
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 2073–2083,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Summarizing Source Code using a Neural Attention Model

Srinivasan Iyer Ioannis Konstas Alvin Cheung Luke Zettlemoyer
Computer Science & Engineering

University of Washington
Seattle, WA 98195

{sviyer,ikonstas,akcheung,lsz}@cs.washington.edu

Abstract

High quality source code is often paired
with high level summaries of the compu-
tation it performs, for example in code
documentation or in descriptions posted
in online forums. Such summaries are
extremely useful for applications such as
code search but are expensive to manually
author, hence only done for a small frac-
tion of all code that is produced. In this
paper, we present the first completely data-
driven approach for generating high level
summaries of source code. Our model,
CODE-NN , uses Long Short Term Mem-
ory (LSTM) networks with attention to
produce sentences that describe C# code
snippets and SQL queries. CODE-NN
is trained on a new corpus that is auto-
matically collected from StackOverflow,
which we release. Experiments demon-
strate strong performance on two tasks:
(1) code summarization, where we estab-
lish the first end-to-end learning results
and outperform strong baselines, and (2)
code retrieval, where our learned model
improves the state of the art on a recently
introduced C# benchmark by a large mar-
gin.

1 Introduction

Billions of lines of source code reside in online
repositories (Dyer et al., 2013), and high quality
code is often coupled with natural language (NL)
in the form of instructions, comments, and docu-
mentation. Short summaries of the overall com-
putation the code performs provide a particularly
useful form of documentation for a range of appli-
cations, such as code search or tutorials. However,
such summaries are expensive to manually author.

1. Source Code (C#):
public int TextWidth(string text) {

TextBlock t = new TextBlock ();
t.Text = text;
return

(int)Math.Ceiling(t.ActualWidth);
}
Descriptions:
a. Get rendered width of string rounded up to
the nearest integer
b. Compute the actual textwidth inside a
textblock

2. Source Code (C#):
var input = "Hello";
var regEx = new Regex("World");
return !regEx.IsMatch(input);

Descriptions:
a. Return if the input doesn’t contain a
particular word in it
b. Lookup a substring in a string using regex

3. Source Code (SQL):
SELECT Max(marks) FROM stud_records

WHERE marks <
(SELECT Max(marks) FROM stud_records);

Descriptions:
a. Get the second largest value of a column
b. Retrieve the next max record in a table

Figure 1: Code snippets in C# and SQL and their
summaries in NL, from StackOverflow. Our goal
is to automatically generate summaries from code
snippets.

As a result, this laborious process is only done for
a small fraction of all code that is produced.

In this paper, we present the first completely
data-driven approach for generating short high-
level summaries of source code snippets in natu-
ral language. We focus on C#, a general-purpose
imperative language, and SQL, a declarative lan-
guage for querying databases. Figure 1 shows ex-
ample code snippets with descriptions that sum-
marize the overall function of the code, with the
goal to generate high level descriptions, such as

2073

lookup a substring in a string. Generating such
a summary is often challenging because the text
can include complex, non-local aspects of the code
(e.g., consider the phrase ‘second largest’ in Ex-
ample 3 in Figure 1). In addition to being di-
rectly useful for interpreting uncommented code,
high-quality generation models can also be used
for code retrieval, and in turn, for natural language
programming by applying nearest neighbor tech-
niques to a large corpus of automatically summa-
rized code.

Natural language generation has traditionally
been addressed as a pipeline of modules that de-
cide ‘what to say’ (content selection) and ‘how
to say it’ (realization) separately (Reiter and Dale,
2000; Wong and Mooney, 2007; Chen et al., 2010;
Lu and Ng, 2011). Such approaches require super-
vision at each stage and do not scale well to large
domains. We instead propose an end-to-end neural
network called CODE-NN that jointly performs
content selection using an attention mechanism,
and surface realization using Long Short Term
Memory (LSTM) networks. The system generates
a summary one word at a time, guided by an at-
tention mechanism over embeddings of the source
code, and by context from previously generated
words provided by a LSTM network (Hochreiter
and Schmidhuber, 1997). The simplicity of the
model allows it to be learned from the training data
without the burden of feature engineering (Angeli
et al., 2010) or the use of an expensive approx-
imate decoding algorithm (Konstas and Lapata,
2013).

Our model is trained on a new dataset of code
snippets with short descriptions, created using
data gathered from Stackoverflow,1 a popular pro-
gramming help website. Since access is open and
unrestricted, the content is inherently noisy (un-
grammatical, non-parsable, lacking content), but
as we will see, it still provides strong signal for
learning. To reliably evaluate our model, we also
collect a clean, human-annotated test set.2

We evaluate CODE-NN on two tasks: code
summarization and code retrieval (Section 2). For
summarization, we evaluate using automatic met-
rics such as METEOR and BLEU-4, together with
a human study for naturalness and informative-
ness of the output. The results show that CODE-
NN outperforms a number of strong baselines and,

1http://stackoverflow.com
2Data and code are available at https://github.com/

sriniiyer/codenn.

to the best of our knowledge, CODE-NN is the
first approach that learns to generate summaries of
source code from easily gathered online data. We
further use CODE-NN for code retrieval for pro-
gramming related questions on a recent C# bench-
mark, and results show that CODE-NN improves
the state of the art (Allamanis et al. (2015b)) for
mean reciprocal rank (MRR) by a wide margin.

2 Tasks

CODE-NN generates a NL summary of source
code snippets (GEN task). We have also used
CODE-NN on the inverse task to retrieve source
code given a question in NL (RET task).

Formally, let UC be the set of all code snippets
and UN be the set of all summaries in NL. For a
training corpus with J code snippet and summary
pairs (cj , nj), 1 ≤ j ≤ J, cj ∈ UC , nj ∈ UN , we
define the following two tasks:

GEN For a given code snippet c ∈ UC , the goal
is to produce a NL sentence n∗ ∈ UN that max-
imizes some scoring function s ∈ (UC × UN →
R):

n∗ = argmax
n

s(c, n) (1)

RET We also use the scoring function s to re-
trieve the highest scoring code snippet c∗j from our
training corpus, given a NL question n ∈ UN :

c∗j = argmax
cj

s(cj , n), 1 ≤ j ≤ J (2)

In this work, s is computed using an LSTM neu-
ral attention model, to be described in Section 5.

3 Related Work

Although we focus on generating high-level sum-
maries of source code snippets, there has been
work on producing code descriptions at other lev-
els of abstraction. Movshovitz-Attias and Co-
hen (2013) study the task of predicting class-level
comments by learning n-gram and topic models
from open source Java projects and testing it us-
ing a character-saving metric on existing com-
ments. Allamanis et al. (2015a) create models
for suggesting method and class names by embed-
ding them in a high dimensional continuous space.
Sridhara et al. (2010) present a pipeline that gener-
ates summaries of Java methods by selecting rel-
evant content and generating phrases using tem-
plates to describe them. There is also work on
improving program comprehension (Haiduc et al.,

2074

2010), identifying cross-cutting source code con-
cerns (Rastkar et al., 2011), and summarizing soft-
ware bug reports (Rastkar et al., 2010). To the best
of our knowledge, we are the first to use learning
techniques to construct completely new sentences
from arbitrary code snippets.

Source code summarization is also related to
generation from formal meaning representations.
Wong and Mooney (2007) present a system that
learns to generate sentences from lambda calculus
expressions by inverting a semantic parser. Mei
et al. (2016), Konstas and Lapata (2013), and An-
geli et al. (2010) create learning algorithms for text
generation from database records, again assuming
data that pairs sentences with formal meaning rep-
resentations. In contrast, we present algorithms
for learning from easily gathered web data.

In the database community, Simitsis and Ioan-
nidis (2009) recognize the need for SQL database
systems to talk back to users. Koutrika et al.
(2010) built an interactive system (LOGOS) that
translates SQL queries to text using NL templates
and database schemas. Similarly there has been
work on translating SPARQL queries to natural
language using rules to create dependency trees
for each section of the query, followed by a trans-
formation step to make the output more natural
(Ngonga Ngomo et al., 2013). These approaches
are not learning based, and require significant
manual template-engineering efforts.

We use recurrent neural networks (RNN) based
on LSTMs and neural attention to jointly model
source code and NL. Recently, RNN-based ap-
proaches have gained popularity for text gener-
ation and have been used in machine transla-
tion (Sutskever et al., 2011), image and video de-
scription (Karpathy and Li, 2015; Venugopalan et
al., 2015; Devlin et al., 2015), sentence summa-
rization (Rush et al., 2015), and Chinese poetry
generation (Zhang and Lapata, 2014). Perhaps
most closely related, Wen et al. (2015) generate
text for spoken dialogue systems with a two-stage
approach, comprising an LSTM decoder seman-
tically conditioned on the logical representation
of speech acts, and a reranker to generate the fi-
nal output. In contrast, we design an end-to-end
attention-based model for source code.

For code retrieval, Allamanis et al. (2015b) pro-
posed a system that uses Stackoverflow data and
web search logs to create models for retrieving
C# code snippets given NL questions and vice

versa. They construct distributional representa-
tions of code structure and language and com-
bine them using additive and multiplicative mod-
els to score (code, language) pairs, an approach
that could work well for retrieval but cannot be
used for generation. We learn a neural generation
model without using search logs and show that it
can also be used to score code for retrieval, with
much higher accuracy.

Synthesizing code from language is an alter-
native to code retrieval and has been studied
in both the Systems and NLP research com-
munities. Giordani and Moschitti (2012), Li
and Jagadish (2014), and Gulwani and Marron
(2014) synthesize source code from NL queries
for database and spreadsheet applications. Sim-
ilarly, Lei et al. (2013) interpret NL instruc-
tions to machine-executable code, and Kushman
and Barzilay (2013) convert language to regu-
lar expressions. Unlike most synthesis methods,
CODE-NN is domain agnostic, as we demonstrate
its applications on both C# and SQL.

4 Dataset

We collected data from StackOverflow (SO), a
popular website for posting programming-related
questions. Anonymized versions of all the posts
can be freely downloaded.3 Each post can have
multiple tags. Using the C# tag for C# and the sql,
database and oracle tags for SQL, we were able
to collect 934,464 and 977,623 posts respectively.4

Each post comprises a short title, a detailed ques-
tion, and one or more responses, of which one can
be marked as accepted. We found that the text
in the question and responses is domain-specific
and verbose, mixed with details that are irrelevant
for our tasks. Also, code snippets in responses
that were not accepted were frequently incorrect
or tangential to the question asked. Thus, we ex-
tracted only the title from the post and use the code
snippet from those accepted answers that contain
exactly one code snippet (using <code> tags). We
add the resulting (title, query) pairs to our corpus,
resulting in a total of 145,841 pairs for C# and
41,340 pairs for SQL.

Cleaning We train a semi-supervised classifier
to filter titles like ‘Difficult C# if then logic’ or
‘How can I make this query easier to write?’ that
bear no relation to the corresponding code snippet.

3http://archive.org/details/stackexchange
4The data was downloaded in Dec 2014.

2075

To do so, we annotate 100 titles as being clean or
not clean for each language and use them to boot-
strap the algorithm. We then use the remaining
titles in our training set as an unsupervised sig-
nal, and obtain a classification accuracy of over
73% on a manually labeled test set for both lan-
guages. For the final dataset, we retain 66,015 C#
(title, query) pairs and 32,337 SQL pairs that are
classified as clean, and use 80% of these datasets
for training, 10% for validation and 10% for test-
ing.

Parsing Given the informal nature of Stack-
Overflow, the code snippets are approximate an-
swers that are usually incomplete. For example,
we observe that only 12% of the SQL queries
parse without any syntactic errors (using zql5).
We therefore aim to perform a best-effort parse
of the code snippet, using modified versions of
an ANTLR parser for C# (Parr, 2013) and python-
sqlparse (Albrecht, 2015) for SQL. We strip out all
comments and to avoid being context specific, we
replace literals with tokens denoting their types.
In addition, for SQL, we replace table and column
names with numbered placeholder tokens while
preserving any dependencies in the query. For
example, the SQL query in Figure 1 is repre-
sented as SELECT MAX(col0) FROM tab0 WHERE col0 <

(SELECT MAX(col0) FROM tab0).

Data Statistics The structural complexity and
size of the code snippets in our dataset makes our
tasks challenging. More than 40% of our C# cor-
pus comprises snippets with three or more state-
ments and functions, and 20% contains loops and
conditionals. Also, over a third of our SQL queries
contain one or more subqueries and multiple ta-
bles, columns and functions (like MIN, MAX, SUM).
On average, our C# snippets are 38 tokens long
and the queries in our corpus are 46 tokens long,
while titles are 9-12 words long. Table 2 shows
the complete data statistics.

Human Annotation For the GEN task, we use
n-gram based metrics (see Section 6.1.2) of the
summary generated by our model with respect to
the actual title in our corpus. Titles can be short,
and a given code snippet can be described in many
different ways with little overlapping content be-
tween them. For example, the descriptions for the
second code snippet in Figure 1 share very few
words with each other. To address these limita-

5http://zql.sourceforge.net

C
#

Statements # Functions
≥ 3 23,611 (44.7%) ≥ 3 26,541 (51.0%)
≥ 4 17,822 (33.7%) ≥ 4 20,221 (38.2%)

Loops # Conditionals
≥ 1 10,676 (20.0%) ≥ 1 11,819 (22.3%)

SQ
L

Subqueries # Tables
≥ 1 11,418 (35%) ≥ 3 14,695 (44%)
≥ 2 3,625 (11%) ≥ 4 10,377 (31%)

Columns # Functions
≥ 5 12,366 (37%) ≥ 3 6,290 (19%)
≥ 6 9,050 (27%) ≥ 4 3,973 (12%)

Table 1: Statistics for code snippets in our dataset.

C
Avg. code length 38 tokens # tokens 91,156

Avg. title length 12 words # words 24,857

SQ
L Avg. query length 46 tokens # tokens 1,287

Avg. title length 9 words # words 10,086

Table 2: Average code and title lengths together
with vocabulary sizes for C# and SQL after post-
processing.

tions, we extend our test set by asking human an-
notators to provide two additional titles for 200
snippets chosen at random from the test set, mak-
ing a total of three reference titles for each code
snippet. To collect this data, annotators were
shown only the code snippets and were asked to
write a short summary after looking at a few ex-
ample summaries. They were also asked to “think
of a question that they could ask on a program-
ming help website, to get the code snippet as a re-
sponse.” This encouraged them to briefly describe
the key feature that the code is trying to demon-
strate. We use half of this test set for model tuning
(DEV, see Section 5) and the rest for evaluation
(EVAL).

5 The CODE-NN Model

Description We present an end-to-end genera-
tion system that performs content selection and
surface realization jointly. Our approach uses an
attention-based neural network to model the con-
ditional distribution of a NL summary n given a
code snippet c. Specifically, we use an LSTM
model that is guided by attention on the source
code snippet to generate a summary one word at
a time, as shown in Figure 2.6

Formally, we represent a NL summary n =
n1, . . . , nl as a sequence of 1-hot vectors

6We experimented with other sequence (Sutskever et al.,
2014) and tree based architectures (Tai et al., 2015) as well.
None of these models significantly improved performance,
however, this is an important area for future work.

2076

LSTM

LSTM

LSTM

.

.

n1

E

E

n1

nl−1

∝∅

∝

A

+

A

+

∝

A

+ END

h1

h2

hl

t1

t2

tl

F
∝

α⊙

hi

ti

⊙

c
=

c 1
,c

2
,.

..,
c k

n2

F

c

c

c

h1;m1

h2;m2

hl−1;ml−1

Figure 2: Generation of a title n = n1, . . . , END
given code snippet c1, ..., ck. The attention cell
computes a distributional representation ti of the
code snippet based on the current LSTM hidden
state hi. A combination of ti and hi is used to
generate the next word, ni, which feeds back into
the next LSTM cell. This is repeated until a fixed
number of words or END is generated. ∝ blocks
denote softmax operations.

n1, . . . ,nl ∈ {0, 1}|N |, where N is the vocabu-
lary of the summaries. Our model computes the
probability of n (scoring function s in Eq. 1) as a
product of the conditional next-word probabilities

s(c, n) =
l∏

i=1

p(ni|n1, . . . , ni−1)

with,

p(ni|n1, . . . , ni−1) ∝W tanh(W1hi + W2ti)

where, W ∈ R|N |×H and W1,W2 ∈ RH×H , H
being the embedding dimensionality of the sum-
maries. ti is the contribution from the attention
model on the source code (see below). hi repre-
sents the hidden state of the LSTM cell at the cur-
rent time step and is computed based on the pre-
viously generated word, the previous LSTM cell
state mi−1 and the previous LSTM hidden state
hi−1 as

mi;hi = f(ni−1E,mi−1,hi−1; θ)

where E ∈ R|N |×H is a word embedding matrix
for the summaries. We compute f using the LSTM
cell architecture used by Zaremba et al. (2014).

Attention The generation of each word is
guided by a global attention model (Luong et al.,
2015), which computes a weighted sum of the em-
beddings of the code snippet tokens based on the
current LSTM state (see right part in Figure 2).
Formally, we represent c as a set of 1-hot vectors
c1, . . . , ck ∈ {0, 1}|C| for each source code to-
ken; C is the vocabulary of all tokens in our code
snippets. Our attention model computes,

ti =
k∑

j=1

αi,j · cjF

where F ∈ R|C|×H is a token embedding matrix
and each αi,j is proportional to the dot product be-
tween the current internal LSTM hidden state hi

and the corresponding token embedding cj:

αi,j =
exp(hi

TcjF)∑k
j=1 exp(hi

TcjF)

Training We perform supervised end-to-end
training using backpropagation (Werbos, 1990) to
learn the parameters of the embedding matrices F
and E, transformation matrices W, W1 and W2,
and parameters θ of the LSTM cell that computes
f . We use multiple epochs of minibatch stochas-
tic gradient descent and update all parameters to
minimize the negative log likelihood (NLL) of
our training set. To prevent over-fitting we make
use of dropout layers (Srivastava et al., 2014) at
the summary embeddings and the output softmax
layer. Using pre-trained embeddings (Mikolov et
al., (2013)) for the summary embedding matrix or
adding additional LSTM layers did not improve
performance for the GEN task. Since the NLL
training objective does not directly optimize for
our evaluation metric (METEOR), we compute
METEOR (see Section 6.1.2) on a small develop-
ment set (DEV) after every epoch and save the in-
termediate model that gives the maximum score,
as the final model.

Decoding Given a trained model and an input
code snippet c, finding the most optimal title en-
tails generating the title n∗ that maximizes s(c, n)
(see Eq. 1). We approximate n∗ by performing
beam search on the space of all possible sum-
maries using the model output.

Implementation Details We add special
START and END tokens to our training sequences
and replace all tokens and output words occurring

2077

with a frequency of less than 3 with an UNK
token, making |C| = 31, 667 and |N | = 7, 470 for
C# and |C| = 747 and |N | = 2, 506 for SQL. Our
hyper-parameters are set based on performance
on the validation set. We use a minibatch size
of 100 and set the dimensionality of the LSTM
hidden states, token embeddings, and summary
embeddings (H) to 400. We initialize all model
parameters uniformly between −0.35 and 0.35.
We start with a learning rate of 0.5 and start
decaying it by a factor of 0.8 after 60 epochs if
accuracy on the validation set goes down, and
terminate training when the learning rate goes
below 0.001. We cap the parameter gradients to 5
and use a dropout rate of 0.5.

We use the Torch framework7 to train our mod-
els on GPUs. Training runs for about 80 epochs
and takes approximately 7 hours. We compute
METEOR score at every epoch on the develop-
ment set (DEV) to choose the best final model,
with the best results obtained between 60 and 70
epochs. For decoding, we set the beam size to 10,
and the maximum summary length to 20 words.

6 Experimental Setup

6.1 GEN Task

6.1.1 Baselines
For the GEN task, we compare CODE-NN with
a number of competitive systems, none of which
had been previously applied to generate text from
source code, and hence we adapt them slightly for
this task, as explained below.

IR is an information retrieval baseline that out-
puts the title associated with the code cj in the
training set that is closest to the input code c in
terms of token Levenshtein distance. In this case s
from Eq.1 becomes,

s(c, nj) = −1× lev(cj , c), 1 ≤ j ≤ J
MOSES (Koehn et al., 2007) is a popular
phrase-based machine translation system. We per-
form generation by treating the tokenized code
snippet as the source language, and the title as the
target. We train a 3-gram language model using
KenLM (Heafield, 2011) to use with MOSES, and
perform MIRA-based tuning (Cherry and Foster,
2012) of hyper-parameters using DEV.

SUM-NN is the neural attention-based abstrac-
tive summarization model of Rush et al. (2015).

7http://torch.ch

It uses an encoder-decoder architecture with an at-
tention mechanism based on a fixed context win-
dow of previously generated words. The decoder
is a feed-forward neural language model that gen-
erates the next word based on previous words in
a context window of size k. In contrast, we de-
code using an LSTM network that can model long
range dependencies and our attention weights are
tied to the LSTM hidden states. We set the em-
bedding and hidden state dimensions and context
window size by tuning on our validation set. We
found this model to generate overly short titles like
‘sql server 2008’ when a length restriction was not
imposed on the output text. Therefore, we fix the
output length to be the average title length in the
training set while decoding.

6.1.2 Evaluation Metrics

We evaluate the GEN task using automatic met-
rics, and also perform a human study.

Automatic Evaluation We report METEOR
(Banerjee and Lavie, 2005) and sentence level
BLEU-4 (Papineni et al., 2002) scores. ME-
TEOR is recall-oriented and measures how well
our model captures content from the references in
our output. BLEU-4 measures the average n-gram
precision on a set of reference sentences, with a
penalty for overly short sentences. Since the gen-
erated summaries are short and there are multi-
ple alternate summaries for a given code snippet,
higher order n-grams may not overlap. We remedy
this problem by using +1 smoothing (Lin and Och,
2004). We compute these metrics on the tuning set
DEV and the held-out evaluation set EVAL.

Human Evaluation Since automatic metrics do
not always agree with the actual quality of the re-
sults (Stent et al., 2005), we perform human eval-
uation studies to measure the output of our sys-
tem and baselines across two modalities, namely
naturalness and informativeness. For the former,
we asked 5 native English speakers to rate each ti-
tle against grammaticality and fluency, on a scale
between 1 and 5. For informativeness (i.e., the
amount of content carried over from the input code
to the NL summary, ignoring fluency of the text),
we asked 5 human evaluators familiar with C# and
SQL to evaluate the system output by rating the
factual overlap of the summary with the reference
titles, on a scale between 1 and 5.

2078

6.2 RET task

6.2.1 Model and Baselines
CODE-NN As described in Section 2, for a
given NL question n in the RET task, we rank all
code snippets cj in our corpus by computing the
scoring function s(cj , n), and return the query c∗j
that maximizes it (Eq. 2).

RET-IR is an information retrieval baseline that
ranks the candidate code snippets using cosine
similarity between the given NL question n and
all summaries nj in the retrieval set, based on their
vector representations using TF-IDF weights over
unigrams. The scoring function s in Eq. 2 be-
comes:

s(cj , n) =
tf-idf(nj) · tf-idf(n)
‖tf-idf(nj)‖‖tf-idf(n)‖ , 1 ≤ j ≤ J

6.2.2 Evaluation Metrics
We assess ranking quality by computing the Mean
Reciprocal Rank (MRR) of c∗j . For every snippet
cj in EVAL (and DEV), we use two of the three
references (title and human annotation), namely
nj,1, nj,2. We then build a retrieval set compris-
ing (cj , nj,1) together with 49 random distractor
pairs (c′, n′), c′ 6= cj from the test set. Using nj,2

as the natural language question, we rank all 50
items in this retrieval set and use the rank of query
c∗j to compute MRR. We average MRR over all re-
turned queries c∗j in the test set, and repeat this ex-
periment for several different random sets of dis-
tractors.

6.3 Tasks from Allamanis et al. (2015b)

Allamanis et al. (2015b) take a retrieval approach
to answer C# related natural language questions
(L to C), similar to our RET task. In addition, they
also use retrieval to summarize C# source code (C
to L) and evaluate both tasks using the MRR met-
ric. Although they also use data from Stackover-
flow, their dataset preparation and cleaning meth-
ods differs significantly from ours. For example,
they filter out posts where the question has fewer
than 2 votes, the answer has fewer than 3 votes, or
the post has fewer than 1000 views. Additionally,
they also filter code snippets that cannot be parsed
by Roslyn (.NET compiler) or are longer than 300
characters. Thus, to directly compare with their
model, we re-train our generation model on their
dataset and use our model score for retrieval of
both code and summaries.

Model METEOR BLEU-4

C
#

IR 7.9 (6.1) 13.7 (12.6)
MOSES 9.1 (9.7) 11.6 (11.5)
SUM-NN 10.6 (10.3) 19.3 (18.2)
CODE-NN 12.3 (13.4) 20.5 (20.4)

SQ
L

IR 6.3 (8.0) 13.5 (13.0)
MOSES 8.3 (9.7) 15.4 (15.9)
SUM-NN 6.4 (8.7) 13.3 (14.2)
CODE-NN 10.9 (14.0) 18.4 (17.0)

Table 3: Performance on EVAL for the GEN task.
Performance on DEV is indicated in parentheses.

Model Naturalness Informativeness

C
#

IR 3.42 2.25
MOSES 1.41 2.42
SUM-NN 4.61* 1.99
CODE-NN 4.48 2.83

SQ
L

IR 3.21 2.58
MOSES 2.80 2.54
SUM-NN 4.44 2.75
CODE-NN 4.54 3.12

Table 4: Naturalness and Informativeness mea-
sures of model outputs. Stat. sig. between CODE-
NN and others is computed with a 2-tailed Stu-
dent’s t-test; p < 0.05 except for *.

7 Results

7.1 GEN Task

Table 3 shows automatic evaluation metrics for
our model and baselines. CODE-NN outperforms
all the other methods in terms of METEOR and
BLEU-4 score. We attribute this to its ability to
perform better content selection, focusing on the
more salient parts of the code by using its atten-
tion mechanism jointly with its LSTM memory
cells. The neural models have better performance
on C# than SQL. This is in part because, unlike
SQL, C# code contains informative intermediate
variable names that are directly related to the ob-
jective of the code. On the other hand, SQL is
more challenging in that it only has a handful of
keywords and functions, and summarization mod-
els need to rely on other structural aspects of the
code.

Informativeness and naturalness scores for each
model from our human evaluation study are pre-
sented in Table 4. In general, CODE-NN performs
well across both dimensions. Its superior perfor-
mance in terms of informativeness further sup-
ports our claim that it manages to select content
more effectively. Although SUM-NN performs
similar to CODE-NN on naturalness, its output
lacks content and has very little variation (see Sec-
tion 7.4), which also explains its surprisingly low

2079

Model MRR

C#
RET-IR 0.42 ± 0.02 (0.44 ± 0.01)
CODE-NN 0.58± 0.01 (0.66± 0.02)

SQL
RET-IR 0.28 ±0.01(0.4± 0.01)
CODE-NN 0.44± 0.01 (0.54± 0.02)

Table 5: MRR for the RET task. Dev set results in
parentheses.

Model MRR

L to C
Allamanis 0.182 ±0.009
CODE-NN 0.590± 0.044

C to L
Allamanis 0.434 ±0.003
CODE-NN 0.461± 0.046

Table 6: MRR values for the Language to Code
(L to C) and the Code to Language (C to L) tasks
using the C# dataset of Allamanis et al. (2015b)

score on informativeness.

7.2 RET Task

Table 5 shows the MRR on the RET task for
CODE-NN and RET-IR, averaged over 20 runs for
C# and SQL. CODE-NN outperforms the baseline
by about 16% for C# and SQL. RET-IR can only
output code snippets that are annotated with NL
as potential matches. On the other hand, CODE-
NN can rank even unannotated code snippets and
nominate them as potential candidates. Hence, it
can leverage vast amounts of such code available
in online repositories like Github. To speed up re-
trieval when using CODE-NN , it could be one of
the later stages in a multi-stage retrieval system
and candidates may also be ranked in parallel.

7.3 Comparison with Allamanis et al.

We train CODE-NN on their dataset and evaluate
using the same MRR testing framework (see Ta-
ble 6). Our model performs significantly better for
the Language to Code task (L to C) and slightly
better for the Code to Language task (C to L). The
attention mechanism together with the LSTM net-
work is able to generate better scores for (lan-
guage, code) pairs.

7.4 Qualitative Analysis

Figure 3 shows the relative magnitudes of the at-
tention weights (αi,j) for example C# and SQL
code snippets while generating their correspond-
ing summaries. Darker regions represent stronger
weights. CODE-NN automatically learns to do

ho
w

to ge
t

se
le
ct
ed

ce
ll

va
lu
e

in da
ta
gr
id
vi
ew

?

MessageBox
.

Show
(

dataGridView1
.

SelectedCells
[
1
]
.

Value
.

ToString
(
)
)

ho
w

to ge
t

th
e

di
ffe
re
nc
e

be
tw
ee
n

tw
o

da
te
s

in m
ys
ql

?

select
col0
from
tab0

where
col0
<=
now

(
)
-

interval
29
day
;

Figure 3: Heatmap of attention weights αi,j for
example C# (left) and SQL (right) code snippets.
The model learns to align key summary words
(like cell) with the corresponding tokens in the in-
put (SelectedCells).

high-quality content selection by aligning key
summary words with informative tokens in the
code snippet.

Table 8 shows examples of the output gener-
ated by our model and baselines for code snippets
in DEV. Most of the models produce meaningful
output for simple code snippets (first example) but
degrade on longer, compositional inputs. For ex-
ample, the last SQL query listed in Table 8 in-
cludes a subquery, where a complete description
should include both summing and concatenation.
CODE-NN describes the summation (but not con-
catenation), while others return non-relevant de-
scriptions.

Finally, we performed manual error analysis on
50 randomly selected examples from DEV (Ta-
ble 7) for each language. Redundancy is a ma-
jor source of error, i.e., generation of extraneous
content-bearing phrases, along with missing con-
tent, e.g., in the last example of Table 8 there is no
reference to the concatenation operations present
in the beginning of the query. Sometimes the out-
put from our model can be out of context, in the
sense that it does not match the input code. This
often happens for low frequency tokens (7% of
cases), for which CODE-NN realizes them with
generic phrases. This also happens when there are
very long range dependencies or compositional
structures in the input, such as nested queries (13%
of the cases).

8 Conclusion

In this paper, we presented CODE-NN , an end-
to-end neural attention model using LSTMs to

2080

Error % Cases
Correct 37%
Redundancy 17%
Missing Info 26%
Out of context 20%

Table 7: Error analysis on 50 examples in DEV

generate summaries of C# and SQL code by
learning from noisy online programming websites.
Our model outperforms competitive baselines and
achieves state of the art performance on automatic
metrics, namely METEOR and BLEU, as well
as on a human evaluation study. We also used
CODE-NN to answer programming questions by
retrieving the most appropriate code snippets from
a corpus, and beat previous baselines for this task
in terms of MRR. We have published our C# and
SQL datasets, the accompanying human annotated
test sets, and our code for the tasks described in
this paper.

In future work, we plan to develop better models
for capturing the structure of the input, as well as
extend the use of our system to other applications
such as automatic documentation of source code.

Acknowledgements

We thank Mike Lewis, Chloé Kiddon, Kenton Lee,
Eunsol Choi and the anonymous reviewers for
comments on an earlier version. We also thank
Bill Howe, Dan Halperin and Mark Yatskar for
helpful discussions and Miltiadis Allamanis for
providing the dataset for the comparison study.
This research was supported in part by the NSF
(IIS-1252835), an Allen Distinguished Investiga-
tor Award, and a gift from Amazon.

References
Andi Albrecht. 2015. python-sqlparse.

Miltiadis Allamanis, Earl T Barr, Christian Bird, and
Charles Sutton. 2015a. Suggesting accurate method
and class names. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineer-
ing, pages 38–49.

Miltiadis Allamanis, Daniel Tarlow, Andrew Gordon,
and Yi Wei. 2015b. Bimodal modelling of source
code and natural language. In Proceedings of The
32nd International Conference on Machine Learn-
ing, pages 2123–2132.

Gabor Angeli, Percy Liang, and Dan Klein. 2010. A
simple domain-independent probabilistic approach

Method Output

C# code
var x = "FundList [10]. Amount";
int xIndex = Convert.ToInt32(

Regex.Match(x,@"\d+").Value);

Gold Identify the number in given string
IR Convert string number to integer
MOSES How to xIndex numbers in C#?
SUM-NN How can I get the value of a string?
CODE-NN How to convert string to int?

C# code

foreach (string pTxt in xml.parent) {
TreeNode parent = new TreeNode ();
foreach (string cTxt in xml.child) {

TreeNode child = new TreeNode ();
parent.Nodes.Add(child);

}
}

Gold Adding childs to a treenode dynamically in
C#

IR How to set the name of a tabPage program-
matically

MOSES How can TreeView nodes from XML par-
entText string to a treeview node

SUM-NN How to get data from xml file in C#
CODE-NN How to get all child nodes in TreeView?

C# code

string url = baseUrl +
"/api/Entry/SendEmail?emailId="
+ emailId;

WebRequest req =
WebRequest.Create(url);

req.Method = "GET";
req.BeginGetResponse(null , null);

Gold Execute a get request on a web server and
receive the response asynchronously

IR How to download a file from another Share-
point Domain

MOSES How baseUrl emailId C how to a page in
BeginGetResponse to

SUM-NN How to get data from a file in C
CODE-NN How to call a URL from a web api post ?

SQL Query SELECT * FROM table
ORDER BY Rand() LIMIT 10

Gold Select random rows from mysql table
IR How to select a random record from a mysql

database?
MOSES How to select all records in mysql ?
SUM-NN How can I select random rows from a table
CODE-NN How to get random rows from a mysql

database?

SQL Query

SELECT Group concat(
Concat ws(',', playerid , r1, r2)
SEPARATOR ';')

FROM (SELECT playerid ,
Sum(rank = 1) r1, Sum(rank < 5) r2
FROM result GROUP BY playerid) t;

Gold Get sum of group values based on condition
and concatenate them into a string

IR Mysql: counting occurences in a table, re-
turn as a single row

MOSES Mysql query to get this result of the result
of one column value in mysql

SUM-NN How do i combine these two queries into
one?

CODE-NN How to get the sum of a column in a single
query?

Table 8: Examples of outputs generated by each
model for code snippets in DEV

to generation. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 502–512.

2081

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, volume 29, pages 65–72.

David L Chen, Joohyun Kim, and Raymond J Mooney.
2010. Training a multilingual sportscaster: Using
perceptual context to learn language. Journal of Ar-
tificial Intelligence Research, pages 397–435.

Colin Cherry and George Foster. 2012. Batch tuning
strategies for statistical machine translation. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
427–436.

Jacob Devlin, Hao Cheng, Hao Fang, Saurabh Gupta,
Li Deng, Xiaodong He, Geoffrey Zweig, and Mar-
garet Mitchell. 2015. Language models for image
captioning: The quirks and what works. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers), pages 100–105.

Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and
Tien N Nguyen. 2013. Boa: A language and in-
frastructure for analyzing ultra-large-scale software
repositories. In Proceedings of the 2013 Interna-
tional Conference on Software Engineering, pages
422–431.

Alessandra Giordani and Alessandro Moschitti. 2012.
Translating questions to SQL queries with genera-
tive parsers discriminatively reranked. In Proceed-
ings of COLING 2012: Posters, pages 401–410.

Sumit Gulwani and Mark Marron. 2014. Nlyze: Inter-
active programming by natural language for spread-
sheet data analysis and manipulation. In Proceed-
ings of the 2014 ACM SIGMOD international con-
ference on Management of data, pages 803–814.

Sonia Haiduc, Jairo Aponte, and Andrian Marcus.
2010. Supporting program comprehension with
source code summarization. In Proceedings of the
32nd ACM/IEEE International Conference on Soft-
ware Engineering-Volume 2, pages 223–226.

Kenneth Heafield. 2011. Kenlm: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187–197.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Andrej Karpathy and Fei-Fei Li. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, pages 3128–3137.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the ACL on
interactive poster and demonstration sessions, pages
177–180.

Ioannis Konstas and Mirella Lapata. 2013. A global
model for concept-to-text generation. Journal of Ar-
tificial Intelligence Research, 48(1):305–346.

Georgia Koutrika, Alkis Simitsis, and Yannis E Ioanni-
dis. 2010. Explaining structured queries in natural
language. In Data Engineering (ICDE), 2010 IEEE
26th International Conference on, pages 333–344.

Nate Kushman and Regina Barzilay. 2013. Using se-
mantic unification to generate regular expressions
from natural language. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 826–836.

Tao Lei, Fan Long, Regina Barzilay, and Martin Ri-
nard. 2013. From natural language specifications
to program input parsers. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1294–1303.

Fei Li and Hosagrahar V Jagadish. 2014. Nalir: An in-
teractive natural language interface for querying re-
lational databases. In Proceedings of the 2014 ACM
SIGMOD international conference on Management
of data, pages 709–712.

Chin-Yew Lin and Franz Josef Och. 2004. Orange: a
method for evaluating automatic evaluation metrics
for machine translation. In Proceedings of the 20th
international conference on Computational Linguis-
tics, page 501.

Wei Lu and Hwee Tou Ng. 2011. A probabilistic
forest-to-string model for language generation from
typed lambda calculus expressions. In Proceedings
of the 2011 Conference on Empirical Methods in
Natural Language Processing, pages 1611–1622.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter.
2016. What to talk about and how? selective gener-
ation using lstms with coarse-to-fine alignment. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of the Inter-
national Conference on Learning Representations.

2082

Dana Movshovitz-Attias and William W. Cohen. 2013.
Natural language models for predicting program-
ming comments. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics, pages 35–40.

Axel-Cyrille Ngonga Ngomo, Lorenz Bühmann,
Christina Unger, Jens Lehmann, and Daniel Gerber.
2013. Sorry, i don’t speak sparql: Translating sparql
queries into natural language. In Proceedings of the
22Nd International Conference on World Wide Web,
pages 977–988.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings
of the 40th annual meeting on association for com-
putational linguistics, pages 311–318.

Terence Parr. 2013. The definitive ANTLR 4 reference.
Pragmatic Bookshelf.

Sarah Rastkar, Gail C Murphy, and Gabriel Mur-
ray. 2010. Summarizing software artifacts: a case
study of bug reports. In Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 505–514.

Sarah Rastkar, Gail C Murphy, and Alexander WJ
Bradley. 2011. Generating natural language sum-
maries for crosscutting source code concerns. In
Software Maintenance (ICSM), 2011 27th IEEE In-
ternational Conference on, pages 103–112.

Ehud Reiter and Robert Dale. 2000. Building natural
language generation systems. Cambridge Univer-
sity Press, New York, NY.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389.

Alkis Simitsis and Yannis E. Ioannidis. 2009. Dbmss
should talk back too. In CIDR 2009, Fourth Biennial
Conference on Innovative Data Systems Research,
Online Proceedings.

Giriprasad Sridhara, Emily Hill, Divya Muppaneni,
Lori Pollock, and K Vijay-Shanker. 2010. To-
wards automatically generating summary comments
for java methods. In Proceedings of the IEEE/ACM
international conference on Automated software en-
gineering, pages 43–52.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Amanda Stent, Matthew Marge, and Mohit Singhai.
2005. Evaluating evaluation methods for generation
in the presence of variation. In Computational Lin-
guistics and Intelligent Text Processing, pages 341–
351.

Ilya Sutskever, James Martens, and Geoffrey E Hin-
ton. 2011. Generating text with recurrent neural
networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages
1017–1024.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term memory
networks. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Nat-
ural Language Processing of the Asian Federation
of Natural Language Processing, ACL 2015, pages
1556–1566.

Subhashini Venugopalan, Huijuan Xu, Jeff Donahue,
Marcus Rohrbach, Raymond J. Mooney, and Kate
Saenko. 2015. Translating videos to natural lan-
guage using deep recurrent neural networks. In In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1494–1504.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711–1721.

Paul J Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560.

Yuk Wah Wong and Raymond J Mooney. 2007. Gen-
eration by inverting a semantic parser that uses sta-
tistical machine translation. In In Proceedings of the
2007 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 172–179.

Wojciech Zaremba and Ilya Sutskever. 2014. Learning
to execute. CoRR, abs/1410.4615.

Xingxing Zhang and Mirella Lapata. 2014. Chi-
nese poetry generation with recurrent neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 670–680.

2083

