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Abstract

We introduce a composite deep neural
network architecture for supervised and
language independent context sensitive
lemmatization. The proposed method con-
siders the task as to identify the correct
edit tree representing the transformation
between a word-lemma pair. To find
the lemma of a surface word, we exploit
two successive bidirectional gated recur-
rent structures - the first one is used to ex-
tract the character level dependencies and
the next one captures the contextual infor-
mation of the given word. The key ad-
vantages of our model compared to the
state-of-the-art lemmatizers such as Lem-
ming and Morfette are - (i) it is indepen-
dent of human decided features (ii) except
the gold lemma, no other expensive mor-
phological attribute is required for joint
learning. We evaluate the lemmatizer on
nine languages - Bengali, Catalan, Dutch,
Hindi, Hungarian, Italian, Latin, Roma-
nian and Spanish. It is found that ex-
cept Bengali, the proposed method outper-
forms Lemming and Morfette on the other
languages. To train the model on Ben-
gali, we develop a gold lemma annotated
dataset1 (having 1, 702 sentences with a
total of 20, 257 word tokens), which is an
additional contribution of this work.

1 Introduction

Lemmatization is the process to determine the
root/dictionary form of a surface word. Morpho-
logically rich languages suffer due to the existence

1The dataset and the code of model architecture are re-
leased with the paper. They are also available in http:
//www.isical.ac.in/˜utpal/resources.php

of various inflectional and derivational variations
of a root depending on several linguistic proper-
ties such as honorificity, parts of speech (POS),
person, tense etc. Lemmas map the related word
forms to lexical resources thus identifying them
as the members of the same group and providing
their semantic and syntactic information. Stem-
ming is a way similar to lemmatization producing
the common portion of variants but it has several
limitations - (i) there is no guarantee of a stem to
be a legitimate word form (ii) words are consid-
ered in isolation. Hence, for context sensitive lan-
guages i.e. where same inflected word form may
come from different sources and can only be dis-
ambiguated by considering its neighbouring infor-
mation, there lemmatization defines the foremost
task to handle diverse text processing problems
(e.g. sense disambiguation, parsing, translation).

The key contributions of this work are as fol-
lows. We address context sensitive lemmatiza-
tion introducing a two-stage bidirectional gated
recurrent neural network (BGRNN) architecture.
Our model is a supervised one that needs lemma
tagged continuous text to learn. Its two most
important advantages compared to the state-of-
the-art supervised models (Chrupala et al., 2008;
Toutanova and Cherry, 2009; Gesmundo and
Samardzic, 2012; Müller et al., 2015) are - (i) we
do not need to define hand-crafted features such
as the word form, presence of special characters,
character alignments, surrounding words etc. (ii)
parts of speech and other morphological attributes
of the surface words are not required for joint
learning. Additionally, unknown word forms are
also taken care of as the transformation between
word-lemma pair is learnt, not the lemma itself.
We exploit two steps learning in our method. At
first, characters in the words are passed sequen-
tially through a BGRNN to get a syntactic em-
bedding of each word and then the outputs are
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combined with the corresponding semantic em-
beddings. Finally, mapping between the combined
embeddings to word-lemma transformations are
learnt using another BGRNN.

For the present work, we assess our model on
nine languages having diverse morphological vari-
ations. Out of them, two (Bengali and Hindi) be-
long to the Indic languages family and the rests
(Catalan, Dutch, Hungarian, Italian, Latin, Roma-
nian and Spanish) are taken from the European
languages. To evaluate the proposed model on
Bengali, a lemma annotated continuous text has
been developed. As so far there is no such stan-
dard large dataset for supervised lemmatization in
Bengali, the prepared one would surely contribute
to the respective NLP research community. For the
remaining languages, standard datasets are used
for experimentation. Experimental results reveal
that our method outperforms Lemming (Müller
et al., 2015) and Morfette (Chrupala et al., 2008)
on all the languages except Bengali.

1.1 Related Works

Efforts on developing lemmatizers can be divided
into two principle categories (i) rule/heuristics
based approaches (Koskenniemi, 1984; Plisson
et al., 2004) which are usually not portable to
different languages and (ii) learning based meth-
ods (Chrupala et al., 2008; Toutanova and Cherry,
2009; Gesmundo and Samardzic, 2012; Müller
et al., 2015; Nicolai and Kondrak, 2016) requir-
ing prior training dataset to learn the morphologi-
cal patterns. Again, the later methods can be fur-
ther classified depending on whether context of the
current word is considered or not. Lemmatiza-
tion without context (Cotterell et al., 2016; Nico-
lai and Kondrak, 2016) is closer to stemming and
not the focus of the present work. It is notewor-
thy here that the supervised lemmatization meth-
ods do not try to classify the lemma of a given
word form as it is infeasible due to having a large
number of lemmas in a language. Rather, learn-
ing the transformation between word-lemma pair
is more generalized and it can handle the unknown
word forms too. Several representations of word-
lemma transformation have been introduced so far
such as shortest edit script (SES), label set, edit
tree by Chrupala et al. (2008), Gesmundo and
Samardzic (2012) and Müller et al. (2015) respec-
tively. Following Müller et al. (2015), we con-
sider lemmatization as the edit tree classification

problem. Toutanova and Cherry (2009); Müller
et al. (2015) also showed that joint learning of
lemmas with other morphological attributes is mu-
tually beneficial but obtaining the gold annotated
datasets is very expensive. In contrast, our model
needs only lemma annotated continuous text (not
POS and other tags) to learn the word morphology.

Since our experiments include the Indic lan-
guages also, it would not be an overstatement to
say that there have been little efforts on lemmati-
zation so far (Faridee et al., 2009; Loponen and
Järvelin, 2010; Paul et al., 2013; Bhattacharyya
et al., 2014). The works by Faridee et al. (2009);
Paul et al. (2013) are language specific rule based
for Bengali and Hindi respectively. (Loponen and
Järvelin, 2010)’s primary objective was to improve
the retrieval performance. Bhattacharyya et al.
(2014) proposed a heuristics based lemmatizer us-
ing WordNet but they did not consider context of
the target word which is an important basis to lem-
matize Indic languages. Chakrabarty and Garain
(2016) developed an unsupervised language in-
dependent lemmatizer and evaluated it on Ben-
gali. They consider the contextual information but
the major disadvantage of their method is depen-
dency on dictionary as well as POS information.
Very recently, a supervised neural lemmatization
model has been introduced by Chakrabarty et al.
(2016). They treat the problem as lemma trans-
duction rather than classification. The particular
root in the dictionary is chosen as the lemma with
which the transduced vector possesses maximum
cosine similarity. Hence, their approach fails when
the correct lemma of a word is not present in the
dictionary. Besides, the lemmatization accuracy
obtained by the respective method is not very sig-
nificant. Apart from the mentioned works, there is
no such commendable effort so far.

Rest of this paper is organized as follows. In
section 2, we describe the proposed lemmatization
method. Experimental setup and the results are
presented in section 3. Finally, in section 4 we
conclude the paper.

2 The Proposed Method

As stated earlier in section 1.1, we represent the
mapping between a word to its lemma using edit
tree (Chrupała, 2008; Müller et al., 2015). An
edit tree embeds all the necessary edit operations
within it i.e. insertions, deletions and substitutions
of strings required throughout the transformation
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Figure 1: Edit trees for the word-lemma pairs
‘sang-sing’ and ‘achieving-achieve’.

process. Figure 1 depicts two edit trees that map
the inflected English words ‘sang’ and ‘achieving’
to their respective lemmas ‘sing’ and ‘achieve’.
For generalization, edit trees encode only the sub-
stitutions and the length of prefixes and suffixes
of the longest common substrings. Initially, all
unique edit trees are extracted from the associated
surface word-lemma pairs present in the training
set. The extracted trees refer to the class labels
in our model. So, for a test word, the goal is to
classify the correct edit tree which, applied on the
word, returns the lemma.

Next, we will describe the architecture of the
proposed neural lemmatization model. It is evi-
dent that for morphologically rich languages, both
syntactic and semantic knowledge help in lemma-
tizing a surface word. Now a days, it is a com-
mon practice to embed the functional properties
of words into vector representations. Despite the
word vectors prove very effectual in semantic pro-
cessing tasks, they are modelled using the distribu-
tional similarity obtained from a raw corpus. Mor-
phological regularities, local and non-local depen-
dencies in character sequences that play deciding
roles to find the lemmas, are not taken into account
where each word has its own vector interpreta-
tion. We address this issue by incorporating two
different embeddings into our model. Semantic
embedding is achieved using word2vec (Mikolov
et al., 2013a,b), which has been empirically found
highly successful. To devise the syntactic embed-
ding of a word, we follow the work of Ling et al.
(2015) that uses compositional character to word
model using bidirectional long-short term memory
(BLSTM) network. In our experiments, different

Figure 2: Syntactic vector composition for a word.

gated recurrent cells such as LSTM (Graves, 2013)
and GRU (Cho et al., 2014), are explored. The
next subsection describes the module to construct
the syntactic vectors by feeding the character se-
quences into BGRNN architecture.

2.1 Forming Syntactic Embeddings
Our goal is to build syntactic embeddings of
words that capture the similarities in morpholog-
ical level. Given an input word w, the target is
to obtain a d dimensional vector representing the
syntactic structure of w. The procedure is illus-
trated in Figure 2. At first, an alphabet of char-
acters is defined as C. We represent w as a se-
quence of characters c1, . . . , cm where m is the
word length and each character ci is defined as a
one hot encoded vector 1ci , having one at the in-
dex of ci in the alphabet C. An embedding layer
is defined as Ec ∈ Rdc×|C|, that projects each one
hot encoded character vector to a dc dimensional
embedded vector. For a character ci, its projected
vector eci is obtained from the embedding layer
Ec, using this relation eci = Ec · 1ci where ‘·’ is
the matrix multiplication operation.

Given a sequence of vectors x1, . . . , xm as in-
put, a LSTM cell computes the state sequence
h1, . . . , hm using the following equations:

ft = σ(Wf xt + Uf ht−1 + Vf ct−1 + bf )

it = σ(Wixt + Uiht−1 + Vict−1 + bi)

ct = ft ⊙ ct−1

+ it ⊙ tanh(Wcxt + Ucht−1 + bc)

ot = σ(Woxt + Uoht−1 + Voct + bo)

ht = ot ⊙ tanh(ct),
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Whereas, the updation rules for GRU are as fol-
lows

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

ht = (1 − zt) ⊙ ht−1

+ zt ⊙ tanh(Whxt + Uh(rt ⊙ ht−1) + bh),

σ denotes the sigmoid function and ⊙ stands for
the element-wise (Hadamard) product. Unlike the
simple recurrent unit, LSTM uses an extra mem-
ory cell ct that is controlled by three gates - in-
put (it), forget (ft) and output (ot). it controls the
amount of new memory content added to the mem-
ory cell, ft regulates the degree to which the exist-
ing memory is forgotten and ot finally adjusts the
memory content exposure. W, U, V (weight ma-
trices), b (bias) are the parameters.

Without having a memory cell like LSTM, a
GRU uses two gates namely update (zt) and re-
set (rt). The gate, zt decides the amount of up-
date needed for activation and rt is used to ignore
the previous hidden states (when close to 0, it for-
gets the earlier computation). So, for a sequence
of projected characters ec1 , . . . , ecm , the forward
and the backward networks produce the state se-
quences hf

1 , . . . , hf
m and hb

m, . . . , hb
1 respectively.

Finally, we obtain the syntactic embedding of w,
denoted as esyn

w , by concatenating the final states
of these two sequences.

esyn
w = [hb

1, hf
m]

2.2 Model
We present the sketch of the final integrated model
in Figure 3. For a word w, let esem

w denotes its se-
mantic embedding obtained using word2vec. Both
the vectors, esyn

w and esem
w are concatenated to-

gether to shape the composite representation ecom
w

which carries the morphological and distributional
information within it. Firstly, for all the words
present in the training set, their composite vec-
tors are generated. Next, they are fed sentence-
wise into the next level of BGRNN to train the
model for the edit tree classification task. This
second level bidirectional network accounts the
local context in both forward and backward di-
rections, which is essential for lemmatization in
context sensitive languages. Let, ecom

w1
, . . . , ecom

wn

be the input sequence of composite vectors to the
BGRNN model, representing a sentence having n
words w1, . . . , wn. For the ith vector ecom

wi
, hf

i and

Figure 3: Second level BGRNN model for edit
tree classification.

hb
i denote the forward and backward states respec-

tively carrying the informations of w1, . . . , wi and
wi, . . . , wn.

2.2.1 Incorporating Applicable Edit Trees
Information

One aspect that we did not look into so far, is that
for a word all unique edit trees extracted from the
training set are not applicable as this would lead to
incompatible substitutions. For example, the edit
tree for the word-lemma pair ‘sang-sing’ depicted
in Figure 1, cannot be applied on the word ‘achiev-
ing’. This information is prior before training the
model i.e. for any arbitrary word, we can sort out
the subset of unique edit trees from the training
samples in advance, which are applicable on it.
In general, if all the unique edit trees in the train-
ing data are set as the class labels, the model will
learn to distribute the probability mass over all the
classes which is a clear-cut bottleneck. In order
to alleviate this problem, we take a novel strategy
so that for individual words in the input sequence,
the model will learn, to which classes, the output
probability should be apportioned.

Let T = {t1, . . . , tk} be the set of distinct edit
trees found in the training set. For the word wi

in the input sequence w1, . . . , wn, we define its
applicable edit trees vector as Ai = (a1

i , . . . , a
k
i )

where ∀j ∈ {1, . . . , k}, aj
i = 1 if tj is applicable

for wi, otherwise 0. Hence, Ai holds the informa-
tion regarding the set of edit trees to concentrate
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upon, while processing the word wi. We combine
Ai together with hf

i and hb
i for the final classifica-

tion task as following,

li = softplus(Lf hf
i + Lbhb

i + LaAi + bl),

where ‘softplus’ denotes the activation function
f(x) = ln(1 + ex) and Lf , Lb, La and bl are the
parameters trained by the network. At the end, li is
passed through the softmax layer to get the output
labels for wi.

To pick the correct edit tree from the output of
the softmax layer, we exploit the prior informa-
tion Ai. Instead of choosing the class that gets
the maximum probability, we select the maximum
over the classes corresponding to the applicable
edit trees. The idea is expressed as follows. Let
Oi = (o1

i , . . . , o
k
i ) be the output of the softmax

layer. Instead of opting for the maximum over
o1
i , . . . , o

k
i as the class label, the highest probable

class out of those corresponding to the applicable
edit trees, is picked up. That is, the particular edit
tree tj ∈ T is considered as the right candidate for
wi, where

j = argmax
j′∈{1,...,k} ∧ aj′

i =1
oj′
i

In this way, we cancel out the non-applicable
classes and focus only on the plausible candidates.

3 Experimentation

Out of the nine reference languages, initially we
choose four of them (Bengali, Hindi, Latin and
Spanish) for in-depth analysis. We conduct an ex-
haustive set of experiments - such as determin-
ing the direct lemmatization accuracy, accuracy
obtained without using applicable edit trees in
training, measuring the model’s performance on
the unseen words etc. on these four languages.
Later we consider five more languages (Catalan,
Dutch, Hungarian, Italian and Romanian) mostly
for testing the generalization ability of the pro-
posed method. For these additional languages, we
present only the lemmatization accuracy in sec-
tion 3.2.

Datasets: As Bengali is a low-resourced lan-
guage, a relatively large lemma annotated dataset
is prepared for the present work using Tagore’s
short stories collection2 and randomly selected
news articles from miscellaneous domains. One

2www.rabindra-rachanabali.nltr.org

# Sentences # Word Tokens
Bengali 1,702 20,257
Hindi 36,143 819,264
Latin 15,002 165,634
Spanish 15,984 477,810

Table 1: Dataset statistics of the 4 languages.

linguist took around 2 months to complete the an-
notation which was checked by another person
and differences were sorted out. Out of the 91
short stories of Tagore, we calculate the value
of (# tokens / # distinct tokens) for each story.
Based on this value (lower is better), top 11 sto-
ries are selected. The news articles3 are crafted
from the following domains: animal, archaeology,
business, country, education, food, health, poli-
tics, psychology, science and travelogue. In Hindi,
we combine the COLING’12 shared task data for
dependency parsing and Hindi WSD health and
tourism corpora4 (Khapra et al., 2010) together5.
For Latin, the data is taken from the PROIEL tree-
bank (Haug and Jøhndal, 2008) and for Spanish,
we merge the training and development datasets
of CoNLL’09 (Hajič et al., 2009) shared task on
syntactic and semantic dependencies. The dataset
statistics are given in Table 1. We assess the
lemmatization performance by measuring the di-
rect accuracy which is the ratio of the number of
correctly lemmatized words to the total number of
input words. The experiments are performed using
4 fold cross validation technique i.e. the datasets
are equi-partitioned into 4 parts at sentence level
and then each part is tested exactly once using the
model trained on the remaining 3 parts. Finally,
we report the average accuracy over 4 fold.

Induction of Edit Tree Set: Initially, distinct
edit trees are induced from the word-lemma pairs
present in the training set. Next, the words in the
training data are annotated with their correspond-
ing edit trees. Training is accomplished on this
edit tree tagged text. Figure 4 plots the growth of
the edit tree set against the number of word-lemma
samples in the four languages. With the increase
of samples, the size of edit tree set gradually con-
verges revealing the fact that most of the frequent
transformation patterns (both regular and irregu-
lar) are covered by the induction process. From

3http://www.anandabazar.com/
4http://www.cfilt.iitb.ac.in/wsd/

annotated_corpus/
5We also release the Hindi dataset with this paper as it is

a combination of two different datasets.
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Figure 4: Increase of the edit tree set size with the
number of word-lemma samples.

Figure 4, morphological richness can be compared
across the languages. When convergence hap-
pens quickly i.e. at relatively less number of sam-
ples, it evidences that the language is less com-
plex. Among the four reference languages, Latin
stands out as the most intricate, followed by Ben-
gali, Spanish and Hindi.

Semantic Embeddings: We obtain the distri-
butional word vectors for Bengali and Hindi by
training the word2vec model on FIRE Bengali
and Hindi news corpora6. Following the work
by Mikolov et al. (2013a), continuous-bag-of-
words architecture with negative sampling is used
to get 200 dimensional word vectors. For Latin
and Spanish, we use the embeddings released
by Bamman and Smith (2012)7 and Cardellino
(2016)8 respectively.

Syntactic Representation: We acquire the
statistics of word length versus frequency from the
datasets and find out that irrespective of the lan-
guages, longer words (have more than 20-25 char-
acters) are few in numbers. Based on this finding,
each word is limited to a sequence of 25 charac-
ters. Smaller words are padded null characters at
the end and for the longer words, excess characters
are truncated out. So, each word is represented as
a 25 length array of one hot encoded vectors which
is given input to the embedding layer that works
as a look up table producing an equal length ar-
ray of embedded vectors. Initialization of the em-
bedding layer is done randomly and the embedded
vector dimension is set to 10. Eventually, the out-
put of the embedding layer is passed to the first

6http://fire.irsi.res.in/fire
7http://www.cs.cmu.edu/˜dbamman/latin.

html
8http://crscardellino.me/SBWCE/

level BGRNN for learning the syntactic represen-
tation.

Hyper Parameters: There are several hyper
parameters in our model such as the number of
neurons in the hidden layer (ht) of both first and
second level BGRNN, learning mode, number of
epochs to train the models, optimization algo-
rithm, dropout rate etc. We experiment with differ-
ent settings of these parameters and report where
optimum results are achieved. For both the bidi-
rectional networks, number of hidden layer neu-
rons is set to 64. Online learning is applied for
updation of the weights. Number of epochs varies
across languages to converge the training. It is
maximum for Bengali (around 80 epochs), fol-
lowed by Latin, Spanish and Hindi taking around
50, 35 and 15 respectively. Throughout the exper-
iments, we set the dropout rate as 0.2 to prevent
over-fitting. Different optimization algorithms
like AdaDelta (Zeiler, 2012), Adam (Kingma and
Ba, 2014), RMSProp (Dauphin et al., 2015) are
explored. Out of them, Adam yields the best re-
sult. We use the categorical cross-entropy as the
loss function in our model.

Baselines: We compare our method with Lem-
ming9 and Morfette10. Both the model jointly
learns lemma and other morphological tags in con-
text. Lemming uses a 2nd-order linear-chain CRF
to predict the lemmas whereas, the current ver-
sion of Morfette is based on structured perceptron
learning. As POS information is a compulsory re-
quirement of these two models, the Bengali data
is manually POS annotated. For the other lan-
guages, the tags were already available. Although
this comparison is partially biased as the proposed
method does not need POS information, but the
experimental results show the effectiveness of our
model. There is an option in Lemming and Mor-
fette to provide an exhaustive set of root words
which is used to exploit the dictionary features i.e.
to verify if a candidate lemma is a valid form or
not. To make the comparisons consistent, we do
not exploit any external dictionary in our experi-
ments.

3.1 Results

The lemmatization results are presented in Table 2.
We explore our proposed model with two types of
gated recurrent cells - LSTM and GRU. As there

9http://cistern.cis.lmu.de/lemming/
10https://github.com/gchrupala/morfette
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Bengali Hindi Latin Spanish
BLSTM-BLSTM 90.84/91.14 94.89/94.90 89.35/89.52 97.85/97.91
BGRU-BGRU 90.63/90.84 94.44/94.50 89.40/89.59 98.07/98.11
Lemming 91.69 91.64 88.50 93.12
Morfette 90.69 90.57 87.10 92.90

Table 2: Lemmatization accuracy (in %) without/with restricting output classes.

Bengali Hindi Latin Spanish
BLSTM-BLSTM 86.46/89.52 94.34/94.52 85.70/87.35 97.39/97.62
BGRU-BGRU 86.39/88.90 93.84/94.04 85.49/86.87 97.51/97.73

Table 3: Lemmatization accuracy (in %) without using applicable edit trees in training.

are two successive bidirectional networks - the
first one for building the syntactic embedding and
the next one for the edit tree classification, so basi-
cally we deal with two different models BLSTM-
BLSTM and BGRU-BGRU. Table 2 shows the
comparison results of these models with Lemming
and Morfette. In all cases, the average accuracy
over 4 fold cross validation on the datasets is re-
ported. For an entry ‘x/y’ in Table 2, x denotes
the accuracy without output classes restriction,
i.e. taking the maximum over all edit tree classes
present in the training set, whereas y refers to the
accuracy when output is restricted in only the ap-
plicable edit tree classes of the input word. Except
for Bengali, the proposed models outperform the
baselines for the other three languages. In Hindi,
BLSTM-BLSTM gives the best result (94.90%).
For Latin and Spanish, the highest accuracy is
achieved by BGRU-BGRU (89.59% and 98.11%
respectively). In the Bengali dataset, Lemming
produces the optimum result (91.69%) beating its
closest performer BLSTM-BLSTM by 0.55%. It
is to note that the training set size in Bengali is
smallest compared to the other languages (on av-
erage, 16, 712 tokens in each of the 4 folds). Over-
all, BLSTM-BLSTM and BGRU-BGRU perform
equally good. For Bengali and Hindi, the for-
mer model is better and for Latin and Spanish, the
later yields more accuracy. Throughout the ex-
periments, restricting the output over applicable
classes improves the performance significantly.
The maximum improvements we get are: 0.30%
in Bengali using BLSTM-BLSTM (from 90.84%
to 91.14%), 0.06% in Hindi using BGRU-BGRU
(from 94.44% to 94.50%), 0.19% in Latin us-
ing BGRU-BGRU (from 89.40% to 89.59%) and
0.06% in Spanish using BLSTM-BLSTM (from
97.85% to 97.91%). To compare between the two
baselines, Lemming consistently performs better

Bengali Hindi Latin Spanish
27.17 5.25 15.74 7.54

Table 4: Proportion of unknown word forms (in
%) present in the test sets.

than Morfette (the maximum difference between
their accuracies is 1.40% in Latin).

Effect of Training without Applicable Edit
Trees: We also explore the impact of applicable
edit trees in training. To see the effect, we train our
model without giving the applicable edit trees in-
formation as input. In the model design, the equa-
tion for the final classification task is changed as
follows,

li = softplus(Lf hf
i + Lbhb

i + bl),

The results are presented in Table 3. Except for
Spanish, BLSTM-BLSTM outperforms BGRU-
BGRU in all the other languages. As compared
with the results in Table 2, for every model,
training without applicable edit trees degrades the
lemmatization performance. In all cases, BGRU-
BGRU model gets more affected than BLSTM-
BLSTM. Language-wise, the drops in its accuracy
are: 1.94% in Bengali (from 90.84% to 88.90%),
0.46% in Hindi (from 94.50% to 94.04%), 2.72%
in Latin (from 89.59% to 86.87%) and 0.38% in
Spanish (from 98.11% to 97.73%).

One important finding to note in Table 3 is that
irrespective of any particular language and model
used, the amount of increase in accuracy due to the
output restriction on the applicable classes is much
more than that observed in Table 2. For instance,
in Table 2 the accuracy improvement for Bengali
using BLSTM-BLSTM is 0.30% (from 90.84% to
91.14%), whereas in Table 3 the corresponding
value is 3.06% (from 86.46% to 89.52%). These
outcomes signify the fact that training with the ap-
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Bengali Hindi Latin Spanish
BLSTM-BLSTM 71.06/72.10 87.80/88.18 60.85/61.63 88.06/88.79
BGRU-BGRU 70.44/71.22 88.34/88.40 60.65/61.52 91.48/92.25
Lemming 74.10 90.35 57.19 58.89
Morfette 70.27 88.59 47.41 57.61

Table 5: Lemmatization accuracy (in %) on unseen words.

Bengali Hindi Latin Spanish
BLSTM-BLSTM 56.16/66.26 87.42/88.41 49.80/56.05 86.22/87.97
BGRU-BGRU 59.45/66.84 87.19/88.26 50.24/55.35 86.74/88.49

Table 6: Lemmatization accuracy (in %) on unseen words without using applicable edit trees in training.

plicable edit trees already learns to dispense the
output probability to the legitimate classes over
which, output restriction cannot yield much en-
hancement.

Results for Unseen Word Forms: Next, we
discuss about the lemmatization performance on
those words which were absent in the training
set. Table 4 shows the proportion of unseen
forms averaged over 4 folds on the datasets.
In Table 5, we present the accuracy obtained
by our models and the baselines. For Bengali
and Hindi, Lemming produces the best results
(74.10% and 90.35%). For Latin and Spanish,
BLSTM-BLSTM and BGRU-BGRU obtain the
highest accuracy (61.63% and 92.25%) respec-
tively. In Spanish, our model gets the maximum
improvement over the baselines. BGRU-BGRU
beats Lemming with 33.36% margin (on aver-
age, out of 9, 011 unseen forms, 3, 005 more to-
kens are correctly lemmatized). Similar to the re-
sults in Table 2, the results in Table 5 evidences
that restricting the output in applicable classes en-
hances the lemmatization performance. The max-
imum accuracy improvements due to the output
restriction are: 1.04% in Bengali (from 71.06%
to 72.10%), 0.38% in Hindi (from 87.80% to
88.18%) using BLSTM-BLSTM and 0.87% in
Latin (from 60.65% to 61.52%), 0.77% in Spanish
(from 91.48% to 92.25%) using BGRU-BGRU.

Further, we investigate the performance of our
models trained without the applicable edit trees in-
formation, on the unseen word forms. The results
are given in Table 6. As expected, for every model,
the accuracy drops compared to the results shown
in Table 5. The only exception that we find out
is in the entry for Hindi with BLSTM-BLSTM.
Though without restricting the output, the accu-
racy in Table 5 (87.80%) is higher than the corre-
sponding value in Table 6 (87.42%), but after out-

Sem. Embedding Syn. Embedding
Bengali 90.76/91.02 86.61/86.82
Hindi 94.86/94.86 91.24/91.25
Latin 88.90/89.09 85.31/85.49
Spanish 97.95/98 96.07/96.10

Table 7: Results (in %) obtained using semantic
and syntactic embeddings separately.

# Sentences # Word Tokens
Catalan 14,832 474,069
Dutch 13,050 197,925
Hungarian 1,351 31,584
Italian 13,402 282,611
Romanian 8,795 202,187

Table 8: Dataset statistics of the 5 additional lan-
guages.

put restriction, the performance changes (88.18%
in Table 5, 88.41% in Table 6) which reveals that
only selecting the maximum probable class over
the applicable ones would be a better option for
the unseen word forms in Hindi.

Effects of Semantic and Syntactic Embed-
dings in Isolation: To understand the impact of
the combined word vectors on the model’s per-
formance, we measure the accuracy experiment-
ing with each one of them separately. While us-
ing the semantic embedding, only distributional
word vectors are used for edit tree classification.
On the other hand, to test the effect of the syntac-
tic embedding exclusively, output from the char-
acter level recurrent network is fed to the sec-
ond level BGRNN. We present the results in Ta-
ble 7. For Bengali and Hindi, experiments are
carried out with the BLSTM-BLSTM model as
it gives better results for these languages com-
pared to BGRU-BGRU (given in Table 2). Sim-
ilarly for Latin and Spanish, the results obtained
from BGRU-BGRU are reported. From the out-
come of these experiments, use of semantic vec-
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Catalan Dutch Hungarian Italian Romanian
BLSTM-BLSTM 97.93/97.95 93.20/93.44 91.03/91.46 96.06/96.09 94.25/94.32
Lemming 89.80 86.95 87.95 92.51 93.34
Morfette 89.46 86.62 86.52 92.02 94.13

Table 9: Lemmatization accuracy (in %) for the 5 languages.

tor proves to be more effective than the charac-
ter level embedding. However, to capture the dis-
tributional properties of words efficiently, a huge
corpus is needed which may not be available for
low resourced languages. In that case, making
use of syntactic embedding is a good alternative.
Nonetheless, use of both types of embedding to-
gether improves the result.

3.2 Experimental Results for Another Five
Languages

As mentioned earlier, five additional languages
(Catalan, Dutch, Hungarian, Italian and Roma-
nian) are considered to test the generalization abil-
ity of the method. The datasets are taken from
the UD Treebanks11 (Nivre et al., 2017). For each
language, we merge the training and development
data together and perform 4 fold cross validation
on it to measure the average accuracy. The dataset
statistics are shown in Table 8. For experimen-
tation, we use the pre-trained semantic embed-
dings released by (Bojanowski et al., 2016). Only
BLSTM-BLSTM model is explored and it is com-
pared with Lemming and Morfette. The hyper pa-
rameters are kept same as described previously ex-
cept for the number of epochs needed for training
across the languages. We present the results in Ta-
ble 9. For all the languages, BLSTM-BLSTM out-
performs Lemming and Morfette. The maximum
improvement over the baselines we get is for Cata-
lan (beats Lemming and Morfette by 8.15% and
8.49% respectively). Similar to the results in Ta-
ble 2, restricting the output over applicable classes
yields consistent performance improvement.

4 Conclusion

This article presents a neural network based con-
text sensitive lemmatization method which is lan-
guage independent and supervised in nature. The
proposed model learns the transformation patterns
between word-lemma pairs and hence, can handle
the unknown word forms too. Additionally, it does
not rely on human defined features and various

11http://universaldependencies.org/

morphological tags except the gold lemma anno-
tated continuous text. We explore different vari-
ations of the model architecture by changing the
type of recurrent units. For evaluation, nine lan-
guages are taken as the references. Except Ben-
gali, the proposed method outperforms the state-
of-the-art models (Lemming and Morfette) on all
the other languages. For Bengali, it produces the
second best performance (91.14% using BLSTM-
BLSTM). We measure the accuracy on the partial
data (keeping the data size comparable to the Ben-
gali dataset) for Hindi, Latin and Spanish to check
the effect of the data amount on the performance.
For Hindi, the change in accuracy is insignifi-
cant but for Latin and Spanish, accuracy drops by
3.50% and 6% respectively. The time requirement
of the proposed method is also analyzed. Train-
ing time depends on several parameters such as
size of the data, number of epochs required for
convergence, configuration of the system used etc.
In our work, we use the ‘keras’ software keeping
‘theano’ as backend. The codes were run on a sin-
gle GPU (Nvidia GeForce GTX 960, 2GB mem-
ory). Once trained, the model takes negligible
time to predict the appropriate edit trees for test
words (e.g. 844 and 930 words/second for Ben-
gali and Hindi respectively). We develop a Ben-
gali lemmatization dataset which is definitely a no-
table contribution to the language resources. From
the present study, one important finding comes out
that for the unseen words, the lemmatization ac-
curacy drops by a large margin in Bengali and
Spanish, which may be the area of further research
work. Apart from it, we intend to propose a neural
architecture that accomplishes the joint learning of
lemmas with other morphological attributes.
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hai Surdeanu, Nianwen Xue, and Yi Zhang. 2009.
The conll-2009 shared task: Syntactic and seman-
tic dependencies in multiple languages. In Pro-
ceedings of the Thirteenth Conference on Com-
putational Natural Language Learning (CoNLL
2009): Shared Task. Association for Computa-
tional Linguistics, Boulder, Colorado, pages 1–18.
http://www.aclweb.org/anthology/W09-1201.

Dag TT Haug and Marius Jøhndal. 2008. Creating
a parallel treebank of the old indo-european bible
translations. In Proceedings of the Second Work-
shop on Language Technology for Cultural Heritage
Data (LaTeCH 2008). pages 27–34.

Mitesh Khapra, Anup Kulkarni, Saurabh Sohoney, and
Pushpak Bhattacharyya. 2010. All words domain
adapted wsd: Finding a middle ground between su-
pervision and unsupervision. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, Uppsala, Sweden, pages 1532–1541.
http://www.aclweb.org/anthology/P10-1155.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 https://arxiv.org/abs/1412.6980.

Kimmo Koskenniemi. 1984. A general computational
model for word-form recognition and production.
In Proceedings of the 10th International Confer-
ence on Computational Linguistics and 22nd An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics, Stanford, California, USA, pages 178–181.
https://doi.org/10.3115/980491.980529.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:

1490



Compositional character models for open vocabu-
lary word representation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1520–
1530. http://aclweb.org/anthology/D15-1176.

Aki Loponen and Kalervo Järvelin. 2010. A dic-
tionary and corpus independent statistical lemma-
tizer for information retrieval in low resource lan-
guages. In Multilingual and Multimodal Infor-
mation Access Evaluation, Springer, pages 3–14.
https://doi.org/10.1007/978-3-642-15998-53.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013a. Dis-
tributed representations of words and phrases
and their compositionality. In Proceedings of
the 26th International Conference on Neural
Information Processing Systems. Curran As-
sociates Inc., USA, NIPS’13, pages 3111–3119.
http://dl.acm.org/citation.cfm?id=2999792.2999959.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Atlanta, Georgia, pages 746–751.
http://www.aclweb.org/anthology/N13-1090.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schütze. 2015. Joint lemmatization and
morphological tagging with lemming. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Association for
Computational Linguistics, Lisbon, Portugal, pages
2268–2274. http://aclweb.org/anthology/D15-1272.

Garrett Nicolai and Grzegorz Kondrak. 2016. Lever-
aging inflection tables for stemming and lemmati-
zation. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Berlin, Germany, pages 1138–
1147. http://www.aclweb.org/anthology/P16-1108.
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