in a similar way. Each pair of overt

sibling arcs, for example, (i, j) and (i, k) (j < k),

is denoted as (i, j, k) and scored with a non-linear

transformation.

SCOREOVERTBOTH(s, i, j, k) =

W
′′
2 · g(W ′′

1,1 · ri +W
′′
1,2 · rj +W

′′
1,3 · rk + b

′′)

Zhang et al. (2017b) defines two kinds of

second-order scores to describe the interaction be-

tween concrete nodes and empty categories: the

covert-inside sibling (i, φj , k) and covert-outside

sibling (i, j, φk). Their scores can be calculated in

a similar way with different parameters.

And finally, the score function over the whole

syntactic analysis is defined as:

SCORE(s, z) =
∑

(i,j)∈DEP(z)

SCOREDEP(s, i, j)

+
∑

(i,φj)∈DEPEMPTY(z)

SCOREEMPTY(s, i, φj)

+
∑

(i,j,k)∈OVERTBOTH(z)

SCOREOVERTBOTH(s, i, j, k)

+
∑

(i,φj ,k)∈COVERTIN(z)

SCORECOVERTIN(s, i, φj , k)

+
∑

(i,j,φk)∈COVERTOUT(z)

SCORECOVERTOUT(s, i, j, φk)

OVERTBOTH(z), COVERTIN(z) and

COVERTOUT(z) denotes overt-both, covert-

inside and covert-outside siblings of z respec-

tively. Totally 5 MLPs are used to calculate the 5

types of scores. The network structure is shown in

Figure 3.

Labeled Parsing Similar to Kiperwasser and

Goldberg (2016) and Zhang et al. (2017a), we

use a two-step process to perform labeled parsing:

conduct an unlabeled parsing and assign labels to

each dependency edge. The labels are determined

with the nonlinear classification. We use different

nonlinear classifiers for edges between concrete

nodes and empty categories.

Training In order to update graphs which have

high model scores but are very wrong, we use a

margin-based approach to compute loss from the

gold tree T ∗ and the best prediction T̂ under the

current model.

We define the loss term as:

max(0,∆(T ∗, T̂ )− SCORE(T ∗) + SCORE(T̂ ))

The margin objective ∆ measures the similarity

between the gold tree T ∗ and the prediction T̂ .

Following Kiperwasser and Goldberg (2016)’s ex-

perience of loss augmented inference, we define

∆ as the count of dependency edges in prediction

results but not belonging to the gold tree.

3.5 Structure Regularization

ECD significantly increases the search space for

parsing. This results in a side effect for practi-

cal parsing. Given the limit of available anno-

tations for training, searching for more complex

structures in a larger space is harmful to the gen-

eralization ability in structured prediction (Sun,
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2014). To control structure-based overfitting, we

train a normal dependency parser, namely parser

for overt words only, and use its first- and second-

order scores to augment the corresponding score

functions in the joint parsing and ECD model. At

the training phase, the two parsers are trained sep-

arately, while at the test phase, the scores are cal-

culated by individual models and added for decod-

ing.

4 Experiments

4.1 Experimental Setup

4.1.1 Data

We conduct experiments on a subset of Penn Chi-

nese Treebank (CTB; Xue et al., 2005) 9.0. As a

pro-drop language, the empty category is a very

useful method for representing the (deep) syntac-

tic analysis in Chinese language. Empty cate-

gories in CTB is divided into six classes: pro,

PRO, OP, T, RNR and *, which were described in

detail in Xue and Yang (2013); Wang et al. (2015).

For comparability with the state-of-the-art, the di-

vision of training, development and testing data is

coincident with the previous work (Xue and Yang,

2013).

Our experiments can be divided into two

groups. The first group is conducted on the linear

conditional random field (Linear-CRF) model and

LSTM-CRF tagging model to evaluate gains from

the introduction of neural structures. The second

group is designed for the dependency-based in-

parsing models.

4.1.2 Evaluation Metrics

We adopt two kinds of metrics for the evaluation

of our experiments. The first one focuses on EC’s

position and type, in accordance with the labeled

empty elements measure proposed by Cai et al.

(2011), which can be implemented on all models

in our experiments. The second one is stricter. Be-

sides position and type, it also checks EC’s head

information. An EC is considered to be correct,

only when all the three parts are the same as the

corresponding gold standard. Thus only models

involved in dependency structures can be evalu-

ated according to the latter metric. Based on above

measures of the two degrees, we evaluate our neu-

ral pre- and in-parsing models regarding each type

of EC as well as overall performance.

Besides, to compare different models’ abili-

ties to capture non-local information, we design

Dependency Distance to indicate the number of

words from one EC to its head, not counting other

ECs on the path. Taking the two ECs in Figure

1 as an example, ∅2 has a Dependency Distance

of 0 while ∅1 ’s Dependency Distance is 3. We

calculate labeled recall scores for enumerated De-

pendency Distance. A higher score means greater

capability to catch and to represent long-distance

details.

4.2 Results of Pre-Parsing Models

Table 3 shows overall performances of the two se-

quential models on development data. From the

results, we can clearly see that the introduction of

neural structure pushes up the scores exception-

ally. The reason is that our LSTM-CRF model

not only benefits from the linear weighted com-

bination of local characteristics like ordinary CRF

models, but also has the ability to integrate more

contextual information, especially long-distance

information. It confirms LSTM-based models’

great superiority in sequence labeling problems.

Further more, we find that the difference among

the four kinds of representations is not so obvi-

ous. The most performing one with LSTM-CRF

model is Interspace, but the advantage is narrow.

Pre3 uses a larger window length to incorporate

richer contextual tokens, but at the same time, the

searching space for decoding grows larger. It ex-

plains that the performance drops slightly with in-

creasing window length. In general, experiments

with POS tags show higher scores as more syntac-

tic clues are incorporated.

We compare LSTM-CRF with other state-of-

the-art systems in Table 41. We can see that a sim-

ple neural pre-parsing model outperforms state-of-

the-art linear in-parsing systems. Analysis about

results on different EC types as displayed in Ta-

ble 5 shows that the sequence-oriented pre-parsing

model is good at detecting pro compared with pre-

vious systems, which is used widely in pro-drop

languages. Additionally, the model succeeds in

detecting seven * EC tokens in evaluating process.

* indicates trace left by passivization as well as

raising, and is very rare in training data. Previous

models usually cannot identify any *. This detail

reflects that the LSTM-CRF model can make the

most of limited training data compared with exist-

ing systems.

1 Wang et al. (2015) reported an overall F-score of 71.7.
But their result is based on the gold standard syntactic analy-
sis.
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Linear CRF LSTM-CRF

Without POS With POS Without POS With POS

P R F1 P R F1 P R F1 P R F1

Interspace 74.6 20.6 32.2 71.2 30.3 42.5 67.9 59.8 63.6 73.0 61.6 66.8

Pre2 72.4 30.1 42.5 72.8 32.4 44.8 71.1 58.3 64.1 74.8 57.4 65.0

Pre3 73.1 30.2 42.8 73.0 32.5 44.9 71.1 58.5 64.2 73.8 57.0 64.3

Prepost 70.9 32.9 45.0 74.4 30.3 43.1 71.0 57.6 63.6 72.9 58.6 65.0

Table 3: The overall performance of the two sequential models on development data.

P R F1

Pre-parsing 67.3 54.7 60.4

In-parsing 72.6 55.5 62.9

In-parsing* 70.9 54.1 61.4

(Xue and Yang, 2013)* 65.3 51.2 57.4

(Cai et al., 2011) 66.0 54.5 58.6

Table 4: The overall performance on test data. ”*”

indicates more stringent evaluation metrics.

EC Type Total Correct P R F1

pro 315 85 52.5 27.0 35.6

PRO 300 183 58.8 61.0 59.9

OP 575 338 73.0 58.8 65.1

T 580 355 73.3 61.2 66.7

RNR 34 30 62.5 88.2 73.2

* 19 7 46.7 36.8 41.2

Overall 1823 998 67.3 54.7 60.4

Table 5: Occurrences of different ECs in test data

and detailed results of Interspace with POS infor-

mation.

4.3 Results of In-Parsing Models

Table 6 presents detailed results of the in-parsing

models on test data. Compared with the state-

of-the-art, the first-order model performs a little

worse while the second-order model achieves a

remarkable score. The first-order parsing model

only constrains the dependencies of both the

covert and overt tokens to make up a tree. Due

to the loose scoring constraint of the first-order

model, the prediction of empty nodes is affected

little from the prediction of dependencies of overt

words. The four bold numbers in the table in-

tuitively elicits the conclusion that integrating an

empty edge and its sibling overt edges is neces-

sary to boost the performance. It makes sense be-

cause empty categories are highly related to syn-

tactic analysis. When we conduct ECD and de-

pendency parsing simultaneously, we can leverage

First-order Second-order

Type P R F1 P R F1

pro 52.5 16.8 25.5 54.4 19.7 28.9

PRO 59.7 47.3 52.8 60.6 58.0 59.3

OP 74.5 55.8 63.8 79.6 67.8 73.2

T 70.6 51.7 59.7 77.3 62.8 69.3

RNR 70.8 50.0 58.6 77.8 61.8 68.9

* 0.0 0.0 0.0 0.0 0.0 0.0

Overall 68.2 45.7 54.7 72.6 55.5 62.9

Evaluation with Head

pro 50.5 16.2 24.5 52.6 19.1 28.0

PRO 58.4 46.3 51.7 57.8 55.3 56.6

OP 72.2 54.1 61.8 78.6 67.0 72.3

T 68.5 50.2 57.9 75.4 61.2 67.6

RNR 70.8 50.0 58.6 77.8 61.8 68.9

* 0.0 0.0 0.0 0.0 0.0 0.0

Overall 66.3 44.4 53.2 70.9 54.1 61.4

Table 6: The performances of the first- and

second-order in-parsing models on test data.

more hierarchical contextual information. Com-

paring results regarding EC types, we can find that

OP and T benefit most from the parsing informa-

tion, the F1 score increasing by about ten points,

more markedly than other types.

4.4 Results on Dependency Parsing

Table 7 shows the impact of automatic detection

of empty categories on parsing overt words. We

compare the results of both steps in labeled pars-

ing. We can clearly see that integrating empty el-

ements into dependency parsing can improve the

neural parsing accuracy of overt words. Besides,

when jointing parsing models both without and

with ECs together, we can push up the perfor-

mance further. These results confirm the conclu-

sion in Zhang et al. (2017b) that empty elements

help parse the overt words. The main reason lies

in that the existence of ECs provides extra struc-

tural information which can reduce approximation
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-EC +EC -+EC

Unlabeled 87.6 88.9 89.6

Labeled 84.6 85.9 86.6

Table 7: Accuracies of both unlabeled and labeled

parsing on development data. -EC indicates pars-

ing without empty categories. +EC indicates the

second-order in-parsing models. -+EC indicates

jointing parsing models both without and with ECs

together.

errors in a structured prediction problem.

According to above analysis, we can draw a

conclusion that ECD and syntactic parsing can

promote each other mutually. That partially ex-

plains why in-parsing models can outperform pre-

parsing models. Meanwhile, it provides a new ap-

proach to improving the dependency parsing qual-

ity in a unified framework.

4.5 Impact of Dependency Distance
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Figure 4: Recall scores of different models regard-

ing Dependency Distance. ”Pre-parsing” and ”In-

parsing” refer to the LSTM-CRF model and the

dependency-based in-parsing model respectively.

We compare pre- and in-parsing models re-

garding Dependency Distance. The former refers

to the LSTM-CRF model while the latter means

the dependency-based in-parsing model. Figure 4

shows the results. The abscissa value ranges from

0 to 26, with the longest dependency arc spanning

26 non-EC word tokens. We can see that long-

distance disambiguation is a challenge shared by

both models. When the value of Dependency Dis-

tance exceeds four, the recall score drops gradu-

ally with abscissa increasing. Based on the com-

parison of two sets of data, we can find that in-

parsing model performs better on ECs which are

close to their heads. However, as for ECs which

are far apart from their heads, two models have

performed almost exactly alike. It demonstrates

that LSTM structure is capable of capturing non-

local features, making up for no exposure to pars-

ing information.

4.6 Challenges

On the whole, the most challenging EC type is

pro. We assume that it is because that pro-drop

situations are complicated and diverse in Chinese

language. According to Chinese linguistic the-

ory, pronouns are dropped as a result of continu-

ing from the preceding discourse or just idiomatic

rules, such as the ellipsis of the first person pro-

noun “我/I” in the subject position. To fill this gap,

we may need to extract more deep structural fea-

tures.

Another difficulty is the detection of consecu-

tive ECs. In the result of our experiments, in-

parsing dependency-based model can only accu-

rately detect up to two consecutive ECs. Too many

empty elements in the same sentence conceal too

much syntactic information, making it hard to dis-

close the original structure.

Moreover, in view of the fact that ECs play an

essential role in syntactic analysis, the current de-

tection accuracy of ECs is far from enough. We

still have a long way to go.

5 Related Work

The detection of empty categories is an essen-

tial ground for many downstream tasks. For ex-

ample, Chung and Gildea (2010) has proved that

automatic empty category detection has a posi-

tive impact on machine translation. Zhang et al.

(2017b) shows that ECD can benefit linear syn-

tactic parsing of overt words. To accurately dis-

tinguish empty elements in sentences, there are

generally three approaches. The first method is to

build pre-processors before syntactic parsing. Di-

enes and Dubey (2003) proposed a shallow trace

tagger which can detect discontinuities. And it

can be combined with unlexicalized PCFG parsers

to implement deep syntactic processing. Due to

the lack of phrase structure information, it did not

acquire remarkable results. The second method

is to integrate ECD into parsing, as shown in

Schmid (2006) and Cai et al. (2011), which in-

volved empty elements in the process of generat-

ing parse trees. Another in-parsing system is pro-
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posed in Zhang et al. (2017b). Zhang et al. (2017b)

designed algorithms to produce dependency trees

in which empty elements are allowed. To add

empty elements into dependency structures, they

extend Eisner’s first-order DP algorithm for pars-

ing to second- and third-order algorithms. The

last approach to recognizing empty elements is

post-parsing methods. Johnson (2002) proposed a

simple pattern-matching algorithm for recovering

empty nodes in phrase structure trees while Camp-

bell (2004) presented a rule-based algorithm. Xue

and Yang (2013) conducted ECD based on depen-

dency trees. Their methods can leverage richer

syntactic information, thus have achieved more

satisfying scores.

As neural networks have been demonstrated to

have a great ability to capture complex features,

it has been applied in multiple NLP tasks (Bengio

and Schwenk, 2006; Collobert et al., 2011). Neu-

ral methods have also explored in distinguishing

empty elements. For example, Wang et al. (2015)

described a novel ECD solution using distributed

word representations and achieved the state-of-

the-art performance. Based on above work, we ex-

plore neural pre- and in-parsing models for ECD.

6 Conclusion

Neural networks have played a big role in multiple

NLP tasks recently owing to its nonlinear mapping

ability and the avoidance of human-engineered

features. It should be a well-justified solution to

identify empty categories as well as to integrate

empty categories into syntactic analysis. In this

paper, we study neural models to detect empty

categories. We observe three facts: (1) BiLSTM

significantly advances the pre-parsing ECD. (2)

Automatic ECD improves the neural dependency

parsing quality for overt words. (3) Even with a

BiLSTM, syntactic information can enhance the

detection further. Experiments on Chinese lan-

guage show that our neural model for ECD excep-

tionally boosts the state-of-the-art detection accu-

racy.
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Pétr Dienes and Amit Dubey. 2003. Deep syn-
tactic processing by combining shallow meth-
ods. In Proceedings of the 41st Annual
Meeting of the Association for Computational
Linguistics. Association for Computational
Linguistics, Sapporo, Japan, pages 431–438.
https://doi.org/10.3115/1075096.1075151.

Timothy Dozat and Christopher D. Manning.
2016. Deep biaffine attention for neural de-
pendency parsing. CoRR abs/1611.01734.
http://arxiv.org/abs/1611.01734.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. In Proceedings of 40th Annual Meet-
ing of the Association for Computational Linguis-
tics. Association for Computational Linguistics,

http://www.aclweb.org/anthology/P11-2037
http://www.aclweb.org/anthology/P11-2037
http://www.aclweb.org/anthology/P11-2037
https://doi.org/10.3115/1218955.1219037
https://doi.org/10.3115/1218955.1219037
https://doi.org/10.3115/1218955.1219037
https://books.google.com/books?id=jhGKMAEACAAJ
http://www.aclweb.org/anthology/D10-1062
http://www.aclweb.org/anthology/D10-1062
http://www.aclweb.org/anthology/D10-1062
http://www.aclweb.org/anthology/D10-1062
https://doi.org/10.3115/1075096.1075151
https://doi.org/10.3115/1075096.1075151
https://doi.org/10.3115/1075096.1075151
https://doi.org/10.3115/1075096.1075151
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
https://doi.org/10.3115/1073083.1073107
https://doi.org/10.3115/1073083.1073107
https://doi.org/10.3115/1073083.1073107


2696

Philadelphia, Pennsylvania, USA, pages 136–143.
https://doi.org/10.3115/1073083.1073107.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and accurate dependency parsing
using bidirectional lstm feature represen-
tations. Transactions of the Association
for Computational Linguistics 4:313–327.
https://transacl.org/ojs/index.php/tacl/article/view/885.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 1064–1074.
http://www.aclweb.org/anthology/P16-1101.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large
annotated corpus of english: the penn tree-
bank. Computational Linguistics 19(2):313–330.
http://dl.acm.org/citation.cfm?id=972470.972475.

Helmut Schmid. 2006. Trace prediction and recov-
ery with unlexicalized pcfgs and slash features.
In Proceedings of the 21st International Confer-
ence on Computational Linguistics and 44th An-
nual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics, Sydney, Australia, pages 177–184.
https://doi.org/10.3115/1220175.1220198.
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