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Abstract

Different linguistic perspectives causes
many diverse segmentation criteria for
Chinese word segmentation (CWS). Most
existingmethods focus on improve the per-
formance for each single criterion. Howe-
ver, it is interesting to exploit these dif-
ferent criteria and mining their common
underlying knowledge. In this paper, we
propose adversarial multi-criteria learning
for CWS by integrating shared knowledge
frommultiple heterogeneous segmentation
criteria. Experiments on eight corpora
with heterogeneous segmentation criteria
show that the performance of each corpus
obtains a significant improvement, compa-
red to single-criterion learning. Source co-
des of this paper are available on Github1.

1 Introduction

Chinese word segmentation (CWS) is a prelimi-
nary and important task for Chinese natural lan-
guage processing (NLP). Currently, the state-of-
the-art methods are based on statistical supervi-
sed learning algorithms, and rely on a large-scale
annotated corpus whose cost is extremely expen-
sive. Although there have been great achievements
in building CWS corpora, they are somewhat in-
compatible due to different segmentation criteria.
As shown in Table 1, given a sentence “姚明进
入总决赛 (YaoMing reaches the final)”, the two
commonly-used corpora, PKU’s People’s Daily
(PKU) (Yu et al., 2001) and Penn Chinese Tree-
bank (CTB) (Fei, 2000), use different segmenta-
tion criteria. In a sense, it is a waste of resources
if we fail to fully exploit these corpora.

∗Corresponding author.
1https://github.com/FudanNLP

Corpora Yao Ming reaches the final
CTB 姚明 进入 总决赛
PKU 姚 明 进入 总 决赛

Table 1: Illustration of the different segmentation
criteria.

Recently, some efforts have been made to ex-
ploit heterogeneous annotation data for Chinese
word segmentation or part-of-speech tagging (Ji-
ang et al., 2009; Sun and Wan, 2012; Qiu et al.,
2013; Li et al., 2015, 2016). These methods adop-
ted stacking or multi-task architectures and sho-
wed that heterogeneous corpora can help each ot-
her. However, most of these model adopt the shal-
low linear classifier with discrete features, which
makes it difficult to design the shared feature spa-
ces, usually resulting in a complex model. Fortu-
nately, recent deep neural models provide a con-
venient way to share information among multiple
tasks (Collobert and Weston, 2008; Luong et al.,
2015; Chen et al., 2016).
In this paper, we propose an adversarial multi-

criteria learning for CWS by integrating shared
knowledge from multiple segmentation criteria.
Specifically, we regard each segmentation cri-
terion as a single task and propose three diffe-
rent shared-private models under the framework
of multi-task learning (Caruana, 1997; Ben-David
and Schuller, 2003), where a shared layer is used
to extract the criteria-invariant features, and a pri-
vate layer is used to extract the criteria-specific fe-
atures. Inspired by the success of adversarial stra-
tegy on domain adaption (Ajakan et al., 2014; Ga-
nin et al., 2016; Bousmalis et al., 2016), we furt-
her utilize adversarial strategy to make sure the
shared layer can extract the common underlying
and criteria-invariant features, which are suitable
for all the criteria. Finally, we exploit the eight
segmentation criteria on the five simplified Chi-
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nese and three traditional Chinese corpora. Expe-
riments show that our models are effective to im-
prove the performance for CWS. We also observe
that traditional Chinese could benefit from incor-
porating knowledge from simplified Chinese.
The contributions of this paper could be summa-

rized as follows.

• Multi-criteria learning is first introduced for
CWS, in which we propose three shared-
private models to integrate multiple segmen-
tation criteria.

• An adversarial strategy is used to force the
shared layer to learn criteria-invariant featu-
res, in which an new objective function is also
proposed instead of the original cross-entropy
loss.

• We conduct extensive experiments on eight
CWS corpora with different segmentation cri-
teria, which is by far the largest number of
datasets used simultaneously.

2 General Neural Model for Chinese
Word Segmentation

Chinese word segmentation task is usually regar-
ded as a character based sequence labeling pro-
blem. Specifically, each character in a sentence
is labeled as one of L = {B,M,E, S}, indicating
the begin, middle, end of a word, or a word with
single character. There are lots of prevalent met-
hods to solve sequence labeling problem such as
maximum entropy Markov model (MEMM), con-
ditional random fields (CRF), etc. Recently, neu-
ral networks are widely applied to Chinese word
segmentation task for their ability to minimize the
effort in feature engineering (Zheng et al., 2013;
Pei et al., 2014; Chen et al., 2015a,b).
Specifically, given a sequence with n charac-

ters X = {x1, . . . , xn}, the aim of CWS task
is to figure out the ground truth of labels Y ∗ =
{y∗1, . . . , y∗n}:

Y ∗ = argmax
Y ∈Ln

p(Y |X), (1)

where L = {B,M,E, S}.
The general architecture of neural CWS could

be characterized by three components: (1) a cha-
racter embedding layer; (2) feature layers consis-
ting of several classical neural networks and (3) a
tag inference layer. The role of feature layers is to
extract features, which could be either convolution
neural network or recurrent neural network. In this

Characters

Embedding Layer

Feature Layer

Inference Layer B

M

E

S

y3y2y1 y4

x4x1 x2 x3

Forward

Backward

Score

Figure 1: General neural architecture for Chinese
word segmentation.

paper, we adopt the bi-directional long short-term
memory neural networks followed by CRF as the
tag inference layer. Figure 1 illustrates the general
architecture of CWS.

2.1 Embedding layer
In neural models, the first step usually is to map
discrete language symbols to distributed embed-
ding vectors. Formally, we lookup embedding
vector from embedding matrix for each character
xi as exi ∈ Rde , where de is a hyper-parameter
indicating the size of character embedding.

2.2 Feature layers
We adopt bi-directional long short-term memory
(Bi-LSTM) as feature layers. While there are nu-
merous LSTM variants, here we use the LSTM ar-
chitecture used by (Jozefowicz et al., 2015), which
is similar to the architecture of (Graves, 2013) but
without peep-hole connections.

LSTM LSTM introduces gate mechanism and
memory cell to maintain long dependency infor-
mation and avoid gradient vanishing. Formally,
LSTM, with input gate i, output gate o, forget gate
f and memory cell c, could be expressed as:



ii
oi
fi
c̃i


 =




σ
σ
σ
ϕ



(
Wg

ᵀ
[

exi

hi−1

]
+ bg

)
, (2)

ci = ci−1 ⊙ fi + c̃i ⊙ ii, (3)
hi = oi ⊙ ϕ(ci), (4)

where Wg ∈ R(de+dh)×4dh and bg ∈ R4dh are
trainable parameters. dh is a hyper-parameter, in-
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dicating the hidden state size. Function σ(·) and
ϕ(·) are sigmoid and tanh functions respectively.
Bi-LSTM In order to incorporate information
from both sides of sequence, we use bi-directional
LSTM (Bi-LSTM) with forward and backward di-
rections. The update of each Bi-LSTM unit can be
written precisely as follows:

hi =
−→h i ⊕

←−h i, (5)

= Bi-LSTM(exi ,
−→h i−1,

←−h i+1, θ), (6)

where
−→h i and

←−h i are the hidden states at position i
of the forward and backward LSTMs respectively;
⊕ is concatenation operation; θ denotes all para-
meters in Bi-LSTM model.

2.3 Inference Layer
After extracting features, we employ conditional
random fields (CRF) (Lafferty et al., 2001) layer
to inference tags. In CRF layer, p(Y |X) in Eq (1)
could be formalized as:

p(Y |X) =
Ψ(Y |X)∑

Y ′∈Ln Ψ(Y ′|X)
. (7)

Here, Ψ(Y |X) is the potential function, and we
only consider interactions between two successive
labels (first order linear chain CRFs):

Ψ(Y |X) =
n∏

i=2

ψ(X, i, yi−1, yi), (8)

ψ(x, i, y′, y) = exp(s(X, i)y + by′y), (9)

where by′y ∈ R is trainable parameters respective
to label pair (y′, y). Score function s(X, i) ∈ R|L|

assigns score for each label on tagging the i-th cha-
racter:

s(X, i) = W⊤
s hi + bs, (10)

where hi is the hidden state of Bi-LSTM at posi-
tion i; Ws ∈ Rdh×|L| and bs ∈ R|L| are trainable
parameters.

3 Multi-Criteria Learning for Chinese
Word Segmentation

Although neural models are widely used on CWS,
most of them cannot deal with incompatible crite-
ria with heterogonous segmentation criteria simul-
taneously.
Inspired by the success of multi-task learning

(Caruana, 1997; Ben-David and Schuller, 2003;
Liu et al., 2016a,b), we regard the heterogenous

criteria as multiple “related” tasks, which could
improve the performance of each other simultane-
ously with shared information.
Formally, assume that there areM corpora with

heterogeneous segmentation criteria. We referDm

as corpusm with Nm samples:

Dm = {(X(m)
i , Y

(m)
i )}Nm

i=1, (11)

where Xm
i and Y m

i denote the i-th sentence and
the corresponding label in corpusm.
To exploit the shared information between these

different criteria, we propose three sharing models
for CWS task as shown in Figure 2. The feature
layers of these three models consist of a private
(criterion-specific) layer and a shared (criterion-
invariant) layer. The difference between three mo-
dels is the information flow between the task layer
and the shared layer. Besides, all of these three
models also share the embedding layer.

3.1 Model-I: Parallel Shared-Private Model
In the feature layer of Model-I, we regard the pri-
vate layer and shared layer as two parallel layers.
For corpusm, the hidden states of shared layer and
private layer are:

h(s)i =Bi-LSTM(exi ,
−→h (s)

i−1,
←−h (s)

i+1, θs), (12)

h(m)
i =Bi-LSTM(exi ,

−→h (m)
i−1,
←−h (m)

i+1, θm), (13)

and the score function in the CRF layer is compu-
ted as:

s(m)(X, i) = W(m)
s

⊤
[
h(s)i

h(m)
i

]
+ b(m)

s , (14)

where W(m)
s ∈ R2dh×|L| and b(m)

s ∈ R|L| are
criterion-specific parameters for corpusm.

3.2 Model-II: Stacked Shared-Private Model
In the feature layer of Model-II, we arrange the
shared layer and private layer in stacked manner.
The private layer takes output of shared layer as
input. For corpus m, the hidden states of shared
layer and private layer are:

h(s)i = Bi-LSTM(exi ,
−→h (s)

i−1,
←−h (s)

i+1, θs), (15)

h(m)
i = Bi-LSTM(

[
exi

h(s)i

]
,
−→h (m)

i−1,
←−h (m)

i+1 , θm) (16)

and the score function in the CRF layer is compu-
ted as:

s(m)(X, i) = W(m)
s

⊤
h(m)
i + b(m)

s , (17)

where W(m)
s ∈ R2dh×|L| and b(m)

s ∈ R|L| are
criterion-specific parameters for corpusm.
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Figure 2: Three shared-private models for multi-criteria learning. The yellow blocks are the shared Bi-
LSTM layer, while the gray block are the private Bi-LSTM layer. The yellow circles denote the shared
embedding layer. The red information flow indicates the difference between three models.

3.3 Model-III: Skip-Layer Shared-Private
Model

In the feature layer of Model-III, the shared layer
and private layer are in stacked manner as Model-
II. Additionally, we send the outputs of shared
layer to CRF layer directly.
The Model III can be regarded as a combination

ofModel-I andModel-II. For corpusm, the hidden
states of shared layer and private layer are the same
with Eq (15) and (16), and the score function in
CRF layer is computed as the same as Eq (14).

3.4 Objective function

The parameters of the network are trained to max-
imize the log conditional likelihood of true labels
on all the corpora. The objective functionJseg can
be computed as:

Jseg(Θ
m,Θs) =

M∑

m=1

Nm∑

i=1

log p(Y (m)
i |X(m)

i ; Θm,Θs),

(18)
whereΘm andΘs denote all the parameters in pri-
vate and shared layers respectively.

4 Incorporating Adversarial Training for
Shared Layer

Although the shared-private model separates the
feature space into shared and private spaces, there
is no guarantee that sharable features do not ex-
ist in private feature space, or vice versa. Inspired
by the work on domain adaptation (Ajakan et al.,
2014; Ganin et al., 2016; Bousmalis et al., 2016),
we hope that the features extracted by shared layer
is invariant across the heterogonous segmentation
criteria. Therefore, we jointly optimize the shared

CRF

CRF

Task A

Task B

AVG

Discriminator Shared-private Model

X(A)

X(B)

Y(B)

Y(A)A/B

Softmax

Linear

Figure 3: Architecture of Model-III with adversa-
rial training strategy for shared layer. The discri-
minator firstly averages the hidden states of shared
layer, then derives probability over all possible cri-
teria by applying softmax operation after a linear
transformation.

layer via adversarial training (Goodfellow et al.,
2014).
Therefore, besides the task loss for CWS, we ad-

ditionally introduce an adversarial loss to prevent
criterion-specific feature from creeping into shared
space as shown in Figure 3. We use a criterion dis-
criminator which aims to recognizewhich criterion
the sentence is annotated by using the shared fea-
tures.
Specifically, given a sentence X with length n,

we refer to h(s)X as shared features for X in one
of the sharing models. Here, we compute h(s)X by
simply averaging the hidden states of shared layer
h(s)X = 1

n

∑n
i h

(s)
xi . The criterion discriminator

computes the probability p(·|X) over all criteria
as:

p(·|X; Θd,Θs) = softmax(W⊤
d h

(s)
X + bd), (19)
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whereΘd indicates the parameters of criterion dis-
criminatorWd ∈ Rdh×M and bd ∈ RM ; Θs deno-
tes the parameters of shared layers.

4.1 Adversarial loss function
The criterion discriminator maximizes the cross
entropy of predicted criterion distribution p(·|X)
and true criterion.

max
Θd
J 1

adv(Θ
d) =

M∑

m=1

Nm∑

i=1

log p(m|X(m)
i ; Θd,Θs). (20)

An adversarial loss aims to produce shared fea-
tures, such that a criterion discriminator cannot re-
liably predict the criterion by using these shared fe-
atures. Therefore, wemaximize the entropy of pre-
dicted criterion distribution when training shared
parameters.

max
Θs
J 2

adv(Θ
s) =

M∑

m=1

Nm∑

i=1

H
(
p(m|X(m)

i ; Θd,Θs)
)
,

(21)
where H(p) = −∑

i pi log pi is an entropy of dis-
tribution p.
Unlike (Ganin et al., 2016), we use entropy term

instead of negative cross-entropy.

5 Training

Finally, we combine the task and adversarial ob-
jective functions.

J (Θ;D) = Jseg(Θ
m,Θs) + J 1

adv(Θ
d) + λJ 2

adv(Θ
s),
(22)

where λ is the weight that controls the interaction
of the loss terms and D is the training corpora.
The training procedure is to optimize two dis-

criminative classifiers alternately as shown in Al-
gorithm 1. We use Adam (Kingma and Ba, 2014)
with minibatchs to maximize the objectives.
Notably, when using adversarial strategy, we

firstly train 2400 epochs (each epoch only trains
on eight batches from different corpora), then we
only optimize Jseg(Θm,Θs) with Θs fixed until
convergence (early stop strategy).

6 Experiments

6.1 Datasets
To evaluate our proposed architecture, we experi-
ment on eight prevalent CWS datasets from SIG-
HAN2005 (Emerson, 2005) and SIGHAN2008
(Jin and Chen, 2008). Table 2 gives the details of
the eight datasets. Among these datasets, AS, CI-
TYU and CKIP are traditional Chinese, while the

Algorithm 1 Adversarial multi-criteria learning
for CWS task.
1: for i = 1; i <= n_epoch; i++ do
2: # Train tag predictor for CWS
3: form = 1;m <=M ;m++ do
4: # Randomly pick data from corpusm
5: B = {X,Y }bm1 ∈ Dm

6: Θs += α∇ΘsJ (Θ;B)
7: Θm += α∇ΘmJ (Θ;B)
8: end for
9: # Train criterion discriminator
10: form = 1;m <=M ;m++ do
11: B = {X,Y }bm1 ∈ Dm

12: Θd += α∇ΘdJ (Θ;B)
13: end for
14: end for

remains, MSRA, PKU, CTB, NCC and SXU, are
simplified Chinese. We use 10% data of shuffled
train set as development set for all datasets.

6.2 Experimental Configurations
For hyper-parameter configurations, we set both
the character embedding size de and the dimensi-
onality of LSTM hidden states dh to 100. The ini-
tial learning rate α is set to 0.01. The loss weight
coefficient λ is set to 0.05. Since the scale of each
dataset varies, we use different training batch sizes
for datasets. Specifically, we set batch sizes of AS
andMSR datasets as 512 and 256 respectively, and
128 for remains. We employ dropout strategy on
embedding layer, keeping 80% inputs (20% dro-
pout rate).
For initialization, we randomize all parameters

following uniform distribution at (−0.05, 0.05).
We simply map traditional Chinese characters to
simplified Chinese, and optimize on the same cha-
racter embedding matrix across datasets, which is
pre-trained on Chinese Wikipedia corpus, using
word2vec toolkit (Mikolov et al., 2013). Follo-
wing previous work (Chen et al., 2015b; Pei et al.,
2014), all experiments including baseline results
are using pre-trained character embedding with bi-
gram feature.

6.3 Overall Results
Table 3 shows the experiment results of the pro-
posed models on test sets of eight CWS datasets,
which has three blocks.
(1) In the first block, we can see that the per-

formance is boosted by using Bi-LSTM, and the
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Datasets Words Chars Word Types Char Types Sents OOV Rate

Si
gh
an
05 MSRA Train 2.4M 4.1M 88.1K 5.2K 86.9K -

Test 0.1M 0.2M 12.9K 2.8K 4.0K 2.60%

AS Train 5.4M 8.4M 141.3K 6.1K 709.0K -
Test 0.1M 0.2M 18.8K 3.7K 14.4K 4.30%

Si
gh
an
08

PKU Train 1.1M 1.8M 55.2K 4.7K 47.3K -
Test 0.2M 0.3M 17.6K 3.4K 6.4K -

CTB Train 0.6M 1.1M 42.2K 4.2K 23.4K -
Test 0.1M 0.1M 9.8K 2.6K 2.1K 5.55%

CKIP Train 0.7M 1.1M 48.1K 4.7K 94.2K -
Test 0.1M 0.1M 15.3K 3.5K 10.9K 7.41%

CITYU Train 1.1M 1.8M 43.6K 4.4K 36.2K -
Test 0.2M 0.3M 17.8K 3.4K 6.7K 8.23%

NCC Train 0.5M 0.8M 45.2K 5.0K 18.9K -
Test 0.1M 0.2M 17.5K 3.6K 3.6K 4.74%

SXU Train 0.5M 0.9M 32.5K 4.2K 17.1K -
Test 0.1M 0.2M 12.4K 2.8K 3.7K 5.12%

Table 2: Details of the eight datasets.

performance of Bi-LSTM cannot be improved by
merely increasing the depth of networks. In addi-
tion, although the F value of LSTMmodel in (Chen
et al., 2015b) is 97.4%, they additionally incorpo-
rate an external idiom dictionary.

(2) In the second block, our proposed three mo-
dels based on multi-criteria learning boost per-
formance. Model-I gains 0.75% improvement
on averaging F-measure score compared with Bi-
LSTM result (94.14%). Only the performance on
MSRA drops slightly. Compared to the baseline
results (Bi-LSTM and stacked Bi-LSTM), the pro-
posed models boost the performance with the help
of exploiting information across these heterogene-
ous segmentation criteria. Although various crite-
ria have different segmentation granularities, there
are still some underlying information shared. For
instance, MSRA and CTB treat family name and
last name as one token “宁泽涛 (NingZeTao)”,
whereas some other datasets, like PKU, regard
them as two tokens, “宁 (Ning)” and “泽涛 (Ze-
Tao)”. The partial boundaries (before “宁 (Ning)”
or after “涛 (Tao)”) can be shared.

(3) In the third block, we introduce adversarial
training. By introducing adversarial training, the
performances are further boosted, and Model-I is
slightly better than Model-II and Model-III. The
adversarial training tries to make shared layer keep
criteria-invariant features. For instance, as shown
in Table 3, when we use shared information, the
performance onMSRA drops (worse than baseline
result). The reason may be that the shared parame-
ters bias to other segmentation criteria and intro-
duce noisy features into shared parameters. When
we additionally incorporate the adversarial stra-

tegy, we observe that the performance on MSRA
is improved and outperforms the baseline results.
We could also observe the improvements on ot-
her datasets. However, the boost from the adver-
sarial strategy is not significant. The main rea-
son might be that the proposed three sharing mo-
dels implicitly attempt to keep invariant features
by shared parameters and learn discrepancies by
the task layer.

6.4 Speed

To further explore the convergence speed, we plot
the results on development sets through epochs.
Figure 4 shows the learning curve of Model-I wit-
hout incorporating adversarial strategy. As shown
in Figure 4, the proposed model makes progress
gradually on all datasets. After about 1000 epochs,
the performance becomes stable and convergent.

We also test the decoding speed, and our mo-
dels process 441.38 sentences per second avera-
gely. As the proposed models and the baseline
models (Bi-LSTM and stacked Bi-LSTM) are ne-
arly in the same complexity, all models are nearly
the same efficient. However, the time consump-
tion of training process varies from model to mo-
del. For the models without adversarial training,
it costs about 10 hours for training (the same for
stacked Bi-LSTM to train eight datasets), whereas
it takes about 16 hours for the models with adver-
sarial training. All the experiments are conducted
on the hardware with Intel(R) Xeon(R) CPU E5-
2643 v3 @ 3.40GHz and NVIDIA GeForce GTX
TITAN X.
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Models MSRA AS PKU CTB CKIP CITYU NCC SXU Avg.

LSTM

P 95.13 93.66 93.96 95.36 91.85 94.01 91.45 95.02 93.81
R 95.55 94.71 92.65 85.52 93.34 94.00 92.22 95.05 92.88
F 95.34 94.18 93.30 95.44 92.59 94.00 91.83 95.04 93.97

OOV 63.60 69.83 66.34 76.34 68.67 65.48 56.28 69.46 67.00

Bi-LSTM

P 95.70 93.64 93.67 95.19 92.44 94.00 91.86 95.11 93.95
R 95.99 94.77 92.93 95.42 93.69 94.15 92.47 95.23 94.33
F 95.84 94.20 93.30 95.30 93.06 94.07 92.17 95.17 94.14

OOV 66.28 70.07 66.09 76.47 72.12 65.79 59.11 71.27 68.40

Stacked Bi-LSTM

P 95.69 93.89 94.10 95.20 92.40 94.13 91.81 94.99 94.03
R 95.81 94.54 92.66 95.40 93.39 93.99 92.62 95.37 94.22
F 95.75 94.22 93.37 95.30 92.89 94.06 92.21 95.18 94.12

OOV 65.55 71.50 67.92 75.44 70.50 66.35 57.39 69.69 68.04
Multi-Criteria Learning

Model-I

P 95.67 94.44 94.93 95.95 93.99 95.10 92.54 96.07 94.84
R 95.82 95.09 93.73 96.00 94.52 95.60 92.69 96.08 94.94
F 95.74 94.76 94.33 95.97 94.26 95.35 92.61 96.07 94.89

OOV 69.89 74.13 72.96 81.12 77.58 80.00 64.14 77.05 74.61

Model-II

P 95.74 94.60 94.82 95.90 93.51 95.30 92.26 96.17 94.79
R 95.74 95.20 93.76 95.94 94.56 95.50 92.84 95.95 94.94
F 95.74 94.90 94.28 95.92 94.03 95.40 92.55 96.06 94.86

OOV 69.67 74.87 72.28 79.94 76.67 81.05 61.51 77.96 74.24

Model-III

P 95.76 93.99 94.95 95.85 93.50 95.56 92.17 96.10 94.74
R 95.89 95.07 93.48 96.11 94.58 95.62 92.96 96.13 94.98
F 95.82 94.53 94.21 95.98 94.04 95.59 92.57 96.12 94.86

OOV 70.72 72.59 73.12 81.21 76.56 82.14 60.83 77.56 74.34
Adversarial Multi-Criteria Learning

Model-I+ADV

P 95.95 94.17 94.86 96.02 93.82 95.39 92.46 96.07 94.84
R 96.14 95.11 93.78 96.33 94.70 95.70 93.19 96.01 95.12
F 96.04 94.64 94.32 96.18 94.26 95.55 92.83 96.04 94.98

OOV 71.60 73.50 72.67 82.48 77.59 81.40 63.31 77.10 74.96

Model-II+ADV

P 96.02 94.52 94.65 96.09 93.80 95.37 92.42 95.85 94.84
R 95.86 94.98 93.61 95.90 94.69 95.63 93.20 96.07 94.99
F 95.94 94.75 94.13 96.00 94.24 95.50 92.81 95.96 94.92

OOV 72.76 75.37 73.13 82.19 77.71 81.05 62.16 76.88 75.16

Model-III+ADV

P 95.92 94.25 94.68 95.86 93.67 95.24 92.47 96.24 94.79
R 95.83 95.11 93.82 96.10 94.48 95.60 92.73 96.04 94.96
F 95.87 94.68 94.25 95.98 94.07 95.42 92.60 96.14 94.88

OOV 70.86 72.89 72.20 81.65 76.13 80.71 63.22 77.88 74.44

Table 3: Results of proposed models on test sets of eight CWS datasets. There are three blocks. The first
block consists of two baseline models: Bi-LSTM and stacked Bi-LSTM. The second block consists of
our proposed three models without adversarial training. The third block consists of our proposed three
models with adversarial training. Here, P, R, F, OOV indicate the precision, recall, F value and OOV
recall rate respectively. The maximum F values in each block are highlighted for each dataset.

6.5 Error Analysis

We further investigate the benefits of the propo-
sed models by comparing the error distributions
between the single-criterion learning (baselinemo-
del Bi-LSTM) andmulti-criteria learning (Model-I
and Model-I with adversarial training) as shown in
Figure 5. According to the results, we could ob-
serve that a large proportion of points lie above
diagonal lines in Figure 5a and Figure 5b, which
implies that performance benefit from integrating
knowledge and complementary information from
other corpora. As shown in Table 3, on the test
set of CITYU, the performance of Model-I and
its adversarial version (Model-I+ADV) boost from

92.17% to 95.59% and 95.42% respectively.

In addition, we observe that adversarial strategy
is effective to prevent criterion specific features
from creeping into shared space. For instance, the
segmentation granularity of personal name is often
different according to heterogenous criteria. With
the help of adversarial strategy, our models could
correct a large proportion of mistakes on personal
name. Table 4 lists the examples from 2333-th and
89-th sentences in test sets of PKU and MSRA da-
tasets respectively.
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Figure 4: Convergence speed of Model-I without
adversarial training on development sets of eight
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Figure 5: F-measure scores on test set of CITYU
dataset. Each point denotes a sentence, with the
(x, y) values of each point denoting the F-measure
scores of the two models, respectively. (a) is
comparison between Bi-LSTM andModel-I. (b) is
comparison between Bi-LSTM and Model-I with
adversarial training.

7 Knowledge Transfer

We also conduct experiments of whether the
shared layers can be transferred to the other related
tasks or domains. In this section, we investigate
the ability of knowledge transfer on two experi-
ments: (1) simplified Chinese to traditional Chi-
nese and (2) formal texts to informal texts.

7.1 Simplified Chinese to Traditional Chinese

Traditional Chinese and simplified Chinese are
two similar languages with slightly difference on
character forms (e.g. multiple traditional charac-
ters might map to one simplified character). We
investigate that if datasets in traditional Chinese
and simplified Chinese could help each other. Ta-
ble 5 gives the results of Model-I on 3 traditio-

Models PKU-2333 MSRA-89

Golds Roh Moo-hyun Mu Ling Ying
卢 武铉 穆玲英

Base Line 卢武铉 穆 玲英
Model-I 卢武铉 穆 玲英

Modell-I+ADV 卢 武铉 穆玲英

Table 4: Segmentation cases of personal names.

Models AS CKIP CITYU Avg.
Baseline(Bi-LSTM) 94.20 93.06 94.07 93.78

Model-I∗ 94.12 93.24 95.20 94.19

Table 5: Performance on 3 traditional Chinese da-
tasets. Model-I∗ means that the shared parameters
are trained on 5 simplified Chinese datasets and
are fixed for traditional Chinese datasets. Here, we
conductModel-I without incorporating adversarial
training strategy.

nal Chinese datasets under the help of 5 simpli-
fied Chinese datasets. Specifically, we firstly train
the model on simplified Chinese datasets, then
we train traditional Chinese datasets independently
with shared parameters fixed.
As we can see, the average performance is boos-

ted by 0.41% on F-measure score (from 93.78% to
94.19%), which indicates that shared features le-
arned from simplified Chinese segmentation crite-
ria can help to improve performance on traditio-
nal Chinese. Like MSRA, as AS dataset is relati-
vely large (train set of 5.4M tokens), the features
learned by shared parameters might bias to other
datasets and thus hurt performance on such large
dataset AS.

7.2 Formal Texts to Informal Texts

7.2.1 Dataset
We use the NLPCC 2016 dataset2 (Qiu et al., 2016)
to evaluate our model on micro-blog texts. The
NLPCC 2016 data are provided by the shared task
in the 5th CCF Conference on Natural Language
Processing & Chinese Computing (NLPCC 2016):
Chinese Word Segmentation and POS Tagging for
micro-blog Text. Unlike the popular used news-
wire dataset, the NLPCC 2016 dataset is collected
from Sina Weibo3, which consists of the informal
texts frommicro-blog with the various topics, such
as finance, sports, entertainment, and so on. The
information of the dataset is shown in Table 6.

2https://github.com/FudanNLP/
NLPCC-WordSeg-Weibo

3http://www.weibo.com/
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Dataset Words Chars Word Types Char Types Sents OOV Rate
Train 421,166 688,743 43,331 4,502 20,135 -
Dev 43,697 73,246 11,187 2,879 2,052 6.82%
Test 187,877 315,865 27,804 3,911 8,592 6.98%

Table 6: Statistical information of NLPCC 2016 dataset.

Models P R F OOV
Baseline(Bi-LSTM) 93.56 94.33 93.94 70.75

Model-I∗ 93.65 94.83 94.24 74.72

Table 7: Performances on the test set of NLPCC
2016 dataset. Model-I∗ means that the shared pa-
rameters are trained on 8 Chinese datasets (Table
2) and are fixed for NLPCC dataset. Here, we
conductModel-I without incorporating adversarial
training strategy.

7.2.2 Results
Formal documents (like the eight datasets in Table
2) and micro-blog texts are dissimilar in many as-
pects. Thus, we further investigate that if the for-
mal texts could help to improve the performance
of micro-blog texts. Table 7 gives the results of
Model-I on the NLPCC 2016 dataset under the
help of the eight datasets in Table 2. Specifically,
we firstly train themodel on the eight datasets, then
we train on the NLPCC 2016 dataset alone with
shared parameters fixed. The baseline model is Bi-
LSTM which is trained on the NLPCC 2016 data-
set alone.
As we can see, the performance is boosted

by 0.30% on F-measure score (from 93.94% to
94.24%), and we could also observe that the OOV
recall rate is boosted by 3.97%. It shows that the
shared features learned from formal texts can help
to improve the performance on ofmicro-blog texts.

8 Related Works

There are many works on exploiting heterogene-
ous annotation data to improve various NLP tasks.
Jiang et al. (2009) proposed a stacking-based mo-
del which could train a model for one specific de-
sired annotation criterion by utilizing knowledge
from corpora with other heterogeneous annotati-
ons. Sun and Wan (2012) proposed a structure-
based stacking model to reduce the approximation
error, which makes use of structured features such
as sub-words. These models are unidirectional aid
and also suffer from error propagation problem.
Qiu et al. (2013) used multi-tasks learning fra-

mework to improve the performance of POS tag-

ging on two heterogeneous datasets. Li et al.
(2015) proposed a coupled sequence labeling mo-
del which could directly learn and infer two he-
terogeneous annotations. Chao et al. (2015) also
utilize multiple corpora using coupled sequence la-
beling model. These methods adopt the shallow
classifiers, therefore suffering from the problem of
defining shared features.
Our proposed models use deep neural networks,

which can easily share information with hidden
shared layers. Chen et al. (2016) also adopted
neural network models for exploiting heterogene-
ous annotations based on neural multi-viewmodel,
which can be regarded as a simplified version of
our proposed models by removing private hidden
layers.
Unlike the above models, we design three

sharing-private architectures and keep shared layer
to extract criterion-invariance features by introdu-
cing adversarial training. Moreover, we fully ex-
ploit eight corpora with heterogeneous segmenta-
tion criteria to model the underlying shared infor-
mation.

9 Conclusions & Future Works

In this paper, we propose adversarial multi-criteria
learning for CWS by fully exploiting the under-
lying shared knowledge across multiple heteroge-
neous criteria. Experiments show that our propo-
sed three shared-private models are effective to ex-
tract the shared information, and achieve signifi-
cant improvements over the single-criterion met-
hods.
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