@inproceedings{iyyer-etal-2017-search,
title = "Search-based Neural Structured Learning for Sequential Question Answering",
author = "Iyyer, Mohit and
Yih, Wen-tau and
Chang, Ming-Wei",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/add-emnlp-2024-awards/P17-1167/",
doi = "10.18653/v1/P17-1167",
pages = "1821--1831",
abstract = "Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans. In an effort to explore a conversational QA setting, we present a more realistic task: answering sequences of simple but inter-related questions. We collect a dataset of 6,066 question sequences that inquire about semi-structured tables from Wikipedia, with 17,553 question-answer pairs in total. To solve this sequential question answering task, we propose a novel dynamic neural semantic parsing framework trained using a weakly supervised reward-guided search. Our model effectively leverages the sequential context to outperform state-of-the-art QA systems that are designed to answer highly complex questions."
}
Markdown (Informal)
[Search-based Neural Structured Learning for Sequential Question Answering](https://preview.aclanthology.org/add-emnlp-2024-awards/P17-1167/) (Iyyer et al., ACL 2017)
ACL