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Abstract

Word embeddings have been widely used
in sentiment classification because of their
efficacy for semantic representations of
words. Given reviews from different do-
mains, some existing methods for word
embeddings exploit sentiment informa-
tion, but they cannot produce domain-
sensitive embeddings. On the other hand,
some other existing methods can generate
domain-sensitive word embeddings, but
they cannot distinguish words with sim-
ilar contexts but opposite sentiment po-
larity. We propose a new method for
learning domain-sensitive and sentiment-
aware embeddings that simultaneously
capture the information of sentiment se-
mantics and domain sensitivity of individ-
ual words. Our method can automatically
determine and produce domain-common
embeddings and domain-specific embed-
dings. The differentiation of domain-
common and domain-specific words en-
ables the advantage of data augmentation
of common semantics from multiple do-
mains and capture the varied semantics of
specific words from different domains at
the same time. Experimental results show
that our model provides an effective way
to learn domain-sensitive and sentiment-
aware word embeddings which benefit
sentiment classification at both sentence
level and lexicon term level.

∗ This work was partially done when Bei Shi was an
intern at Tencent AI Lab. This project is substantially sup-
ported by a grant from the Research Grant Council of the
Hong Kong Special Administrative Region, China (Project
Code: 14203414).

1 Introduction

Sentiment classification aims to predict the sen-
timent polarity, such as “positive” or “negative”,
over a piece of review. It has been a long-standing
research topic because of its importance for many
applications such as social media analysis, e-
commerce, and marketing (Liu, 2012; Pang et al.,
2008). Deep learning has brought in progress
in various NLP tasks, including sentiment clas-
sification. Some researchers focus on design-
ing RNN or CNN based models for predicting
sentence level (Kim, 2014) or aspect level sen-
timent (Li et al., 2018; Chen et al., 2017; Wang
et al., 2016). These works directly take the word
embeddings pre-trained for general purpose as ini-
tial word representations and may conduct fine
tuning in the training process. Some other re-
searchers look into the problem of learning task-
specific word embeddings for sentiment classifi-
cation aiming at solving some limitations of ap-
plying general pre-trained word embeddings. For
example, Tang et al. (2014b) develop a neural net-
work model to convey sentiment information in
the word embeddings. As a result, the learned
embeddings are sentiment-aware and able to dis-
tinguish words with similar syntactic context but
opposite sentiment polarity, such as the words
“good” and “bad”. In fact, sentiment information
can be easily obtained or derived in large scale
from some data sources (e.g., the ratings provided
by users), which allows reliable learning of such
sentiment-aware embeddings.

Apart from these words (e.g. “good” and
“bad”) with consistent sentiment polarity in differ-
ent contexts, the polarity of some sentiment words
is domain-sensitive. For example, the word
“lightweight” usually connotes a positive senti-
ment in the electronics domain since a lightweight
device is easier to carry. In contrast, in the movie
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domain, the word “lightweight” usually connotes a
negative opinion describing movies that do not in-
voke deep thoughts among the audience. This ob-
servation motivates the study of learning domain-
sensitive word representations (Yang et al., 2017;
Bollegala et al., 2015, 2014). They basically learn
separate embeddings of the same word for differ-
ent domains. To bridge the semantics of individual
embedding spaces, they select a subset of words
that are likely to be domain-insensitive and align
the dimensions of their embeddings. However,
the sentiment information is not exploited in these
methods although they intend to tackle the task of
sentiment classification.

In this paper, we aim at learning word em-
beddings that are both domain-sensitive and
sentiment-aware. Our proposed method can
jointly model the sentiment semantics and do-
main specificity of words, expecting the learned
embeddings to achieve superior performance for
the task of sentiment classification. Specifically,
our method can automatically determine and pro-
duce domain-common embeddings and domain-
specific embeddings. Domain-common embed-
dings represent the fact that the semantics of
a word including its sentiment and meaning in
different domains are very similar. For exam-
ple, the words “good” and “interesting” are usu-
ally domain-common and convey consistent se-
mantic meanings and positive sentiments in dif-
ferent domains. Thus, they should have simi-
lar embeddings across domains. On the other
hand, domain-specific word embeddings represent
the fact that the sentiments or meanings across
domains are different. For example, the word
“lightweight” represents different sentiment polar-
ities in the electronics domain and the movie do-
main. Moreover, some polysemous words have
different meanings in different domains. For ex-
ample, the term “apple” refers to the famous tech-
nology company in the electronics domain or a
kind of fruit in the food domain.

Our model exploits the information of sen-
timent labels and context words to distinguish
domain-common and domain-specific words. If a
word has similar sentiments and contexts across
domains, it indicates that the word has com-
mon semantics in these domains, and thus it is
treated as domain-common. Otherwise, the word
is considered as domain-specific. The learning
of domain-common embeddings can allow the ad-

vantage of data augmentation of common seman-
tics of multiple domains, and meanwhile, domain-
specific embeddings allow us to capture the varied
semantics of specific words in different domains.
Specifically, for each word in the vocabulary, we
design a distribution to depict the probability of
the word being domain-common. The inference
of the probability distribution is conducted based
on the observed sentiments and contexts. As men-
tioned above, we also exploit the information of
sentiment labels for the learning of word embed-
dings that can distinguish words with similar syn-
tactic context but opposite sentiment polarity.

To demonstrate the advantages of our domain-
sensitive and sentiment-aware word embeddings,
we conduct experiments on four domains, includ-
ing books, DVSs, electronics, and kitchen appli-
ances. The experimental results show that our
model can outperform the state-of-the-art mod-
els on the task of sentence level sentiment clas-
sification. Moreover, we conduct lexicon term
sentiment classification in two common sentiment
lexicon sets to evaluate the effectiveness of our
sentiment-aware embeddings learned from mul-
tiple domains, and it shows that our model out-
performs the state-of-the-art models on most do-
mains.

2 Related Works

Traditional vector space models encode individual
words using the one-hot representation, namely,
a high-dimensional vector with all zeroes ex-
cept in one component corresponding to that
word (Baeza-Yates et al., 1999). Such represen-
tations suffer from the curse of dimensionality,
as there are many components in these vectors
due to the vocabulary size. Another drawback
is that semantic relatedness of words cannot be
modeled using such representations. To address
these shortcomings, Rumelhart et al. (1988) pro-
pose to use distributed word representation in-
stead, called word embeddings. Several tech-
niques for generating such representations have
been investigated. For example, Bengio et al. pro-
pose a neural network architecture for this pur-
pose (Bengio et al., 2003; Bengio, 2009). Later,
Mikolov et al. (2013) propose two methods that
are considerably more efficient, namely skip-gram
and CBOW. This work has made it possible to
learn word embeddings from large data sets, which
has led to the current popularity of word embed-
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dings. Word embedding models have been ap-
plied to many tasks, such as named entity recogni-
tion (Turian et al., 2010), word sense disambigua-
tion (Collobert et al., 2011; Iacobacci et al., 2016;
Zhang and Hasan, 2017; Dave et al., 2018), pars-
ing (Roth and Lapata, 2016), and document clas-
sification (Tang et al., 2014a,b; Shi et al., 2017).

Sentiment classification has been a long-
standing research topic (Liu, 2012; Pang et al.,
2008; Chen et al., 2017; Moraes et al., 2013).
Given a review, the task aims at predicting the
sentiment polarity on the sentence level (Kim,
2014) or the aspect level (Li et al., 2018; Chen
et al., 2017). Supervised learning algorithms have
been widely used in sentiment classification (Pang
et al., 2002). People usually use different ex-
pressions of sentiment semantics in different do-
mains. Due to the mismatch between domain-
specific words, a sentiment classifier trained in
one domain may not work well when it is directly
applied to other domains. Thus cross-domain
sentiment classification algorithms have been ex-
plored (Pan et al., 2010; Li et al., 2009; Glo-
rot et al., 2011). These works usually find com-
mon feature spaces across domains and then share
learned parameters from the source domain to the
target domain. For example, Pan et al. (2010)
propose a spectral feature alignment algorithm to
align words from different domains into unified
clusters. Then the clusters can be used to reduce
the gap between words of the two domains, which
can be used to train sentiment classifiers in the tar-
get domain. Compared with the above works, our
model focuses on learning both domain-common
and domain-specific embeddings given reviews
from all the domains instead of only transferring
the common semantics from the source domain to
the target domain.

Some researchers have proposed some methods
to learn task-specific word embeddings for senti-
ment classification (Tang et al., 2014a,b). Tang
et al. (2014b) propose a model named SSWE to
learn sentiment-aware embedding via incorporat-
ing sentiment polarity of texts in the loss func-
tions of neural networks. Without the consid-
eration of varied semantics of domain-specific
words in different domains, their model cannot
learn sentiment-aware embeddings across multi-
ple domains. Some works have been proposed
to learn word representations considering multi-
ple domains (Yang et al., 2017; Bach et al., 2016;

Bollegala et al., 2015). Most of them learn sep-
arate embeddings of the same word for differ-
ent domains. Then they choose pivot words ac-
cording to frequency-based statistical measures
to bridge the semantics of individual embedding
spaces. A regularization formulation enforcing
that word representations of pivot words should
be similar in different domains is added into the
original word embedding framework. For exam-
ple, Yang et al. (2017) use Sørensen-Dice coeffi-
cient (Sørensen, 1948) for detecting pivot words
and learn word representations across domains.
Even though they evaluate the model via the task
of sentiment classification, sentiment information
associated with the reviews are not considered in
the learned embeddings. Moreover, the selection
of pivot words is according to frequency-based
statistical measures in the above works. In our
model, the domain-common words are jointly de-
termined by sentiment information and context
words.

3 Model Description

We propose a new model, named DSE, for learn-
ing Domain-sensitive and Sentiment-aware word
Embeddings. For presentation clarity, we describe
DSE based on two domains. Note that it can be
easily extended for more than two domains, and
we remark on how to extend near the end of this
section.

3.1 Design of Embeddings

We assume that the input consists of text reviews
of two domains, namely Dp and Dq. Each review
r in Dp and Dq is associated with a sentiment la-
bel y which can take on the value of 1 and 0 de-
noting that the sentiment of the review is positive
and negative respectively.

In our DSE model, each word w in the
whole vocabulary Λ is associated with a domain-
common vector U c

w and two domain-specific vec-
tors, namely Up

w specific to the domain p and U q
w

specific to the domain q. The dimension of these
vectors is d. The design of U c

w, Up
w and U q

w re-
flects one characteristic of our model: allowing a
word to have different semantics across different
domains. The semantic of each word includes not
only the semantic meaning but also the sentiment
orientation of the word. If the semantic of w is
consistent in the domains p and q, we use the vec-
tor U c

w for both domains. Otherwise, w is repre-
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sented by Up
w and U q

w for p and q respectively.
In traditional cross-domain word embedding

methods (Yang et al., 2017; Bollegala et al., 2015,
2016), each word is represented by different vec-
tors in different domains without differentiation of
domain-common and domain-specific words. In
contrast to these methods, for each wordw, we use
a latent variable zw to depict its domain common-
ality. When zw = 1, it means that w is common
in both domains. Otherwise, w is specific to the
domain p or the domain q.

In the standard skip-gram model (Mikolov
et al., 2013), the probability of predicting the
context words is only affected by the relatedness
with the target words. In our DSE model, pre-
dicting the context words also depends on the
domain-commonality of the target word, i.e zw.
For example, assume that there are two domains,
e.g. the electronics domain and the movie do-
main. If zw = 1, it indicates a high probability
of generating some domain-common words such
as “good”, “bad” or “satisfied”. Otherwise, the
domain-specific words are more likely to be gen-
erated such as “reliable”, “cheap” or “compacts”
for the electronics domain. For a word w, we as-
sume that the probability of predicting the context
word wt is formulated as follows:

p(wt|w) =
∑

k∈{0,1}

p(wt|w, zw = k)p(zw = k)

(1)
If w is a domain-common word without differ-

entiating p and q, the probability of predicting wt

can be defined as:

p(wt|w, zw = 1) =
exp(U c

w · Vwt)∑
w′∈Λ exp(U c

w · Vw′)
(2)

where Λ is the whole vocabulary and Vw′ is the
output vector of the word w′.

If w is a domain-specific word, the probability
of p(wt|w, zw = 0) is specific to the occurrence of
w in Dp or Dq. For individual training instances,
the occurrences of w inDp orDq have been estab-
lished. Then the probability of p(wt|w, zw = 0)
can be defined as follows:

p(wt|w, zw = 0) =


exp(Up

w·Vwt )∑
w′∈Λ exp(Up

w·Vw′ )
, if w ∈ Dp

exp(Uq
w·Vwt )∑

w′∈Λ exp(Uq
w·Vw′ )

, if w ∈ Dq

(3)

3.2 Exploiting Sentiment Information
In our DSE model, the prediction of review sen-
timent depends on not only the text information
but also the domain-commonality. For exam-
ple, the domain-common word “good” has high
probability to be positive in different reviews
across multiple domains. However, for the word
“lightweight”, it would be positive in the electron-
ics domain, but negative in the movie domain. We
define the polarity yw of each wordw to be consis-
tent with the sentiment label of the review: if we
observe that a review is associated with a positive
label, the words in the review are associated with a
positive label too. Then, the probability of predict-
ing the sentiment for the wordw can be defined as:

p(yw|w) =
∑

k∈{0,1}

p(yw|w, zw = k)p(zw = k)

(4)
If zw = 1, the word w is a domain-common word.
The probability p(yw = 1|w, zw = 1) can be de-
fined as:

p(yw = 1|w, zw = 1) = σ(U c
w · s) (5)

where σ(·) is the sigmoid function and the vector
s with dimension d represents the boundary of the
sentiment. Moreover, we have:

p(yw = 0|w, zw = 1) = 1−p(yw = 1|w, zw = 1)
(6)

If w is a domain-specific word, similarly, the
probability p(yw = 1|w, zw = 0) is defined as:

p(yw = 1|w, zw = 0) =

{
σ(Up

w · s) if w ∈ Dp

σ(U q
w · s) if w ∈ Dq

(7)

3.3 Inference Algorithm
We need an inference method that can learn,
given Dp and Dq, the values of the model pa-
rameters, namely, the domain-common embed-
ding U c

w, and the domain-specific embeddings Up
w

and U q
w, as well as the domain-commonality dis-

tribution p(zw) for each word w. Our inference
method combines the Expectation-Maximization
(EM) method with a negative sampling scheme. It
is summarized in Algorithm 1. In the E-step, we
use the Bayes rule to evaluate the posterior distri-
bution of zw for each word and derive the objective
function. In the M-step, we maximize the objec-
tive function with the gradient descent method and
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Algorithm 1 EM negative sampling for DSE
1: Initialize U c

w, Up
w, U q

w, V , s, p(zw)
2: for iter = 1 to Max iter do
3: for each review r in Dp and Dq do
4: for each word w in r do
5: Sample negative instances from

the distribution P.
6: Update p(zw|w, cw, yw) by Eq. 11

and Eq. 15 respectively.
7: end for
8: end for
9: Update p(zw) using Eq. 13

10: Update U c
w, Up

w, U q
w, V , s via Maximizing

Eq. 14
11: end for

update the corresponding embeddings U c
w, Up

w and
U q
w.
With the input of Dp and Dq, the likelihood

function of the whole training set is:

L = Lp + Lq (8)

where Lp and Lq are the likelihood of Dp and Dq

respectively.
For each review r from Dp, to learn domain-

specific and sentiment-aware embeddings, we
wish to predict the sentiment label and context
words together. Therefore, the likelihood function
is defined as follows:

Lp =
∑
r∈Dp

∑
w∈r

log p(yw, cw|w) (9)

where yw is the sentiment label and cw is the set
of context words of w. For the simplification of
the model, we assume that the sentiment label yw
and the context words cw of the word w are condi-
tionally dependent. Then the likelihood Lp can be
rewritten as:

Lp =
∑
r∈Dp

∑
w∈r

∑
wt∈cw

log p(wt|w)+∑
r∈Dp

∑
w∈r

log p(yw|w)
(10)

where p(wt|w) and p(yw|w) are defined in Eq. 1
and Eq. 4 respectively. The likelihood of the re-
views from Dq, i.e Lq, is defined similarly.

For each word w in the review r, in the E-step,
the posterior probability of zw given cw and yw is:

p(zw = k|w, cw, yw) =

p(zw = k)p(yw|w, zw = k)
∏

wt∈cw
p(wt|w, zw = k)∑

k′∈{0,1}
p(zw = k′)p(yw|w, zw = k′)

∏
wt∈cw

p(wt|w, zw = k′)

(11)

In the M-step, given the posterior distribution of
zw in Eq. 11, the goal is to maxmize the following
Q function:

Q =
∑

r∈{Dp,Dq}

∑
w∈r

∑
zw

p(zw|w, yw, wt+j)

× log(p(zw)p(cw, y|z, wt))

=
∑

r∈{Dp,Dq}

∑
w∈r

∑
zw

p(zw|w, yw, cw)

[log p(zw) + log(yw|z, w)+∑
wt∈cw

log p(wt|zw, w)]

(12)

Using the Lagrange multiplier, we can obtain
the update rule of p(zw), satisfying the normaliza-
tion constraints that

∑
zw∈0,1 p(zw) = 1 for each

word w:

p(zw) =

∑
r∈{Dp,Dq}

∑
w∈r p(zw|w, yw, cw)∑

r∈{Dp,Dq} n(w, r)

(13)
where n(w, r) is the number of occurrence of the
word w in the review r.

To obtainU c
w, Up

w andU q
w, we collect the related

items in Eq. 12 as follows:

QU =
∑

r∈{Dp,Dq}

∑
w∈r

∑
zw

p(zw|w, yw, wt+j)

[log(yw|zw, w) +
∑

wt∈cw
log p(wt|zw, w)]

(14)

Note that computing the value p(wt|w, zw)
based on Eq. 2 and Eq. 3 is not feasible in prac-
tice, given that the computation cost is propor-
tional to the size of Λ. However, similar to the
skip-gram model, we can rely on negative sam-
pling to address this issue. Therefore we esti-
mate the probability of predicting the context word
p(wt|w, zw = 1) as follows:

log p(wt|w, zw = 1) ∝ log σ(U c
w · Vwt)

+

n∑
i=1

Ewi∼P [log σ(−U c
w · Vwi)]

(15)
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where wi is a negative instance which is sam-
pled from the word distribution P (.). Mikolov
et al. (2013) have investigated many choices for
P (w) and found that the best P (w) is equal to
the unigram distribution Unigram(w) raised to the
3/4rd power. We adopt the same setting. The
probability p(wt|w, zw = 0) in Eq. 3 can be ap-
proximated in a similar manner.

After the substitution of p(wt|w, zw), we use
the Stochastic Gradient Descent method to maxi-
mize Eq. 14, and obtain the update of U c

w, Up
w and

U q
w.

3.4 More Discussions

In our model, for simplifying the inference algo-
rithm and saving the computational cost, we as-
sume that the target word wt in the context and the
sentiment label yw of the word w are condition-
ally independent. Such technique has also been
used in other popular models such as the bi-gram
language model. Otherwise, we need to consider
the term p(wt|w, yw), which complicates the in-
ference algorithm.

We define the formulation of the term
p(wt|w, z) to be similar to the original skip-
gram model instead of the CBOW model. The
CBOW model averages the context words to
predict the target word. The skip-gram model
uses pairwise training examples which are much
easier to integrate with sentiment information.

Note that our model can be easily extended
to more than two domains. Similarly, we use
a domain-specific vector for each word in each
domain and each word is also associated with a
domain-common vector. We just need to extend
the probability distribution of zw from Bernoulli
distribution to Multinomial distribution according
to the number of domains.

4 Experiment

4.1 Experimental Setup

We conducted experiments on the Amazon prod-
uct reviews collected by Blitzer et al. (2007). We
use four product categories: books (B), DVDs (D),
electronic items (E), and kitchen appliances (K).
A category corresponds to a domain. For each do-
main, there are 17,457 unlabeled reviews on aver-
age associated with rating scores from 1.0 to 5.0
for each domain. We use unlabeled reviews with
rating score higher than 3.0 as positive reviews and
unlabeled reviews with rating score lower than 3.0

as negative reviews for embedding learning. We
first remove reviews whose length is less than 5
words. We also remove punctuations and the stop
words. We also stem each word to its root form us-
ing Porter Stemmer (Porter, 1980). Note that this
review data is used for embedding learning, and
the learned embeddings are used as feature vectors
of words to conduct the experiments in the later
two subsections.

Given the reviews from two domains, namely,
Dp and Dq, we compare our results with the fol-
lowing baselines and state-of-the-art methods:

SSWE The SSWE model1 proposed by Tang et
al. (2014b) can learn sentiment-aware word
embeddings from tweets. We employ this
model on the combined reviews from Dp and
Dq and then obtain the embeddings.

Yang’s Work Yang et al. (2017) have proposed a
method2 to learn domain-sensitive word em-
beddings. They choose pivot words and add
a regularization item into the original skip-
gram objective function enforcing that word
representations of pivot words for the source
and target domains should be similar. The
method trains the embeddings of the source
domain first and then fixes the learned em-
bedding to train the embedding of the target
domain. Therefore, the learned embedding
of the target domain benefits from the source
domain. We denote the method as Yang in
short.

EmbeddingAll We learn word embeddings from
the combined unlabeled review data of Dp

andDq using the skip-gram method (Mikolov
et al., 2013).

EmbeddingCat We learn word embeddings from
the unlabeled reviews of Dp and Dq re-
spectively. To represent a word for review
sentiment classification, we concatenate its
learned word embeddings from the two do-
mains.

EmbeddingP and EmbeddingQ In Embed-
dingP, we use the original skip-gram
method (Mikolov et al., 2013) to learn word

1We use the implementation from https:
//github.com/attardi/deepnl/wiki/
Sentiment-Specific-Word-Embeddings.

2We use the implementation from http://statnlp.
org/research/lr/.

https://github.com/attardi/deepnl/wiki/Sentiment-Specific-Word-Embeddings
https://github.com/attardi/deepnl/wiki/Sentiment-Specific-Word-Embeddings
https://github.com/attardi/deepnl/wiki/Sentiment-Specific-Word-Embeddings
http://statnlp.org/research/lr/
http://statnlp.org/research/lr/
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B & D B & E B & K D & E D & K E & K
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

BOW 0.680 0.653 0.738 0.720 0.734 0.725 0.705 0.685 0.706 0.689 0.739 0.715
EmbeddingP 0.753 0.740 0.752 0.745 0.742 0.741 0.740 0.746 0.707 0.702 0.761 0.760
EmbeddingQ 0.736 0.732 0.697 0.697 0.706 0.701 0.762 0.759 0.758 0.759 0.783 0.780

EmbeddingCat 0.769 0.731 0.768 0.763 0.763 0.763 0.787 0.773 0.770 0.770 0.807 0.803
EmbeddingAll 0.769 0.759 0.765 0.740 0.775 0.767 0.783 0.779 0.779 0.776 0.819 0.815

Yang 0.767 0.752 0.775 0.766 0.760 0.755 0.791 0.785 0.762 0.760 0.805 0.804
SSWE 0.783 0.772 0.791 0.780 0.801 0.792 0.825 0.815 0.795 0.790 0.835 0.824
DSEc 0.773 0.750 0.783 0.781 0.775 0.773 0.797 0.792 0.784 0.776 0.806 0.800
DSEw 0.794†\ 0.793†\ 0.806†\ 0.802†\ 0.797† 0.793† 0.843†\ 0.832†\ 0.829†\ 0.827†\ 0.856†\ 0.853†\

Table 1: Results of review sentiment classification. The markers † and \ refer to p-value < 0.05 when
comparing with Yang and SSWE respectively.

embeddings only from the unlabeled reviews
of Dp. Similarly, we only adopt the unla-
beled reviews from Dq to learn embeddings
in EmbeddingQ.

BOW We use the traditional bag of words model
to represent each review in the training data.

For our DSE model, we have two variants to
represent each word. The first variant DSEc rep-
resents each word via concatenating the domain-
common vector and the domain-specific vector.
The second variant DSEw concatenates domain-
common word embeddings and domain-specific
word embeddings by considering the domain-
commonality distribution p(zw). For individual
review instances, the occurrences of w in Dp or
Dq have been established. The representation of
w is specific to the occurrence of w in Dp or Dq.
Specifically, each word w can be represented as
follows:

Uw =


if w ∈ Dp

U c
w × p(zw)⊕ Up

w × (1.0− p(zw))

if w ∈ Dq

U c
w × p(zw)⊕ U q

w × (1.0− p(zw))

(16)

where ⊕ denotes the concatenation operator.
For all word embedding methods, we set the di-

mension to 200. For the skip-gram based methods,
we sample 5 negative instances and the size of the
windows for each target word is 3. For our DSE
model, the number of iterations for the whole re-
views is 100 and the learning rate is set to 1.0.

4.2 Review Sentiment Classification
For the task of review sentiment classification, we
use 1000 positive and 1000 negative sentiment re-

views labeled by Blitzer et al. (2007) for each do-
main to conduct experiments. We randomly se-
lect 800 positive and 800 negative labeled reviews
from each domain as training data, and the remain-
ing 200 positive and 200 negative labeled reviews
as testing data. We use the SVM classifier (Fan
et al., 2008) with linear kernel to train on the train-
ing reviews for each domain, with each review
represented as the average vector of its word em-
beddings.

We use two metrics to evaluate the performance
of sentiment classification. One is the standard ac-
curacy metric. The other one is Macro-F1, which
is the average of F1 scores for both positive and
negative reviews.

We conduct multiple trials by selecting every
possible two domains from books (B), DVDs (D),
electronic items (E) and kitchen appliances (K).
We use the average of the results of each two do-
mains. The experimental results are shown in Ta-
ble 1.

From Table 1, we can see that compared with
other baseline methods, our DSEw model can
achieve the best performance of sentiment classi-
fication across most combinations of the four do-
mains. Our statistical t-tests for most of the com-
binations of domains show that the improvement
of our DSEw model over Yang and SSWE is sta-
tistically significant respectively (p-value < 0.05)
at 95% confidence level. It shows that our method
can capture the domain-commonality and senti-
ment information at the same time.

Even though both of the SSWE model and
our DSE model can learn sentiment-aware word
embeddings, our DSEw model can outperform
SSWE. It demonstrates that compared with gen-
eral sentiment-aware embeddings, our learned
domain-common and domain-specific word em-
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B & D B & E B & K D & E D & K E & K
HL MPQA HL MPQA HL MPQA HL MPQA HL MPQA HL MPQA

EmbeddingP 0.740 0.733 0.742 0.734 0.747 0.735 0.744 0.701 0.745 0.709 0.628 0.574
EmbeddingQ 0.743 0.701 0.627 0.573 0.464 0.453 0.621 0.577 0.462 0.450 0.465 0.453

EmbeddingCat 0.780 0.772 0.773 0.756 0.772 0.751 0.744 0.728 0.755 0.702 0.683 0.639
EmbeddingAll 0.777 0.769 0.773 0.730 0.762 0.760 0.712 0.707 0.749 0.724 0.670 0.658

Yang 0.780 0.775 0.789 0.762 0.781 0.770 0.762 0.736 0.756 0.713 0.634 0.614
SSWE 0.816 0.801 0.831 0.817 0.822 0.808 0.826 0.785 0.784 0.772 0.707 0.659
DSE 0.802 0.788 0.833 0.828 0.832 0.799 0.804 0.797 0.796 0.786 0.725 0.683

Table 2: Results of lexicon term sentiment classification.

beddings can capture semantic variations of words
across multiple domains.

Compared with the method of Yang which
learns cross-domain embeddings, our DSEw

model can achieve better performance. It is be-
cause we exploit sentiment information to dis-
tinguish domain-common and domain-specific
words during the embedding learning process.
The sentiment information can also help the model
distinguish the words which have similar contexts
but different sentiments.

Compared with EmbeddingP and EmbeddingQ,
the methods of EmbeddingAll and Embedding-
Cat can achieve better performance. The reason
is that the data augmentation from other domains
helps sentiment classification in the original do-
main. Our DSE model also benefits from such
kind of data augmentation with the use of reviews
from Dp and Dq.

We observe that our DSEw variant performs
better than the variant of DSEc. Compared with
DSEc, our DSEw variant adds the item of p(zw) as
the weight to combine domain-common embed-
dings and domain-specific embeddings. It shows
that the domain-commonality distribution in our
DSE model, i.e p(wz), can effectively model the
domain-sensitive information of each word and
help review sentiment classification.

4.3 Lexicon Term Sentiment Classification

To further evaluate the quality of the sentiment se-
mantics of the learned word embeddings, we also
conduct lexicon term sentiment classification on
two popular sentiment lexicons, namely HL (Hu
and Liu, 2004) and MPQA (Wilson et al., 2005).
The words with neutral sentiment and phrases are
removed. The statistics of HL and MPQA are
shown in Table 3.

We conduct multiple trials by selecting every
possible two domains from books (B), DVDs (D),
electronics items (E) and kitchen appliances (K).

Lexicon Positive Negative Total
HL 1,331 2,647 3,978
MPQA 1,932 2,817 3,075

Table 3: Statistics of the sentiment lexicons.

For each trial, we learn the word embeddings. For
our DSE model, we only use the domain-common
part to represent each word because the lexicons
are usually not associated with a particular do-
main. For each lexicon, we select 80% to train the
SVM classifier with linear kernel and the remain-
ing 20% to test the performance. The learned em-
bedding is treated as the feature vector for the lex-
icon term. We conduct 5-fold cross validation on
all the lexicons. The evaluation metric is Macro-
F1 of positive and negative lexicons.

Table 2 shows the experimental results of lex-
icon term sentiment classification. Our DSE
method can achieve competitive performance
among all the methods. Compared with SSWE,
our DSE is still competitive because both of them
consider the sentiment information in the embed-
dings. Our DSE model outperforms other methods
which do not consider sentiments such as Yang,
EmbeddingCat and EmbeddingAll. Note that the
advantage of domain-sensitive embeddings would
be insufficient for this task because the sentiment
lexicons are not domain-specific.

5 Case Study

Table 4 shows the probabilities of “lightweight”,
“die”, “mysterious”, and “great” to be domain-
common for different domain combinations. For
“lightweight”, its domain-common probability for
the books domain and the DVDs domain (“B &
D”) is quite high, i.e. p(z = 1) = 0.999, and
the review examples in the last column show that
the word “lightweight” expresses the meaning of
lacking depth of content in books or movies. Note
that most reviews of DVDs are about movies.
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Term Domain p(z = 1) Sample Reviews

“lightweight”

B & D 0.999 - I find Seth Godin’s books incredibly lightweight. There is really nothing of any
substance here.(B)
- I love the fact that it’s small and lightweight and fits into a tiny pocket on my
camera case so I never lose track of it.(E)
- These are not ”lightweight” actors. (D)
- This vacuum does a pretty good job. It is lightweight and easy to use.(K)

B & E 0.404
B & K 0.241
D & E 0.380
D & K 0.013
E & K 0.696

“die”

B & E 0.435 - I’m glad Brando lived long enough to get old and fat, and that he didn’t die
tragically young like Marilyn, JFK, or Jimi Hendrix.(B)
- Like many others here, my CD-changer died after a couple of weeks and it
wouldn’t read any CD.(E)
- I had this toaster for under 3 years when I came home one day and it smoked and
died. (K)

B & K 0.492

E & K 0.712

“mysterious”

- This novel really does cover the gamut: stunning twists, genuine love, beautiful
settings, desire for riches, mysterious murders, detective investigations, false
accusations, and self vindication.(B)
- Caller ID functionality for Vonage mysteriously stopped working even though
this phone’s REN is rated at 0.1b. (E)

B & E 0.297

“great”

B & D 0.760 - This is a great book for anyone learning how to handle dogs.(B)
- This is a great product, and you can get it, along with any other products on
Amazon up to $500 Free!(E)
- I grew up with drag racing in the 50s, 60s & 70s and this film gives a great view
of what it was like.(D)
- This is a great mixer its a little loud but worth it for the power you get.(K)

B & E 0.603
B & K 0.628
D & E 0.804
D & K 0.582
E & K 0.805

Table 4: Learned domain-commonality for some words. p(z = 1) denotes the probability that the word
is domain-common. The letter in parentheses indicates the domain of the review.

In the electronics domain and the kitchen appli-
ances domain (“E & K”), “lightweight” means
light material or weighing less than average, thus
the domain-common probability for these two do-
mains is also high, 0.696. In contrast, for the other
combinations, the probability of “lightweight” to
be domain-common is much smaller, which in-
dicates that the meaning of “lightweight” varies.
Similarly, “die” in the domains of electronics and
kitchen appliances (“E & K”) means that some-
thing does not work any more, thus, we have
p(z = 1) = 0.712. While for the books do-
main, it conveys meaning that somebody passed
away in some stories. The word “mysterious” con-
veys a positive sentiment in the books domain, in-
dicating how wonderful a story is, but it conveys a
negative sentiment in the electronics domain typi-
cally describing that a product breaks down unpre-
dictably. Thus, its domain-common probability is
small. The last example is the word “great”, and it
usually has positive sentiment in all domains, thus
has large values of p(z = 1) for all domain com-
binations.

6 Conclusions

We propose a new method of learning domain-
sensitive and sentiment-aware word embeddings.
Compared with existing sentiment-aware embed-

dings, our model can distinguish domain-common
and domain-specific words with the considera-
tion of varied semantics across multiple domains.
Compared with existing domain-sensitive meth-
ods, our model detects domain-common words ac-
cording to not only similar context words but also
sentiment information. Moreover, our learned em-
beddings considering sentiment information can
distinguish words with similar syntactic context
but opposite sentiment polarity. We have con-
ducted experiments on two downstream sentiment
classification tasks, namely review sentiment clas-
sification and lexicon term sentiment classifica-
tion. The experimental results demonstrate the ad-
vantages of our approach.
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