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Abstract

We present an approach to rapidly and
easily build natural language interfaces to
databases for new domains, whose perfor-
mance improves over time based on user
feedback, and requires minimal interven-
tion. To achieve this, we adapt neural se-
quence models to map utterances directly
to SQL with its full expressivity, bypass-
ing any intermediate meaning representa-
tions. These models are immediately de-
ployed online to solicit feedback from real
users to flag incorrect queries. Finally,
the popularity of SQL facilitates gathering
annotations for incorrect predictions using
the crowd, which is directly used to im-
prove our models. This complete feedback
loop, without intermediate representations
or database specific engineering, opens up
new ways of building high quality seman-
tic parsers. Experiments suggest that this
approach can be deployed quickly for any
new target domain, as we show by learning
a semantic parser for an online academic
database from scratch.

1 Introduction

Existing semantic parsing approaches for building
natural language interfaces to databases (NLIDBs)
either use special-purpose intermediate meaning
representations that lack the full expressivity of
database query languages or require extensive fea-
ture engineering, making it difficult to deploy
them in new domains. We present a robust ap-
proach to quickly and easily learn and deploy se-
mantic parsers from scratch, whose performance

�Work done partly during an internship at the Allen Insti-
tute for Artificial Intelligence.

Most recent papers of Michael I. Jordan

SELECT paper.paperId , paper.year
FROM paper , writes , author
WHERE paper.paperId = writes.paperId

AND writes.authorId = author.authorId
AND author.authorName = "michael i. jordan"
AND paper.year =

(SELECT max(paper.year)
FROM paper , writes , author
WHERE paper.paperId = writes.paperId
AND writes.authorId = author.authorId
AND author.authorName = "michael i. jordan");

I’d like to book a flight from San Diego to Toronto

SELECT DISTINCT f1.flight_id
FROM flight f1, airport_service a1, city c1,

airport_service a2, city c2
WHERE f1.from_airport = a1.airport_code

AND a1.city_code = c1.city_code
AND c1.city_name = 'san diego'
AND f1.to_airport = a2.airport_code
AND a2.city_code = c2.city_code
AND c2.city_name = 'toronto ';

Figure 1: Utterances with corresponding SQL
queries to answer them for two domains, an aca-
demic database and a flight reservation database.

improves over time based on user feedback, and
requires very little expert intervention.

To learn these semantic parsers, we (1) adapt
neural sequence models to map utterances directly
to SQL thereby bypassing intermediate represen-
tations and taking full advantage of SQL’s query-
ing capabilities, (2) immediately deploy the model
online to solicit questions and user feedback on
results to reduce SQL annotation efforts, and (3)
use crowd workers from skilled markets to pro-
vide SQL annotations that can directly be used for
model improvement, in addition to being easier
and cheaper to obtain than logical meaning rep-
resentations. We demonstrate the effectiveness of
the complete approach by successfully learning a
semantic parser for an academic domain by simply
deploying it online for three days.

This type of interactive learning is related to a
number of recent ideas in semantic parsing, in-
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cluding batch learning of models that directly pro-
duce programs (e.g., regular expressions (Locas-
cio et al., 2016)), learning from paraphrases (of-
ten gathered through crowdsourcing (Wang et al.,
2015)), data augmentation (e.g. based on man-
ually engineered semantic grammars (Jia and
Liang, 2016)) and learning through direct interac-
tion with users (e.g., where a single user teaches
the model new concepts (Wang et al., 2016)).
However, there are unique advantages to our ap-
proach, including showing (1) that non-linguists
can write SQL to encode complex, compositional
computations (see Fig 1 for an example), (2) that
external paraphrase resources and the structure of
facts from the target database itself can be used
for effective data augmentation, and (3) that ac-
tual database users can effectively drive the overall
learning by simply providing feedback about what
the model is currently getting correct.

Our experiments measure the performance of
these learning advances, both in batch on existing
datasets and through a simple online experiment
for the full interactive setting. For the batch evalu-
ation, we use sentences from the benchmark Geo-
Query and ATIS domains, converted to contain
SQL meaning representations. Our neural learn-
ing with data augmentation achieves reasonably
high accuracies, despite the extra complexities of
mapping directly to SQL. We also perform sim-
ulated interactive learning on this data, showing
that with perfect user feedback our full approach
could learn high quality parsers with only 55% of
the data. Finally, we do a small scale online exper-
iment for a new domain, academic paper metadata
search, demonstrating that actual users can pro-
vide useful feedback and our full approach is an
effective method for learning a high quality parser
that continues to improve over time as it is used.

2 Related Work

Although diverse meaning representation lan-
guages have been used with semantic parsers –
such as regular expressions (Kushman and Barzi-
lay, 2013; Locascio et al., 2016), Abstract Mean-
ing Representations (AMR) (Artzi et al., 2015;
Misra and Artzi, 2016), and systems of equations
(Kushman et al., 2014; Roy et al., 2016) – parsers
for querying databases have typically used either
logic programs (Zelle and Mooney, 1996), lambda
calculus (Zettlemoyer and Collins, 2005), or λ-
DCS (Liang et al., 2013) as the meaning represen-

tation language. All three of these languages are
modeled after natural language to simplify pars-
ing. However, none of them is used to query
databases outside of the semantic parsing litera-
ture; therefore, they are understood by few peo-
ple and not supported by standard database imple-
mentations. In contrast, we parse directly to SQL,
which is a popular database query language with
wide usage and support. Learning parsers directly
from SQL queries has the added benefit that we
can potentially hire programmers on skilled-labor
crowd markets to provide labeled examples, such
as UpWork1, which we demonstrate in this work.

A few systems have been developed to di-
rectly generate SQL queries from natural lan-
guage (Popescu et al., 2003; Giordani and Mos-
chitti, 2012; Poon, 2013). However, all of these
systems make strong assumptions on the struc-
ture of queries: they use manually engineered
rules that can only generate a subset of SQL, re-
quire lexical matches between question tokens and
table/column names, or require questions to have
a certain syntactic structure. In contrast, our ap-
proach can generate arbitrary SQL queries, only
uses lexical matching for entity names, and does
not depend on syntactic parsing.

We use a neural sequence-to-sequence model to
directly generate SQL queries from natural lan-
guage questions. This approach builds on recent
work demonstrating that such models are effective
for tasks such as machine translation (Bahdanau
et al., 2015) and natural language generation (Kid-
don et al., 2016). Recently, neural models have
been successfully applied to semantic parsing with
simpler meaning representation languages (Dong
and Lapata, 2016; Jia and Liang, 2016) and short
regular expressions (Locascio et al., 2016). Our
work extends these results to the task of SQL
generation. Finally, Ling et al. (2016) generate
Java/Python code for trading cards given a natural
language description; however, this system suffers
from low overall accuracy.

A final direction of related work studies meth-
ods for reducing the annotation effort required to
train a semantic parser. Semantic parsers have
been trained from various kinds of annotations,
including labeled queries (Zelle and Mooney,
1996; Wong and Mooney, 2007; Zettlemoyer and
Collins, 2005), question/answer pairs (Liang et al.,
2013; Kwiatkowski et al., 2013; Berant et al.,

1http://www.upwork.com
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2013), distant supervision (Krishnamurthy and
Mitchell, 2012; Choi et al., 2015), and binary
correct/incorrect feedback signals (Clarke et al.,
2010; Artzi and Zettlemoyer, 2013). Each of these
schemes presents a particular trade-off between
annotation effort and parser accuracy; however, re-
cent work has suggested that labeled queries are
the most effective (Yih et al., 2016). Our approach
trains on fully labeled SQL queries to maximize
accuracy, but uses binary feedback from users to
reduce the number of queries that need to be la-
beled. Annotation effort can also be reduced by
using crowd workers to paraphrase automatically
generated questions (Wang et al., 2015); however,
this approach may not generate the questions that
users actually want to ask the database – an ex-
periment in this paper demonstrated that 48% of
users’ questions in a calendar domain could not be
generated.

3 Feedback-based Learning

Our feedback-based learning approach can be
used to quickly deploy semantic parsers to cre-
ate NLIDBs for any new domain. It is a simple
interactive learning algorithm that deploys a pre-
liminary semantic parser, then iteratively improves
this parser using user feedback and selective query
annotation. A key requirement of this algorithm
is the ability to cheaply and efficiently annotate
queries for chosen user utterances. We address this
requirement by developing a model that directly
outputs SQL queries (Section 4), which can also
be produced by crowd workers.

Our algorithm alternates between stages of
training the model and making predictions to
gather user feedback, with the goal of improv-
ing performance in each successive stage. The
procedure is described in Algorithm 1. Our neu-
ral model N is initially trained on synthetic data
T generated by domain-independent schema tem-
plates (see Section 4), and is then ready to answer
new user questions, n. The results R of execut-
ing the predicted SQL query q are presented to the
user who provides a binary correct/incorrect feed-
back signal. If the user marks the result correct,
the pair (n, q) is added to the training set. If the
user marks the result incorrect, the algorithm asks
a crowd worker to annotate the utterance with the
correct query, q̂, and adds (n, q̂) to the training
set. This procedure can be repeated indefinitely,
ideally increasing parser accuracy and requesting

fewer annotations in each successive stage.

1 Procedure LEARN(schema)
2 T ← initial data(schema)
3 while true do
4 T ← T ∪ paraphrase(T )
5 N ← train model(T )
6 for n ∈ new utterances do
7 q ← predict(N , n)
8 R ← execute(q)
9 f ← feedback(R)

10 if f = correct then
11 T ← T ∪ (n, q)
12 else if f = wrong then
13 q̂ ← annotate(n)
14 T ← T ∪ (n, q̂)

15 end
16 end
17 end
18 end

Algorithm 1: Feedback-based learning.

4 Semantic Parsing to SQL

We use a neural sequence-to-sequence model
for mapping natural language questions directly
to SQL queries and this allows us to scale
our feedback-based learning approach, by easily
crowdsourcing labels when necessary. We further
present two data augmentation techniques which
use content from the database schema and exter-
nal paraphrase resources.

4.1 Model

We use an encoder-decoder model with global
attention, similar to Luong et al. (2015), where
the anonymized utterance (see Section 4.2) is
encoded using a bidirectional LSTM network,
then decoded to directly predict SQL query to-
kens. Fixed pre-trained word embeddings from
word2vec (Mikolov et al., 2013) are concatenated
to the embeddings that are learned for source to-
kens from the training data. The decoder predicts
a conditional probability distribution over possi-
ble values for the next SQL token given the pre-
vious tokens using a combination of the previous
SQL token embedding, attention over the hidden
states of the encoder network, and an attention sig-
nal from the previous time step.

Formally, if qi represents an embedding for the
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ith SQL token qi, the decoder distribution is

p(qi|q1, . . . , qi−1) ∝ exp (W tanh(Ŵ[hi : ci]))

where hi represents the hidden state output of the
decoder LSTM at the ith timestep, ci represents
the context vector generated using an attention
weighted sum of encoder hidden states based on
hi, and, W and Ŵ are linear transformations. If
sj is the hidden representation generated by the en-
coder for the jth word in the utterance (k words
long), then the context vectors are defined to be:

ci =
k∑

j=1

αi,j · sj

The attention weights αi,j are computed using an
inner product between the decoder hidden state for
the current timestep hi, and the hidden representa-
tion of the jth source token sj:

αi,j =
exp(hi

TFsj)∑k
j=1 exp(hi

TFsj)

where F is a linear transformation. The decoder
LSTM cell f computes the next hidden state hi,
and cell state, mi, based on the previous hidden
and cell states, hi−1,mi−1, the embeddings of the
previous SQL token qi−1 and the context vector
of the previous timestep, ci−1

hi,mi = f(hi−1,mi−1,qi−1, ci−1)

We apply dropout on non-recurrent connections
for regularization, as suggested by Pham et al.
(2014). Beam search is used for decoding the SQL
queries after learning.

4.2 Entity Anonymization

We handle entities in the utterances and SQL by
replacing them with their types, using incremental
numbering to model multiple entities of the same
type (e.g., CITY NAME 1). During training, when
the SQL is available, we infer the type from the
associated column name; for example, Boston is
a city in city.city name = ’Boston’. To rec-
ognize entities in the utterances at test time, we
build a search engine on all entities from the target
database. For every span of words (starting with a
high span size and progressively reducing it), we
query the search engine using a TF-IDF scheme
to retrieve the entity that most closely matches the
span, then replace the span with the entity’s type.
We store these mappings and apply them to the
generated SQL to fill in the entity names. TF-IDF
matching allows some flexibility in matching en-

tity names in utterances, for example, a user could
say Donald Knuth instead of Donald E. Knuth.

4.3 Data Augmentation

We present two data augmentation strategies that
either (1) provide the initial training data to start
the interactive learning, before more labeled ex-
amples become available, or (2) use external para-
phrase resources to improve generalization.

Schema Templates To bootstrap the model to
answer simple questions initially, we defined 22
language/SQL templates that are schema-agnostic,
so they can be applied to any database. These tem-
plates contain slots whose values are populated
given a database schema. An example template
is shown in Figure 2a. The <ENT> types repre-
sent tables in the database schema, <ENT>.<COL>
represents a column in the particular table and
<ENT>.<COL>.<TYPE> represents the type associ-
ated with the particular column. A template is
instantiated by first choosing the entities and at-
tributes. Next, join conditions, i.e., JOIN FROM and
JOIN WHERE clauses, are generated from the tables
on the shortest path between the chosen tables in
the database schema graph, which connects tables
(graph nodes) using foreign key constraints. Fig-
ure 2b shows an instantiation of a template using
the path author - writes - paper - paperdataset -
dataset. SQL queries generated in this manner are
guaranteed to be executable on the target database.
On the language side, an English name of each en-
tity is plugged into the template to generate an ut-
terance for the query.

Paraphrasing The second data augmentation
strategy uses the Paraphrase Database (PPDB)
(Ganitkevitch et al., 2013) to automatically gener-
ate paraphrases of training utterances. Such meth-
ods have been recently used to improve perfor-
mance for parsing to logical forms (Chen et al.,
2016). PPDB contains over 220 million para-
phrase pairs divided into 6 sets (small to XXXL)
based on precision of the paraphrases. We use the
one-one and one-many paraphrases from the large
version of PPDB. To paraphrase a training utter-
ance, we pick a random word in the utterance that
is not a stop word or entity and replace it with a
random paraphrase. We perform paraphrase ex-
pansion on all examples labeled during learning,
as well as the initial seed examples from schema
templates.
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Get all <ENT1>.<NAME> having 
<ENT2>.<COL1>.<NAME> as <ENT2>.<COL1>.<TYPE>

SELECT <ENT1>.<DEF> FROM JOIN_FROM(<ENT1>, <ENT2>) 
WHERE JOIN_WHERE(<ENT1>, <ENT2>) AND 
  <ENT2>.<COL1> = <ENT2>.<COL1>.<TYPE>

(a) Schema template

SELECT author.authorId 
FROM author , writes , paper , paperDataset , dataset 
WHERE author.authorId = writes.authorId 
  AND writes.paperId = paper.paperId 
  AND paper.paperId = paperDataset.paperId 
  AND paperDataset.datasetId = dataset.datasetId 
  AND dataset.datasetName = DATASET_TYPE

Get all author having dataset  as DATASET_TYPE

(b) Generated utterance-SQL pair

Figure 2: (a) Example schema template consist-
ing of a question and SQL query with slots to be
filled with database entities, columns, and values;
(b) Entity-anonymized training example generated
by applying the template to an academic database.

5 Benchmark Experiments

Our first set of experiments demonstrates that our
semantic parsing model has comparable accuracy
to previous work, despite the increased difficulty
of directly producing SQL. We demonstrate this
result by running our model on two benchmark
datasets for semantic parsing, GEO880 and ATIS.

5.1 Data sets

GEO880 is a collection of 880 utterances issued
to a database of US geographical facts (Geobase),
originally in Prolog format. Popescu et al. (2003)
created a relational database schema for Geobase
together with SQL queries for a subset of 700 ut-
terances. To compare against prior work on the
full corpus, we annotated the remaining utterances
and used the standard 600/280 training/test split
(Zettlemoyer and Collins, 2005).

ATIS is a collection of 5,418 utterances to a
flight booking system, accompanied by a rela-
tional database and SQL queries to answer the
questions. We use 4,473 utterances for training,
497 for development and 448 for test, follow-
ing Kwiatkowski et al. (2011). The original SQL
queries were very inefficient to execute due to the
use of IN clauses, so we converted them to joins
(Ramakrishnan and Gehrke, 2003) while verifying
that the output of the queries was unchanged.

Table 1 shows characteristics of both data sets.
GEO880 has shorter queries but is more compo-
sitional: almost 40% of the SQL queries have at

Geo880 ATIS SCHOLAR

Avg. NL length 7.56 10.97 6.69
NL vocab size 151 808 303

Avg. SQL length 16.06 67.01 28.85
SQL vocab size 89 605 163
% Subqueries > 1 39.8 12.42 2.58
# Tables 1.19 5.88 3.33

Table 1: Utterance and SQL query statistics for
each dataset. Vocabulary sizes are counted after
entity anonymization.

least one nested subquery. ATIS has the longest
utterances and queries, with an average utterance
length of 11 words and an average SQL query
length of 67 tokens. They also operate on approx-
imately 6 tables per query on average. We will
release our processed versions of both datasets.

5.2 Experimental Methodology

We follow a standard train/dev/test methodology
for our experiments. The training set is augmented
using schema templates and 3 paraphrases per
training example, as described in Section 4. Ut-
terances were anonymized by replacing them with
their corresponding types and all words that occur
only once were replaced by UNK symbols. The
development set is used for hyperparameter tun-
ing and early stopping. For GEO880, we use cross
validation on the training set to tune hyperparam-
eters. We used a minibatch size of 100 and used
Adam (Kingma and Ba, 2015) with a learning rate
of 0.001 for 70 epochs for all our experiments. We
used a beam size of 5 for decoding. We report test
set accuracy of our SQL query predictions by exe-
cuting them on the target database and comparing
the result with the true result.

5.3 Results

Tables 2 and 3 show test accuracies based on de-
notations for our model on GEO880 and ATIS re-
spectively, compared with previous work.2 To our
knowledge, this is the first result on directly pars-
ing to SQL to achieve comparable performance
to prior work without using any database-specific
feature engineering. Popescu et al. (2003) and
Giordani and Moschitti (2012) also directly pro-
duce SQL queries but on a subset of 700 examples
from GEO880. The former only works on seman-
tically tractable utterances where words can be un-

2Note that 2.8% of GEO880 and 5% ATIS gold test set
SQL queries (before any processing) produced empty results.
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System Acc.

Ours (SQL) 82.5

Popescu et al. (2003) (SQL) 77.5∗

Giordani and Moschitti (2012) (SQL) 87.2∗

Dong and Lapata (2016) 84.6�†

Jia and Liang (2016) 89.3�

Liang et al. (2013) 91.1�

Table 2: Accuracy of SQL query results on the
Geo880 corpus; ∗ use Geo700; � convert to logi-
cal forms instead of SQL; † measure accuracy in
terms of obtaining the correct logical form, other
systems, including ours, use denotations.

System Acc.

Ours (SQL) 79.24

GUSP (Poon, 2013) (SQL) 74.8
GUSP++ (Poon, 2013) (SQL) 83.5

Zettlemoyer and Collins (2007) 84.6�†

Dong and Lapata (2016) 84.2�†

Jia and Liang (2016) 83.3�

Wang et al. (2014) 91.3�†

Table 3: Accuracy of SQL query results on ATIS;
� convert to logical forms instead of SQL; † mea-
sure accuracy in terms of obtaining the correct log-
ical form, other systems, including ours, use deno-
tations.

ambiguously mapped to schema elements, while
the latter uses a reranking approach that also lim-
its the complexity of SQL queries that can be han-
dled. GUSP (Poon, 2013) creates an intermediate
representation that is then deterministically con-
verted to SQL to obtain an accuracy of 74.8% on
ATIS, which is boosted to 83.5% using manually
introduced disambiguation rules. However, it re-
quires a lot of SQL specific engineering (for ex-
ample, special nodes for argmax) and is hard to
extend to more complex SQL queries.

On both datasets, our SQL model achieves rea-
sonably high accuracies approaching that of the
best non-SQL results. Most relevant to this work
are the neural sequence based approaches of Dong
and Lapata (2016) and Jia and Liang (2016). We
note that Jia and Liang (2016) use a data recombi-
nation technique that boosts accuracy from 85.0 on
GEO880 and 76.3 on ATIS; this technique is also
compatible with our model and we hope to experi-

System GEO880 ATIS

Ours 84.8 86.2
- paraphrases 81.8 84.3
- templates 84.7 85.7

Table 4: Addition of paraphrases to the training set
helps performance, but template based data aug-
mentation does not significantly help in the fully
supervised setting. Accuracies are reported on the
standard dev set for ATIS and on the training set,
using cross-validation, for Geo880.

ment with this in future work. Our results demon-
strate that these models are powerful enough to di-
rectly produce SQL queries. Thus, our methods
enable us to utilize the full expressivity of the SQL
language without any extensions that certain log-
ical representations require to answer more com-
plex queries. More importantly, it can be imme-
diately deployed for users in new domains, with a
large programming community available for anno-
tation, and thus, fits effectively into a framework
for interactive learning.

We perform ablation studies on the develop-
ment sets (see Table 4) and find that paraphras-
ing using PPDB consistently helps boost perfor-
mance. However, unlike in the interactive ex-
periments (Section 6), data augmentation using
schema templates does not improve performance
in the fully supervised setting.

6 Interactive Learning Experiments

In this section, we learn a semantic parser for an
academic domain from scratch by deploying an
online system using our interactive learning algo-
rithm (Section 3). After three train-deploy cycles,
the system correctly answered 63.51% of user’s
questions. To our knowledge, this is the first effort
to learn a semantic parser using a live system, and
is enabled by our models that can directly parse
language to SQL without manual intervention.

6.1 User Interface
We developed a web interface for accepting nat-
ural language questions to an academic database
from users, using our model to generate a SQL
query, and displaying the results after execution.
Several example utterances are also displayed to
help users understand the domain. Together with
the results of the generated SQL query, users are
prompted to provide feedback which is used for
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interactive learning. Screenshots of our interface
are included in our Supplementary Materials.

Collecting accurate user feedback on predicted
queries is a key challenge in the interactive learn-
ing setting for two reasons. First, the system’s re-
sults can be incorrect due to poor entity identifi-
cation or incompleteness in the database, neither
of which are under the semantic parser’s control.
Second, it can be difficult for users to determine if
the presented results are in fact correct. This de-
termination is especially challenging if the system
responds with the correct type of result, for exam-
ple, if the user requests “papers at ACL 2016” and
the system responds with all ACL papers.

We address this challenge by providing users
with two assists for understanding the system’s
behavior, and allowing users to provide more
granular feedback than simply correct/incorrect.
The first assist is type highlighting, which high-
lights entities identified in the utterance, for ex-
ample, “paper by Michael I. Jordan (AUTHOR)
in ICRA (VENUE) in 2016 (YEAR).” This as-
sist is especially helpful because the academic
database contains noisy keyword and dataset ta-
bles that were automatically extracted from the pa-
pers. The second assist is utterance paraphras-
ing, which shows the user another utterance that
maps to the same SQL query. For example, for the
above query, the system may show “what papers
does Michael I. Jordan (AUTHOR) have in ICRA
(VENUE) in 2016 (YEAR).” This assist only ap-
pears if a matching query (after entity anonymiza-
tion) exists in the model’s training set.

Using these assists and the predicted results,
users are asked to select from five feedback op-
tions: Correct, Wrong Types, Incomplete Result,
Wrong Result and Can’t Tell. The Correct and
Wrong Result options represent scenarios when
the user is satisfied with the result, or the result
is identifiably wrong, respectively. Wrong Types
indicates incorrect entity identification, which can
be determined from type highlighting. Incomplete
Result indicates that the query is correct but the
result is not; this outcome can occur because the
database is incomplete. Can’t Tell indicates that
the user is unsure about the feedback to provide.

6.2 Three-Stage Online Experiment

In this experiment, using our developed user in-
terface, we use Algorithm 1 to learn a semantic
parser from scratch. The experiment had three

stages; in each stage, we recruited 10 new users
(computer science graduate students) and asked
them to issue at least 10 utterances each to the
system and to provide feedback on the results.
We considered results marked as either Correct
or Incomplete Result as correct queries for learn-
ing. The remaining incorrect utterances were sent
to a crowd worker for annotation and were used
to retrain the system for the next stage. The
crowd worker had prior experience in writing SQL
queries and was hired from Upwork after complet-
ing a short SQL test. The worker was also given
access to the database to be able to execute the
queries and ensure that they are correct. For the
first stage, the system was trained using 640 ex-
amples generated using templates, that were aug-
mented to 1746 examples using paraphrasing (see
Section 4.3). The complexity of the utterances is-
sued in each of the three phases were compara-
ble, in that, the average length of the correct SQL
query for the utterances, and the number of tables
required to be queried, were similar.

Table 5 shows the percent of utterances judged
by users as either Correct or Incomplete Result
in each stage. In the first stage, we do not have
any labeled examples, and the model is trained us-
ing only synthetically generated data from schema
templates and paraphrases (see Section 4.3). De-
spite the lack of real examples, the system cor-
rectly answers 25% of questions. The system’s ac-
curacy increases and annotation effort decreases in
each successive stage as additional utterances are
contributed and incorrect utterances are labeled.
This result demonstrates that we can successfully
build semantic parsers for new domains by us-
ing neural models to generate SQL with crowd-
sourced annotations driven by user feedback.

We analyzed the feedback signals provided by
the users in the final stage of the experiment to
measure the quality of feedback. We found that
22.3% of the generated queries did not execute
(and hence were incorrect). 6.1% of correctly gen-
erated queries were marked wrong by users (see
Table 6). This erroneous feedback results in re-
dundant annotation of already correct examples.
The main cause of this erroneous feedback was in-
complete data for aggregation queries, where users
chose Wrong instead of Incomplete. 6.3% of in-
correct queries were erroneously deemed correct
by users. It is important that this fraction be low,
as these queries become incorrectly-labeled exam-
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Stage 1 Stage 2 Stage 3

Accuracy (%) 25 53.7 63.5

Table 5: Percentage of utterances marked as Cor-
rect or Incomplete by users, in each stage of our
online experiment.

Feedback Error Rate (%)

Correct SQL 6.1
Incorrect SQL 6.3

Table 6: Error rates of user feedback when the
SQL is correct and incorrect. The Correct and
Incomplete results options are erroneous if the
SQL query is correct, and vice versa for incorrect
queries.

ples in the training set that may contribute to the
deterioration of model accuracy over time. This
quality of feedback is already sufficient for our
neural models to improve with usage, and creating
better interfaces to make feedback more accurate
is an important task for future work.

6.3 SCHOLAR dataset

We release a new semantic parsing dataset for aca-
demic database search using the utterances gath-
ered in the user study. We augment these la-
beled utterances with additional utterances labeled
by crowd workers. (Note that these additional
utterances were not used in the online experi-
ment). The final dataset comprises 816 natural
language utterances labeled with SQL, divided
into a 600/216 train/test split. We also provide a
database on which to execute these queries con-
taining academic papers with their authors, cita-
tions, journals, keywords and datasets used. Ta-
ble 1 shows statistics of this dataset. Our parser
achieves an accuracy of 67% on this train/test split
in the fully supervised setting. In comparison, a
nearest neighbor strategy that uses the cosine simi-
larity metric using a TF-IDF representation for the
utterances yields an accuracy of 52.75%.

We found that 15% of the predicted queries did
not execute, predominantly owing to (1) access-
ing table columns without joining with those ta-
bles, and (2) generating incorrect types that could
not be deanonymized using the utterance. The
main types of errors in the remaining well-formed
queries that produced incorrect results were (1)
portions of the utterance (such as ‘top’ and ‘cited

by both’) were ignored, and (2) some types from
the utterance were not transferred to the SQL
query.

2 4 6 8 10 12
Stages

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
ac

tio
n 

Co
rre

ct

Simulated Interactive Learning on Geo880

Ours
Without templates
Without paraphrasing

2 4 6 8 10 12
Stages

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
ac
tio

n 
Co

rre
ct

Simulated Interactive Learning on ATIS

Ours
Without templates
Without paraphrasing

Figure 3: Accuracy as a function of batch num-
ber in simulated interactive learning experiments
on Geo880 (top) and ATIS (bottom).

6.4 Simulated Interactive Experiments
We conducted additional simulated interactive
learning experiments using GEO880 and ATIS to
better understand the behavior of our train-deploy
feedback loop, the effects of our data augmen-
tation approaches, and the annotation effort re-
quired. We randomly divide each training set into
K batches and present these batches sequentially
to our interactive learning algorithm. Correctness
feedback is provided by comparing the result of
the predicted query to the gold query, i.e., we as-
sume that users are able to perfectly distinguish
correct results from incorrect ones.

Figure 3 shows accuracies on GEO880 and
ATIS respectively of each batch when the model
is trained on all previous batches. As in the live
experiment, accuracy improves with successive
batches. Data augmentation using templates helps
in the initial stages of GEO880, but its advantage

970



Batch Size 150 100 50

% Wrong 70.2 60.4 54.3

Table 7: Percentage of examples that required an-
notation (i.e., where the model initially made an
incorrect prediction) on GEO880 vs. batch size.

is reduced as more labeled data is obtained. Tem-
plates did not improve accuracy on ATIS, possibly
because most ATIS queries involve two entities,
i.e., a source city and a destination city, whereas
our templates only generate questions with a sin-
gle entity type. Nevertheless, templates are impor-
tant in a live system to motivate users to interact
with it in early stages. As observed before, para-
phrasing improves performance at all stages.

Table 7 shows the percent of examples that
require annotation using various batch sizes for
GEO880. Smaller batch sizes reduce annota-
tion effort, with a batch size of 50 requiring only
54.3% of the examples to be annotated. This re-
sult demonstrates that more frequent deployments
of improved models leads to fewer mistakes.

7 Conclusion

We describe an approach to rapidly train a seman-
tic parser as a NLIDB that iteratively improves
parser accuracy over time while requiring mini-
mal intervention. Our approach uses an attention-
based neural sequence-to-sequence model, with
data augmentation from the target database and
paraphrasing, to parse utterances to SQL. This
model is deployed in an online system, where user
feedback on its predictions is used to select utter-
ances to send for crowd worker annotation.

We find that the semantic parsing model is
comparable in performance to previous systems
that either map from utterances to logical forms,
or generate SQL, on two benchmark datasets,
GEO880 and ATIS. We further demonstrate the
effectiveness of our online system by learning a
semantic parser from scratch for an academic do-
main. A key advantage of our approach is that it
is not language-specific, and can easily be ported
to other commonly used query languages, such as
SPARQL or ElasticSearch. Finally, we also re-
lease a new dataset of utterances and SQL queries
for an academic domain.
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