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Abstract

We cast sentence boundary detection and
syntactic parsing as a joint problem, so
an entire text document forms a training
instance for transition-based dependency
parsing. When trained with an early up-
date or max-violation strategy for inexact
search, we observe that only a tiny part of
these very long training instances is ever
exploited. We demonstrate this effect by
extending the ArcStandard transition sys-
tem with swap for the joint prediction task.
When we use an alternative update strat-
egy, our models are considerably better
on both tasks and train in substantially
less time compared to models trained with
early update/max-violation. A comparison
between a standard pipeline and our joint
model furthermore empirically shows the
usefulness of syntactic information on the
task of sentence boundary detection.

1 Introduction

Although punctuation mostly provides reliable
cues for segmenting longer texts into sentence
units, human readers are able to exploit their un-
derstanding of the syntactic and semantic structure
to (re-)segment input in the absence of such cues.

When working with carefully copy-edited text
documents, sentence boundary detection can be
viewed as a minor preprocessing task in Natu-
ral Language Processing, solvable with very high
accuracy. However, when dealing with the out-
put of automatic speech recognition or “noisier”
texts such as blogs and emails, non-trivial sentence
segmentation issues do occur. Dridan and Oepen
(2013), for example, show how much impact fully
automatic preprocessing can have on parsing qual-
ity for well-edited and less-edited text.

Two possible strategies to approach this prob-
lem are (i) to exploit other cues for sentence
boundaries, such as prosodic phrasing and intona-
tion in speech (e.g., Kolář et al. (2006)) or format-
ting cues in text documents (Read et al., 2012),
and (ii) to emulate the human ability to exploit
syntactic competence for segmentation. We focus
here on the latter, which has received little atten-
tion, and propose to cast sentence boundary detec-
tion and syntactic (dependency) parsing as a joint
problem, such that segmentations that would give
rise to suboptimal syntactic structures can be dis-
carded early on.

A joint model for parsing and sentence bound-
ary detection by definition operates on documents
rather than single sentences, as is the standard case
for parsing. The task is illustrated in Figure 1,
which shows the beginning of a document in the
Switchboard corpus, a collection of transcribed
telephone dialogues. The parser must predict the
syntactic structure of the three sentences as well as
the start points of each sentence.1

The simple fact that documents are consider-
ably longer than sentences, often by orders of
magnitude, creates some interesting challenges for
a joint system. First of all, the decoder needs to
handle long inputs efficiently. This problem is
easily solved by using transition-based decoders,
which excel in this kind of setting due to their in-
cremental approach and their low theoretical com-
plexity. Specifically, we use a transition-based de-
coder that extends the Swap transition system of
Nivre (2009) in order to introduce sentence bound-
aries during the parsing process. The parser per-
forms inexact search for the optimal structure by

1We chose this example for its brevity. For this particular
example, the task of sentence boundary prediction could be
solved easily with speaker information since the second sen-
tence is from another speaker’s turn. The interesting cases
involve sentence segmentation within syntactically complex
turns of a single speaker.
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you said you have four cats i have four cats how old are they . . .

nsubj nsubj

ccomp

num

dobj

nsubj num

dobj

advmod dep nsubj

Figure 1: The beginning of a sample document from the Switchboard corpus. Tokens that start a sentence
are underlined. The task is to predict syntactic structure and sentence boundaries jointly.

maintaining a beam of several candidate deriva-
tions throughout the parsing process.

We will show in this paper that, besides effi-
cient decoding, a second, equally significant chal-
lenge lies in the way such a parser is trained. Nor-
mally, beam-search transition-based parsers are
trained with structured perceptrons using either
early update (Zhang and Clark, 2008; Collins and
Roark, 2004) or max-violation updates (Huang et
al., 2012). Yet our analysis demonstrates that nei-
ther of these update strategies is appropriate for
training on very long input sequences as they dis-
card a large portion of the training data.2 A sig-
nificant part of the training data is therefore never
used to train the model. As a remedy to this prob-
lem, we instead use an adaptation of the update
strategy in Björkelund and Kuhn (2014). They ap-
ply early update in a coreference resolution system
and observe that the task is inherently so difficult
that the correct item practically never stays in the
beam. So early updates are unable to exploit the
full instances during training. They propose to ap-
ply the updates iteratively on the same document
until the full document has been observed. In our
case, i.e. when parsing entire documents, the prob-
lem is similar in that early updates do not reach
the point where the learning algorithm exploits the
full training data within reasonable time. Train-
ing instead with the iterative update strategy gives
us significantly better models in substantially less
training time.

The second contribution in this paper is to
demonstrate empirically that syntactic information
can make up to a large extent for missing or un-
reliable cues from punctuation. The joint system
implements this hypothesis and allows us to test
the influence of syntactic information on the pre-

2We make one simplifying assumption in our experimen-
tal setup by assuming gold tokenization. Tokenization is of-
ten taken for granted, mostly because it is a fairly easy task in
English. For a realistic setting, tokenization would have to be
predicted as well, but since we are interested in the effect of
long sequences on training, we do not complicate our setting
by including tokenization.

diction of sentence boundaries as compared to a
pipeline baseline where both tasks are performed
independently of each other. For our analysis,
we use the Wall Street Journal as the standard
benchmark set and as a representative for copy-
edited text. We also use the Switchboard cor-
pus of transcribed dialogues as a representative
for data where punctuation cannot give clues to a
sentence boundary predictor (other types of data
that may show this property to varying degrees
are web content data, e.g. forum posts or chat
protocols, or (especially historical) manuscripts).
While the Switchboard corpus gives us a realis-
tic scenario for a setting with unreliable punctua-
tion, the syntactic complexity of telephone conver-
sations is rather low compared to the Wall Street
Journal. Therefore, as a controlled experiment
for assessing how far syntactic competence alone
can take us if we stop trusting punctuation and
capitalization entirely, we perform joint sentence
boundary detection/parsing on a lower-cased, no-
punctuation version of the Wall Street Journal. In
this setting, where the parser must rely on syntac-
tic information alone to predict sentence bound-
aries, syntactic information makes a difference
of 10 percentage point absolute for the sentence
boundary detection task, and two points for la-
beled parsing accuracy.

2 Transition system

We start from the ArcStandard system extended
with a swap transition to handle non-projective
arcs (Nivre, 2009). We add a transition SB (for
sentence boundary) that flags the front of the
buffer as the beginning of a new sentence. SB

blocks the SHIFT transition until the stack has
been reduced and a tree has been constructed,
which prevents the system from introducing arcs
between separate sentences. To track the predicted
sentence boundaries, we augment the configura-
tions with a set S to hold the predicted sentence
boundaries. Conceptually this leads to a represen-
tation where a document has a single artificial root
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Transition Preconditions
LEFTARC (σ|s1|s0, β, A, S) ⇒ (σ|s0, β, A ∪ {s0 → s1}, S) s1 6= 0
RIGHTARC (σ|s1|s0, β, A, S) ⇒ (σ|s1, β, A ∪ {s1 → s0}, S)
SHIFT (σ, b0|β,A, S) ⇒ (σ|b0, β, A, S) b0 6= LAST(S) ∨ |σ| = 1 ∨ SWAPPED(β)
SWAP (σ|s1|s0, β, A, S) ⇒ (σ|s0, s1|β,A, S) s1 < s0
SB (σ, b0|β,A, S) ⇒ (σ, b0|β,A, S ∪ {b0}) LAST(S) < b0 ∧ ¬SWAPPED(β)

Figure 2: Transition system. σ|s1|s0 denotes the stack with s0 and s1 on top, b0|β denotes the buffer
with b0 in front. LAST(S) denotes the most recent sentence boundary, and SWAPPED(β) is true iff the
buffer contains swapped items.

node that replaces the artificial root nodes for in-
dividual sentences.

The transition types of the system are shown
in Figure 2. The configurations consist of four
data structures: the stack σ, the input buffer β,
the set of constructed arcs A, and the set of sen-
tence boundaries S. LEFTARC, RIGHTARC, and
SWAP have the same semantics and preconditions
as in Nivre (2009). We modify the preconditions
of SHIFT in order to block shifts when necessary.
Whether shift is allowed can be categorized into
three cases subject to the most recently predicted
sentence boundary:

• If LAST(S) < b0: The last predicted sen-
tence boundary has already been shifted onto
the stack. At this point, the system is building a
new sentence and has not yet decided where it
ends. SHIFT is therefore allowed.

• If LAST(S) > b0: This situation can only oc-
cur if the system predicted a sentence boundary
and subsequently made a SWAP. LAST(S) then
denotes the end of the current sentence and is
deeper in the buffer than b0. Thus SHIFT is al-
lowed since b0 belongs to the current sentence.

• If LAST(S) = b0: The system must complete
the current sentence by reducing the stack be-
fore it can continue shifting and SHIFT is gen-
erally not allowed, with two exceptions. (1) If
the stack consists only of the root (i.e., |σ| = 1),
the current sentence has been completed and the
system is ready to begin parsing the next one.
(2) If b0 denotes the beginning of a new sen-
tence, but it has been swapped back onto the
buffer, then it belongs to the same sentence as
the tokens currently on the stack.

The preconditions for SB are straightforward. It
is only allowed if the current b0 is ahead of the
most recently predicted sentence boundary. Addi-
tionally, the transition is not allowed if b0 has been
swapped out from the stack. If it were, then b0
would be part of the following sentence and sen-

tences would no longer be continuous.
Extending the transition system to also handle

sentence boundaries does not affect the compu-
tational complexity. While the swap transition
system has worst case O(n2) complexity, Nivre
(2009) shows that swaps are rare enough that the
system maintains a linear time complexity on aver-
age. A naive implementation of the configurations
that make the arc set A and the sentence boundary
set S explicit could result in configurations that re-
quire linear time for copying during beam search.
Goldberg et al. (2013) show how this problem can
be circumvented in the case of a sentence-based
parser. Instead of making the arc set explicit, the
arcs are reconstructed after parsing by following
back-pointers to previous states. Only a small set
of arcs required for feature extraction are saved in
the states. We note that the same trick can be ap-
plied to avoid keeping an explicit representation
of S since the system only needs to know the last
predicted sentence boundary.

Snt 1 sh sh la sh sh la sh sh sbearly la ra ra ra sblate
Snt 2 sh sh la sh sh sbearly la ra ra sblate
Snt 3 sh sh la sh la sh sbearly ra ra sblate

Table 1: Transition sequences including sentence
boundary transitions for the example in Figure 1.

Oracle. Since each sentence constitutes its own
subtree under the root node, a regular sentence-
based oracle can be used to derive the oracle tran-
sition sequence for complete documents. Specifi-
cally, we apply the sentence-based oracle to each
sentence, and then join the sequences with a SB

transition in between. In the oracle sequences de-
rived this way we can either apply the SB tran-
sition as late as possible, requiring the system to
completely reduce the stack before introducing a
sentence boundary. Alternatively, sentence bound-
aries can be introduced as early as possible, i.e.,
applying the SB transition as soon as b0 starts a
new sentence. Table 1 shows this difference in the
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(a) sentences (b) documents

Figure 3: Average length of training sequences used during training for early update and max violation.

oracle transitions of each sentence from Figure 1.
During preliminary experiments we compared the
two alternatives and found that the early version
performed better than the late.3

3 Learning

We focus on training structured perceptrons for
search-based dependency parsing. Here, the score
of a parse is defined as the scalar product of a
weight vectorw and a global feature vector Φ. The
feature vector in turn is defined as the sum of lo-
cal feature vectors φ, corresponding to the features
extracted for a single transition t given a configu-
ration c. During prediction we thus aim to obtain

ŷ = arg max
y∈Y

Φ(y) · w

= arg max
y∈Y

∑
(t,c)∈TRSEQ(y)

φ(t, c) · w (1)

where TRSEQ represents the sequence of configu-
rations and transitions executed to obtain the tree
y. As the space of possible transition sequences
is too large to search exhaustively, we use beam
search for approximate search.

Early Update. Using approximate search while
training structured perceptrons is complicated by
the fact that the correct solution may actually ob-
tain the highest score given the current model, but
it was pruned off by the search procedure and
therefore never considered. Collins and Roark
(2004) solve this by halting search as soon as

3One could also imagine leaving the decision of when to
apply SB latent and let the machine learning decide. How-
ever, preliminary experiments again suggested that this strat-
egy was inferior to the earliest possible point.

the correct solution is pruned and then making an
early update on the partial sequences. Intuitively
this makes sense, since once the correct solution is
no longer reachable, it makes no sense to continue
searching.

Max-violation updates. Huang et al. (2012)
note that early updates require a considerable
number of training iterations as it often discards
a big portion of the training data. Moreover, they
show that updates covering a greater subsequence
can also be valid and define the max-violation up-
date. Specifically, max-violation updates extend
the beam beyond early updates and apply updates
where the maximum difference in scores as de-
fined by Equation (1) between the correct solution
and the best prediction (i.e., the maximal viola-
tion) is used for update. They show that this leads
to faster convergence compared to early update.

The curse of long sequences. Neither early
nor max-violation updates commit to using the
full training sequence for updates. In standard
sentence-level tasks such as part-of-speech tag-
ging or sentence-based dependency parsing these
updates suffice and reasonably quickly reach a
level where all or almost all of the training se-
quences are used for training. An entire document,
however, may be composed of tens or hundreds of
sentences, leading to transition sequences that are
orders of magnitude longer.

To illustrate the difference between sentence-
level and document-level parsing Figure 3 shows
plots of the average percentage of the gold train-
ing sequences that are being used as training pro-
gresses on the Switchboard training set.

The left plot shows the parser trained on sen-
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tences, the right one when it is trained on doc-
uments (where it also has to predict sentence
boundaries). On the sentence level we see that
both update strategies quite quickly reach close to
100%, i.e., they see more or less complete tran-
sition sequences during training. On the docu-
ment level the picture is considerably different.
The average length of seen transition sequences
never even goes above 50%. In other words, more
than half of the training data is never used. Early
update shows a slow increase over time, presum-
ably because the parser sees a bit more of every
training instance at every iteration and therefore
advances. However, max violation starts off us-
ing much more training data than early update, but
then drops and settles around 20%. This illustrates
the fact that max violation does not commit to ex-
ploiting more training data, but rather selects the
update which constitutes the maximum violation
irrespective of how much of the instance is being
used. Empirically, even though the percentage of
used training data decreases over iterations, max
violation is still profiting from more iterations in
the document-level task (cf. Figure 4 in Section 4).

Delayed LaSO. To solve the problem with the
discarded training data, we follow Björkelund and
Kuhn (2014) and apply the DLASO4 update. This
idea builds on early update, but crucially differs in
the sense that the remainder of a training sequence
is not discarded when a mistake is made. Rather,
the corresponding update is stored and the beam
is reseeded with the correct solution. This enables
the learning algorithm to exploit the full training
data while still making sound updates (or, using
the terminology of Huang et al. (2012), a number
of updates that are all violations).

Pseudocode for DLASO is shown in Algo-
rithm 1. Similar to early update it performs beam
search until the correct item falls off the beam
(lines 9-12). Here, early update would halt, update
the weights w and move on to the next instance.
Instead, DLASO computes the corresponding up-
date, i.e., a change in the w, and stores it away.
It then resets the beam to the correct solution ci,
and continues beam search. This procedure is
repeated until the end of a sequence, with a fi-
nal check for correctness after search has finished
(line 15). After a complete pass-through of the
training instance an update is made if any updates
were recorded during beam search (lines 17-18).

4Delayed Learning as Search Optimization

Algorithm 1 DLaSO
Input: Training data D = {(xi, yi)}ni=1, epochs T , beam

size B.
Output: Weight vector w.
1: w = 0
2: for t ∈ 1..T do
3: for (x, y) ∈ D do
4: c0..n = ORACLE(y)
5: Beam = {c0}
6: Updates = {}
7: for i ∈ 1 .. (n− 1) do
8: Beam = EXPANDANDFILTER(Beam, B)
9: if ci 6∈ Beam then

10: ŷ = BEST(Beam)
11: Updates = Updates ∪ CALCUPDATE(ci, ŷ)
12: Beam = {ci}
13: Beam = EXPANDANDFILTER(Beam, B)
14: ŷ = BEST(Beam)
15: if cn 6= ŷ then
16: Updates = Updates ∪ CALCUPDATE(cn, ŷ)

17: if |Updates| > 0 then
18: w = APPLYUPDATES(w,Updates)
19: return w

The DLASO update is closely related to LASO
(Daumé III and Marcu, 2005), but differs in that
it delays the updates until the full instance has
been decoded. Björkelund and Kuhn (2014) show
that the difference is important, as it prevents the
learning algorithm from getting feedback within
instances. Without the delay the learner can bias
the weights for rare (e.g., lexicalized) features that
occur within a single instance which renders the
learning setting quite different from test time in-
ference where no such feedback is available.

4 Experimental setup

Data sets. We experiment with two parts of the
English Penn Treebank (Marcus et al., 1993). We
use the Wall Street Journal (WSJ) as an exam-
ple of copy-edited newspaper-quality texts with
proper punctuation and capitalized sentences. We
also use the Switchboard portion which consists
of (transcribed) telephone conversations between
strangers. Following previous work on Switch-
board we lowercase all text and remove punctu-
ation and disfluency markups.

We use sections 2-21 of the WSJ for training, 24
as development set and 23 as test set. For Switch-
board we follow Charniak and Johnson (2001).
We convert both data sets to Stanford dependen-
cies with the Stanford dependency converter (de
Marneffe et al., 2006). We predict part-of-speech
tags with the CRF tagger MARMOT (Müller et al.,
2013) and annotate the training sets via 10-fold
jackknifing. Depending on the experimental sce-
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nario we use MARMOT in two different settings –
standard sentence-level where we train and apply
it on sentences, and document-level where a whole
document is fed to the tagger, implicitly treating it
as a single very long sentence.

Sentence boundary detection. We work with
two well-established sentence boundary detection
baselines. Following (Read et al., 2012) we use
the tokenizer from the Stanford CoreNLP (Man-
ning et al., 2014) and the sentence boundary de-
tector from OpenNLP5 which has been shown to
achieve state-of-the-art results on WSJ. We eval-
uate the performance of sentence boundary detec-
tion on the token level using F-measure (F1).6

Typical sentence boundary detectors such as
CORENLP or OPENNLP focus on punctuation
marks and are therefore inapplicable to data like
Switchboard that does not originally include punc-
tuation. In such cases CRF taggers are commonly
selected as baselines, e.g. for punctuation predic-
tion experiments (Zhang et al., 2013a). We there-
fore introduce a third baseline using MARMOT.
For this, we augment the POS tags with informa-
tion to indicate if a token starts a new sentence
or not. We prepare the training data accordingly
and train the document-level sequence labeler on
them. Table 2 shows the accuracies of all base-
line systems on the development sets. For WSJ
all three algorithms achieve similar results which
shows that MARMOT is a competitive baseline.
As can be seen, predicting sentence boundaries
for the Switchboard dataset is a more difficult task
than for well-formatted text like the WSJ.

WSJ Switchboard

OPENNLP 98.09 –
CORENLP 98.60 –
MARMOT 98.21 71.78

Table 2: Results (F1) for baselines for sentence
boundary detection on dev sets.

Parser implementation. Our parser imple-
ments the labeled version of the transition system
described in Section 2 with a default beam size
of 20. We use the oracle by Nivre et al. (2009)
to create transition sequences for each sentence
of a document, and then concatenate them with
SB transitions that occur as early as possible (cf.

5http://opennlp.apache.org
6A true positive is defined as a token that was correctly

predicted to begin a new sentence.

Section 2). The feature set is based on previous
work (Zhang and Nivre, 2011; Bohnet and Kuhn,
2012; Bohnet et al., 2013) and was developed for a
sentence-based parser for the WSJ. We made ini-
tial experiments trying to introduce new features
aimed at capturing sentence boundaries such as
trying to model verb subcategorization or sentence
length, however none of these proved useful com-
pared to the baseline feature set. Following the
line of work by Bohnet et al., we use the passive-
aggressive algorithm (Crammer et al., 2006) in-
stead of the vanilla perceptron, parameter averag-
ing (Collins, 2002), and a hash function to map
features (Bohnet, 2010).7

5 Analysis

Comparison of training methods. Figure 4
shows learning curves of the different training al-
gorithms where sentence boundary F1 and parsing
accuracy LAS are plotted as a function of training
iterations. The plots show performance for early
update, max-violation, and DLASO updates. In
addition, a greedy version of the parser is also in-
cluded. The greedy parser uses a plain averaged
perceptron classifier that is trained on all the train-
ing data. The straight dashed line corresponds to
the MARMOT baseline.

While the greedy parser, DLASO, and the
MARMOT baseline all exploit the full train-
ing data during training, early update and max-
violation do not (as shown in Section 3). This fact
has a direct impact on the performance of these
systems. DLASO reaches a plateau rather quickly,
whereas even after 100 iterations, early update and
max-violation perform considerably worse.8 We
also see that the greedy parser quickly reaches
an optimum and then starts degrading, presum-
ably due to overfitting. It is noteworthy, however,
that max-violation needs something between 40 to
60 iterations until it reaches a level similar to the
greedy parsers optimal value. This effect is quite
different from single sentence parsing scenarios,
where it is known that beam search parsers easily
outperform the greedy counterparts, requiring not
nearly as many training iterations.

7We make the source code of the parser available on the
first author’s website.

8The x-axis is cut at 100 iterations for simplicity. Al-
though early update and max-violation still are growing at
this point, the overall effect does not change – even after 200
iterations the DLASO update outperforms the other two by
at least two points absolute.
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(a) sentence boundary detection (b) parsing

Figure 4: Performance of different update strategies on the Switchboard development set.

Figure 5: The effect of increasing beam size.

Increasing the beam size. Intuitively, using a
bigger beam size might alleviate the problem of
discarded training data and enable max-violation
to exploit more training data. Figure 5 shows the
sentence boundary F1 as a function of training it-
erations for different beam sizes for DLASO and
max-violation. For DLASO, we see that a big-
ger beam provides a slight improvement. Max-
violation shows a greater correlation between
greater beam size and improved F1. However,
even with a beam of size 100 max-violation is
nowhere near DLASO. In theory a beam size or-
ders of magnitude greater may rival DLASO but
as the beam size directly influences the time com-
plexity of the parser, this is not a viable option.

Does syntax help? One of the underlying as-
sumptions of the joint model is our expectation
that access to syntactic information should support
the model in finding the sentence boundaries. We
have already seen that the joint parser outperforms

the MARMOT baseline by a big margin in terms
of sentence boundary F1 (Figure 4). However, the
comparison is not entirely fair as the two systems
use different feature sets and learning algorithms.

To properly measure the effect of syntactic
information on the sentence boundary detection
task, we therefore trained another model for the
joint system on a treebank where we replaced the
gold-standard trees with trivial trees that connect
the last token of each sentence to the root node,
and everything in between as a left-branching
chain. We dub this setting NOSYNTAX and it al-
lows us to use exactly the same machine learning
for a fair comparison between a system that has
access to syntax and one without.

As the syntactic complexity in Switchboard is
rather low, we compare these two systems also
on a version of the WSJ where we removed
all punctuation and lower-cased all words, effec-
tively making it identical to the Switchboard set-
ting (henceforth WSJ∗). Figure 6 shows sentence
boundary F1 over training iterations when training
with and without access to syntax. On both data
sets, the system with access to syntax stays con-
sistently above the other system. The striking dif-
ference between the data sets is that syntactic in-
formation has a much bigger impact on WSJ∗ than
on Switchboard, which we attribute to the higher
syntactic complexity of newswire text. Overall the
comparison shows clearly that syntactic structure
provides useful information to the task of sentence
boundary detection.
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(a) Switchboard

(b) WSJ∗

Figure 6: The effect of syntactic information on
sentence boundary prediction, on dev sets.

6 Final results

Sentence boundary detection. We optimize the
number of iterations on the dev sets: for the joint
model we take the iteration with the highest av-
erage between F1 and LAS, NOSYNTAX is tuned
according to F1. Table 3 gives the performance of
the sentence boundary detectors on test sets.9

On WSJ all systems are close to 98 and this
high number once again affirms that the task of
segmenting newspaper-quality text does not leave
much space for improvement. Although the pars-
ing models outperform MARMOT, the improve-
ments in F1 are not significant.

In contrast, all systems fare considerably worse
on WSJ∗ which confirms that the orthographic
clues in newspaper text suffice to segment the sen-
tences properly. Although NOSYNTAX outper-
forms MARMOT, the difference is not significant.
However, when real syntax is used (JOINT) we see
a huge improvement in F1 – 10 points absolute –
which is significantly better than both NOSYNTAX

and MARMOT.
On Switchboard MARMOT is much lower and

both parsing models outperform it significantly.
Surprisingly the NOSYNTAX system achieves a
very high result beating the baseline significantly
by almost 4.5 points. The usage of syntax in the
JOINT model raises this gain to 4.8 points.

9We test for significance using the Wilcoxon signed-rank
test with p < 0.01. † and ‡ denote significant increases over
MARMOT and NOSYNTAX, respectively. ∗ denotes signifi-
cant increases over JOINT (Table 4).

WSJ Switchboard WSJ∗

MARMOT 97.64 71.87 53.02
NOSYNTAX 98.21 76.31† 55.15

JOINT 98.21 76.65† 65.34†‡

Table 3: Sentence boundary detection results (F1)
on test sets.

Parsing. In order to evaluate the joint model
on the parsing task separately we compare it to
pipeline setups. We train a basic parser on sin-
gle sentences using gold standard sentence bound-
aries, predicted POS tags and max-violation up-
dates (GOLD). The number of training iterations is
tuned to optimize LAS on the dev set. This parser
is used as the second stage in the pipeline models.
Additionally, we also build a pipeline where we
use JOINT only as a sentence segmenter and then
parse once again (denoted JOINT-REPARSED).

Table 4 shows the results on the test sets. For
WSJ, where sentence segmentation is almost triv-
ial, we see only minor drops in LAS between
GOLD and the systems that use predicted sentence
boundaries. Among the systems that use predicted
boundaries, no differences are significant.

WSJ Switchboard WSJ∗

GOLD 90.22 84.99 88.71

MARMOT 89.81 78.93 83.37
NOSYNTAX 89.95 80.30† 83.61

JOINT 89.71 79.97† 85.66†‡

JOINT-REPARSED 89.93 80.61†‡∗ 85.38†‡

Table 4: Parsing results (LAS) on test sets for dif-
ferent sentence boundaries.

For WSJ∗ and Switchboard the picture is much
different. Compared to GOLD, all systems show
considerable drops in accuracy which asserts that
errors from the sentence boundary detection task
propagate to the parser and worsen the parser ac-
curacy. On Switchboard the parsers yield signifi-
cantly better results than MARMOT. The best re-
sult is obtained after reparsing and this is also sig-
nificantly better than any other system. Although
there is a slight drop in accuracy between NOSYN-
TAX and JOINT, this difference is not significant.

The results on WSJ∗ show that not only does
syntax help to improve sentence segmentation, it
does so to a degree that parsing results deterio-
rate when simpler sentence boundary detectors are
used. Here, both JOINT and JOINT-REPARSED
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obtain significantly better parsing accuracies than
the systems that do not have access to syntax
during sentence boundary prediction. Although
JOINT-REPARSED performs a bit worse, the dif-
ference compared to JOINT is not significant.

7 Related work

Zhang and Clark (2008) first showed how to train
transition-based parsers with the structured per-
ceptron (Collins, 2002) using beam search and
early update (Collins and Roark, 2004). It has
since become the de facto standard way of training
search-based transition-based dependency parsers
(Huang and Sagae, 2010; Zhang and Nivre, 2011;
Bohnet et al., 2013). Huang et al. (2012) showed
how max-violation leads to faster convergence
for transition-based parsers and max-violation up-
dates have subsequently been applied to other
tasks such as machine translation (Yu et al., 2013)
and semantic parsing (Zhao and Huang, 2015).

Sentence Boundary Detection. Sentence
boundary detection has attracted only mod-
est attention by the research community even
though it is a component in every real-world
NLP application. Previous work is divided into
rule-based, e.g., CoreNLP (Manning et al., 2014),
and machine learning approaches (e.g., OpenNLP,
a re-implementation of Reynar and Ratnaparkhi
(1997)’s MxTerminator). The task is often sim-
plified to the task of period disambiguation (Kiss
and Strunk, 2006), which only works on text that
uses punctuation consistently. The current state of
the art uses sequence labelers, e.g., a CRF (Evang
et al., 2013; Dridan and Oepen, 2013). For a
broad survey of methodology and tools, we refer
the reader to Read et al. (2012).

Joint models. Solving several tasks jointly has
lately been popular in transition-based parsing,
e.g., combining parsing with POS tagging (Hatori
et al., 2011; Bohnet and Nivre, 2012) and tok-
enization (Zhang et al., 2013b; Zhang et al., 2014).
Joint approaches avoid error propagation between
the subtasks and often lead to overall better mod-
els, especially for the lower level tasks that sud-
denly have access to syntactic information.

Our transition system is inspired by the work of
Zhang et al. (2013a). They present a projective
transition-based parser that jointly predicts punc-
tuation and syntax. Their ArcEager transition sys-
tem (Nivre, 2003) includes an additional transition

that introduces punctuation similar to our SB tran-
sition. They also use beam search and circumvent
the problem of long training sequences by chop-
ping up the training data into pseudo-documents
of at most 10 sentences. As we have shown, this
solution works because the training instances are
not long enough to hurt the performance. How-
ever, while this is possible for parsing, other tasks
may not be able to chop up their training data.

8 Conclusion

We have demonstrated that training a structured
perceptron for inexact search on very long input
sequences ignores significant portions of the train-
ing data when using early update or max-violation.
We then showed how this effect can be avoided
by applying a different update strategy, DLASO,
which leads to considerably better models in sig-
nificantly less time. This effect only occurs when
the training instances are very long, e.g., on whole
documents, but not when training on single sen-
tences. We also showed that the lower perfor-
mance of early update and max-violation cannot
be compensated for by increasing beam size or
number of iterations. We compared our system for
joint sentence boundary detection and dependency
parsing to competitive pipeline systems showing
that syntax can provide valuable information to
sentence boundary prediction when punctuation
and capitalization is not available.
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142–151, Montréal, Canada, June. Association for
Computational Linguistics.

Tibor Kiss and Jan Strunk. 2006. Unsupervised mul-
tilingual sentence boundary detection. Computa-
tional Linguistics, 32(4):485–525.
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