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Abstract

A hierarchical word alignment model that
searches for k-best partial alignments on
target constituent 1-best parse trees has
been shown to outperform previous mod-
els. However, relying solely on 1-best
parses trees might hinder the search for
good alignments because 1-best trees are
not necessarily the best for word align-
ment tasks in practice. This paper in-
troduces a dependency forest based word
alignment model, which utilizes target de-
pendency forests in an attempt to mini-
mize the impact on limitations attributable
to 1-best parse trees. We present how
k-best alignments are constructed over
target-side dependency forests. Alignment
experiments on the Japanese-English lan-
guage pair show a relative error reduction
of 4% of the alignment score compared to
a model with 1-best parse trees.

1 Introduction

In statistical machine translation (SMT), word
alignment plays an essential role in obtaining
phrase tables (Och and Ney, 2004; Koehn et al.,
2003) or syntactic transformation rules (Chiang,
2007; Shen et al., 2008). IBM models (Brown et
al., 1993), which are based on word sequences,
have been widely used for obtaining word align-
ments because they are fast and their implementa-
tion is available as GIZA++.1

Recently, a hierarchical alignment model
(whose implementation is known as Nile2) (Riesa
et al., 2011), which performs better than IBM
models, has been proposed. In the hierarchi-
cal alignment model, both source and target con-

1http://www.statmt.org/moses/giza/GIZA++.html
2http://jasonriesa.github.io/nile/

stituency trees are used for incorporating syntactic
information as features, and it searches for k-best
partial alignments on the target constituent parse
trees. It achieved significantly better results than
the IBM Model4 in Arabic-English and Chinese-
English word alignment tasks, even though the
model was trained on only 2,280 and 1,102 par-
allel sentences as gold standard alignments. How-
ever, their models rely only on 1-best source and
target side parse trees, which are not necessarily
good for word alignment tasks.

In SMT, forest-based decoding has been pro-
posed for both constituency and dependency parse
trees (Mi et al., 2008; Tu et al., 2010). A forest
is a compact representation of n-best parse trees.
It provides more alternative parse trees to choose
from during decoding, leading to significant im-
provements in translation quality. In this paper, we
borrow this idea to build an alignment model us-
ing dependency forests rather than 1-best parses,
which makes it possible to provide the model with
more alternative parse trees that may be suitable
for word alignment tasks. The motivation of using
dependency forests instead of constituency forests
in our model is that dependency forests are more
appropriate for alignments between language pairs
with long-distance reordering, such as the one we
study in this paper. This is because they are more
suitable for capturing the complex semantic rela-
tions of words in a sentence (Kahane, 2012).

We conducted alignment experiments on the
Japanese-English language pair. Experimental re-
sults show a relative error reduction of 4% of the
alignment score compared to the model with 1-
best parse trees.

2 Model Description
2.1 Dependency Forest
We first briefly explain dependency forests that are
used in our model before describing the alignment
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Figure 1: Bottom-up search for alignments over
target-side dependency forest (This forest encodes
2-best parse trees for the sentence “he saw a girl
with a telescope.” The source sentence is “彼 (He)
は望遠鏡 (telescope)で (with)女の子 (girl)を見た
(saw)”. There are two interpretations for this sen-
tence; either “with a telescope” depends on “saw”
or “boy.”)

construction method. A dependency forest is rep-
resented by a hypergraph ⟨V, E⟩, where V is a set
of nodes and E is a set of hyperedges.

A hyperedge e connects nodes in the forest and
is defined to be a triple ⟨tails(e), head(e), score⟩,
where tails(e) is a set of dependents of e, head(e)
is the head of e, and score is the score of e
that is usually obtained by heuristics (Tu et al.,
2010). For example, e1 in Figure 1 is equal
to ⟨(he0,1, boy2,4, with4,7), saw0,7, 1.234⟩. In our
model, we use Algorithm 1 to compute hyperedge
scores. Edges in a hyperedge are defined to be
the ones obtained by connecting each tail with the
head (Line 11). Hyperedge score is the sum of all
the scores of edges in it (Line 12). The score of
an edge is the normalized sum of the scores of all
parses which contain the edge (Line 7).

Every node in a dependency forest corresponds
to a word attached with a span, which is a range of
word indices covered by the node. Following (Tu
et al., 2010), a span is represented in the form i, j,
which indicates the node covers all the words from
i-th to (j − 1)-th word. This requires dependency
forests to be projective. Separate nodes are used
for a word if the nodes in dependency trees have
different spans. For example, in Figure 1 there are
two nodes for the word “boy” because they have
different spans (i.e., (2, 4) and (2, 7)).

The construction of a dependency forest from

Input : n-best dependency parses {Ti}n
i=1

of a sentence
Score of Ti Scorei

Output: A forest F of {Ti}n
i=1

1 F =
CreateForestStructure({Ti}n

i=1)
2 edgeScores = {}
3 minScore = Min({Scorei}n

i=1)
4 for i = 1 to n do
5 Scorei− = minScore
6 for edge ∈ Ti do
7 edgeScores [edge] + = 1

nScorei

8 end
9 end

10 for hyperEdge ∈ F do
11 for edge ∈ hyperEdge do
12 hyperEdge.score+ =

edgeScores [edge]
13 end
14 end

Algorithm 1: Computation of a hyperedge score

dependency trees is done by sharing the common
nodes and edges (Line 1). The common nodes
are those with the same span and part-of-speech
(POS) . Note that the dependency forest obtained
from this method does not necessarily encode ex-
actly the dependency trees from which they are
created. Usually there are more trees that can be
extracted from the dependency forests (Boullier et
al., 2009). In our experiment, when we use the
term “a n-best dependency forest”, we indicate a
dependency forest that is created from n-best de-
pendency trees.

2.2 Finding Alignments over Forest
Following the hierarchical alignment model
(Riesa et al., 2011), our model searches for the
best alignment by constructing partial alignments
(hypotheses) over target dependency forests in a
bottom-up manner as shown in Figure 1.

The algorithm for constructing alignments is
shown in Algorithm 2. Note that source depen-
dency forests are included in the input to the al-
gorithm. This is optional but can be included for
richer features. Each node in the forest has partial
alignments sorted by alignment scores. Because
it is computationally expensive to keep all possi-
ble partial alignments for each node, we keep a
beam size of k. A partial alignment for a node is
an alignment matrix for target words that are cov-
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ered by the node. In Figure 1, each partial align-
ment is represented as a black square. Scores of
the partial alignments are a linear combination of
features. There are two types of features: local and
non-local features. A feature f is defined to be lo-
cal if and only if it can be factored among the lo-
cal productions in a tree, and non-local otherwise
(Huang, 2008).

We visit the nodes in the topological order, to
guarantee that we visit a node after visiting all its
tail nodes (Line 1). For each node, we first gen-
erates partial alignments, which are one column
alignment matrices for its word. Because of time
complexity, we only generates null, single link and
double link alignment (Line 5). A single and dou-
ble link alignment refer to a column matrix having
exactly one and two alignments, respectively, as
shown in Figure 1. For each partial alignment, we
compute its score using local features (Line 7) and
pushed to a priority queue Bv (Line 8). These par-
tial alignments are represented by black squares in
a blue container in Figure 1. Then, we compute
partial alignments for the target words covered by
the node, by combining tails’ partial alignments
and one column alignments for its word using non-
local features (Line 10 - 14), which is represented
by the orange arrows in Figure 1. k-best com-
bined partial alignments are put in Yv (Line 14).
They are represented by black squares in a yellow
container in Figure 1. Here, we use cube prun-
ing (Chiang, 2007) to get the approximate k-best
combinations. Note that in the search over con-
stituency parse trees, one column alignment ma-
trices are generated only on the leaf node (Riesa et
al., 2011), whereas we generate them also on non-
leaf nodes in the search over dependency forests.

2.3 Features

The features we used include those used in Nile
except for the automatically extracted rule and
constellation features. This is because these fea-
tures are not easily applicable to dependency
forests. As shown in our experiments, these fea-
tures have a contribution to the alignment score.
However, our primary purpose is to show the ef-
fect of using forests on alignment quality.

Several features in Nile such as source-target
POS local feature and coordination feature have
to be customized for dependency forests, because
it is possible that there are multiple nodes that cor-
respond to the same word. We decided to consider
all nodes corresponding to a word by counting the

Input : Source and target sentence s, t
Dependency forest Fs over s
Dependency forest Ft over t
Set of feature functions h
Weight vector w
Beam size k

Output: A k-best list of alignments over s
and t

1 for v ∈TopologicalSort(Ft) do
2 links = ∅
3 Bv = ∅
4 i = word-index-of(v)
5 links = {(0, i)}∪SingleLinks(i)

∪DoubleLinks(i)
6 for link ∈ links do
7 score = w · h(links, v, s, t, Fs, Ft)
8 Push(Bv, ⟨score, link⟩, k)

9 end
10 for hyperEdge ∈InHyperEdges(v)

do
11 c = hyperEdge.tail
12 Push(αv, ⟨Yc1 , · · · , Yc|c| , Bv⟩)
13 end
14 Yv =CubePruning(αv, k, w, h, v, s,

t, Fs, Ft)

15 end
Algorithm 2: Construction of alignments

frequency of each POS tag of a node, and normal-
izing it with the total frequency of POS tags in the
forest. For example, suppose there are four nodes
which correspond to the same word, whose POS
tags are JJ, VBG, JJ, VGZ. In this case the features
“src-tgt-pos-feature-JJ=0.5”, “src-tgt-pos-feature-
VBG=0.25” and “src-tgt-pos-feature-VBZ=0.25”
are activated.

Besides the features used in Nile, our model
uses a contiguous alignment local feature and a
hyperedge score non-local feature. The contigu-
ous alignment feature fires when a target word is
aligned to multiple source words, and these words
are contiguous on a forest. Preliminary experi-
ments showed, however, that none of these fea-
tures contributed to the improvement of the align-
ment score.

3 Experiments

3.1 Experimental Settings

We conducted alignment experiments on the
Japanese-English language pair. For dependency
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parsers, we used KNP (Kawahara and Kurohashi,
2006) for Japanese and Berkeley Parser (Petrov
and Klein, 2007) for English. We converted con-
stituent parse trees obtained by Berkeley Parser to
dependency parse trees using rules.3 We used 300,
100, 100 sentences from ASPEC-JE2 for train-
ing, development and test data, respectively.4 Our
model as well as Nile has a feature called third
party alignment feature, which activates for an
alignment link that is presented in the alignment
of a third party model. The beam size k was set
to 128. We used different number of parse trees
to create a target forest, e.g., 1, 10, 20, 50, 100
and 200.5 The baseline in this experiment is a
model with 1-best parse trees on the target side.
For reference, we also experimented on Nile6,
the Bayesian subtree alignment model (Nakazawa
model) (Nakazawa and Kurohashi, 2011) and IBM
Model4.7 We used Nile without automatically ex-
tracted rule features and constellation features to
make a fair comparison with our model.

3.2 Results

Table 1 shows the alignment results evaluated on
precision, recall and F-score for each experimen-
tal setting. The first row shows the names of dif-
ferent experimental settings. Each number in the
row shows the number of n-best parse trees used
to create target forests.

We can observe that using forests improves the
score. However, the improvement does not mono-
tonically increase with the number of trees on the
target side. When 100-best is used in target side,
it achieved the highest error reduction of 4% com-
pared to the baseline model. 8

We also conducted experiments on different
number of beam size k, e.g, 200 and 300, from
the insight that a larger number of trees encoded
in a forest indicates that more noisy partial align-
ments are generated, using the same k as the 1-best
model is not sufficient. However, we could not ob-
serve significant improvements.

3The conversion program is available at
https://github.com/hitochan777/mt-tools/releases/tag/1.0.1

4http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
5In the experiments, we used 1-best parse trees for the

source side. Although our model also allows to use forests on
the source side, preliminary experiments showed that using
forests on the source side does not improve the alignment
score.

6Note that Nile uses 1-best constituency parse tree
7The alignments from Nakazawa model and IBM Model

4 were symmetrized with the grow-diag-final heuristic.
8(82.39− 81.66) / (100− 81.66) ≈ 4%

4 Discussion

We observed the improvement of alignments by
using forests. We checked whether good parse
trees were chosen when higher F-scores were
achieved. It turned out that better parse trees led to
higher F-scores, as shown in Figure 2a, but it was
not always the case.

Figure 2a shows an improved example by us-
ing 100-best trees on the target side. In the fig-
ure, we can observe that “の” and “of” are cor-
rectly aligned. We observe that the English 1-best
parse tree is incorrect, whereas 100-best model
were able to choose a better tree.

Figure 2b shows a worsened example by using
200-best trees on the target side. We can see that
the 200-best model aligned many words unneces-
sarily and the wrong tree is chosen even though
the 1-best parse is good. There were many cases
in which forests are harmful for alignments. There
are two possible reasons. Firstly, most of the fea-
tures in our model comes from Nile, but they are
not informative enough to choose better parses
from forests. Secondly, our model is likely to suf-
fer from the data sparseness because using forests
generates more noise than 1-best parses.

For our model to benefit from forests we have
to consider the following: Firstly, our model’s fea-
ture is based on the assumption that source and
target forests contain trees with similar structures
to each other. However the projectivity of forests
prohibits our model from generating (choosing)
target trees that are similar to the ones in source
forests. Secondly, we observed the cases where no
parse in forests captures the correct root and the
difference of n-best parses are mainly POS tags of
words.

Our model performs on par with Nile because
our model is based on Nile. However, our
model outperforms the Nakazawa model and IBM
Model4. This is because our model is supervised
but these models are unsupervised. The Nakazawa
model outperformed IBM Model4 because it uti-
lizes dependency trees, which provide richer in-
formation.

5 Related Work

Studies have been conducted to make use of more
alternatives to cope with the unreliability of 1-
best results. Liu et al. (2009) proposed a struc-
ture called weighted alignment matrix, which en-
codes the distribution over all possible alignments.
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Model 1 10 20 50 100 150 200 Nile Nakazawa IBM Model 4
Precision 82.56 82.90 83.51 83.28 83.77 83.34 83.39 83.26 70.59 63.21

Recall 80.79 80.88 80.62 80.75 81.05 80.66 80.75 81.52 82.67 74.25
F-score 81.66 81.87 82.04 81.99 82.39 81.98 82.05 82.38 76.16 68.29

Table 1: Precision, Recall and F-score for ASPEC-JE. The numbers in the first row refer to the number
of k-best parse trees used to generate forests.

(a) 1-best and 100-best model comparison in the alignment of
“onto a single row of detectors on” and “上 (on) の (of) 単一
(single)列 (row)の (of)検出器 (detectors)”

(b) 1-best and 200-best model comparison in the alignment of
“in comparison with one in 2000” and “2030(2030) 年 (year)
には (in)”

Figure 2: Alignment result: Black boxes represent golden alignments. Triangles represent 1-best model
alignments. Circles represent the alignments of proposed model. Black and red arcs represent 1-best
parses and chosen parses respectively.

They introduced a way to extract phrase pairs
and estimate their probabilities. Their proposed
method outperformed the baseline which uses n-
best alignments. Venugopal et al. (2008) used
n-best alignments and parses to generate fraction
counts used for machine translation downstream
estimation. While their approaches are to use n-
best alignments already obtained from some align-
ment models, our model finds k-best list of align-
ments for given sentences.

Mi et al. (2008) and Tu et al. (2010) used packed
constituency forests and dependency forests re-
spectively for decoding. The best path that is suit-
able for translation is chosen from the forest dur-
ing decoding, leading to significant improvement
in translation quality. Note that they do not use
forests for obtaining word alignments.

The approaches for modeling word alignment
can be divided into two categories: discrimi-
native models (Dyer et al., 2011; Setiawan et
al., 2010) and generative models (Brown et al.,
1993; Nakazawa and Kurohashi, 2011). Gener-
ative models such as the IBM models (Brown et
al., 1993) have the advantage that they do not re-
quire golden alignment training data annotated by

humans. However, it is difficult to incorporate
arbitrary features in these models. On the other
hand, discriminative models can incorporate arbi-
trary features such as syntactic information, but
they generally require gold training data, which is
hard to obtain in large scale. For discriminative
models, word alignment models using deep neural
network have been proposed recently (Tamura et
al., 2014; Songyot and Chiang, 2014; Yang et al.,
2013).

6 Conclusion

In this work, we proposed a hierarchical alignment
model based on dependency forests, which ad-
vanced an alignment model that uses constituency
parse trees (Riesa et al., 2011) to allow to use more
suitable parse trees for word alignment. Experi-
mental results on the Japanese-English language
pair show a relative error reduction of 4% of the
alignment score compared to a model with 1-best
parse trees that using forest on the target side.

Our future work will involve the implementa-
tion of missing features, because the automatic
translation rule features had a large contribution
to the improvement of alignment quality in Nile.
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The experimental results show that Nile, which
uses 1-best constituency parses , had almost the
same F-score as our proposed method with 100-
best parse trees. It will be interesting to see the
effect of using forests in Nile.

Moreover, we are considering to investigate the
efficacy of our model with different parsers and
language pairs.

Finally, we are also considering using training
data with richer information such as the one de-
scribed in (Li et al., 2010).
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