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Massimiliano Ciaramita2, Mark Steedman3 and Mark Johnson1

1 Department of Computing, Macquarie University, Australia
2 Google, Zurich, Switzerland

3 School of Informatics, University of Edinburgh, Scotland

Abstract

Most existing topic models make the bag-
of-words assumption that words are gener-
ated independently, and so ignore poten-
tially useful information about word or-
der. Previous attempts to use collocations
(short sequences of adjacent words) in
topic models have either relied on a pipe-
line approach, restricted attention to bi-
grams, or resulted in models whose infer-
ence does not scale to large corpora. This
paper studies how to simultaneously learn
both collocations and their topic assign-
ments. We present an efficient reformula-
tion of the Adaptor Grammar-based topi-
cal collocation model (AG-colloc) (John-
son, 2010), and develop a point-wise sam-
pling algorithm for posterior inference in
this new formulation. We further improve
the efficiency of the sampling algorithm
by exploiting sparsity and parallelising in-
ference. Experimental results derived in
text classification, information retrieval
and human evaluation tasks across a range
of datasets show that this reformulation
scales to hundreds of thousands of docu-
ments while maintaining the good perfor-
mance of the AG-colloc model.

1 Introduction

Probabilistic topic models like Latent Dirichlet
Allocation (LDA) (Blei et al., 2003) are com-
monly used to study the meaning of text by iden-
tifying a set of latent topics from a collection of
documents and assigning each word in these doc-
uments to one of the latent topics. A document is
modelled as a mixture of latent topics, and each
topic is a distribution over a finite vocabulary of
words. It is common for topic models to treat
documents as bags-of-words, ignoring any inter-

nal structure. While this simplifies posterior infer-
ence, it also ignores the information encoded in,
for example, syntactic relationships (Boyd-Graber
and Blei, 2009), word order (Wallach, 2006) and
the topic structure of documents (Du et al., 2013).
Here we are interested in topic models that capture
dependencies between adjacent words in a topic
dependent way. For example, the phrase “white
house” can be interpreted compositionally in a
real-estate context, but not in a political context.

Several extensions of LDA have been proposed
that assign topics not only to individual words but
also to multi-word phrases, which we call topical
collocations. However, as we will discuss in sec-
tion 2, most of those extensions either rely on a
pre-processing step to identify potential colloca-
tions (e.g., bigrams and trigrams) or limit attention
to bigram dependencies. We want a model that can
jointly learn collocations of arbitrary length and
their corresponding topic assignments from a large
collection of documents. The AG-colloc model
(Johnson, 2010) does exactly this. However, be-
cause the model is formulated within the Adaptor
Grammar framework (Johnson et al., 2007), the
time complexity of its inference algorithm is cu-
bic in the length of each text fragment, and so it is
not feasible to apply the AG-colloc model to large
collections of text documents.

In this paper we show how to reformulate
the AG-colloc model so it is no longer relies
on a general Adaptor Grammar inference proce-
dure. The new formulation facilitates more ef-
ficient inference by extending ideas developed
for Bayesian word segmentation (Goldwater et
al., 2009). We adapt a point-wise sampling algo-
rithm from Bayesian word segmentation, which
has also been used in Du et al. (2013), to simul-
taneously sample collocation boundaries and col-
location topic assignments. This algorithm retains
the good performance of the AG-colloc model in
document classification and information retrieval
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tasks. By exploiting the sparse structure of both
collocation and topic distributions, using tech-
niques inspired by Yao et al. (2009), our new in-
ference algorithm produces a remarkable speedup
in running time and allows our reformulation to
scale to a large number of documents. This algo-
rithm can also be easily parallelised to take advan-
tage of multiple cores by combining the ideas of
the distributed LDA model (Newman et al., 2009).
Thus, the contribution of this paper is three-fold:
1) a novel reformulation of the AG-colloc model,
2) an easily parallelisable and fast point-wise sam-
pling algorithm exploiting sparsity and 3) system-
atic experiments with both qualitative and quanti-
tative analysis.

The structure of the paper is as follows. In Sec-
tion 2 we briefly discuss prior work on learning
topical collocations. We then present our reformu-
lation of the AG-colloc model in Section 3. Sec-
tion 4 derives a point-wise Gibbs sampler for the
model and shows how this sampler can take advan-
tage of sparsity and be parallelised across multiple
cores. Experimental results are reported in Section
5. Section 6 concludes this paper and discusses fu-
ture work.

2 Related Work

There are two main approaches to incorporat-
ing topical collocations in LDA: 1) pipeline ap-
proaches that use a pre-processing step prior to
LDA, and 2) extensions to LDA, which modify the
generative process. In this section we discuss prior
work that falls into these two categories and their
limitations.

Pipeline Approaches (Lau et al., 2013), denoted
here by PA, involve two steps. The first step iden-
tifies a set of bigrams that are potentially rele-
vant collocations from documents by using sim-
ple heuristics for learning collocations, e.g., the
Student’s t-test method of Banerjee and Peder-
sen (2003). For each identified bigram “w1 w2”,
a new pseudo word “w1 w2” is added to the vo-
cabulary and the documents are re-tokenised to
treat every instance of this bigram as a new to-
ken. LDA is then applied directly to the mod-
ified corpus without any changes to the model.
While Lau et al. demonstrated that this two-step
approach improves performance on a document
classification task, it is limited in two ways. First,
it can identify only collocations of a fixed length
(i.e., bigrams). Second, the pre-processing step

that identifies collocation candidates has no access
to contextual cues (e.g. the topic of the context in
which a bigram occurs),

A variety of extensions to the LDA model have
been proposed to address this second shortcom-
ing. Most extensions add some ability to capture
word-to-word dependencies directly into the un-
derlying generative process. For example, Wal-
lach (2006) incorporates a hierarchical Dirichlet
language model (MacKay and Peto, 1995), en-
abling her model to automatically cluster function
words together. The model proposed by Griffiths
et al. (2004) combines a hidden Markov model
with LDA, using the former to model syntax and
the latter to model semantics.

The LDA collocation model (LDACOL) (Grif-
fiths et al., 2007) infers both the per-topic word
distribution in the standard LDA model and, for
each word in the vocabulary, a distribution over the
words that follow it. The generative process of the
LDACOL model allows words in a document to be
generated in two ways. A word is generated either
by drawing it directly from a per-topic word distri-
bution corresponding to its topic as in LDA, or by
drawing it from the word distribution associated
with its preceding word w. The two alternatives
are controlled by a set of Bernoulli random vari-
ables associated with individual words. Sequences
of words generated from their predecessors consti-
tute topical collocations.

Wang et al. (2007) extended the LDACOL
model to generate the second word of a colloca-
tion from a distribution that conditions on not only
the first word but also the first word’s topic assign-
ment, proposing the topical N-gram (TNG) model.
In other words, whereas LDACOL only adds a dis-
tribution for every word-type to LDA, TNG adds
a distribution for every possible word-topic pair.
Wang et al. found that this modification allowed
TNG to outperform LDACOL on a standard in-
formation retrieval task. However, both LDACOL
and TNG do not require words within a sequence
to share the same topic, which can result in seman-
tically incoherent collocations.

Subsquent models have sought to encourage
topically coherent collocations, including Phrase-
Discovering LDA (Lindsey et al., 2012), the time-
based topical n-gram model (Jameel and Lam,
2013a) and the n-gram Hierarchical Dirichlet Pro-
cess (HDP) model (Jameel and Lam, 2013b).
Phrase-Discovering LDA is a non-parametric ex-
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tension of TNG inspired by Bayesian N-gram
models Teh (2006) that incorporate a Pitman-Yor
Process prior. The n-gram HDP is a nonparametric
extension of LDA-colloc, putting an HDP prior on
the per-document topic distribution. Both of these
non-parametric extensions use the Chinese Fran-
chise representation for posterior inference.

Our work here is based on the AG-colloc model
proposed by Johnson (2010). He showed how
Adaptor Grammars can generalise LDA to learn
topical collocations of unbounded length while
jointly identifying the topics that occur in each
document. Unfortunately, because the Adaptor
Grammar inference algorithm uses Probabilistic
Context-Free Grammar (PCFG) parsing as a sub-
routine, the time complexity of inference is cu-
bic in the length of individual text fragments. In
order to improve the efficiency of the AG-colloc
model, we re-express it using ideas from Bayesian
word segmentation models. This allows us to de-
velop an efficient inference algorithm for the AG-
colloc model that scales to large corpora. Finally,
we evaluate our model in terms of classification,
information retrieval, and topic intrusion detection
tasks; to our knowledge, we are the first to evalu-
ate topical collocation models along all the three
dimensions.

3 Topical Collocation Model

In this section we present our reformulation of the
AG-colloc model, which we call the Topical Col-
location Model (TCM) to emphasise that we are
not using a grammar-based formulation. We start
with the Unigram word segmentation model and
Adaptor Grammar model of topical collocations,
and then present our reformulation.

Goldwater et al. (2009) introduced a Bayesian
model for word segmentation known as the Uni-
gram model. This model is based on the Dirichet
Process (DP) and assumes the following genera-
tive process for a sequence of words.

G ∼ DP (α0, P0), wi | G ∼ G

Here, P0 is some distribution over the countably
infinite set of all possible word forms (which are
in turn sequences of a finite number of charac-
ters), and G is a draw from a Dirichlet Process.
Inference is usually performed under a collapsed
model in which G is integrated out, giving rise
to a Chinese Restaurant Process (CRP) represen-
tation. The CRP is defined by the following pre-

dictive probability of wi given w1:i−1:

p(wi = l|w1:i−1) =
nl

i− 1 + α0
+

α0P0(l)
i− 1 + α0

,

where nl is the number of times word form l ap-
pears in the first n− 1 words.

During inference, the words are not known, and
the model observes only a sequence of charac-
ters. Goldwater et al. (2009) derived a linear time
Gibbs sampler that samples from the posterior dis-
tribution over possible segmentations of a given
corpus according to the model. Their key insight
is that sampling can be performed over a vector
of Boolean boundary indicator variables – not in-
cluded in the original description of the model –
that indicates which adjacent characters are sepa-
rated by a word boundary. We will show how this
idea can be generalised to yield an inference algo-
rithm for the AG-colloc model.

Adaptor Grammars (Johnson et al., 2007) are
a generalisation of PCFGs. In a PCFG, a non-
terminal A is expanded by selecting a rule A→ β
with probability P (β|A), where β is a sequence of
terminal and non-terminal node labels. Because
the rules are selected independently, PCFGs in-
troduce strong conditional independence assump-
tions. In an Adaptor Grammar, some of the non-
terminal labels are adapted. These nodes can be
expanded either by selecting a rule, as in PCFGs,
or by retrieving an entire subtree from a Dirichlet
Process cache specific to that node’s non-terminal
label,1 breaking the conditional independence as-
sumptions and capturing longer-range statistical
relationships.

The AG-colloc model can be concisely ex-
pressed using context free grammar rule schemata,
where adapted non-terminals are underlined:

Top→ Docm

Docm →−m | Docm Topici

Topici →Word+

Here m ranges over the documents, i ranges over
topics, “|” separates possible expansions, and “+”
means “one or more”. As in LDA, each document
is defined as a mixture of K topics with the mix-
ture probabilities corresponding to the probabili-

1Strictly speaking, Adaptor Grammars are defined using
the Pitman-Yor process. In this paper we restrict ourselves to
considering the Dirichlet Process which is a special case of
the PYP where the discount parameter is set to 0. For more
details, refer to Johnson et al. (2007) and Johnson (2010).
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ties of the different expansions of Docm. How-
ever, the topic distributions are modelled using
an adapted non-terminal Topici. This means that
there is an infinite number of rules expanding
Topici, one for every possible sequence over the
finite vocabulary of words. Topici non-terminals
cache sequences of words, just as G caches se-
quences of characters in the Unigram model.

The base distribution of the AG-colloc model is
a geometric distribution over sequences of a finite
vocabulary of words: P0(c = (w1, . . . , wM )) =
p#(1−p#)M−1

∏M
j=1 Pw(wj),where Pw(·) is the

uniform distribution over the finite set of words.
This is the same base distribution used by Gold-
water et al. (2009), except characters have been
replaced by words. p# is the probability of seeing
the end of a collocation, and so controls the length
of collocations. With this, we can re-express the
AG-colloc model as a slight modification of the
Unigram model:
1. For each topic k, 1 ≤ k ≤ K, φk ∼ DP(α0, P0)

2. For each document d, 1 ≤ d ≤ D
(a) Draw a topic distribution θd|α ∼ DirichletK(α)

(b) For each collocation cd,n in document d, 1 ≤ n ≤
Nd

i. Draw a topic assignment:
zd,n | θd ∼ Discrete(θd)

ii. Draw a collocation:
cd,n | zd,n,φ1, . . . ,φK ∼ φzd,n

where the length of a collocation cd,n is greater
than or equal to 1, i.e., |cd,n| ≥ 1. Unlike previous
models, the TCM associates each topic with a Un-
igram model over topical collocations. Therefore,
the TCM learns different vocabularies for different
topics.2

4 Posterior Inference

We develop an efficient point-wise sampling al-
gorithm that can jointly sample collocations and
their topics. The observed data consists of a se-
quence of word tokens which are grouped into D
documents. We sample from the posterior distri-
bution over segmentations of documents into col-
locations, and assignments of topics to colloca-
tions. Let each document d be a sequence of Nd

words wd,1, . . . , wd,Nd
. We introduce a set of aux-

iliary random variables bd,1, . . . , bd,Nd
. The value

2In the TCM, the vocabulary differs from topic to topic.
Given a sequence of adjacent words, it is hard to tell if it is a
collocation without knowing the topic of its context. There-
fore, the Pointwise Mutual Information (PMI) (Newman et
al., 2010) and its variant (Lau et al., 2014) are not applicable
to our TCM in evaluation.

of bd,j indicates whether there is a collocation
boundary between wd,j and wd,j+1, and, if there
is, the topic of the collocation to the left of the
boundary. If there is no boundary then bd,j = 0.
Otherwise, there is a collocation to the left of the
boundary consisting of the words wd,l+1, . . . , wd,j

where l = max {i | 1 ≤ i ≤ j − 1 ∧ bd,i 6= 0},
and bd,j = k (1 ≤ k ≤ K) is the topic of the col-
location. Note that bd,Nd

must not be 0 as the end
of a document is always a collocation boundary.

For example, consider the document consisting
of the words “the white house.” We use the K+1-
valued variables b1, b2 (after ‘the’ and ‘white’) and
the K-valued variable b3 (after ‘house’) to de-
scribe every possible segmentation of this docu-
ment into topical collocations.3 If there areK top-
ics andN words, there are (K+1)N−1K possible
topical segmentations. To illustrate, see how each
of the following triples (b1, b2, b3) encodes a dif-
ferent analysis of “the white house” into bracketed
collocations and subscripted topic numbers:
• (0, 0, 1) : (the white house)1
• (1, 0, 2) : (the)1 (white house)2
• (2, 1, 1) : (the)2 (white)1 (house)1
The next section elaborates the Gibbs sampler over
these K+1 boundary variables.

4.1 A Point-wise Gibbs Sampler for the TCM

We consider a collapsed version of the TCM in
which the document-specific topic mixtures θ1:D

and theK non-parametric topic distributions φ1:K

are integrated out. We introduce the sampling
equations using a concrete example, considering
again the toy document, “the white house.”

Let the sampler start in state b1 = b2 = 0, b3 =
z0, 1 ≤ z0 ≤ K. This corresponds to the analysis

(the0 white0 housez0︸ ︷︷ ︸
c0

) .

This analysis consists of a single collocation c0
which spans the entire document and is assigned
to topic z0. For simplicity, we will not show how
to model document boundaries.

If we resample b1, we have to consider two dif-
ferent hypotheses, i.e., putting or not putting a col-
location boundary at b1. The analysis correspond-
ing to not putting a boundary is the one we just

3A similar strategy of using K-valued rather than
boolean boundary variables in Gibbs sampling was used in
Börschinger et al. (2013) and Du et al. (2014).
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saw. Putting a boundary corresponds to a new seg-
mentation,

(thez1)︸ ︷︷ ︸
c1

(white0 housez2︸ ︷︷ ︸
c2

) .

We need to consider the K possible topics for c1,
for each of which we calculate the probability as
follows. If b1 = 0 (i.e., there is no collocation
boundary after “the”) we have

p(z0, c0|µ) = p(z0|α)p(c0|α0, P0, z0) , (1)

where µ = {α, α0, P0}. p(c0|α0, P0, z0) is the
probability of generating collocation c0 from topic
z0 with a CRP, i.e.,

p(c0|α0, P0, z0) =
n−c0

z0
+ α0P0(c0)

N−c0
z0 + α0

, (2)

where n−c0
z0

is the number of times that colloca-
tion c0 was assigned to topic z0 and N−c0

z0
is the

total number of collocations assigned to z0. Both
counts exclude the parts of the analysis that are af-
fected by the boundary c0. As in LDA,

p(z0 = k|α) =
n̂−c0

k + α∑K
k=1 n̂

−c0
k +Kα

, (3)

where n̂−c0
k is the total number of collocations as-

signed to topic k in a document, again excluding
the count for the parts of the document that are af-
fected by the current boundary. For the hypothesis
that b1 = z1 (with 1 ≤ z1 ≤ K), the full condi-
tional to generate two adjacent collocations is

p(z1, z2, c1, c2|µ) ∝ (4)

p(z1|α)p(c1|α0, P0, z1)
p(z2|α, z1)p(c2|α0, P0, c1, z1, z2) ,

where p(z1|α) and p(c1|α0, P0, z1) can be com-
puted with Eqs (3) and (2), respectively. The re-
maining probabilities are computed as

p(z2 = k|α, z1) =

n̂−c1,c2
k + α+ Iz2=z1∑K

k=1 n̂
−c1,c2
k +Kα+ 1

, (5)

p(c2|α0, P0, c1, z1, z2) =

n−c1,c2
z2 + Iz1=z2Ic1=c2 + α0P0(c2)

α0 +N−c1,c2
z2 + Iz1=z2

(6)

where Ix=y is an indicator function that is equal
to 1 if x = y and 0 otherwise, n−c1,c2

z2 is the

number of collocations c2 assigned to topic z2,
andN−c1,c2

z2 is the total number of collocations as-
signed to topic z2. Both counts exclude the current
c2, and also exclude c1 if z1 = z2 and c1 = c2. Our
sampler does random sweeps over all the bound-
ary positions, and calculates the joint probability
of the corresponding collocations and their topic
assignment using Eqs (1) and (4) at each position.

4.2 Parallelised Sparse Sampling Algorithm

The word distributions and topic distributions in
LDA are typically sparse, and Yao et al. (2009)
proposed a ‘sparseLDA’ Gibbs sampler that takes
advantage of this sparsity to substantially reduce
running time. These two distributions are even
sparser for the TCM than LDA, because collo-
cations are less frequent than unigrams. Here we
show how to modify our sampler to take advan-
tage of sparsity. Sampling boundaries according
the two probabilities shown Eqs (1) and (4) re-
quires the generation of a random number x from
a uniform distribution, U(0,P), where

P = p(z0, c0) +
K∑

z1=1

p(z1, c1)p(z2, c2|c1, z1) . (7)

Here the first term corresponds to the case that
there is no collocation boundary, and the summa-
tion corresponds to the case that there is a collo-
cation boundary. Thus, if x is less than P (z0, c0),
there will be no boundary. Otherwise, we need to
sample z1 according to Eq (4).

The sampling algorithm requires calculation of
Eq (7), even though the probability mass may be
concentrated on just a few topics. We have ob-
served in our experiments that the denominators of
Eqs (5) and (6) are often quite large and the indica-
tor functions usually turn out to be zero, so we ap-
proximate the two equations by removing the in-
dicator functions. This approximation not only fa-
cilitates the computation of Eq (7), but also means
that p(z2, c2|c1, z1) no longer depends on z1 and
c1. Thus, Eq (7) can be approximated as

P ≈ p(z0, c0) + p(z2, c2)
K∑

z1=1

p(z1, c1) . (8)

Now that p(z0, c0) and p(z2, c2) are both out of the
summation; they can be pre-computed and cached.

To reduce the computational complexity of the
summation term in Eq (8), we use the “buckets”
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method (Yao et al., 2009). We divide the summa-
tion term in p(z1, c1) into three parts as follows,
each of which corresponds to a bucket:

p(z1 = k, c1)

=
n̂−c1,c2

k + α∑K
k=1 n̂

−c1,c2
k +Kα

n−c1,c2
k + α0P0(c1)

N−c1,c2
k + α0

∝ α0P0(c1)α
N−c1,c2

k + α0

+
n̂−c1,c2

k α0P0(c1)

N−c1,c2
k + α0

+
(n̂−c1,c2

k + α)n−c1,c2
k

N−c1,c2
k + α0

(9)

Then, the summation in Eq (8) is proportional to
the sum of the following three equations:

s =
K∑

k=1

α0P0(c1)α
N−c1,c2

k + α0

(10)

r =
K∑

k=1

n̂−c1,c2
k α0P0(c1)

N−c1,c2
k + α0

(11)

q =
K∑

k=1

(n̂−c1,c2
k + α)n−c1,c2

k

N−c1,c2
k + α0

(12)

We can now use the sampling techniques used
in the sparse-LDA model to sample z1. Firstly,
sample U ∼ U(0, s + r + q). If U < s we
have hit bucket s. In this case, we need to com-
pute the probability for each possible topic. If
s < x < (s + r) we have hit the second bucket
r. In this case, we compute probabilities only for
topics such that n̂−c1,c2

k 6= 0. If x > (s + r) we
have hit bucket q, which is the “topic collection”
bucket, and we need only consider topics such that
n−c1,c2

k 6= 0. Although we use an approximation
in computing the full conditionals, experimental
results have shown that our TCM is as accurate as
the original AG-colloc model, see Section 5.

Our sparse sampling algorithm can be easily
parallelised with the same multi-threading strat-
egy used by Newman et al. (2009) in their dis-
tributed LDA (AD-LDA). In AD-LDA, documents
are distributed evenly across P processors, each of
which also has a copy of the word-topic count ma-
trix. Gibbs updates are performed simultaneously
on each of the P processors. At the end of each
Gibbs iteration, the P copies of the word-topic
count matrices are collected and summed into the
global word-topic count matrix.

In the TCM, collocations in each topic are gen-
erated from a CRP. Hence, distributing the word-
topic count matrix in AD-LDA now corresponds

to distributing a set of Chinese restaurants in the
parallelised TCM. The challenge is how to merge
the Chinese Restaurant copies from the P proces-
sors into a single global restaurant for each topic,
similar to the merging problem in Du et al. (2013).
However, Eqs (2) and (6) show that the statistics
that need to be collected are the number of col-
locations generated for each topic. The number
of tables in a restaurant does not matter.4 There-
fore, we can adapt the summation technique used
in AD-LDA.

We further observed that if P is large, using a
single processor to perform the summation oper-
ation could result in a large overhead. The sum-
mation step could be even costlier in TCM than
in LDA, since the number of distinct collocations
is much larger than the number of distinct words.
Thus we also parallelise the summation step using
all the processors that are free in this step.

5 Experimental Results

In this section we evaluate the effectiveness
and efficiency of our Topical Collocation Model
(TCM) on different tasks, i.e., a document clas-
sification task, an information retrieval task and a
topic intrusion detection task. All the empirical re-
sults show that our TCM performs as well as the
AG-colloc model and outperforms other colloca-
tion models (i.e., LDACOL (Griffiths et al., 2007),
TNG (Wang et al., 2007), PA (Lau et al., 2013)).
The TCM also runs much faster than the other
models. We also compared the TCM with the Mal-
let implementation of AD-LDA (Newman et al.,
2009), denoted by Mallet-LDA, for completeness.
Following Griffiths et al. (2007), we used punc-
tuation and Mallet’s stop words to split the docu-
ments into subsequences of word tokens, then re-
moved those punctuation and stop words from the
input. All experiments were run on a cluster with
80 Xeon E7-4850 processors (2.0GHz) and 96 GB
memory.

5.1 Classification Evaluation

In the classification task, we used three datasets:
the movie review dataset (Pang and Lee, 2012)
(MReviews), the 20 Newsgroups dataset, and the
Reuters-21578 dataset. The movie review dataset
includes 1,000 positive and 1,000 negative re-
views. The 20 Newsgroups dataset is organised

4The number of tables is used only when sampling the
concentration parameters, α0, see Blunsom et al. (2009).
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Task Classification IR
Dataset MReview SJMN-2k
Mallet-LDA 71.30 18.85
LDACOL 71.75 19.03
TNG 71.40 19.06
PA 72.74 19.16
AG-colloc 73.15 19.37
Non-sparse TCM 73.14 19.30
Sparse TCM 73.13 19.31

Table 1: Comparison of all models in the classi-
fication task (accuracy in %) and the information
retrieval task (MAP scores in %) on small corpora.
Bold face indicates scores not significantly differ-
ent from the best score (in italics) according to a
Wilcoxon signed rank test (p < 0.05).

Mallet-LDA PA TCM
Politics 89.1 89.2 89.2
Comp 86.3 87.4 87.9

Sci 92.0 93.2 93.4
Sports 91.6 91.7 92.6

Reuter-21578 97.3 97.5 97.6

Table 2: Classification accuracy (%) on larger
datasets. Bold face indicates scores not signifi-
cantly different from the best score (in italics) ac-
cording to a Wilcoxon signed rank test (p < 0.05).

into 20 different categories according to different
topics. We further partitioned the 20 newsgroups
dataset into four subsets, denoted by Comp, Sci,
Sport, and Politics. They have 4, 891, 3, 952,
1, 993, and 2, 625 documents respectively. We ap-
plied document classification to each subset. The
Reuters-21578 dataset has 21,578 Reuters news
articles which are split into 10 categories.

The classification evaluation was carried out as
follows. First, we ran each model on each dataset
to derive point estimates of documents’ topic dis-
tributions (θ), which were used as the only fea-
tures in classification. We then randomly selected
from each dataset 80% documents for training
and 20% for testing. A Support Vector Machine
(SVM) with a linear-kernel was used. We ran all
models for 10,000 iterations with 50 topics on the
movie review dataset and 100 on the other two.
We set α = 1/K and β = 0.02 for Mallet-LDA,
LDACOL, TNG and PA. We used the reported set-
tings in Johnson (2010) for the AG-colloc model.
For the TCM, we used α = 1/K. The concentra-

Mallet-LDA PA TCM
SJMN 20.7 20.9 21.2

AP 24.0 24.5 24.8

Table 3: Mean average Precision (MAP in %)
scores in the information retrieval task. Scores in
bold and italics are the significantly best MAP
scores according to a Wilcoxon signed rank test
(p < 0.05).

tion parameter α0 was initially set to 100 and re-
sampled using approximated table counts (Blun-
som et al., 2009).

Since efficient inference is unavailable for
LDACOL, TNG and AG-colloc, making it imprac-
tical to evaluate them on the large corpora, we
compared our TCM with them only on the MRe-
views dataset. The first column of Table 1 shows
the classification accuracy of those models. All the
collocation models outperform Mallet-LDA. The
AG-colloc model yields the highest classification
accuracy, and our TCM with/without sparsity per-
forms as well as the AG-colloc model according to
the Wilcoxon signed rank test. The Pipeline Ap-
proach (PA) is always better than LDACOL and
TNG. Therefore, in the following experiments we
will focus on the comparison among our TCM,
Mallet-LDA and PA.

Table 2 shows the classification accuracy of
those three models on the larger datasets, i.e., the
20 Newsgroups dataset, and the Reuters-21578
dataset. The TCM outperforms both Mallet-LDA
and PA on 3 out of 5 datasets, and performs
equally well as PA on the Politics and Reuter-
21578 datasets according to a Wilcoxon signed
rank test (p < 0.05).

5.2 Information Retrieval Evaluation

For the information retrieval task, we used the
method presented by Wei and Croft (2006) and
Wang et al. (2007) to calculate the probability of
a query given a document. We used the San Jose
Mercury News (SJMN) dataset and the AP News
dataset from TREC. The former has 90,257 docu-
ments, the latter has 242,918 documents. Queries
51-150 were used. We ran all the models for
10,000 iteration with 100 topics. The other param-
eter settings were the same as those used in Sec-
tion 5.1. Queries were tokenised using unigrams
for Mallet-LDA and collocations for all colloca-
tion models.
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Models p(w|t) p(t|w)
Mallet-LDA 71.9 73.2
PA 72.8 76.7
TCM 73.2 79.7

Table 4: The model precision (%) derived from the
intrusion detection experiments.

On a small subset of the SJMN data, which
contains 2,000 documents (SJMN-2k), we find
again that TCM and AG-colloc perform equally
well and outperform all other models (LDACOL,
TNG, PA), as shown in the second column of Ta-
ble 1. We further compare the TCM, Mallet-LDA
and PA on the full SJMN dataset and the AP news
dataset, as these models can run on large scale. Ta-
ble 3 shows the mean average precision (MAP)
scores. The TCM significantly outperforms both
Mallet-LDA and the PA approach, and yields the
highest MAP score.

5.3 Topic Coherence Evaluation

We ran a set of topic intrusion detection experi-
ments (Chang et al., 2009) that provide a human
evaluation of the coherence of the topics learnt by
Mallet-LDA, PA and TCM on the SJMN dataset.
This set of experiments was use to measure how
well the inferred topics match human concepts.
Each subject recruited from Amazon Mechanical
Turk was presented with a randomly ordered list
of 10 tokens (either words or collocations). The
task of the subject was to identify the token which
is semantically different from the others.

To generate the 10-token lists, we experimented
with two different methods for selecting tokens
(either words or collocations) most strongly asso-
ciated with a topic t. The standard method chooses
the tokens w that maximise p(w|t). This method
is biased toward high frequency tokens, since
low-frequency tokens are unlikely to have a large
p(w|t). We also tried choosing words and colloca-
tionsw that maximise p(t|w). This method findsw
that are unlikely to appear in any other topic except
t, and is biased towards low frequency w. We re-
duce this low-frequency bias by using a smoothed
estimate for p(t|w) with a Dirichlet pseudo-count
α = 5.

An intruder token was randomly selected from
a set of tokens that had low probability in the cur-
rent topic but high probability in some other topic.
We then randomly selected one of the 10 tokens

Dataset MReview SJMN-2k
#Topic 100 800 100 800
AG-colloc 84.9 1305 37.5 692
Non-sparse TCM 13.8 233 6.6 85.7
Sparse TCM 0.28 0.35 0.14 0.2

Table 5: The average running time (in seconds)
per iteration.

Figure 1: Plot of speedup in running time for the
Mallet-LDA and our TCM.

to be replaced by the intruder token. We expect
collocations to be more useful in lists that are con-
structed using p(t|w) than lists constructed using
p(w|t). This is because p(w|t) can be dominated
by the frequency of w, but individual collocations
are rare.

The performance was measured by model pre-
cision (Chang et al., 2009), which measures the
fraction of subjects that agreed with the model.
Table 4 shows that our TCM outperforms both PA
and Mallet-LDA under both ways of constructing
the intrusion lists. As expected, the collocation
models PA and TCM perform better with lists con-
structed according to p(t|w) than lists constructed
according to p(w|t).

5.4 Efficiency of the TCM

In this section we study the efficiency of our TCM
model in terms of running time. We first compare
the efficiency of our TCM model with and without
sparsity with the AG-colloc model on the MRe-
view dataset and the SJMN-2k dataset. Table 5
shows the average running time per iteration for
the two models. We used 100 and 800 topics. The
TCM algorithm that does not exploit sparsity in
sampling runs about 6 times faster than the AG-
colloc model. Our sparse sampler runs even faster,
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and takes less than a second per iteration. There-
fore, Tables 1 and 5 jointly show that our refor-
mulation runs an order of magnitude faster than
AG-colloc without losing performance, thereby
making the AG-colloc model inference feasible at
large scales.

We further studied the scalability of our sam-
pling algorithm after parallelisation on the SJMN
dataset and the AP news dataset. We fixed the
number of topics to 100, and varied the number of
processors from 1 to 24 for the SJMN dataset and
from 1 to 80 for the AP dataset. The plots in Fig-
ure 1 show that our parallelised sampler achieved
a remarkable speedup. We have also observed that
there is a point at which using additional proces-
sors actually slows running time. This is com-
mon in parallel algorithms when communication
and synchronisation take more time than the time
saved by parallelisation. This slowdown occurs
in the highly-optimized Mallet implementation of
LDA with fewer cores than it does in our imple-
mentation. The speedup achieved by our TCM
also shows the benefit of parallelising the summa-
tion step mentioned in Section 4.2.

6 Conclusion

In this paper we showed how to represent the
AG-colloc model without using Adaptor Gram-
mars, and how to adapt Gibbs sampling tech-
niques from Bayesian word segmentation to per-
form posterior inference under the new represen-
tation. We further accelerated the sampling algo-
rithm by taking advantage of the sparsity in the
collocation count matrix. Experimental results de-
rived in different tasks showed that 1) our new
representation performs as well as the AG-colloc
model and outperforms the other collocation mod-
els, 2) our point-wise sampling algorithm scales
well to large corpora. There are several ways in
which our model can be extended. For example,
our algorithm could be further sped up by using
the sampling techniques presented by Smola and
Narayanamurthy (2010), Li et al. (2014) and Bun-
tine and Mishra (2014). One can also consider us-
ing a hybrid of MCMC and variational inference
as in Ke et al. (2014).
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Benjamin Börschinger, Mark Johnson, and Katherine
Demuth. 2013. A joint model of word segmentation
and phonological variation for english word-final /t/-
deletion. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1508–1516, Sofia,
Bulgaria.

Jordan L Boyd-Graber and David Blei. 2009. Syntac-
tic topic models. In Advances in Neural Information
Processing Systems 21, pages 185–192.

Wray L Buntine and Swapnil Mishra. 2014. Exper-
iments with non-parametric topic models. In Pro-
ceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, pages 881–890.

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L.
Boyd-graber, and David M. Blei. 2009. Reading
tea leaves: How humans interpret topic models. In
Advances in Neural Information Processing Systems
22, pages 288–296.

Lan Du, Wray Buntine, and Mark Johnson. 2013.
Topic segmentation with a structured topic model.
In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 190–200.

Lan Du, John Pate, and Mark Johnson. 2014. Topic
models with topic ordering regularities for topic seg-
mentation. In Proceedings of the IEEE International
Conference on Data Mining, pages 803–808.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2009. A Bayesian framework for word
segmentation: Exploring the effects of context.
Cognition, 112(1):21–53.

Thomas L Griffiths, Mark Steyvers, David M Blei, and
Joshua B Tenenbaum. 2004. Integrating topics and

1468



syntax. In Advances in neural information process-
ing systems, pages 537–544.

Thomas L. Griffiths, Mark Steyvers, and Joshua B.
Tenenbaum. 2007. Topics in semantic representa-
tion. Psychological Review, 114(2):211–244.

Shoaib Jameel and Wai Lam. 2013a. An n-gram topic
model for time-stamped documents. In Proceedings
of the 35th European Conference on Advances in In-
formation Retrieval, pages 292–304.

Shoaib Jameel and Wai Lam. 2013b. A nonparametric
n-gram topic model with interpretable latent topics.
In Information Retrieval Technology, pages 74–85.

M. Johnson, T.L. Griffiths, and S. Goldwater. 2007.
Adaptor grammars: A framework for specifying
compositional nonparametric Bayesian models. In
Advances in Neural Information Processing Systems
19, pages 641–648.

Mark Johnson. 2010. Pcfgs, topic models, adaptor
grammars and learning topical collocations and the
structure of proper names. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1148–1157.

Zhai Ke, Boyd-Graber Jordan, and Cohen Shay B.
2014. Online adaptor grammars with hybrid infer-
ence. Transactions of the Association of Computa-
tional Linguistics, 2:465–476.

Jey Han Lau, Timothy Baldwin, and David Newman.
2013. On collocations and topic models. ACM
Transactions on Speech and Language Processing
(TSLP), 10(3):10.

Jey Han Lau, David Newman, and Timothy Baldwin.
2014. Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality.
In Proceedings of the 14th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 530–539.

Aaron Q Li, Amr Ahmed, Sujith Ravi, and Alexan-
der J Smola. 2014. Reducing the sampling com-
plexity of topic models. In Proceedings of the 20th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 891–900.

Robert Lindsey, William Headden, and Michael
Stipicevic. 2012. A phrase-discovering topic model
using hierarchical Pitman-Yor processes. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 214–
222.

David JC MacKay and Linda C Bauman Peto. 1995.
A hierarchical Dirichlet language model. Natural
language engineering, 1(3):289–308.

David Newman, Arthur Asuncion, Padhraic Smyth,
and Max Welling. 2009. Distributed algorithms
for topic models. Journal of Machine Learning Re-
search, 10:1801–1828.

David Newman, Youn Noh, Edmund Talley, Sarvnaz
Karimi, and Timothy Baldwin. 2010. Evaluating
topic models for digital libraries. In Proceedings
of the 10th Annual Joint Conference on Digital Li-
braries, pages 215–224.

Bo Pang and Lillian Lee. 2012. Cornell Movie Review
Data.

Alexander Smola and Shravan Narayanamurthy. 2010.
An architecture for parallel topic models. Proc.
VLDB Endow., 3(1-2):703–710.

Y. W. Teh. 2006. A hierarchical Bayesian language
model based on Pitman-Yor processes. In Proceed-
ings of the 21st International Conference on Com-
putational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics,
pages 985–992.

Hanna M. Wallach. 2006. Topic modeling: beyond
bag-of-words. In Proceedings of the 23rd interna-
tional conference on Machine learning, pages 977–
984.

Xuerui Wang, Andrew McCallum, and Xing Wei.
2007. Topical n-grams: Phrase and topic discov-
ery, with an application to information retrieval. In
Proceedings of the 2007 Seventh IEEE International
Conference on Data Mining, pages 697–702.

Xing Wei and W. Bruce Croft. 2006. LDA-based doc-
ument models for ad-hoc retrieval. In Proceedings
of the 29th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 178–185.

Limin Yao, David Mimno, and Andrew McCallum.
2009. Efficient methods for topic model inference
on streaming document collections. In Proceedings
of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
937–946.

1469


