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Abstract

We decompose a standard embedding
space into interpretable orthogonal sub-
spaces and a “remainder” subspace. We
consider four interpretable subspaces in
this paper: polarity, concreteness, fre-
quency and part-of-speech (POS) sub-
spaces. We introduce a new calculus
for subspaces that supports operations like
“−1 × hate = love” and “give me a neu-
tral word for greasy” (i.e., oleaginous).
This calculus extends analogy computa-
tions like “king−man+woman = queen”.
For the tasks of Antonym Classification
and POS Tagging our method outperforms
the state of the art. We create test sets for
Morphological Analogies and for the new
task of Polarity Spectrum Creation.

1 Introduction

Word embeddings are usually trained on an ob-
jective that ensures that words occurring in simi-
lar contexts have similar embeddings. This makes
them useful for many tasks, but has drawbacks for
others; e.g., antonyms are often interchangeable
in context and thus have similar word embeddings
even though they denote opposites. If we think
of word embeddings as members of a (commuta-
tive or Abelian) group, then antonyms should be
inverses of (as opposed to similar to) each other.
In this paper, we use DENSIFIER (Rothe et al.,
2016) to decompose a standard embedding space
into interpretable orthogonal subspaces, including
a one-dimensional polarity subspace as well as
concreteness, frequency and POS subspaces. We
introduce a new calculus for subspaces in which
antonyms are inverses, e.g., “−1 × hate = love”.
The formula shows what happens in the polarity
subspace; the orthogonal complement (all the re-

maining subspaces) is kept fixed. We show be-
low that we can predict an entire polarity spec-
trum based on the subspace, e.g., the four-word
spectrum hate, dislike, like, love. Similar to polar-
ity, we explore other interpretable subspaces and
do operations such as: given a concrete word like
friend find the abstract word friendship (concrete-
ness); given the frequent word friend find a less
frequent synonym like comrade (frequency); and
given the noun friend find the verb befriend (POS).

2 Word Embedding Transformation

We now give an overview of DENSIFIER; see
Rothe et al. (2016) for details. Let Q ∈ Rd×d

be an orthogonal matrix that transforms the orig-
inal word embedding space into a space in which
certain types of information are represented by a
small number of dimensions. The orthogonality
can be seen as a hard regularization of the trans-
formation. We choose this because we do not want
to add or remove any information from the origi-
nal embeddings space. This ensures that the trans-
formed word embeddings behave differently only
when looking at subspaces, but behave identically
when looking at the entire space. By choosing an
orthogonal and thus linear transformation we also
assume that the information is already encoded
linearly in the original word embedding. This is a
frequent assumption, as we generally use the vec-
tor addition for word embeddings.

Concretely, we learn Q such that the dimen-
sions Dp ⊂ {1, . . . , d} of the resulting space cor-
respond to a word’s polarity information and the
{1, . . . , d}\Dp remaining dimensions correspond
to non-polarity information. Analogously, the sets
of dimensions Dc, Df and Dm correspond to a
word’s concreteness, frequency and POS (or mor-
phological) information, respectively. In this pa-
per, we assume that these properties do not corre-
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Figure 1: Illustration of the transformed embeddings. The horizontal axis is the polarity subspace.
All non-polarity information, including concreteness, frequency and POS, is projected into a two di-
mensional subspace for visualization (gray plane). A query word (bold) specifies a line parallel to the
horizontal axis. We then construct a cylinder around this line. Words in this cylinder are considered to
be part of the word spectrum.

late and therefore the ultradense subspaces do not
overlap. E.g.,Dp∩Dc = ∅. This might not be true
for other settings, e.g., sentiment and semantic in-
formation. As we are using only four properties
there is also a subspace which is in the orthogonal
complement of all trained subspaces. This sub-
space includes the not classified information, e.g.,
genre information in our case (e.g., “clunker” is a
colloquial word for “automobile”).

If ev ∈ Rd is the original embedding of word v,
the transformed representation is uv = Qev. We
use ∗ as a placeholder for polarity (p), concrete-
ness (c), frequency (f ) and POS/morphology (m)
and call d∗ = |D∗| the dimensionality of the ultra-
dense subspace of property ∗. For each ultradense
subspace, we create P ∗ ∈ Rd∗×d, an identity ma-
trix for the dimensions inD∗. Thus, the ultradense
(UD) representation u∗v ∈ Rd∗ of word v is defined
as:

u∗v := P ∗Qev (1)

For notational simplicity, u∗v will either refer to a
vector in Rd∗ or to a vector in Rd where all dimen-
sions /∈ D∗ are set to zero.

For training, the orthogonal transformation Q
we assume we have a lexicon resource. Let L∗6∼
be a set of word index pairs (v, w) with different
labels, e.g., positive/negative, concrete/abstract or
noun/verb. We want to maximize the distance for
pairs in this group. Thus, our objective is:

argmin
Q

∑
∗∈{p,c,f,m}

∑
(v,w)∈L∗6∼

−‖P ∗Q(ev − ew)‖

(2)

subject to Q being an orthogonal matrix. Another
goal is to minimize the distance of two words with
identical labels. Let L∗∼ be a set of word index
pairs (v, w) with identical labels. In contrast to
Eq. 2, we now want to minimize each distance.
Thus, the objective is given by:

argmin
Q

∑
∗∈{p,c,f,m}

∑
(v,w)∈L∗∼

‖P ∗Q(ev−ew)‖ (3)

subject toQ being an orthogonal matrix. For train-
ing Eq. 2 is weighted with α∗ and Eq. 3 with
1 − α∗. We do a batch gradient descent where
each batch contains the same number of positive
and negative examples. This means the number of
examples in the lexica – which give rise to more
negative than positive examples – does not influ-
ence the training.

3 Setup and Method

Eqs. 2/3 can be combined to train an orthogonal
transformation matrix. We use pretrained 300-
dimensional English word embeddings (Mikolov
et al., 2013) (W2V). To train the transformation
matrix, we use a combination of MPQA (Wil-
son et al., 2005), Opinion Lexicon (Hu and Liu,
2004) and NRC Emotion lexicons (Mohammad
and Turney, 2013) for polarity; BWK, a lexicon
of 40,000 English words (Brysbaert et al., 2014),
for concreteness; the order in the word embed-
ding file for frequency; and the training set of the
FLORS tagger (Schnabel and Schütze, 2014) for
POS. The application of the transformation ma-
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trix to the word embeddings gives us four sub-
spaces for polarity, concreteness, frequency and
POS. These subspaces and their orthogonal com-
plements are the basis for an embedding calculus
that supports certain operations. Here, we investi-
gate four such operations. The first operation com-
putes the antonym of word v:

antonym(v) = nn(uv − 2up
v) (4)

where nn : Rd → V returns the word whose em-
bedding is the nearest neighbor to the input. Thus,
our hypothesis is that antonyms are usually very
similar in semantics except that they differ on a
single “semantic axis,” the polarity axis.1 The sec-
ond operation is “neutral version of word v”:

neutral(v) = nn(uv − up
v) (5)

Thus, our hypothesis is that neutral words are
words with a value close to zero in the polarity
subspace. The third operation produces the polar-
ity spectrum of v:

spectrum(v) = {nn(uv + xup
v) | ∀x ∈ R} (6)

This means that we keep the semantics of the
query word fixed, while walking along the polar-
ity axis, thus retrieving different shades of polarity.
Figure 1 shows two example spectra. The fourth
operation is “word v with POS of word w”:

POSw(v) = nn(uv − um
v + um

w ) (7)

This is similar to analogies like king − man +
woman, except that the analogy is inferred by the
subspace relevant for the analogy.

We create word spectra for some manually cho-
sen words using the Google News corpus (W2V)
and a Twitter corpus. As the transformation was
orthogonal and therefore did not change the length
of a dimension, we multiply the polarity dimen-
sion with 30 to give it a high weight, i.e., paying
more attention to it. We then use Eq. 6 with a suf-
ficiently small step size for x, i.e., further reduc-
ing the step size does not increase the spectrum.
We also discard words that have a cosine distance
of more than .6 in the non-polarity space. Ta-
ble 1 shows examples. The results are highly do-
main dependent, with Twitter’s spectrum indicat-
ing more negative views of politicians than news.
While fall has negative associations, autumn’s are
positive – probably because autumn is of a higher
register in American English.

1See discussion/experiments below for exceptions

Corpus, Type Spectrum

News,
Polarity

hypocrite, politician, legislator, busi-
nessman, reformer, statesman, thinker
fall, winter, summer, spring, autumn
drunks, booze, liquor, lager, beer, beers,
wine, beverages, wines, tastings

Twitter,
Polarity

corrupt, coward, politician, journalist,
citizen, musician, representative
stalker, neighbour, gf, bf, cousin, frnd,
friend, mentor
#stupid, #problems, #homework,
#mylife, #reality, #life, #happiness

News,
Concreteness

imperialist, conflict, war, Iraq, Vietnam
War, battlefields, soldiers
love, friendship, dear friend, friends,
friend, girlfriend

News,
Frequency

redesigned, newer, revamped, new
intellect, insights, familiarity, skills,
knowledge, experience

Table 1: Example word spectra for polarity, con-
creteness and frequency on two different corpora.
Queries are bold.

dev set test set
P R F1 P R F1

Adel, 2014 .79 .65 .72 .75 .58 .66
our work .81 .90 .85 .76 .88 .82

Table 2: Results for Antonym Classification

4 Evaluation

4.1 Antonym Classification.

We evaluate on Adel and Schütze (2014)’s data;
the task is to decide for a pair of words whether
they are antonyms or synonyms. The set has 2,337
positive and negative pairs each and is split into
80% training, 10% dev and 10% test. Adel and
Schütze (2014) collected positive/negative exam-
ples from the nearest neighbors of the word em-
beddings to make it hard to solve the task using
word embeddings. We train an SVM (RBF kernel)
on three features that are based on the intuition de-
picted in Figure 1: the three cosine distances in:
the polarity subspace; the orthogonal complement;
and the entire space. Table 2 shows that improve-
ment of precision is minor (.76 vs. .75), but recall
and F1 improve by a lot (+.30 and +.16).

4.2 Polarity Spectrum Creation

consists of two subtasks. PSC-SET: Given a query
word how well can we predict a spectrum? PSC-
ORD: How good is the order in the spectrum?
Our gold standard is Word Spectrum, included in
the Oxford American Writer’s Thesaurus (OAWT)
and therefore also in MacOS. For each query word

514



newsgroups reviews weblogs answers emails wsj
ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV

1 LSJU 89.11† 56.02† 91.43† 58.66† 94.15† 77.13† 88.92† 49.30† 88.68† 58.42† 96.83 90.25
2 SVM 89.14† 53.82† 91.30† 54.20† 94.21† 76.44† 88.96† 47.25† 88.64† 56.37† 96.63 87.96†

3 F 90.86 66.42† 92.95 75.29† 94.71 83.64† 90.30 62.15† 89.44 62.61† 96.59 90.37
4 F+W2V 90.51 72.26 92.46† 78.03 94.70 86.05 90.34 65.16 89.26 63.70† 96.44 91.36
5 F+UD 90.79 72.20 92.84 78.80 94.84 86.47 90.60 65.48 89.68 66.24 96.61 92.36

Table 3: Results for POS tagging. LSJU = Stanford. SVM = SVMTool. F=FLORS. We show three state-
of-the-art taggers (lines 1-3), FLORS extended with 300-dimensional embeddings (4) and extended with
UD embeddings (5). †: significantly better than the best result in the same column (α = .05, one-tailed
Z-test).

this dictionary returns a list of up to 80 words of
shades of meaning between two polar opposites.
We look for words that are also present in Adel
and Schütze (2014)’s Antonym Classification data
and retrieve 35 spectra. Each word in a spectrum
can be used as a query word; after intersecting the
spectra with our vocabulary, we end up with 1301
test cases.

To evaluate PSC-SET, we calculate the 10 near-
est neighbors of the m words in the spectrum and
rank the 10m neighbors by the distance to our
spectrum, i.e., the cosine distance in the orthog-
onal complement of the polarity subspace. We re-
port mean average precision (MAP) and weighted
MAP where each MAP is weighted by the num-
ber of words in the spectrum. As shown in Table 4
there is no big difference between both numbers,
meaning that our algorithm does not work better
or worse on smaller or larger spectra.

To evaluate PSC-ORD, we calculate Spear-
man’s ρ of the ranks in OAWT and the values on
the polarity dimension. Again, there is no signifi-
cant difference between average and weighted av-
erage of ρ. Table 4 also shows that the variance
of the measures is low for PSC-SET and high for
PSC-ORD; thus, we do well on certain spectra and
worse on others. The best one, beautiful↔ ugly,
is given as an example. The worst performing
spectrum is fat↔ skinny (ρ = .13) – presumably
because both extremes are negative, contradicting
our modeling assumption that spectra go from pos-
itive to negative. We test this hypothesis by sepa-
rating the spectrum into two subspectra. We then
report the weighted average correlation of the op-
timal separation. For fat ↔ skinny, this improves
ρ to .67.

PSC-SET: MAP PSC-ORD: ρ avg(ρ1, ρ2)

average .48 .59 .70
weighted avg. .47 .59 .70

variance .004 .048 .014
beautiful/ugly .48 .84 .84

fat/skinny .56 .13 .67
absent/present .43 .72 .76

Table 4: Results for Polarity Spectrum Creation:
MAP, Spearman’s ρ (one spectrum) and average ρ
(two subspectra)

4.3 Morphological Analogy.

The previous two subspaces were one-
dimensional. Now we consider a POS subspace,
because POS is not one-dimensional and cannot
be modeled as a single scalar quantity. We
create a word analogy benchmark by extracting
derivational forms from WordNet (Fellbaum,
1998). We discard words with ≥2 derivational
forms of the same POS and words not in the
most frequent 30,000. We then randomly se-
lect 26 pairs for every POS combination for
the dev set and 26 pairs for the test set.2 An
example of the type of equation we solve here is
prediction− predict + symbolize = symbol (from
the dev set). W2V embeddings are our baseline.

We can also rewrite the left side of the equation
as POS(prediction) + Semantics(symbolize); note
that this cannot be done using standard word em-
beddings. In contrast, our method can use mean-
ingful UD embeddings and Eq. 7 with POS(v) be-
ing um

v and Semantics(v) being uv − um
v . The dev

set indicates that a 8-dimensional POS subspace is
optimal and Table 5 shows that this method out-

2This results in an even number of 25 ∗ 26 = 650 ques-
tions per POS combination, 4∗2∗650 = 5200 in total (4 POS
combinations, where each POS can be used as query POS).
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W2V UD
A→B B→A A→B B→A

noun-verb 35.69 6.62 59.69† 50.46†

adj-noun 30.77 27.38 53.85† 43.85†

adj-verb 20.62 3.08 32.15† 24.77†

adj-adverb 45.38 35.54 46.46† 43.08†

all 25.63 44.29†

Table 5: Accuracy @1 on test for Morphological
Analogy. †: significantly better than the corre-
sponding result in the same row (α = .05, one-
tailed Z-test).

performs the baseline.

4.4 POS Tagging

Our final evaluation is extrinsic. We use FLORS
(Schnabel and Schütze, 2014), a state-of-the-art
POS tagger which was extended by Yin et al.
(2015) with word embeddings as additional fea-
tures. W2V gives us a consistent improvement on
OOVs (Table 3, line 4). However, training this
model requires about 500GB of RAM. When we
use the 8-dimensional UD embeddings (the same
as for Morphological Analogy), we outperform
W2V except for a virtual tie on news (Table 3, line
5). So we perform better even though we only use
8 of 300 dimensions! However, the greatest advan-
tage of UD is that we only need 100GB of RAM,
80% less than W2V.

5 Related Work

Yih et al. (2012) also tackled the problem of
antonyms having similar embeddings. In their
model, the antonym is the inverse of the en-
tire vector whereas in our work the antonym is
only the inverse in an ultradense subspace. Our
model is more intuitive since antonyms invert
only part of the meaning, not the entire mean-
ing. Schwartz et al. (2015) present a method that
switches an antonym parameter on or off (depend-
ing on whether a high antonym-synonym similar-
ity is useful for an application) and learn multiple
embedding spaces. We only need a single space,
but consider different subspaces of this space.

An unsupervised approach using linguistic pat-
terns that ranks adjectives according to their inten-
sity was presented by de Melo and Bansal (2013).
Sharma et al. (2015) present a corpus-independent
approach for the same problem. Our results (Ta-
ble 1) suggest that polarity should not be consid-

ered to be corpus-independent.
There is also much work on incorporating

the additional information into the original word
embedding training. Examples include (Botha
and Blunsom, 2014) and (Cotterell and Schütze,
2015). However, postprocessing has several ad-
vantages. DENSIFIER can be trained on a normal
work station without access to the original train-
ing corpus. This makes the method more flexible,
e.g., when new training data or desired properties
are available.

On a general level, our method bears some re-
semblance with (Weinberger and Saul, 2009) in
that we perform supervised learning on a set of de-
sired (dis)similarities and that we can think of our
method as learning specialized metrics for particu-
lar subtypes of linguistic information or particular
tasks. Using the method of Weinberger and Saul
(2009), one could learn k metrics for k subtypes
of information and then simply represent a wordw
as the concatenation of (i) the original embedding
and (ii) k representations corresponding to the k
metrics.3 In case of a simple one-dimensional type
of information, the corresponding representation
could simply be a scalar. We would expect this
approach to have similar advantages for practical
applications, but we view our orthogonal transfor-
mation of the original space as more elegant and it
gives rise to a more compact representation.

6 Conclusion

We presented a new word embedding calculus
based on meaningful ultradense subspaces. We
applied the operations of the calculus to Antonym
Classification, Polarity Spectrum Creation, Mor-
phological Analogy and POS Tagging. Our eval-
uation shows that our method outperforms pre-
vious work and is applicable to different types
of information. We have published test sets and
word embeddings at http://www.cis.lmu.
de/˜sascha/Ultradense/.
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