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Abstract

Timeline generation is a summarisation
task which transforms a narrative, roughly
chronological input text into a set of
timestamped summary sentences, each ex-
pressing an atomic historical event. We
present a methodology for evaluating sys-
tems which create such timelines, based
on a novel corpus consisting of 36 human-
created timelines. Our evaluation relies on
deep semantic units which we call histori-
cal content units. An advantage of our ap-
proach is that it does not require human
annotation of new system summaries.

1 Introduction

A timeline of historical events is a special kind of
summary. We define a timeline as a list of textual
event descriptions, each paired with a date (see
Figure 1). A timeline is different from a standard
single- or multi-document summary: Each event
description is accompanied by a timestamp, and
event descriptions themselves are independent lin-
guistic units which should be understandable on
their own. Additionally, a good timeline satis-
fies conflicting constraints: it should contain only
salient events, and the overall time period consid-
ered should be covered well by events. Timeline
construction is not a new task. It has been per-
formed, for example, in a multi-document sum-
marisation (Chieu and Lee, 2004; Yan et al., 2011;
Nguyen et al., 2014) or in a single-document clas-
sification context (Chasin et al., 2013).

It is crucial to reliably evaluate algorithms that
create such timelines automatically. Of course,
any summary can be evaluated by surface meth-
ods such as ROUGE (Lin, 2004). But even for
traditional summaries, ROUGE-based evaluation
has been criticised for being too shallow, and it is
even less adequate for timelines, because of their
special properties described above.

(...) In the 1997 unrest in Albania the general elections
of June 1997 brought the Socialists and their allies to
power. President Berisha resigned from his post, and
Socialists elected Rexhep Meidani as president of Al-
bania. Albanian Socialist Party Chairman Fatos Nano
was elected Prime Minister, (...)

1997 There was unrest in Albania.
June 1997 Fatos Nano was elected Prime Minister.

Figure 1: Extract from a Wikipedia article and two
lines of a corresponding timeline.

We therefore opt for a “deep” method which
attempts to measure to which degree a system-
generated timeline contains semantic units found
in gold-standard timelines. Our content units re-
semble those of van Halteren and Teufel (2003)
and Nenkova and Passonneau (2004), but are
larger in that they correspond to historical events.

Traditional deep summarisation evaluation is
expensive because it involves annotation of gold-
standard summaries as well as annotation of each
system summary. A major operational advantage
of our approach is that we require human anno-
tation only for gold-standard summaries, not for
system summaries. After a one-time effort of cre-
ating semantic units and mapping them to the orig-
inal text, the quality of a system’s content selection
can be evaluated for infinitely many new system
summaries for free. Our method is the following:

1. Ask timeline writers to create timelines with
a fixed number of date-event pairs.

2. An HCU creator (the first author) transforms
these timelines into HCUs, historical content
units, which are defined based on semantic
overlap between timeline text.

3. We then create a mapping between HCUs and
the source text, or more precisely, TimeML
events in the source text. This mapping be-
tween HCUs and source text allows us to
evaluate new systems without a human ever
inspecting system output at all.
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HCU 16
Action Fatos Nano is elected Prime Minister
Agent not given
Patient Fatos Nano
Time June 1997
Location Albania

Figure 2: HCU for one event from Figure 1

Any summarisation evaluation based on human
judgment is inherently subjective, but we restrict
this subjectivity in three ways. First, timeline cre-
ation (step 1) involves the selection of important
content, which is by far the most subjective of the
decisions involved in our evaluation method. We
therefore ask three independent timeline writers to
perform this task. Second, the generation of HCUs
(step 2) is prescribed by fixed rules and definitions
inspired by the methodology of van Halteren and
Teufel (2003). With this method, the timeline writ-
ers, not the HCU creators, decide which material is
available for creating the HCUs. Third, for the cre-
ation of mappings between HCUs and the source
text (step 3), which was performed using a differ-
ent set of detailed guidelines, we report agreement
between the first and second author.

In section 2, we explain and contrast our con-
cept of HCUs to existing work. In section 3,
we present our new evaluation corpus and explain
how we derived it. In section 4, we give details on
how system scores for individual HCUs are calcu-
lated. In section 5, we analyse agreement of time-
line writers on HCUs using two 3-person groups
of annotators. We do not present our own algo-
rithm for timeline generation here, but we sanity-
check our evaluation methodology for a number
of baseline timeline generation algorithms (sec-
tion 6), where we demonstrate how systems are
scored with our method.

2 Historical Content Units

Our event representation is called Historical Con-
tent Unit (HCU), which is inspired by the Sum-
mary Content Units (SCU) used in the pyra-
mid method of Nenkova and Passonneau (2004)
(henceforth NP04). Their approach is based on
the idea that, due to the inherent subjectivity of
summarisation tasks, there is no such thing as a
single best gold standard summary. Instead, there
are many equally good gold standard summaries.
The way to differentiate between a good and a bad
system summary is to consider each content unit

selected by a system and count how many gold
standard summaries it appears in. SCUs that are
mentioned by many annotators contribute more to
a system’s score than less frequently chosen units.
We follow this general weighting idea, but our
HCUs are more abstract than SCUs, which are tied
to a clause in the summary text without any further
semantic characterisation by the annotator.

HCUs are more abstract in that they express an
event, i.e. a concrete real-world action (France
invades Algeria) or state change (Obama be-
comes president), while SCUs are more textual,
not semantically defined and generally represent a
smaller unit of meaning. State descriptions, opin-
ions, wishes, aspirations, intentions and utterances
do not constitute events. HCUs normally contain
a logical agent (for actions) or a patient (for state
changes), plus possibly other semantic roles. The
action occurs at a given point in time, not as a
continuous (e.g. “species adapt”) or regular action
(“the sun sets”), and the location of the event has
to be delimitable, too (e.g., “in France” is accept-
able, but not “on coral reefs”). An example HCU
is given in Figure 2. Our HCU definition implies
that each historical event is considered equally im-
portant. For system evaluation, this means that a
system can score at most one point per HCU (ex-
actly one point if it gives a perfect rendition of that
HCU). This is different to evaluation based on the
SCUs in NP04. Their method of linking words to
SCUs may lead to a situation where some events
are represented by multiple SCUs, and hence are
effectively considered more important than others.

HCU construction proceeds by treating each
line in each timeline as a single HCU candidate. If
a line contains more than one event (for instance
an event plus additional information), we decide
what the main event is based on syntactic criteria
and discard the additional information. We then
have to decide whether two or more surface string
descriptions of events by different timeline authors
correspond to the same HCU. For this, we follow
the method described by van Halteren and Teufel
(2003). As long as two event descriptions do not
contain conflicting information about an event and
as long as their timestamps do not disagree, we can
safely assume they refer to the same real-world ac-
tion and map them to the same HCU, for instance,
the two sentences “Nano was elected Prime Minis-
ter” and “Party Chairman Nano was elected PM”.

This matching process results in a number of
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HCUs for a source text, each with associated sur-
face representations by human timeline authors. In
the future, these gold standard event realisations
could be used to evaluate the surface form of sys-
tem timelines. This paper, however, is mainly con-
cerned with content selection evaluation.

We now use the number of surface representa-
tions available to assign a weight to each HCU
(following NP04), and the following formula is
used to calculate the total score for a system:

score =

∑
i∈HCUs

wi·scorei

scoremax

where scorei denotes the individual scores (be-
tween 0 and 1) calculated for each HCU i andwi is
the number of annotators whose timeline contains
that HCU. scoremax is the sum of the weighted
maximum scores of the n most highly weighted
HCUs in the pyramid, where n is the desired time-
line length.

3 Corpus construction

To find suitable historical articles for our corpus,
we created the intersection of all Wikipedia arti-
cles whose title starts with “History of” with the
articles in a large collection of timelines described
by Bauer et al. (2014). Articles with errors in
their Wikitext were removed. We also excluded
articles that were incomplete, did not contain
narrative text or were not chronologically struc-
tured. None of these criteria aim at hand-picking
well-written articles or articles that describe well-
attested topics. The final set consists of 408
articles. We manually grouped these according
to their general topic area (GEO-POLITICAL
ENTITY, SCIENCE, ...). From these, we select a
set of 11 articles representative in terms of length
and subject area. For each of the articles in our
corpus, we removed the introductions (which tend
to contain a summary of the entire article). We
then asked 3 annotators per text1 to produce a his-
torical digest with a given maximum length deter-
mined by the number of verbs in each article (re-
sulting in 25-40 events). For one text, we asked an
additional 3 annotators to provide timelines, such
that this one text was covered by six annotators.
This means that in total, we had 36 combinations
of texts and timeline writers.

Our instructions do not tell the timeline writers
how content selection (in the source text) and sur-

1The annotators recruited included both computational
linguists and students in higher education.

face realisation (in the timelines produced) should
be performed. We merely state that the timeline
should strike a balance between mentioning all
and only important events and still giving a com-
plete account of the time period covered. Anno-
tators are also told that each line should contain
exactly one event and must be given a timestamp.

Our approach brings with it the challenge of de-
ciding when an algorithm operating on the source
text has correctly selected an HCU. We assume
that individual words in the text – verbs, nominal-
isations and certain other event-like nouns (such
as “war”) – are associated with the core action or
state change expressed by an HCU and that we or
a system can find those. While our methodology
does not presuppose any particular event definition
or event extraction paradigm, we make use of the
TimeML project (Pustejovsky et al., 2003), which
has provided a substantial body of work on how
to extract events and timestamps in the form of
TimeML EVENT and TIMEX instances (cf. the
TempEval shared tasks (Verhagen et al., 2007;
Verhagen et al., 2010; UzZaman et al., 2013)).

To construct the links between the HCUs we
found in the texts (between 32 and 80 per text2)
and the surface text, we first run a publicly avail-
able, recent TimeML-based extraction system,
TIPSem-B (Llorens et al., 2010), over our texts.
We then manually annotate each HCU with all
surface sentences that express the action or state
change described by the HCU, and manually de-
cide which TimeML event(s) identified in any
such matching sentence express(es) the HCU’s
content. This results in a 1:n mapping between
HCUs and events. For this matching process, we
use a detailed set of guidelines. A subset of the
2066 matchings (all matchings for 60 HCUs) was
re-annotated independently by the second author;
inter-annotator agreement was 87.9%.

Where the TimeML system failed to recognise
what we consider to be the correct event anchor,
we manually tagged this event anchor, and we pro-
vide this information with our corpus. This is be-
cause we want our gold standard to be independent
of any particular event extraction package.

4 Scoring system

As stated above, the reward a system may receive
for a single HCU is capped to one. This is true re-
gardless of how many TimeML events represent-

2We obtain 100 HCUs for the text annotated by 6 humans.

836



ing the HCU are retrieved by the system. We up-
hold this principle because we aim to evaluate how
many HCUs a system returns, not how many tex-
tual elements representing them are retrieved.

Apart from this global constraint, the general
principle is to treat the contribution of each indi-
vidual TimeML event additively. For example, if
three events have been found to represent a third
of the meaning of the HCU, respectively, and two
of them are selected by the system, the total score
obtained for this HCU will be 2

3 .
For some pairs of TimeML events, however, this

additive paradigm is not the desired behaviour:
The TimeML software sometimes tends to mark
two very closely related words, e.g. a verb
(“start”) and its object (“war”), as events. In this
case, we do not want these two events, which we
consider to be members of an event group, to con-
tribute additively (AND); instead, an OR logic is
appropriate, meaning that it is irrelevant whether
one or both of the participating events are chosen.
The human matcher may impose such constraints
between multiple events linked to the same HCU.

In general, an event group E is a set which
may contain individual events e1, e2, ... and fur-
ther subgroups E1, E2, ... of events.

E = {E1, E2, ..., En, e1, e2, ..., en}
Each event and subgroup inE is associated with

a number v ∈ [0, 1] that denotes how much the
event or subgroup contributes to the total mean-
ing of event group E in context of HCU i; these
numbers are set by the human matcher.

The total scorei that a system will receive for
an HCU i is calculated using the function S(i, E),
where E is an event group that includes all events
linked to HCU i by a human:
S(i, E) = min(1,

∑
Ej∈E

vEj ·S(i, Ej)+
∑

ej∈E

vej · s(i, ej))

S(i, Ej) represents the contribution made by all
TimeML events in an event subgroup Ej ∈ E,
which is again capped to 1 via the recursive def-
inition of the score function. s(i, e) is a function
for an individual event in group E which, if the
system to be evaluated has chosen the event, re-
turns one, and zero otherwise:

s(i, e) =

{
1 if the system has chosen event e

0 otherwise

Note that S(i, E) simplifies to s(i, e) if there is
only one event e linked to HCU i (and if ve = 1).

See Figure 3 for an example of an HCU along
with all TimeML events in a sentence from the

source article and their respective contributions
to the HCU’s meaning (in brackets). Here, the
matcher has decided, according to our guidelines,
that “began” fully represents the HCU’s mean-
ing, while “recording” only represents half of the
meaning. Importantly, a system selecting both
these events will still only receive a total score of
1.0 for this HCU since it is capped to that number.

5 Data analysis

While we do not expect perfect agreement for
timeline generation, we hope to observe a pyra-
mid form like in NP04; i.e. a situation where few
HCUs are chosen by all three annotators, a higher
number are chosen by two annotators, and so on.
Indeed this was the case for 9 of the documents.

We also investigated how different the gold
standard would have been if a different set of three
humans had annotated the texts. We asked three
further annotators to create historical digests of
one text and then considered all possible splits into
two groups of three annotators each. For illustra-
tion, Tables 1 and 2 represent two examples out of
the 10 possible configurations, showing the num-
ber of annotators per group that agreed on HCUs.
The grey areas in the tables capture cases where
the two annotator teams chose an HCU with the
same frequency or where the two frequencies dif-
fer only by one. Averaged across the 10 splits,
91.9% of all HCUs fall into this area.

Consider cell (#0, #0): These are the cases
where all six annotators decided that these events
are not worthy of being mentioned in the timeline.
Since we do not annotate non-selected HCUs, we
can only give an approximation for this number
based on the average observed HCU frequency
per sentence. We do this since these cases should
arguably also contribute posivitely to the agree-
ment. Using these tables, we calculate Krippen-
dorff’s α across annotator groups; i.e. each HCU
can receive a score between 0 and 3, depending on
how many annotators expressed it in their time-
line. We use an interval difference function and
obtain α = 0.530. This is arguably a non-standard
use of α; we provide this number to give the reader
a rough idea of the agreement across groups.

6 Baseline results

To illustrate our method, we now present the re-
sults of a number of baseline algorithms. We only
evaluate the systems’ choice of events, not the sur-
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Action The Southern Semites began recording their history
Agent the Southern Semites
Patient their history
Time 800 BC
Surface text This led (0.0) to contact (0.0) with the Phoenicians and from them , the Southern Semites adopted

(0.0) their writing script in 800 BCE and began (1.0) recording (0.5) their history .

Figure 3: Example HCU with links into the surface text (the HCU’s location is not given)

Team 2
#0 #1 #2 #3

Team 1

#0 87 19 2 1
#1 18 15 10 1
#2 6 8 9 4
#3 1 0 3 3

Table 1: Best split (94.1% in grey area)

Team 2
#0 #1 #2 #3

Team 1

#0 87 17 6 0
#1 20 9 6 3
#2 8 14 5 1
#3 0 2 6 3

Table 2: Worst split (89.8% in grey area)

face realisation or the timestamps. In the future,
a more sophisticated mechanism may be devised
which takes these aspects into account as well.

Our algorithms are listed in Table 3. They may
select individual TimeML events from the source
text (1-6), or entire sentences (7-10); in the lat-
ter case, all events in the sentences count as se-
lected. Some of the baselines select events from
anywhere in the article (4, 5, 6, 10); others pro-
ceed in a round-robin fashion by iteratively select-
ing one event or sentence per section (1, 1b, 2, 3,
7, 8, 9, “RR”). For the latter methods, in each iter-
ation we can proceed from the top (1, 1b, 7) or the
bottom (2, 8) of the section, or we randomly select
any event or sentence in the section (3, 9). Choos-
ing the first or the last events of the entire article
(5, 6) does not look like a good method, since the
timeline needs to cover the entire timespan. Fi-
nally, we examine whether selecting only events
with a date in the same sentence has any effect; re-
sults can only be calculated over 10 articles since
one of the articles does not contain enough such
events. The result in Table 3 is therefore marked
with a star (*). The results of methods that involve
randomly selecting items were averaged over 100
runs. In principle, existing systems such as that by
Chasin et al. (2013) could also be evaluated with
our method, but we do not do this here.

ID Method Scores
1 RR, first events in section 0.23

1b like 1, events with dates only 0.33*
2 RR, last events in section 0.13
3 RR, random events in section 0.13
4 Random events in article 0.11
5 First events in article 0.13
6 Last events in article 0.11
7 RR, first sentences in section 0.22
8 RR, last sentences in section 0.11
9 RR, random sentences in section 0.12

10 Random sentences in article 0.10

Table 3: Baseline results (average pyramid
scores); the result with a * is based on 10 articles

Algorithms inspired by the well-established
“first n words” baseline for summarisation of
newswire articles perform best here too, when ap-
plied on a section level (1, 1b, 7). All these al-
gorithms perform significantly better when com-
pared to any of the other algorithms (2-6, 8-10);
statistical significance is measured for each pair
of algorithms at α = 0.05 using the Wilcoxon
signed-rank test (p < 0.05). This suggests that im-
portant events tend to be placed at the beginning of
a section. Selecting the first events from the entire
article (5) produces worse results than selecting
the first events from each section. The best results
are obtained when selecting only events with dates
in their proximity (1b); however, this result is
based only on 10 of the 11 articles, and the differ-
ence to algorithm 1 is not significant (p = 0.1391).

7 Conclusion

We have introduced a novel methodology for eval-
uating timeline generation algorithms based on
deep semantic content units, including a new cor-
pus of 36 human-written timelines and associated
HCUs. Our evaluation focuses on a deeper model
of meaning (based on events) rather than n-gram
overlap, and provides links between each HCU
and the source text. This allows us to subse-
quently evaluate an unlimited number of system
summaries without any further cost, rationalising
the evaluation of timeline construction algorithms.
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