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Abstract

We introduce an attention-based Bi-LSTM
for Chinese implicit discourse relations
and demonstrate that modeling argument
pairs as a joint sequence can outperform
word order-agnostic approaches.  Our
model benefits from a partial sampling
scheme and is conceptually simple, yet
achieves state-of-the-art performance on
the Chinese Discourse Treebank. We also
visualize its attention activity to illustrate
the model’s ability to selectively focus on
the relevant parts of an input sequence.

1 Introduction

True text understanding is one of the key goals in
Natural Language Processing and requires capa-
bilities beyond the lexical semantics of individual
words or phrases. Natural language descriptions
are typically driven by an inter-sentential coher-
ent structure, exhibiting specific discourse proper-
ties, which in turn contribute significantly to the
global meaning of a text. Automatically detecting
how meaning units are organized benefits practi-
cal downstream applications, such as question an-
swering (Sun and Chai, 2007), recognizing tex-
tual entailment (Hickl, 2008), sentiment analysis
(Trivedi and Eisenstein, 2013), or text summariza-
tion (Hirao et al., 2013).

Various formalisms in terms of semantic co-
herence frameworks have been proposed to ac-
count for these contextual assumptions (Mann
and Thompson, 1988; Lascarides and Asher,
1993; Webber, 2004). The annotation schemata
of the Penn Discourse Treebank (Prasad et al.,
2008, PDTB) and the Chinese Discourse Treebank
(Zhou and Xue, 2012, CDTB), for instance, define

*Both first authors contributed equally to this work.
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discourse units as syntactically motivated charac-
ter spans in the text, augmented with relations
pointing from the second argument (Arg2, proto-
typically, a discourse unit associated with an ex-
plicit discourse marker) to its antecedent, i.e., the
discourse unit Arg/. Relations are labeled with
a relation type (its sense) and the associated dis-
course marker. Both, PDTB and CDTB, distin-
guish explicit from implicit relations depending on
the presence of such a marker (e.g., because/ [H).!
Sense classification for implicit relations is by far
more challenging because the argument pairs lack
the marker as an important feature. Consider, for
instance, the following example from the CDTB
as implicit CONJUNCTION:

Argl: 2R — L JE AT BAR (B @tk AT T
RAVIR, BT —3# In the talks, they
discussed some principles and specific questions
in depth, and reached some understandings

Arg2: T —EUA N 2R B AR SR
Both sides agree that the talks have positive re-
sults

Motivation: Previous work on implicit sense la-
beling is heavily feature-rich and requires domain-
specific, semantic lexicons (Pitler et al., 2009;
Feng and Hirst, 2012; Huang and Chen, 2011).
Only recently, resource-lean architectures have
been proposed. These promising neural meth-
ods attempt to infer latent representations appro-
priate for implicit relation classification (Zhang
et al., 2015; Ji et al., 2016; Chen et al., 2016). So
far, unfortunately, these models have been eval-
uated only on four top-level senses—sometimes
even with inconsistent evaluation setups.” Further-
more, most systems have initially been designed
for the English PDTB and involve complex, task-

!"The set of relation types and senses is completed by alter-
native lexicalizations (ALTLEX/discourse marker rephrased),

and entity relations (ENTREL/anaphoric coherence).
2E.g., four binary classifiers vs. four-way classification.
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specific architectures (Liu and Li, 2016), while
discourse modeling techniques for Chinese have
received very little attention in the literature and
are still seriously underrepresented in terms of
publicly available systems. What is more, over
80% of all words in Chinese discourse relations
are implicit—compared to only 52% in English
(Zhou and Xue, 2012).

Recently, in the context of the CoNLL 2016
shared task (Xue et al., 2016), a first independent
evaluation platform beyond class level has been
established. Surprisingly, the best performing neu-
ral architectures to date are standard feedforward
networks, cf. Wang and Lan (2016); Schenk et al.
(2016); Qin et al. (2016). Even though these spe-
cific models completely ignore word order within
arguments, such feedforward architectures have
been claimed by Rutherford et al. (2016) to gen-
erally outperform any thoroughly-tuned recurrent
architecture.

Our Contribution: In this work, we release the
first attention-based recurrent neural sense clas-
sifier, specifically developed for Chinese implicit
discourse relations. Inspired by Zhou et al. (2016),
our system is a practical adaptation of the recent
advances in relation modeling extended by a novel
sampling scheme.

Contrary to previous assertions by Rutherford
et al. (2016), our model demonstrates superior
performance over traditional bag-of-words ap-
proaches with feedfoward networks by treating
discourse arguments as a joint sequence. We eval-
uvate our method within an independent frame-
work and show that it performs very well beyond
standard class-level predictions, achieving state-
of-the-art accuracy on the CDTB test set.

We illustrate how our model’s attention mech-
anism provides means to highlight those parts of
an input sequence that are relevant for the classi-
fication decision, and thus, it may enable a bet-
ter understanding of the implicit discourse pars-
ing problem. Our proposed network architecture
is flexible and largely language-independent as it
operates only on word embeddings. It stands out
due to its structural simplicity and builds a solid
ground for further development towards other tex-
tual domains.

2 Approach

We propose the use of an attention-based bidi-
rectional Long Short-Term Memory (Hochreiter
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Figure 1: The attention-based bidirectional LSTM
network for the task of modeling argument pairs
for Chinese implicit discourse relations.

and Schmidhuber, 1997, LSTM) network to pre-
dict senses of discourse relations. The model
draws upon previous work on LSTM, in particu-
lar its bidirectional mode of operation (Graves and
Schmidhuber, 2005), attention mechanisms for re-
current models (Bahdanau et al., 2014; Hermann
et al., 2015), and the combined use of these tech-
niques for entity relation recognition in annotated
sequences (Zhou et al., 2016). More specifically,
our model is a flexible recurrent neural network
with capabilities to sequentially inspect tokens and
to highlight which parts of the input sequence are
most informative for the discourse relation recog-
nition task, using the weighting provided by the at-
tention mechanism. Furthermore, the model bene-
fits from a novel sampling scheme for arguments,
as elaborated below. The system is learned in an
end-to-end manner and consists of multiple layers,
which are illustrated in Figure 1.

First, token sequences are taken as input and
special markers (<ARG1>, </ARG1>, etc.) are
inserted into the corresponding positions to inform
the model on the start and end points of argument
spans. This way, we can ensure a general flexi-
bility in modeling discourse units and could eas-
ily extend them with additional context, for in-
stance. In our experiments on implicit arguments,



only the tokens in the respective spans are con-
sidered. Note that, unlike previous works, our ap-
proach models Argl-Arg?2 pairs as a joint sequence
and does not first compute intermediate represen-
tations of arguments separately.

Second, an input layer encodes tokens using
one-hot vector representations (¢; for tokens at po-
sitions ¢ € [1,k]), and a subsequent embedding
layer provides a dense representation (e;) to serve
as input for the recurrent layers. The embedding
layer is initialized using pre-trained word vectors,
in our case 300-dimensional Chinese Gigaword
vectors (Graff and Chen, 2005).> These embed-
dings are further tuned as the network is trained
towards the prediction task. Embeddings for un-
known tokens, e.g., markers, are trained by back-
propagation only. Note that, tokens, markers and
the pre-trained vectors represent the only source of
information for the prediction task.

For the recurrent setup, we use a layer of LSTM
networks in a bidirectional manner, in order to bet-
ter capture dependencies between parts of the in-
put sequence by inspection of both left and right-
hand-side contexts at each time step. The LSTM
holds a state representation as a continuous vector
passed to the subsequent time step, and it is capa-
ble of modeling long-range dependencies due to
its gated memory. The forward (A") and backward
(A”) LSTMs traverse the sequence e;, producing
sequences of vectors h; and b respectively, which
are then summed together (indicated by & in Fig-
ure 1).

The resulting sequence of vectors h; is reduced
into a single vector and fed to the final softmax
output layer in order to classify the sense label y
of the discourse relation. This vector may be ob-
tained either as the final vector i produced by an
LSTM, or through pooling of all h;, or by using
attention, i.e., as a weighted sum over h;. While
the model may be somewhat more difficult to opti-
mize using attention, it provides the added benefit
of interpretability, as the weights highlight to what
extent the classifier considers the LSTM state vec-
tors at each token during modeling. This is par-
ticularly interesting for discourse parsing, as most
previous approaches have provided little support
for pinpointing the driving features in each argu-
ment span.

Finally, the attention layer contains the trainable

http://www.cs.brandeis.edu/~clp/
conlllé6st/dataset.html
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vector w (of the same dimensionality as vectors
h;) which is used to dynamically produce a weight
vector v over time steps i by:

o = softmazx(w! tanh(H))

where H is a matrix consisting of vectors h;. The
output layer r is the weighted sum of vectors in H:

r=Ha®

Partial Argument Sampling: For the purpose
of enlarging the instance space of training items
in the CDTB, and thus, in order to improve the
predictive performance of the model, we propose
a novel partial sampling scheme of arguments,
whereby the model is trained and validated on se-
quences containing both arguments, as well as sin-
gle arguments. A data point (a1, az, y), with a; be-
ing the token sequence of argument 4, is expanded
into {(al’ az, y)’ (alv az, y)7 (ala y)v (a27 y)} We
duplicate bi-argument samples (ai,az,y) (in
training and development data only) to balance
their frequencies against single-argument samples.
Two lines of motivation support the inclusion
of single argument training examples, grounded
in linguistics and machine learning, respectively.
First, it has been shown that single arguments in
isolation can evoke a strong expectation towards
a certain implicit discourse relation, cf. Asr and
Demberg (2015) and, in particular, Rohde and
Horton (2010) in their psycholinguistic study on
implicit causality verbs. Second, the procedure
may encourage the model to learn better represen-
tations of individual argument spans in support of
modeling of arguments in composition, cf. LeCun
et al. (2015). Due to these aspects, we believe this
data augmentation technique to be effective in re-
inforcing the overall robustness of our model.

Implementational Details: We train the model
using fixed-length sequences of 256 tokens with
zero padding at the beginning of shorter sequences
and truncate longer ones. Each LSTM has a vector
dimensionality of 300, matching the embedding
size. The model is regularized by 0.5 dropout rate
between the layers and weight decay (2.5¢7%) on
the LSTM inputs. We employ Adam optimization
(Kingma and Ba, 2014) using the cross-entropy
loss function with mini batch size of 80.*

“The model is implemented in Keras https://
keras.io/.



CDTB Development Set

CDTB Test Set

Rank System % accuracy

Rank System % accuracy

1 Wang and Lan (2016) 73.53 1 Wang and Lan (2016) 72.42
2 Qin et al. (2016) 71.57 2 Schenk et al. (2016) 71.87
3 Schenk et al. (2016) 70.59 3 Rutherford and Xue (2016) 70.47
4 Rutherford and Xue (2016) 68.30 4 Qin et al. (2016) 67.41
5 Weiss and Bajec (2016) 66.67 5 Weiss and Bajec (2016) 64.07
6 Weiss and Bajec (2016) 61.44 6 Weiss and Bajec (2016) 63.51
7 Jian et al. (2016) 21.90 7 Jian et al. (2016) 21.73

This Paper: 93.52* This Paper: 73.01

Table 1: Non-explicit parser scores on the official CoONLL 2016 CDTB development and test sets.
(*Scores on development set are obtained through partial sampling and are not directly comparable.)

Sense Label Training Dev’t Test
CONJUNCTION 5,174 189 228
majority class (66.3%) (62.8%) (64.8%)
EXPANSION 1,188 48 40
ENTREL 1,099 50 71
CAUSATION 187 10 8
CONTRAST 66 3 1
PURPOSE 56 1 3
CONDITIONAL 26 0 1
TEMPORAL 26 0 0
PROGRESSION 7 0 0
# impl. rels 7,804 301 352

Table 2: Implicit sense labels in the CDTB.

3 Evaluation

We evaluate our recurrent model on the CoNLL
2016 shared task data® which include the official
training, development and test sets of the CDTB;
cf. Table 2 for an overview of the implicit sense
distribution.®

In accordance with previous setups (Rutherford
et al., 2016), we treat entity relations (ENTREL)
as implicit and exclude ALTLEX relations. In the
evaluation, we focus on the sense-only track, the
subtask for which gold arguments are provided
and a system is supposed to label a given argu-
ment pair with the correct sense. The results are
shown in Table 1.

With our proposed architecture it is possible to
correctly label 257/352 (73.01%) of implicit rela-

Shttp://www.cs.brandeis.edu/~clp/
conlllé6st/

SNote that, in the CDTB, implicit relations appear almost
three times more often than explicit relations. Out of these,
65% appear within the same sentence. Finally, 25 relations in
the training set have two labels.
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tions on the test set, outperforming the best feed-
forward system of Wang and Lan (2016) and all
other word order-agnostic approaches. Develop-
ment and test set performances suggest the robust-
ness of our approach and its ability to generalize
to unseen data.

Ablation Study: We perform an ablation study to
quantitatively assess the contribution of two of the
characteristic aspects of our model. First, we com-
pare the use of the attention mechanism against
the simpler alternative of feeding the final LSTM
hidden vectors (h). and hY) directly to the output
layer. When attention is turned off, this yields
an absolute decrease in performance of 2.70% on
the test set, which is substantial and significant ac-
cording to a Welch two-sample t-test (p < .001).
Second, we independently compare the use of the
partial sampling scheme against training on the
standard argument pairs in the CDTB. Here, the
absence of the partial sampling scheme yields an
absolute decrease in accuracy of 5.74% (p < .001),
which demonstrates its importance for achieving
competitive performance on the task.

Performance on the PDTB: As a side experi-
ment, we investigate the model’s language inde-
pendence by applying it to the implicit argument
pairs of the English PDTB. Due to computational
time constraints we do not optimize hyperparam-
eters, but instead train the model using identical
settings as for Chinese, which is expected to lead
to suboptimal performance on the evaluation data.
Nevertheless, we measure 27.09% accuracy on the
PDTB test set (surpassing the majority class base-
line of 22.01%), which shows that the model has
potential to generalize across implicit discourse
relations in a different language.
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Peng Li said, Governor Liqi Wei has done a lot of useful work for the smooth settlement of the Macao question,
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Figure 2: Visualization of attention weights for Chinese characters with high (dark blue) and low (light
blue) intensities. The underlined English phrases are semantically structure-shared by the two arguments.

Visualizing Attention Weights: Finally, in Fig-
ure 2, we illustrate the learned attention weights
which pinpoint important subcomponents within
a given implicit discourse relation. For the im-
plicit CONJUNCTION relation the weights indicate
a peak on the transition between the argument
boundary, establishing a connection between the
semantically related terms understandings—agree.
Most ENTRELs show an opposite trend: here sec-
ond arguments exhibit larger intensities than Arg/,
as most entity relations follow the characteristic
writing style of newspapers by adding additional
information by reference to the same entity.

4 Summary & Outlook

In this work, we have presented the first attention-
based recurrent neural sense labeler specifically
developed for Chinese implicit discourse relations.
Its ability to model discourse units sequentially
and jointly has been shown to be highly benefi-
cial, both in terms of state-of-the-art performance
on the CDTB (outperforming word order-agnostic
feedforward approaches), and also in terms of
insightful observations into the inner workings
of the model through its attention mechanism.
The architecture is structurally simple, benefits
from partial argument sampling, and can be eas-
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ily adapted to similar relation recognition tasks. In
future work, we intend to extend our approach to
different languages and domains, e.g., to the recent
data sets on narrative story understanding or ques-
tion answering (Mostafazadeh et al., 2016; Feng
et al., 2015). We believe that recurrent modeling
of implicit discourse information can be a driving
force in successfully handling such complex se-
mantic processing tasks.’
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