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Abstract

This paper proposes an embedding match-

ing approach to Chinese word segmenta-

tion, which generalizes the traditional se-

quence labeling framework and takes ad-

vantage of distributed representations. The

training and prediction algorithms have

linear-time complexity. Based on the pro-

posed model, a greedy segmenter is de-

veloped and evaluated on benchmark cor-

pora. Experiments show that our greedy

segmenter achieves improved results over

previous neural network-based word seg-

menters, and its performance is competi-

tive with state-of-the-art methods, despite

its simple feature set and the absence of ex-

ternal resources for training.

1 Introduction

Chinese sentences are written as character se-

quences without word delimiters, which makes

word segmentation a prerequisite of Chinese lan-

guage processing. Since Xue (2003), most work

has formulated Chinese word segmentation (CWS)

as sequence labeling (Peng et al., 2004) with char-

acter position tags, which has lent itself to struc-

tured discriminative learning with the benefit of

allowing rich features of segmentation configura-

tions, including (i) context of character/word n-

grams within local windows, (ii) segmentation his-

tory of previous characters, or the combinations of

both. These feature-based models still form the

backbone of most state-of-the art systems.

Nevertheless, many feature weights in such

models are inevitably poorly estimated because the

number of parameters is so large with respect to

the limited amount of training data. This has mo-

tivated the introduction of low-dimensional, real-

valued vectors, known as embeddings, as a tool

to deal with the sparseness of the input. Em-

beddings allow linguistic units appearing in sim-

ilar contexts to share similar vectors. The suc-

cess of embeddings has been observed in many

NLP tasks. For CWS, Zheng et al. (2013) adapted

Collobert et al. (2011) and uses character embed-

dings in local windows as input for a two-layer net-

work. The network predicts individual character

position tags, the transitions of which are learned

separately. Mansur et al. (2013) also developed a

similar architecture, which labels individual char-

acters and uses character bigram embeddings as

additional features to compensate the absence of

sentence-level modeling. Pei et al. (2014) im-

proved upon Zheng et al. (2013) by capturing the

combinations of context and history via a tensor

neural network.

Despite their differences, these CWS ap-

proaches are all sequence labeling models. In such

models, the target character can only influence the

prediction as features. Consider the the segmen-

tation configuration in (1), where the dot appears

before the target character in consideration and the

box (2) represents any character that can occur in

the configuration. In that example, the known his-

tory is that the first two characters中国 ‘China’ are

joined together, which is denoted by the underline.

(1) 中国·2格外 (where 2 ∈ {风,规, ...})

(2) 中国风 格外 ‘China-style especially’

(3) 中国 规格 外 ‘besides Chinese spec.’

For possible target characters, 风 ‘wind’ and 规
‘rule’, the correct segmentation decisions for them

are opposite, as shown in (2) and (3), respectively.

In order to correctly predict both, current models

can set higher weights for target character-specific

features. However, in general, 风 is more likely

to start a new word instead of joining the exist-

ing one as in this example. Given such conflicting

evidence, models can rarely find optimal feature

weights, if they exist at all.
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The crux of this conflicting evidence problem

is that similar configurations can suggest opposite

decisions, depending on the target character and

vice versa. Thus it might be useful to treat segmen-

tation decisions for distinct characters separately.

And instead of predicting general segmentation de-

cisions given configurations, it could be beneficial

to model the matching between configurations and

character-specific decisions.

To this end, this paper proposes an embed-

ding matching approach (Section 2) to CWS, in

which embeddings for both input and output are

learned and used as representations to counteract

sparsities. Thanks to embeddings of character-

specific decisions (actions) serving as both input

features and output, our hidden-layer-free archi-

tecture (Section 2.2) is capable of capturing pre-

diction histories in similar ways as the hidden lay-

ers in recurrent neural networks (Mikolov et al.,

2010). We evaluate the effectiveness of the model

via a linear-time greedy segmenter (Section 3) im-

plementation. The segmenter outperforms previ-

ous embedding-based models (Section 4.2) and

achieves state-of-the-art results (Section 4.3) on a

benchmark dataset. The main contributions of this

paper are:

• A novel embedding matching model for Chi-

nese word segmentation.

• Developing a greedy word segmenter, which

is based on the matching model and achieves

competitive results.

• Introducing the idea of character-specific seg-

mentation action embeddings as both feature

and output, which are cornerstones of the

model and the segmenter.

2 Embedding Matching Models for

Chinese Word Segmentation

We propose an embedding based matching model

for CWS, the architecture of which is shown in

Figure 1. The model employs trainable embed-

dings to represent both sides of the matching,

which will be specified shortly, followed by details

of the architecture in Section 2.2.

2.1 Segmentation as Configuration-Action

Matching

Output. The word segmentation output of a char-

acter sequence can be described as a sequence of

character-specific segmentation actions. We use

separation (s) and combination (c) as possible

actions for each character, where a separation ac-

tion starts a new word with the current character,

while a combination action appends the character

to the preceding ones. We model character-action

combinations instead of atomic, character inde-

pendent actions. As a running example, sentence

(4b) is the correct segmentation for (4a), which can

be represented as the sequence (猫 -s,占 -s,领 -c,

了 -s,婴 -s,儿 -c,床 -c) .

(4) a. 猫占领了婴儿床

b. 猫 占领 了 婴儿床

c. ‘The cat occupied the crib’

Input. The input are the segmentation configura-

tions for each character under consideration, which

are described by context and history features. The

context features of captures the characters that are

in the same sentence of the current character and

the history features encode the segmentation ac-

tions of previous characters.

• Context features. These refer to character

unigrams and bigrams that appear in the lo-

cal context window of h characters that cen-

ters at ci, where ci is 领 in example (4) and

h = 5 is used in this paper. The template for

features are shown in Table 1. For our exam-

ple, the uni- and bi-gram features would be:

猫, 占, 领, 了, 婴 and猫占, 占领, 领了, 了
婴, respectively.

• History features. To make inference

tractable, we assume that only previous l
character-specific actions are relevant, where

l = 2 for this study. In our example, 猫 -s

and 战 -s are the history features. Such fea-

tures capture partial information of syntactic

and semantic dependencies between previous

words, which are clues for segmentation that

pure character contexts could not provide. A

dummy character START is used to represent

the absent (left) context characters in the case

of the first l characters in a sentence. And the

predicted action for the START symbol is al-

ways s.

Matching. CWS is now modeled as the match-

ing of the input (segmentation configuration) and

output (two possible character-specific actions) for

each character. Formally, a matching model learns
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Figure 1: The architecture of the embedding matching model for CWS. The model predicts the seg-

mentation for the character领 in sentence (4), which is the second character of word占领 ‘occupy’. Both

feature and output embeddings are trainable parameters of the model.

Group Feature template

unigram ci−2, ci−1, ci, ci+1, ci+2

bigram ci−2ci−1, ci−1ci, cici+1, ci+1ci+2

Table 1: Uni- and bi-gram feature template

the following function:

g ( b1b2...bn, a1a2...an)

=
n∏

j=1

f
(
bj(aj−2, aj−1; cj−h

2
...cj+h

2
), aj

)
(1)

where c1c2...cn is the character sequence, bj

and aj are the segmentation configuration and

action for character cj , respectively. In (1),

bj(aj−2, aj−1; cj−h
2
...cj+h

2
) indicates that the con-

figuration for each character is a function that de-

pends on the actions of the previous l characters

and the characters in the local window of size h.

Why embedding. The above matching model

would suffer from sparsity if these outputs

(character-specific action aj) were directly en-

coded as one-hot vectors, since the matching

model can be seen as a sequence labeling model

with C×L outputs, where L is the number of orig-

inal labels while C is the number of unique char-

acters. For Chinese, C is at the order of 103−104.

The use of embeddings, however, can serve the

matching model well thanks to their low dimen-

sionality.

2.2 The Architecture

The proposed architecture (Figure 1) has three

components, namely look-up table, concatenation

and softmax function for matching. We will go

through each of them in this section.

Look-up table. The mapping between fea-

tures/outputs to their corresponding embeddings

are kept in a look-up table, as in many previous

embedding related work (Bengio et al., 2003; Pei

et al., 2014). Such features are extracted from the

training data. Formally, the embedding for each

distinct feature d is denoted as Embed(d) ∈ RN ,

which is a real valued vector of dimension N .

Each feature is retrieved by its unique index. The

retrieval of the embeddings for the output actions

is similar.

Concatenation. To predict the segmentation for

the target character cj , its feature vectors are con-

catenated into a single vector, the input embed-

ding, i(bj) ∈ RN×K , where K is the number of

features used to describe the configuration bj .

Softmax. The model then computes the dot

product of the input embedding i(bj) and each of
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the two output embeddings, o(aj,1) and o(aj,2),
which represent the two possible segmentation ac-

tions for the target character cj , respectively. The

exponential of the two raw scores are normalized

to obtain probabilistic values ∈ [0, 1].
We call the resulting scores matching probabili-

ties, which denote probabilities that actions match

the given segmentation configuration. In our ex-

ample,领 -c has the probability of 0.7 to be the cor-

rect action, while领 -s is less likely with a lower

probability of 0.3. Formally, the above matching

procedure can be described as a softmax function,

as shown in (2), which is also an individual f term

in (1).

f( bj , aj,k) =
exp (i(bj) · o(aj,k))∑
k′ exp

(
i(bj) · o(aj,k′)

) (2)

In (2), aj,k (1 ≤ k ≤ 2) represent two possible

actions, such as 领 -c and 领 -s for 领 in our ex-

ample. Note that, to ensure the input and output are

of the same dimension, for each character specific

action, the model trains two distinct embeddings,

one ∈ RN as feature and the other ∈ RN×K as

output, where K is the number of features for each

input.

Best word segmentation of sentence. After

plugging (2) into (1) and applying (and then drop-

ping) logarithms for computational convenience,

finding the best segmentation for a sentence be-

comes an optimization problem as shown in (3). In

the formula, Ŷ is the best action sequence found

by the model among all the possible ones, Y =
a1a2...an, where aj is the predicted action for the

character cj (1 ≤ j ≤ n), which is either cj-s or

cj-c, such as领 -s and领 -c.

Ŷ = argmax
Y

n∑
j=1

exp (i(bj) · o(aj))∑
k exp (i(bj) · o(aj,k))

(3)

3 The Greedy Segmenter

Our model depends on the actions predicted for the

previous two characters as history features. Tradi-

tionally, such scenarios call for dynamic program-

ming for exact inference. However, preliminary

experiments showed that, for our model, a Viterbi

search based segmenter, even supported by con-

ditional random field (Lafferty et al., 2001) style

training, yields similar results as the greedy search

based segmenter in this section. Since the greedy

segmenter is much more efficient in training and

testing, the rest of the paper will focus on the pro-

posed greedy segmenter, the details of which will

be described in this section.

3.1 Greedy Search

Initialization. The first character in the sentence

is made to have two left side characters that are

dummy symbols of START, whose predicted ac-

tions are always START-s, i.e. separation.

Iteration. The algorithms predicts the action for

each character cj , one at a time, in a left-to-right,

incremental manner, where 1 ≤ j ≤ n and n is the

sentence length. To do so, it first extracts context

features and history features, the latter of which are

the predicted character-specific actions for the pre-

vious two characters. Then the model matches the

concatenated feature embedding with embeddings

of the two possible character-specific actions, cj-s

and ci-c. The one with higher matching probability

is predicted as segmentation action for the charac-

ter, which is irreversible. After the action for the

last character is predicted, the segmented word se-

quence of the sentence is built from the predicted

actions deterministically.

Hybrid matching. Character-specific embed-

dings are capable of capturing subtle word forma-

tion tendencies of individual characters, but such

representations are incapable of covering match-

ing cases for unknown target characters. An-

other minor issue is that the action embeddings

for certain low frequent characters may not be suf-

ficiently trained. To better deal with these sce-

narios, We also train two embeddings to repre-

sent character-independent segmentation actions,

ALL-s and ALL-c, and use them to average with

or substitute embeddings of infrequent or unknown

characters, which are either insufficiently trained

or nonexistent. Such strategy is called hybrid

matching, which can improve accuracy.

Complexity. Although the total number of ac-

tions is large, the matching for each target charac-

ter only requires the two actions that correspond to

that specific character, such as领 -s and领 -c for

领 in our example. Each prediction is thus similar

to a softmax computation with two outputs, which

costs constant time C. Greedy search ensures that

the total time for predicting a sentence of n char-

acters is n×C, i.e. linear time complexity, with a

minor overhead for mapping actions to segmenta-

tions.
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3.2 Training

The training procedure first predicts the action for

the current character with current parameters, and

then optimizes the log likelihood of correct seg-

mentation actions in the gold segmentations to up-

date parameters. Ideally, the matching probability

for the correct action embedding should be 1 while

that of the incorrect one should be 0. We minimize

the cross-entropy loss function as in (4) for the seg-

mentation prediction of each character cj to pursue

this goal. The loss function is convex, similar to

that of maximum entropy models.

J = −
K∑

k=1

δ (aj,k) log
exp (i · o(aj,k))∑
k′ exp

(
i · o(aj,k′)

) (4)

where aj,k denotes a possible action for cj and i is a

compact notation for i(bj). In (4), δ(aj,k) is an in-

dicator function defined by the following formula,

where âj denotes the correct action.

δ(aj,k) =

{
1, if aj,k = âj

0, otherwise

To counteract over-fitting, we add L2 regulariza-

tion term to the loss function, as follows:

J = J +
K∑

k=1

λ

2

(
||i||2 + ||o(aj,k)||2

)
(5)

The formula in (4) and (5) are similar to that of a

standard softmax regression, except that both in-

put and output embeddings are parameters to be

trained. We perform stochastic gradient descent to

update input and output embeddings in turn, each

time considering the other as constant. We give the

gradient (6) and the update rule (7) for the input

embedding i(bj) (i for short), where ok is a short

notation for o(aj,k). The gradient and update for

output embeddings are similar. The α in (7) is the

learning rate, which we use a linear decay scheme

to gradually shrink it from its initial value to zero.

Note that the update for the input embedding i is

actually performed for the feature embeddings that

form i in the concatenation step.

∂J

∂i
=

∑
k

( f (bj , aj,k)− δ (aj,k)) · ok + λi (6)

i = i− α
∂J

∂i
(7)

Complexity. For each iteration of the training pro-

cess, the time complexity is also linear to the input

character number, as compared with search, only a

few constant time operations of gradient computa-

tion and parameter updates are performed for each

character.

4 Experiments

4.1 Data and Evaluation Metric

In the experiments, we use two widely used and

freely available1 manually word-segmented cor-

pora, namely, PKU and MSR, from the second

SIGHAN international Chinese word segmenta-

tion bakeoff (Emerson, 2005). Table 2 shows the

details of the two dataset. All evaluations in this

paper are conducted with official training/testing

set split using official scoring script.2

PKU MSR

Word types 5.5× 104 8.8× 104

Word tokens 1.1× 106 2.4× 106

Character types 5× 103 5× 103

Character tokens 1.8× 106 4.1× 106

Table 2: Corpus details of PKU and MSR

The segmentation accuracy is evaluated by pre-

cision (P ), recall (R), F-score and Roov, the re-

call for out-of-vocabulary words. Precision is de-

fined as the number of correctly segmented words

divided by the total number of words in the seg-

mentation result. Recall is defined as the number

of correctly segmented words divided by the total

number of words in the gold standard segmenta-

tion. In particular, Roov reflects the model gen-

eralization ability. The metric for overall perfor-

mance, the evenly-weighted F-score is calculated

as in (8):

F =
2× P ×R

P + R
(8)

To comply with CWS evaluation conventions and

make comparisons fair, we distinguish the follow-

ing two settings:

• closed-set : no extra resource other than train-

ing corpora is used.

• open-set : additional lexicon, raw corpora, etc

are used.

1http://www.sighan.org/bakeoff2005/
2http://www.sighan.org/bakeoff2003/score
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We will report the final results of our model3 on

PKU and MSR corpora in comparison with pre-

vious embedding based models (Section 4.2) and

state-of-the-art systems (Section 4.3), before go-

ing into detailed experiments for model analyses

(Section 4.5).

4.2 Comparison with Previous

Embedding-Based Models

Table 3 shows the results of our greedy segmenter

on the PKU and MSR datasets, which are com-

pared with embedding-based segmenters in previ-

ous studies.4 In the table, results for both closed-

set and open-set setting are shown for previous

models. In the open-set evaluations, all three

previous work use pre-training to train character

ngram embeddings from large unsegmented cor-

pora to initialize the embeddings, which will be

later trained with the manually word-segmented

training data. For our model, we report the close-

set results only, as pre-training does not signifi-

cant improve the results in our experiments (Sec-

tion 4.5).

As shown in Table 3, under close-set evaluation,

our model significantly outperform previous em-

bedding based models in all metrics. Compared

with the previous best embedding-based model,

our greedy segmenter has achieved up to 2.2% and

25.8% absolute improvements (MSR) on F-score

and Roov, respectively. Surprisingly, our close-set

results are also comparable to the best open-set re-

sults of previous models. As we will see in (Sec-

tion 4.4), when using same or less character uni-

and bi-gram features, our model still outperforms

previous embedding based models in closed-set

evaluation, which shows the effectiveness of our

matching model.

Significance test. Table 4 shows the 95% con-

fidence intervals (CI) for close-set results of our

model and the best performing previous model (Pei

et al., 2014), which are computed by formula (9),

following (Emerson, 2005).

CI = 2

√
F (1− F )

N
(9)

where F is the F-score value and the N is the word

token count of the testing set, which is 104,372 and

106,873 for PKU and MSR, respectively. We see

3Our implementation: https://zenodo.org/record/17645.
4The results for Zheng et al. (2013) are from the re-

implementation of Pei et al. (2014).

that the confidence intervals of our results do not

overlap with that of (Pei et al., 2014), meaning that

our improvements are statistically significant.

4.3 Comparison with the State-of-the-Art

Systems

Table 5 shows that the results of our greedy seg-

menter are competitive with the state-of-the-art su-

pervised systems (Best05 closed-set, Zhang and

Clark, 2007), although our feature set is much

simpler. More recent state-of-the-art systems rely

on both extensive feature engineering and ex-

tra raw corpora to boost performance, which are

semi-supervised learning. For example, Zhang

et al (2013) developed 8 types of static and dy-

namic features to maximize the co-training system

that used extra corpora of Chinese Gigaword and

Baike, each of which contains more than 1 bil-

lion character tokens. Such systems are not di-

rectly comparable with our supervised model. We

leave the development of semi-supervised learning

methods for our model as future work.

4.4 Features Influence

Table 6 shows the F-scores of our model on

PKU dataset when different features are removed

(‘w/o’) or when only a subset of features are used.

Features complement each other and removing any

group of features leads to a limited drop of F-

score up to 0.7%. Note that features of previ-

ous (two) actions are even more informative than

all unigram features combined, suggesting that

intra- an inter-word dependencies reflected by ac-

tion features are strong evidence for segmentation.

Moreover, using same or less character ngram fea-

tures, our model outperforms previous embedding

based models, which shows the effectiveness of

our matching model.

4.5 Model Analysis

Learning curve. Figure 2 shows that the training

procedure coverages quickly. After the first iter-

ation, the testing F-scores are already 93.5% and

95.7% for PKU and MSR, respectively, which then

gradually reach their maximum within the next 9

iterations before the curve flats out.

Speed. With an unoptimized single-thread

Python implementation running on a laptop with

intel Core-i5 CPU (1.9 GHZ), each iteration of the

training procedure on PKU dataset takes about 5

minutes, or 6,000 characters per second. The pre-
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Models
PKU Corpus MSR Corpus

P R F Roov P R F Roov

Zheng et al.(2013) 92.8 92.0 92.4 63.3 92.9 93.6 93.3 55.7

+ pre-training† 93.5 92.2 92.8 69.0 94.2 93.7 93.9 64.1

Mansur et al. (2013) 93.6 92.8 93.2 57.9 92.3 92.2 92.2 53.7

+ pre-training† 94.0 93.9 94.0 69.5 93.1 93.1 93.1 59.7

Pei et al. (2014) 93.7 93.4 93.5 64.2 94.6 94.2 94.4 61.4

+ pre-training† 94.4 93.6 94.0 69.0 95.2 94.6 94.9 64.8

+ pre-training & bigram† - - 95.2 - - - 97.2 -

This work (closed-set) 95.5 94.6 95.1 76.0 96.6 96.5 96.6 87.2

Table 3: Comparison with previous embedding based models. Numbers in percentage. Results with †
used extra corpora for (pre-)training.

Models
PKU MSR

F CI F CI

Pei et al. 93.5 ±0.15 94.4 ±0.14
This work 95.1 ±0.13 96.6 ±0.11

Table 4: Significance test of closed-set results of

Pei et al (2014) and our model.

Model PKU MSR

Best05 closed-set 95.0 96.4

Zhang et al. (2006) 95.1 97.1

Zhang and Clark (2007) 94.5 97.2

Wang et al. (2012) 94.1 97.2

Sun et al. (2009) 95.2 97.3

Sun et al. (2012) 95.4 97.4

Zhang et al. (2013) † 96.1 97.4

This work 95.1 96.6

Table 5: Comparison with the state-of-the-art sys-

tems. Results with † used extra lexicon/raw cor-

pora for training, i.e. in open-set setting. Best05

refers to the best closed-set results in 2nd SIGHAN

bakeoff.

diction speed is above 13,000 character per second.

Hyper parameters. The hyper parameters used

in the experiments are shown in Table 7. We ini-

tialized hyper parameters with recommendations

in literature before tuning with dev-set experi-

ments, each of which change one parameter by a

magnitude. We fixed the hyper parameter to the

current setting without spending too much time on

tuning, since that is not the main purpose of this

paper.

• Embedding size determines the number of

parameters to be trained, thus should fit the

Feature F-score Feature F-score

All features 95.1 uni-&bi-gram 94.6

w/o action 94.6 only action 93.3

w/o unigram 94.8 only unigram 92.1

w/o bigram 94.4 only bigram 94.2

Table 6: The influence of features. F-score in per-

centage on the PKU corpus.

Figure 2: The learning curve of our model.

training data size to achieve good perfor-

mance. We tried the size of 30 and 100, both

of which performs worse than 50. A possible

tuning is to use different embedding size for

different groups of features instead of setting

N1 = 50 for all features.

• Context window size. A window size of

3-5 characters achieves comparable results.

Zheng et al. (2013) suggested that context

window larger than 5 may lead to inferior re-

sults.

• Initial Learning rate. We found that several

learning rates between 0.04 to 0.15 yielded

very similar results as the one reported here.

The training is not very sensitive to reason-
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able values of initial learning rate. However,

Instead of our simple linear decay of learning

rate, it might be useful to try more sophisti-

cated techniques, such as AdaGrad and expo-

nential decaying (Tsuruoka et al., 2009; Sun

et al., 2013).

• Regularization. Our model suffers a little

from over-fitting, if no regularization is used.

In that case, the F-score on PKU drops from

95.1% to 94.7%.

• Pre-training. We tried pre-training charac-

ter embeddings using word2vec5 with Chi-

nese Gigaword Corpus6 and use them to ini-

tialize the corresponding embeddings in our

model, as previous work did. However, we

were only able to see insignificant F-score

improvements within 0.1% and observed that

the training F-score reached 99.9% much ear-

lier. We hypothesize that pre-training leads to

sub-optimal local maximums for our model.

• Hybrid matching. We tried applying hy-

brid matching (Section 3.1) for target char-

acters which are less frequent than the top

ftop characters, including unseen characters,

which leads to about 0.15% of F-score im-

provements.

Size of feature embed’ N1 = 50
Size of output embed’ N2 = 550
Window size h = 5
Initial learning rate α = 0.1
Regularization λ = 0.001
Hybrid matching ftop = 8%

Table 7: Hyper parameters of our model.

5 Related Work

Word segmentation. Most modern segmenters

followed Xue (2003) to model CWS as sequence

labeling of character position tags, using condi-

tional random fields (Peng et al. 2004), structured

perceptron (Jiang et al., 2008), etc. Some notable

exceptions are (Zhang and Clark, 2007; Zhang et

al., 2012), which exploited rich word-level fea-

tures and (Ma et al., 2012; Ma, 2014; Zhang et

al., 2014), which explicitly model word structures.

Our work generalizes the sequence labeling to a

5https://code.google.com/p/word2vec/
6https://catalog.ldc.upenn.edu/LDC2005T14

more flexible framework of matching, and predicts

actions as in (Zhang and Clark, 2007; Zhang et al.,

2012) instead of position tags to prevent the greedy

search from suffering tag inconsistencies. To bet-

ter utilize resources other than training data, our

model might benefit from techniques used in recent

state-of-the-art systems, such as semi-supervised

learning (Zhao and Kit, 2008; Sun and Xu, 2011;

Zhang et al., 2013; Zeng et al., 2013), joint models

(Li and Zhou, 2012; Qian and Liu, 2012), and par-

tial annotations (Liu et al., 2014; Yang and Vozila,

2014).

Distributed representation and CWS. Dis-

tributed representation are useful for various NLP

tasks, such as POS tagging (Collobert et al., 2011),

machine translation (Devlin et al., 2014) and pars-

ing (Socher et al., 2013). Influenced by Collobert

et al. (2011), Zheng et al. (2013) modeled CWS as

tagging and treated sentence-level tag sequence as

the combination of individual tag predictions and

context-independent tag transition. Mansur et al.

(2013) was inspired by Bengio et al. (2003) and

used character bigram embeddings to compensate

for the absence of sentence level optimization. To

model interactions between tags and characters,

which are absent in these two CWS models, Pei et

al. (2014) introduced the tag embedding and used

a tensor hidden layer in the neural net. In con-

trast, our work uses character-specific action em-

beddings to explicitly capture such interactions. In

addition, our work gains efficiency by avoiding

hidden layers, similar as Mikolov et al. (2013).

Learning to match. Matching heterogeneous

objects has been studied in various contexts before,

and is currently flourishing, thanks to embedding-

based deep (Gao et al., 2014) and convolutional

(Huang et al., 2013; Hu et al., 2014) neural net-

works. This work develops a matching model for

CWS and differs from others in its“shallow”yet

effective architecture.

6 Discussion

Simple architecture. It is possible to adopt stan-

dard feed-forward neural network for our embed-

ding matching model with character-action em-

beddings as both feature and output. Nevertheless,

we designed the proposed architecture to avoid

hidden layers for simplicity, efficiency and easy-

tuning, inspired by word2vec. Our simple archi-

tecture is effective, demonstrated by the improved

results over previous neural-network word seg-
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menters, all of which use feed-forward architecture

with different features and/or layers. It might be

interesting to directly compare the performances

of our model with same features on the current and

feed-forward architectures, which we leave for fu-

ture work.

Greedy and exact search-based models. As

mentioned in Section 3, we implemented and pre-

liminarily experimented with a segmenter that

trains a similar model with exact search via Viterbi

algorithm. On the PKU corpus, its F-score is

0.944, compared with greedy segmenter’s 0.951.

Its training and testing speed are up to 7.8 times

slower than that of the greedy search segmenter.

It is counter-intuitive that the performance of the

exact-search segmenter is no better or even worse

than that of the greedy-search segmenter. We

hypothesize that since the training updates pa-

rameters with regard to search errors, the final

model is “tailored” for the specific search method

used, which makes the model-search combination

of greedy search segmenter not necessarily worse

than that of exact search segmenter. Another way

of looking at it is that search is less important

when the model is accurate. In this case, most

step-wise decisions are correct in the first place,

which requires no correction from the search algo-

rithm. Empirically, Zhang and Clark (2011) also

reported exact-search segmenter performing worse

than beam-search segmenters.

Despite that the greedy segmenter is incapable

of considering future labels, this rarely causes

problems in practice. Our greedy segmenter has

good results, compared with the exact-search seg-

menter above and previous approaches, most of

which utilize exact search. Moreover, the greedy

segmenter has additional advantages of faster

training and prediction.

Sequence labeling and matching. A tradi-

tional sequence labeling model such as CRF has

K (number of labels) target-character-independent

weight vectors, where the target character influ-

ences the prediction via the weights of the features

that contain it. In a way, a matching model can be

seen as a family of “sub-models”, which keeps a

group of weight vectors (the output embeddings)

for each unique target character. Different target

characters activate different sub-models, allowing

opposite predictions for similar input features, as

the target weight vectors used are different.

7 Conclusion and Future Work

In this paper, we have introduced the matching

formulation for Chinese word segmentation and

proposed an embedding matching model to take

advantage of distributed representations. Based

on the model, we have developed a greedy seg-

menter, which outperforms previous embedding-

based methods and is competitive with state-of-

the-art systems. These results suggest that it is

promising to model CWS as configuration-action

matching using distributed representations. In ad-

dition, linear-time training and testing complexity

of our simple architecture is very desirable for in-

dustrial application. To the best of our knowledge,

this is the first greedy segmenter that is competi-

tive with the state-of-the-art discriminative learn-

ing models.

In the future, we plan to investigate methods for

our model to better utilize external resources. We

would like to try using convolutional neural net-

work to automatically encode ngram-like features,

in order to further shrink parameter space. It is also

interesting to study whether extending our model

with deep architectures can benefit CWS. Lastly,

it might be useful to adapt our model to tasks such

as POS tagging and name entity recognition.
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