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Abstract

We present the first parser for UCCA, a
cross-linguistically applicable framework
for semantic representation, which builds
on extensive typological work and sup-
ports rapid annotation. UCCA poses a
challenge for existing parsing techniques,
as it exhibits reentrancy (resulting in DAG
structures), discontinuous structures and
non-terminal nodes corresponding to com-
plex semantic units. To our knowledge,
the conjunction of these formal properties
is not supported by any existing parser.
Our transition-based parser, which uses a
novel transition set and features based on
bidirectional LSTMs, has value not just for
UCCA parsing: its ability to handle more
general graph structures can inform the de-
velopment of parsers for other semantic
DAG structures, and in languages that fre-
quently use discontinuous structures.

1 Introduction

Universal Conceptual Cognitive Annotation
(UCCA, Abend and Rappoport, 2013) is a cross-
linguistically applicable semantic representation
scheme, building on the established Basic Lin-
guistic Theory typological framework (Dixon,
2010a,b, 2012), and Cognitive Linguistics litera-
ture (Croft and Cruse, 2004). It has demonstrated
applicability to multiple languages, including
English, French, German and Czech, support
for rapid annotation by non-experts (assisted by
an accessible annotation interface (Abend et al.,
2017)), and stability under translation (Sulem
etal., 2015). It has also proven useful for machine
translation evaluation (Birch et al., 2016). UCCA
differs from syntactic schemes in terms of content
and formal structure. It exhibits reentrancy,

discontinuous nodes and non-terminals, which no
single existing parser supports. Lacking a parser,
UCCA’s applicability has been so far limited, a
gap this work addresses.

We present the first UCCA parser, TUPA
(Transition-based UCCA Parser), building on re-
cent advances in discontinuous constituency and
dependency graph parsing, and further introduc-
ing novel transitions and features for UCCA.
Transition-based techniques are a natural starting
point for UCCA parsing, given the conceptual
similarity of UCCA’s distinctions, centered around
predicate-argument structures, to distinctions ex-
pressed by dependency schemes, and the achieve-
ments of transition-based methods in dependency
parsing (Dyer et al., 2015; Andor et al., 2016;
Kiperwasser and Goldberg, 2016). We are fur-
ther motivated by the strength of transition-based
methods in related tasks, including dependency
graph parsing (Sagae and Tsujii, 2008; Ribeyre
et al.,, 2014; Tokgoéz and Eryigit, 2015), con-
stituency parsing (Sagae and Lavie, 2005; Zhang
and Clark, 2009; Zhu et al., 2013; Maier, 2015;
Maier and Lichte, 2016), AMR parsing (Wang
et al., 2015a,b, 2016; Misra and Artzi, 2016;
Goodman et al., 2016; Zhou et al., 2016; Damonte
et al., 2017) and CCG parsing (Zhang and Clark,
2011; Ambeati et al., 2015, 2016).

We evaluate TUPA on the English UCCA cor-
pora, including in-domain and out-of-domain set-
tings. To assess the ability of existing parsers to
tackle the task, we develop a conversion proce-
dure from UCCA to bilexical graphs and trees.
Results show superior performance for TUPA,
demonstrating the effectiveness of the presented
approach. !

The rest of the paper is structured as follows:

'All parsing and conversion code, as well as trained
parser models, are available at https://github.com/
danielhers/tupa.
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Section 2 describes UCCA in more detail. Sec-
tion 3 introduces TUPA. Section 4 discusses the
data and experimental setup. Section 5 presents
the experimental results. Section 6 summarizes re-
lated work, and Section 7 concludes the paper.

2 The UCCA Scheme

UCCA graphs are labeled, directed acyclic graphs
(DAGs), whose leaves correspond to the tokens of
the text. A node (or unif) corresponds to a ter-
minal or to several terminals (not necessarily con-
tiguous) viewed as a single entity according to se-
mantic or cognitive considerations. Edges bear a
category, indicating the role of the sub-unit in the
parent relation. Figure 1 presents a few examples.

UCCA is a multi-layered representation, where
each layer corresponds to a “module” of seman-
tic distinctions. UCCA’s foundational layer, tar-
geted in this paper, covers the predicate-argument
structure evoked by predicates of all grammatical
categories (verbal, nominal, adjectival and others),
the inter-relations between them, and other ma-
jor linguistic phenomena such as coordination and
multi-word expressions. The layer’s basic notion
is the scene, describing a state, action, movement
or some other relation that evolves in time. Each
scene contains one main relation (marked as either
a Process or a State), as well as one or more Par-
ticipants. For example, the sentence “After gradu-
ation, John moved to Paris” (Figure 1a) contains
two scenes, whose main relations are “gradua-
tion” and “moved”. “John” is a Participant in both
scenes, while “Paris” only in the latter. Further
categories account for inter-scene relations and the
internal structure of complex arguments and rela-
tions (e.g. coordination, multi-word expressions
and modification).

One incoming edge for each non-root node is
marked as primary, and the rest (mostly used for
implicit relations and arguments) as remote edges,
a distinction made by the annotator. The primary
edges thus form a tree structure, whereas the re-
mote edges enable reentrancy, forming a DAG.

While parsing technology in general, and
transition-based parsing in particular, is well-
established for syntactic parsing, UCCA has sev-
eral distinct properties that distinguish it from syn-
tactic representations, mostly UCCA’s tendency to
abstract away from syntactic detail that do not af-
fect argument structure. For instance, consider the
following examples where the concept of a scene

After T\ N
P \\\

graduation John

(a)

to Paris

process
participant
linked scene
center
relator
connector
scene linker
punctuation
function unit

(b)

Moo ZAOT >

(©)

John and

Mary ’s

Figure 1: UCCA structures demonstrating three structural
properties exhibited by the scheme. (a) includes a remote
edge (dashed), resulting in “John” having two parents. (b)
includes a discontinuous unit (“gave ... up”). (c) includes a
coordination construction (“John and Mary”). Pre-terminal
nodes are omitted for brevity. Right: legend of edge labels.

has a different rationale from the syntactic concept
of a clause. First, non-verbal predicates in UCCA
are represented like verbal ones, such as when they
appear in copula clauses or noun phrases. Indeed,
in Figure la, “graduation” and “moved” are con-
sidered separate events, despite appearing in the
same clause. Second, in the same example, “John”
is marked as a (remote) Participant in the grad-
uation scene, despite not being overtly marked.
Third, consider the possessive construction in Fig-
ure lc. While in UCCA “trip” evokes a scene in
which “John and Mary” is a Participant, a syntac-
tic scheme would analyze this phrase similarly to
“John and Mary’s shoes”.

These examples demonstrate that a UCCA
parser, and more generally semantic parsers, face
an additional level of ambiguity compared to their
syntactic counterparts (e.g., “after graduation” is
formally very similar to “after 2pm”, which does
not evoke a scene). Section 6 discusses UCCA
in the context of other semantic schemes, such as
AMR (Banarescu et al., 2013).

Alongside recent progress in dependency pars-
ing into projective trees, there is increasing inter-
est in parsing into representations with more gen-
eral structural properties (see Section 6). One such
property is reentrancy, namely the sharing of se-
mantic units between predicates. For instance, in
Figure 1a, “John” is an argument of both “gradu-
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ation” and “moved”, yielding a DAG rather than
a tree. A second property is discontinuity, as
in Figure 1b, where “gave up” forms a discon-
tinuous semantic unit. Discontinuities are perva-
sive, e.g., with multi-word expressions (Schnei-
der et al., 2014). Finally, unlike most depen-
dency schemes, UCCA uses non-terminal nodes
to represent units comprising more than one word.
The use of non-terminal nodes is motivated by
constructions with no clear head, including co-
ordination structures (e.g., “John and Mary” in
Figure 1c), some multi-word expressions (e.g.,
“The Haves and the Have Nots”), and preposi-
tional phrases (either the preposition or the head
noun can serve as the constituent’s head). To our
knowledge, no existing parser supports all struc-
tural properties required for UCCA parsing.

3 Transition-based UCCA Parsing

We now turn to presenting TUPA. Building on
previous work on parsing reentrancies, disconti-
nuities and non-terminal nodes, we define an ex-
tended set of transitions and features that supports
the conjunction of these properties.

Transition-based parsers (Nivre, 2003) scan the
text from start to end, and create the parse incre-
mentally by applying a transition at each step to
the parser’s state, defined using three data struc-
tures: a buffer B of tokens and nodes to be pro-
cessed, a stack S of nodes currently being pro-
cessed, and a graph G = (V, E, () of constructed
nodes and edges, where V is the set of nodes, F
is the set of edges, and £ : E — L is the label
function, L being the set of possible labels. Some
states are marked as ferminal, meaning that G is
the final output. A classifier is used at each step to
select the next transition based on features encod-
ing the parser’s current state. During training, an
oracle creates training instances for the classifier,
based on gold-standard annotations.

Transition Set. Given a sequence of tokens
wi, ..., wn,, we predict a UCCA graph G over the
sequence. Parsing starts with a single node on the
stack (an artificial root node), and the input tokens
in the buffer. Figure 2 shows the transition set.

In addition to the standard SHIFT and RE-
DUCE operations, we follow previous work in
transition-based constituency parsing (Sagae and
Lavie, 2005), adding the NODE transition for cre-
ating new non-terminal nodes. For every X € L,
NODE creates a new node on the buffer as a par-

ent of the first element on the stack, with an X-
labeled edge. LEFT-EDGEx and RIGHT-EDGE x
create a new primary X -labeled edge between the
first two elements on the stack, where the parent is
the left or the right node, respectively. As a UCCA
node may only have one incoming primary edge,
EDGE transitions are disallowed if the child node
already has an incoming primary edge. LEFT-
REMOTEx and RIGHT-REMOTEx do not have
this restriction, and the created edge is addition-
ally marked as remote. We distinguish between
these two pairs of transitions to allow the parser
to create remote edges without the possibility of
producing invalid graphs. To support the predic-
tion of multiple parents, node and edge transitions
leave the stack unchanged, as in other work on
transition-based dependency graph parsing (Sagae
and Tsujii, 2008; Ribeyre et al., 2014; Tokgéz and
Eryigit, 2015). REDUCE pops the stack, to allow
removing a node once all its edges have been cre-
ated. To handle discontinuous nodes, SWAP pops
the second node on the stack and adds it to the top
of the buffer, as with the similarly named transi-
tion in previous work (Nivre, 2009; Maier, 2015).
Finally, FINISH pops the root node and marks the
state as terminal.

Classifier. The choice of classifier and feature
representation has been shown to play an impor-
tant role in transition-based parsing (Chen and
Manning, 2014; Andor et al., 2016; Kiperwasser
and Goldberg, 2016). To investigate the impact of
the type of transition classifier in UCCA parsing,
we experiment with three different models.

1. Starting with a simple and common choice
(e.g., Maier and Lichte, 2016), TUPAgparse
uses a linear classifier with sparse features,
trained with the averaged structured perceptron
algorithm (Collins and Roark, 2004) and MIN-
UPDATE (Goldberg and Elhadad, 2011): each
feature requires a minimum number of updates
in training to be included in the model.>

2. Changing the model to a feedforward neu-
ral network with dense embedding features,
TUPApMLp (“multi-layer perceptron’), uses an
architecture similar to that of Chen and Man-
ning (2014), but with two rectified linear layers

2We also experimented with a linear model using dense
embedding features, trained with the averaged structured per-
ceptron algorithm. It performed worse than the sparse per-
ceptron model and was hence discarded.
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Figure 2: The transition set of TUPA. We write the stack with its top to the right and the buffer with its head to the left. (-, -)x
denotes a primary X-labeled edge, and (-, -)% a remote X-labeled edge. i(x) is a running index for the created nodes. In
addition to the specified conditions, the prospective child in an EDGE transition must not already have a primary parent.

instead of one layer with cube activation. The
embeddings and classifier are trained jointly.

3. Finally, TUPAgjLstm uses a bidirectional
LSTM for feature representation, on top of the
dense embedding features, an architecture sim-
ilar to Kiperwasser and Goldberg (2016). The
BiLSTM runs on the input tokens in forward
and backward directions, yielding a vector rep-
resentation that is then concatenated with dense
features representing the parser state (e.g., ex-
isting edge labels and previous parser actions;
see below). This representation is then fed into
a feedforward network similar to TUPApyp.
The feedforward layers, BILSTM and embed-
dings are all trained jointly.

For all classifiers, inference is performed greed-
ily, i.e., without beam search. Hyperparameters
are tuned on the development set (see Section 4).

Features. TUPAgp,se uses binary indicator fea-
tures representing the words, POS tags, syntactic
dependency labels and existing edge labels related
to the top four stack elements and the next three
buffer elements, in addition to their children and
grandchildren in the graph. We also use bi- and
trigram features based on these values (Zhang and
Clark, 2009; Zhu et al., 2013), features related to
discontinuous nodes (Maier, 2015, including sep-
arating punctuation and gap type), features repre-
senting existing edges and the number of parents
and children, as well as the past actions taken by
the parser. In addition, we use use a novel, UCCA-
specific feature: number of remote children.?

For TUPApp and TUPAg;r sTM, We replace all
indicator features by a concatenation of the vector
embeddings of all represented elements: words,

3See Appendix A for a full list of used feature templates.

POS tags, syntactic dependency labels, edge la-
bels, punctuation, gap type and parser actions.
These embeddings are initialized randomly. We
additionally use external word embeddings initial-
ized with pre-trained word2vec vectors (Mikolov
et al., 2013),* updated during training. In addi-
tion to dropout between NN layers, we apply word
dropout (Kiperwasser and Goldberg, 2016): with
a certain probability, the embedding for a word is
replaced with a zero vector. We do not apply word
dropout to the external word embeddings.

Finally, for all classifiers we add a novel real-
valued feature to the input vector, ratio, corre-
sponding to the ratio between the number of ter-
minals to number of nodes in the graph G. This
feature serves as a regularizer for the creation
of new nodes, and should be beneficial for other
transition-based constituency parsers too.

Training. For training the transition classifiers,
we use a dynamic oracle (Goldberg and Nivre,
2012), i.e., an oracle that outputs a set of opti-
mal transitions: when applied to the current parser
state, the gold standard graph is reachable from the
resulting state. For example, the oracle would pre-
dict a NODE transition if the stack has on its top
a parent in the gold graph that has not been cre-
ated, but would predict a RIGHT-EDGE transition
if the second stack element is a parent of the first
element according to the gold graph and the edge
between them has not been created. The transition
predicted by the classifier is deemed correct and
is applied to the parser state to reach the subse-
quent state, if the transition is included in the set
of optimal transitions. Otherwise, a random opti-
mal transition is applied, and for the perceptron-
based parser, the classifier’s weights are updated

*nttps://goo.gl/60vEhC
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Parser state

After graduation e to Paris

Figure 3: Illustration of the TUPA model. Top: parser state
(stack, buffer and intermediate graph). Bottom: TUPAgirrsm
architecture. Vector representation for the input tokens is
computed by two layers of bidirectional LSTMs. The vectors
for specific tokens are concatenated with embedding and nu-
meric features from the parser state (for existing edge labels,
number of children, etc.), and fed into the MLP for selecting
the next transition.

according to the perceptron update rule.

POS tags and syntactic dependency labels are
extracted using spaCy (Honnibal and Johnson,
2015).> We use the categorical cross-entropy ob-
jective function and optimize the NN classifiers
with the Adam optimizer (Kingma and Ba, 2014).

4 Experimental Setup

Data. We conduct our experiments on the
UCCA Wikipedia corpus (henceforth, Wiki), and
use the English part of the UCCA Twenty Thou-
sand Leagues Under the Sea English-French par-
allel corpus (henceforth, 20K Leagues) as out-
of-domain data.® Table 1 presents some statis-
tics for the two corpora. We use passages of in-
dices up to 676 of the Wiki corpus as our train-
ing set, passages 688—808 as development set, and
passages 942—-1028 as in-domain test set. While

Shttps://spacy.io
*http://cs.huji.ac.il/~oabend/ucca.html

Wiki 20K
Train Dev Test Leagues

# passages 300 34 33 154
# sentences 4268 454 503 506
# nodes 298,993 33,7704 35,718 | 29,315
% terminal 42.96 43.54 4287 42.09
% non-term. | 58.33 57.60  58.35 60.01
% discont. 0.54 0.53 0.44 0.81
% reentrant 2.38 1.88 2.15 2.03
# edges 287914 32,460 34,336 | 27,749
% primary 98.25 98.75 98.74 97.73
% remote 1.75 1.25 1.26 2.27
Average per non-terminal node
# children 1.67 1.68 1.66 1.61

Table 1: Statistics of the Wiki and 20K Leagues UCCA cor-
pora. All counts exclude the root node, implicit nodes, and
linkage nodes and edges.

UCCA edges can cross sentence boundaries, we
adhere to the common practice in semantic pars-
ing and train our parsers on individual sentences,
discarding inter-relations between them (0.18% of
the edges). We also discard linkage nodes and
edges (as they often express inter-sentence rela-
tions and are thus mostly redundant when applied
at the sentence level) as well as implicit nodes.” In
the out-of-domain experiments, we apply the same
parsers (trained on the Wiki training set) to the 20K
Leagues corpus without parameter re-tuning.

Implementation. We use the DyNet package
(Neubig et al., 2017) for implementing the NN
classifiers. Unless otherwise noted, we use the
default values provided by the package. See Ap-
pendix C for the hyperparameter values we found
by tuning on the development set.

Evaluation. We define a simple measure for
comparing UCCA structures G, = (Vj, Ep, £p)
and G, = (V,, Ey,{,), the predicted and gold-
standard graphs, respectively, over the same se-
quence of terminals W = {w1,...,w,}. For an
edge e = (u, v) in either graph, u being the parent
and v the child, its yield y(e) C W is the set of
terminals in W that are descendants of v. Define
the set of mutual edges between G, and G :

M(Gvag) =
{(e1,e2) € By x By | y(e1) = y(e2) Alp(er) = £y(e2)}

Labeled precision and recall are defined by di-
viding |M(Gp,Gy)| by |E,| and |Eg|, respec-
tively, and F-score by taking their harmonic mean.

" Appendix B further discusses linkage and implicit units.
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After graduation , John moved to Paris

S AN

gave everything up

AN A

John and Mary went home

Figure 4: Bilexical graph approximation (dependency graph)
for the sentences in Figure 1.

We report two variants of this measure: one where
we consider only primary edges, and another for
remote edges (see Section 2). Performance on re-
mote edges is of pivotal importance in this inves-
tigation, which focuses on extending the class of
graphs supported by statistical parsers.

We note that the measure collapses to the stan-
dard PARSEVAL constituency evaluation measure
if G, and G are trees. Punctuation is excluded
from the evaluation, but not from the datasets.

Comparison to bilexical graph parsers. As no
direct comparison with existing parsers is possi-
ble, we compare TUPA to bilexical dependency
graph parsers, which support reentrancy and dis-
continuity but not non-terminal nodes.

To facilitate the comparison, we convert our
training set into bilexical graphs (see examples in
Figure 4), train each of the parsers, and evaluate
them by applying them to the test set and then re-
constructing UCCA graphs, which are compared
with the gold standard. The conversion to bilexi-
cal graphs is done by heuristically selecting a head
terminal for each non-terminal node, and attach-
ing all terminal descendents to the head terminal.
In the inverse conversion, we traverse the bilexical
graph in topological order, creating non-terminal
parents for all terminals, and attaching them to
the previously-created non-terminals correspond-
ing to the bilexical heads.®

In Section 5 we report the upper bounds on the
achievable scores due to the error resulting from
the removal of non-terminal nodes.

Comparison to tree parsers. For completeness,
and as parsing technology is considerably more

8See Appendix D for a detailed description of the conver-
sion procedures.

After
P

graduation John  moved

to Paris
H
L A
u A R
N N AR
After graduation , John moved to Paris

Figure 5: Tree approximation (constituency) for the sentence
in Figure la (top), and bilexical tree approximation (depen-
dency) for the same sentence (bottom). These are identical to
the original graphs, apart from the removal of remote edges.

mature for tree (rather than graph) parsing, we also
perform a tree approximation experiment, con-
verting UCCA to (bilexical) trees and evaluat-
ing constituency and dependency tree parsers on
them (see examples in Figure 5). Our approach
is similar to the tree approximation approach used
for dependency graph parsing (Agi¢ et al., 2015;
Fernandez-Gonzalez and Martins, 2015), where
dependency graphs were converted into depen-
dency trees and then parsed by dependency tree
parsers. In our setting, the conversion to trees con-
sists simply of removing remote edges from the
graph, and then to bilexical trees by applying the
same procedure as for bilexical graphs.

Baseline parsers. We evaluate two bilexical
graph semantic dependency parsers: DAGParser
(Ribeyre et al., 2014), the leading transition-based
parser in SemEval 2014 (Oepen et al., 2014)
and TurboParser (Almeida and Martins, 2015), a
graph-based parser from SemEval 2015 (Oepen
et al., 2015); UPARSE (Maier and Lichte, 2016),
a transition-based constituency parser supporting
discontinuous constituents; and two bilexical tree
parsers: MaltParser (Nivre et al., 2007), and the
stack LSTM-based parser of Dyer et al. (2015,
henceforce “LSTM Parser”). Default settings are
used in all cases.” DAGParser and UPARSE use
beam search by default, with a beam size of 5 and
4 respectively. The other parsers are greedy.

5 Results

Table 2 presents our main experimental results, as
well as upper bounds for the baseline parsers, re-

°For MaltParser we use the ARCEAGER transition set and
SVM classifier. Other configurations yielded lower scores.
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Wiki (in-domain) 20K Leagues (out-of-domain)
Primary Remote Primary Remote
LP LR LF | LP LR LF LP LR LF | LP LR LF
TUPASsparse 645 6377 64.1 | 19.8 134 16 59.6 599 598|222 7.7 115
TUPAMLP 652 64.6 649|237 132 169 || 623 626 625|209 63 9.7
TUPAgiLstm | 744 7277 735|474 51.6 494 | 68.7 68.5 68.6 | 386 18.8 253
Bilexical Approximation (Dependency DAG Parsers)
Upper Bound 91 58.3 91.3 43.4
DAGParser 61.8 558 58.6| 95 05 1 564 50.6 534 - 0 0
TurboParser | 57.7 46 512|778 1.8 3.7 || 503 37.7 43.1| 100 04 0.8
Tree Approximation (Constituency Tree Parser)
Upper Bound 100 - 100 -
UPARSE 609 612 61.1| - - - 5277 528 528 | - - -
Bilexical Tree Approximation (Dependency Tree Parsers)
Upper Bound 91 - 91.3 -
MaltParser 62.8 577 602 | - - - 578 53 553 | - - -
LSTM Parser | 73.2 66.9 69.9 - - - 66.1 61.1 63.5 - - -

Table 2: Experimental results, in percents, on the Wiki test set (left) and the 20K Leagues set (right). Columns correspond to
labeled precision, recall and F-score, for both primary and remote edges. F-score upper bounds are reported for the conversions.
For the tree approximation experiments, only primary edges scores are reported, as they are unable to predict remote edges.
TUPABgiLstm obtains the highest F-scores in all metrics, surpassing the bilexical parsers, tree parsers and other classifiers.

flecting the error resulting from the conversion.'”

DAGParser and UPARSE are most directly com-
parable to TUPAgpae, as they also use a percep-
tron classifier with sparse features. TUPAgpare
considerably outperforms both, where DAGParser
does not predict any remote edges in the out-of-
domain setting. TurboParser fares worse in this
comparison, despite somewhat better results on
remote edges. The LSTM parser of Dyer et al.
(2015) obtains the highest primary F-score among
the baseline parsers, with a considerable margin.

Using a feedforward NN and embedding fea-
tures, TUPApzpp obtains higher scores than
TUPAgparse, but is outperformed by the LSTM
parser on primary edges. However, using bet-
ter input encoding allowing virtual look-ahead
and look-behind in the token representation,
TUPAgiLsTm oObtains substantially higher scores
than TUPAyp and all other parsers, on both pri-
mary and remote edges, both in the in-domain and
out-of-domain settings. Its performance in abso-
lute terms, of 73.5% F-score on primary edges,
is encouraging in light of UCCA’s inter-annotator
agreement of 80—85% F-score on them (Abend
and Rappoport, 2013).

The parsers resulting from tree approximation

'The low upper bound for remote edges is partly due
to the removal of implicit nodes (not supported in bilexical

representations), where the whole sub-graph headed by such
nodes, often containing remote edges, must be discarded.

are unable to recover any remote edges, as these
are removed in the conversion.!! The bilexical
DAG parsers are quite limited in this respect as
well. While some of the DAG parsers’ difficulty
can be attributed to the conversion upper bound of
58.3%, this in itself cannot account for their poor
performance on remote edges, which is an order
of magnitude lower than that of TUPAg;i.sTM.

6 Related Work

While earlier work on anchored!? semantic pars-
ing has mostly concentrated on shallow seman-
tic analysis, focusing on semantic role labeling of
verbal argument structures, the focus has recently
shifted to parsing of more elaborate representa-
tions that account for a wider range of phenomena
(Abend and Rappoport, 2017).

Grammar-Based Parsing. Linguistically ex-
pressive grammars such as HPSG (Pollard and
Sag, 1994), CCG (Steedman, 2000) and TAG
(Joshi and Schabes, 1997) provide a theory of the
syntax-semantics interface, and have been used
as a basis for semantic parsers by defining com-

"'We also experimented with a simpler version of TUPA
lacking REMOTE transitions, obtaining an increase of up to
2 labeled F-score points on primary edges, at the cost of not
being able to predict remote edges.

2By anchored we mean that the semantic representation
directly corresponds to the words and phrases of the text.
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positional semantics on top of them (Flickinger,
2000; Bos, 2005, among others). Depending on
the grammar and the implementation, such seman-
tic parsers can support some or all of the struc-
tural properties UCCA exhibits. Nevertheless, this
line of work differs from our approach in two im-
portant ways. First, the representations are differ-
ent. UCCA does not attempt to model the syntax-
semantics interface and is thus less coupled with
syntax. Second, while grammar-based parsers ex-
plicitly model syntax, our approach directly mod-
els the relation between tokens and semantic struc-
tures, without explicit composition rules.

Broad-Coverage Semantic Parsing. Most
closely related to this work is Broad-Coverage
Semantic Dependency Parsing (SDP), addressed
in two SemEval tasks (Oepen et al., 2014, 2015).
Like UCCA parsing, SDP addresses a wide range
of semantic phenomena, and supports discon-
tinuous units and reentrancy. In SDP, however,
bilexical dependencies are used, and a head must
be selected for every relation—even in construc-
tions that have no clear head, such as coordination
(Ivanova et al., 2012). The use of non-terminal
nodes is a simple way to avoid this liability. SDP
also differs from UCCA in the type of distinctions
it makes, which are more tightly coupled with
syntactic considerations, where UCCA aims
to capture purely semantic cross-linguistically
applicable notions. For instance, the “poss’” label
in the DM target representation is used to annotate
syntactic possessive constructions, regardless of
whether they correspond to semantic ownership
(e.g., “John’s dog”) or other semantic relations,
such as marking an argument of a nominal
predicate (e.g., “John’s kick™). UCCA reflects the
difference between these constructions.

Recent interest in SDP has yielded numerous
works on graph parsing (Ribeyre et al., 2014;
Thomson et al., 2014; Almeida and Martins, 2015;
Du et al., 2015), including tree approximation
(Agi¢ and Koller, 2014; Schluter et al., 2014) and
joint syntactic/semantic parsing (Henderson et al.,
2013; Swayamdipta et al., 2016).

Abstract Meaning Representation. Another
line of work addresses parsing into AMRs (Flani-
gan et al., 2014; Vanderwende et al., 2015; Pust
et al., 2015; Artzi et al., 2015), which, like UCCA,
abstract away from syntactic distinctions and rep-
resent meaning directly, using OntoNotes predi-

cates (Weischedel et al., 2013). Events in AMR
may also be evoked by non-verbal predicates, in-
cluding possessive constructions.

Unlike in UCCA, the alignment between AMR
concepts and the text is not explicitly marked.
While sharing much of this work’s motivation, not
anchoring the representation in the text compli-
cates the parsing task, as it requires the alignment
to be automatically (and imprecisely) detected. In-
deed, despite considerable technical effort (Flani-
gan et al., 2014; Pourdamghani et al., 2014; Wer-
ling et al., 2015), concept identification is only
about 80%-90% accurate. Furthermore, anchor-
ing allows breaking down sentences into seman-
tically meaningful sub-spans, which is useful for
many applications (Fernandez-Gonzélez and Mar-
tins, 2015; Birch et al., 2016).

Several transition-based AMR parsers have
been proposed: CAMR assumes syntactically
parsed input, processing dependency trees into
AMR (Wang et al., 2015a,b, 2016; Goodman et al.,
2016). In contrast, the parsers of Damonte et al.
(2017) and Zhou et al. (2016) do not require syn-
tactic pre-processing. Damonte et al. (2017) per-
form concept identification using a simple heuris-
tic selecting the most frequent graph for each to-
ken, and Zhou et al. (2016) perform concept iden-
tification and parsing jointly. UCCA parsing does
not require separately aligning the input tokens to
the graph. TUPA creates non-terminal units as
part of the parsing process.

Furthermore, existing transition-based AMR
parsers are not general DAG parsers. They are
only able to predict a subset of reentrancies and
discontinuities, as they may remove nodes before
their parents have been predicted (Damonte et al.,
2017). They are thus limited to a sub-class of
AMRs in particular, and specifically cannot pro-
duce arbitrary DAG parses. TUPAs transition set,
on the other hand, allows general DAG parsing.'3

7 Conclusion

We present TUPA, the first parser for UCCA.
Evaluated in in-domain and out-of-domain set-
tings, we show that coupled with a NN classifier
and BiLSTM feature extractor, it accurately pre-
dicts UCCA graphs from text, outperforming a va-
riety of strong baselines by a margin.

Despite the recent diversity of semantic pars-

3See Appendix E for a proof sketch for the completeness
of TUPA’s transition set.
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ing work, the effectiveness of different approaches
for structurally and semantically different schemes
is not well-understood (Kuhlmann and Oepen,
2016). Our contribution to this literature is a gen-
eral parser that supports multiple parents, discon-
tinuous units and non-terminal nodes.

Future work will evaluate TUPA in a multi-
lingual setting, assessing UCCA’s cross-linguistic
applicability. We will also apply the TUPA transi-
tion scheme to different target representations, in-
cluding AMR and SDP, exploring the limits of its
generality. In addition, we will explore different
conversion procedures (Kong et al., 2015) to com-
pare different representations, suggesting ways for
a data-driven design of semantic annotation.

A parser for UCCA will enable using the frame-
work for new tasks, in addition to existing ap-
plications such as machine translation evaluation
(Birch et al., 2016). We believe UCCA’s merits in
providing a cross-linguistically applicable, broad-
coverage annotation will support ongoing efforts
to incorporate deeper semantic structures into var-
ious applications, such as sentence simplification
(Narayan and Gardent, 2014) and summarization
(Liu et al., 2015).
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