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Abstract

Word embeddings learned on unlabeled
data are a popular tool in semantics, but
may not capture the desired semantics. We
propose a new learning objective that in-
corporates both a neural language model
objective (Mikolov et al., 2013) and prior
knowledge from semantic resources to
learn improved lexical semantic embed-
dings. We demonstrate that our embed-
dings improve over those learned solely on
raw text in three settings: language mod-
eling, measuring semantic similarity, and
predicting human judgements.

1 Introduction

Word embeddings are popular representations for
syntax (Turian et al., 2010; Collobert and We-
ston, 2008; Mnih and Hinton, 2007), semantics
(Huang et al., 2012; Socher et al., 2013), morphol-
ogy (Luong et al., 2013) and other areas. A long
line of embeddings work, such as LSA and ran-
domized embeddings (Ravichandran et al., 2005;
Van Durme and Lall, 2010), has recently turned
to neural language models (Bengio et al., 2006;
Collobert and Weston, 2008; Turian et al., 2010).
Unsupervised learning can take advantage of large
corpora, which can produce impressive results.

However, the main drawback of unsupervised
learning is that the learned embeddings may not
be suited for the task of interest. Consider se-
mantic embeddings, which may capture a notion
of semantics that improves one semantic task but
harms another. Controlling this behavior is chal-
lenging with an unsupervised objective. However,
rich prior knowledge exists for many tasks, and
there are numerous such semantic resources.

We propose a new training objective for learn-
ing word embeddings that incorporates prior

∗This work was done while the author was visiting JHU.

knowledge. Our model builds on word2vec
(Mikolov et al., 2013), a neural network based
language model that learns word embeddings by
maximizing the probability of raw text. We extend
the objective to include prior knowledge about
synonyms from semantic resources; we consider
both the Paraphrase Database (Ganitkevitch et al.,
2013) and WordNet (Fellbaum, 1999), which an-
notate semantic relatedness between words. The
latter was also used in (Bordes et al., 2012) for
training a network for predicting synset relation.
The combined objective maximizes both the prob-
ability of the raw corpus and encourages embed-
dings to capture semantic relations from the re-
sources. We demonstrate improvements in our
embeddings on three tasks: language modeling,
measuring word similarity, and predicting human
judgements on word pairs.

2 Learning Embeddings
We present a general model for learning word em-
beddings that incorporates prior knowledge avail-
able for a domain. While in this work we con-
sider semantics, our model could incorporate prior
knowledge from many types of resources. We be-
gin by reviewing the word2vec objective and then
present augmentations of the objective for prior
knowledge, including different training strategies.

2.1 Word2vec
Word2vec (Mikolov et al., 2013) is an algorithm
for learning embeddings using a neural language
model. Embeddings are represented by a set of
latent (hidden) variables, and each word is rep-
resented by a specific instantiation of these vari-
ables. Training learns these representations for
each word wt (the tth word in a corpus of size T )
so as to maximize the log likelihood of each token
given its context: words within a window sized c:

max
1
T

T∑
t=1

log p
(
wt|wt+c

t−c

)
, (1)
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where wt+c
t−c is the set of words in the window of

size c centered at wt (wt excluded).
Word2vec offers two choices for modeling of

Eq. (1): a skip-gram model and a continuous bag-
of-words model (cbow). The latter worked better
in our experiments so we focus on it in our presen-
tation. cbow defines p(wt|wt+c

t−c) as:

exp
(
e
′
wt

> ·∑−c≤j≤c,j 6=0 ewt+j

)
∑

w exp
(
e′w
> ·∑−c≤j≤c,j 6=0 ewt+j

) , (2)

where ew and e
′
w represent the input and output

embeddings respectively, i.e., the assignments to
the latent variables for word w. While some learn
a single representation for each word (e′w , ew),
our results improved when we used a separate em-
bedding for input and output in cbow.

2.2 Relation Constrained Model
Suppose we have a resource that indicates rela-
tions between words. In the case of semantics,
we could have a resource that encodes semantic
similarity between words. Based on this resource,
we learn embeddings that predict one word from
another related word. We define R as a set of rela-
tions between two words w and w′. R can contain
typed relations (e.g., w is related to w′ through
a specific type of semantic relation), and rela-
tions can have associated scores indicating their
strength. We assume a single relation type of uni-
form strength, though it is straightforward to in-
clude additional characteristics into the objective.

Define Rw to be the subset of relations in R
which involve word w. Our objective maximizes
the (log) probability of all relations by summing
over all words N in the vocabulary:

1
N

N∑
i=1

∑
w∈Rwi

log p (w|wi) , (3)

p(w|wi) = exp
(
e′w

T ewi

)
/
∑

w̄ exp
(
e′̄w

T ewi

)
takes a form similar to Eq. (2) but without the
context: e and e′ are again the input and output
embeddings. For our semantic relations e′w and
ew are symmetrical, so we use a single embedding.
Embeddings are learned such that they are predic-
tive of related words in the resource. We call this
the Relation Constrained Model (RCM).

2.3 Joint Model
The cbow and RCM objectives use separate data
for learning. While RCM learns embeddings

suited to specific tasks based on knowledge re-
sources, cbow learns embeddings for words not in-
cluded in the resource but appear in a corpus. We
form a joint model through a linear combination
of the two (weighted by C):

1
T

T∑
t=1

log p
(
wt|wt+c

t−c

)
+
C

N

N∑
i=1

∑
w∈Rwi

log p (w|wi)

Based on our initial experiments, RCM uses the
output embeddings of cbow.

We learn embeddings using stochastic gradient
ascent. Updates for the first term for e′ and e are:

e′w − αcbow
(
σ(f(w))− I[w=wt]

) · t+c∑
j=t−c

ewj

ewj − αcbow

∑
w

(
σ(f(w))− I[w=wt]

) · e′w,
where σ(x) = exp{x}/(1 + exp{x}), I[x] is 1
when x is true, f(w) = e′w

>∑t+c
j=t−c ewj . Second

term updates are:

e′w − αRCM

(
σ(f ′(w))− I[w∈Rwi ]

)
· e′wi

e′wi
− αRCM

∑
w

(
σ(f ′(w))− I[w∈Rwi ]

)
· e′w,

where f ′(w) = e′w
>e′wi

. We use two learning
rates: αcbow and αRCM.

2.4 Parameter Estimation
All three models (cbow, RCM and joint) use the
same training scheme based on Mikolov et al.
(2013). There are several choices to make in pa-
rameter estimation; we present the best perform-
ing choices used in our results.

We use noise contrastive estimation (NCE)
(Mnih and Teh, 2012), which approximately max-
imizes the log probability of the softmax objec-
tive (Eq. 2). For each objective (cbow or RCM),
we sample 15 words as negative samples for each
training instance according to their frequencies in
raw texts (i.e. training data of cbow). Suppose w
has frequency u(w), then the probability of sam-
pling w is p(w) ∝ u(w)3/4.

We use distributed training, where shared em-
beddings are updated by each thread based on
training data within the thread, i.e., asynchronous
stochastic gradient ascent. For the joint model,
we assign threads to the cbow or RCM objective
with a balance of 12:1(i.e. C is approximately 1

12 ).
We allow the cbow threads to control convergence;
training stops when these threads finish process-
ing the data. We found this an effective method
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for balancing the two objectives. We trained each
cbow objective using a single pass over the data set
(except for those in Section 4.1), which we empir-
ically verified was sufficient to ensure stable per-
formances on semantic tasks.

Model pre-training is critical in deep learning
(Bengio et al., 2007; Erhan et al., 2010). We eval-
uate two strategies: random initialization, and pre-
training the embeddings. For pre-training, we first
learn using cbow with a random initialization. The
resulting trained model is then used to initialize
the RCM model. This enables the RCM model to
benefit from the unlabeled data, but refine the em-
beddings constrained by the given relations.

Finally, we consider a final model for training
embeddings that uses a specific training regime.
While the joint model balances between fitting the
text and learning relations, modeling the text at
the expense of the relations may negatively impact
the final embeddings for tasks that use the embed-
dings outside of the context of word2vec. There-
fore, we use the embeddings from a trained joint
model to pre-train an RCM model. We call this
setting Joint→RCM.

3 Evaluation

For training cbow we use the New York Times
(NYT) 1994-97 subset from Gigaword v5.0
(Parker et al., 2011). We select 1,000 paragraphs
each for dev and test data from the December 2010
portion of the NYT. Sentences are tokenized using
OpenNLP1, yielding 518,103,942 tokens for train-
ing, 42,953 tokens for dev and 41,344 for test.

We consider two resources for training the
RCM term: the Paraphrase Database (PPDB)
(Ganitkevitch et al., 2013) and WordNet (Fell-
baum, 1999). For each semantic pair extracted
from these resources, we add a relation to the
RCM objective. Since we use both resources for
evaluation, we divide each into train, dev and test.

PPDB is an automatically extracted dataset con-
taining tens of millions of paraphrase pairs, in-
cluding words and phrases. We used the “lexi-
cal” version of PPDB (no phrases) and filtered to
include pairs that contained words found in the
200,000 most frequent words in the NYT corpus,
which ensures each word in the relations had sup-
port in the text corpus. Next, we removed dupli-
cate pairs: if <A,B> occurred in PPDB, we re-
moved relations of <B,A>. PPDB is organized

1https://opennlp.apache.org/

PPDB Relations WordNet Relations
Train XL 115,041 Train 68,372

XXL 587,439 (not used in
XXXL 2,647,105 this work)

Dev 1,582 Dev 1,500
Test 1,583 Test 1,500

Table 1: Sizes of semantic resources datasets.

into 6 parts, ranging from S (small) to XXXL.
Division into these sets is based on an automat-
ically derived accuracy metric. Since S contains
the most accurate paraphrases, we used these for
evaluation. We divided S into a dev set (1582
pairs) and test set (1583 pairs). Training was based
on one of the other sets minus relations from S.

We created similar splits using WordNet, ex-
tracting synonyms using the 100,000 most fre-
quent NYT words. We divide the vocabulary into
three sets: the most frequent 10,000 words, words
with ranks between 10,001-30,000 and 30,001-
100,000. We sample 500 words from each set to
construct a dev and test set. For each word we
sample one synonym to form a pair. The remain-
ing words and their synonyms are used for train-
ing. However we did not use the training data be-
cause it is too small to affect the results. Table 1
summarizes the datasets.

4 Experiments

The goal of our experiments is to demonstrate the
value of learning semantic embeddings with infor-
mation from semantic resources. In each setting,
we will compare the word2vec baseline embed-
ding trained with cbow against RCM alone, the
joint model and Joint→RCM. We consider three
evaluation tasks: language modeling, measuring
semantic similarity, and predicting human judge-
ments on semantic relatedness. In all of our ex-
periments, we conducted model development and
tuned model parameters (C, αcbow, αRCM, PPDB
dataset, etc.) on development data, and evaluate
the best performing model on test data. The mod-
els are notated as follows: word2vec for the base-
line objective (cbow or skip-gram), RCM-r/p and
Joint-r/p for random and pre-trained initializations
of the RCM and Joint objectives, and Joint→RCM
for pre-training RCM with Joint embeddings. Un-
less otherwise notes, we train using PPDB XXL.
We initially created WordNet training data, but
found it too small to affect results. Therefore,
we include only RCM results trained on PPDB,
but show evaluations on both PPDB and WordNet.
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Model NCE HS
word2vec (cbow) 8.75 6.90
RCM-p 8.55 7.07
Joint-r (αRCM = 1× 10−2) 8.33 6.87
Joint-r (αRCM = 1× 10−3) 8.20 6.75
Joint→RCM 8.40 6.92

Table 2: LM evaluation on held out NYT data.

We trained 200-dimensional embeddings and used
output embeddings for measuring similarity. Dur-
ing the training of cbow objectives we remove all
words with frequencies less than 5, which is the
default setting of word2vec.

4.1 Language Modeling

Word2vec is fundamentally a language model,
which allows us to compute standard evaluation
metrics on a held out dataset. After obtaining
trained embeddings from any of our objectives,
we use the embeddings in the word2vec model
to measure perplexity of the test set. Measuring
perplexity means computing the exact probability
of each word, which requires summation over all
words in the vocabulary in the denominator of the
softmax. Therefore, we also trained the language
models with hierarchical classification (Mikolov
et al., 2013) strategy (HS). The averaged perplexi-
ties are reported on the NYT test set.

While word2vec and joint are trained as lan-
guage models, RCM is not. In fact, RCM does not
even observe all the words that appear in the train-
ing set, so it makes little sense to use the RCM em-
beddings directly for language modeling. There-
fore, in order to make fair comparison, for every
set of trained embeddings, we fix them as input
embedding for word2vec, then learn the remain-
ing input embeddings (words not in the relations)
and all the output embeddings using cbow. Since
this involves running cbow on NYT data for 2 it-
erations (one iteration for word2vec-training/pre-
training/joint-modeling and the other for tuning
the language model), we use Joint-r (random ini-
tialization) for a fair comparison.

Table 2 shows the results for language mod-
eling on test data. All of our proposed models
improve over the baseline in terms of perplexity
when NCE is used for training LMs. When HS is
used, the perplexities are greatly improved. How-
ever in this situation only the joint models improve
the results; and Joint→RCM performs similar to
the baseline, although it is not designed for lan-
guage modeling. We include the optimal αRCM

in the table; while set αcbow = 0.025 (the default
setting of word2vec). Even when our goal is to
strictly model the raw text corpus, we obtain im-
provements by injecting semantic information into
the objective. RCM can effectively shift learning
to obtain more informative embeddings.

4.2 Measuring Semantic Similarity
Our next task is to find semantically related words
using the embeddings, evaluating on relations
from PPDB and WordNet. For each of the word
pairs in the evaluation set <A,B>, we use the co-
sine distance between the embeddings to score A
with a candidate word B′. We use a large sample
of candidate words (10k, 30k or 100k) and rank all
candidate words for pairs where B appears in the
candidates. We then measure the rank of the cor-
rect B to compute mean reciprocal rank (MRR).
Our goal is to use word A to select word B as
the closest matching word from the large set of
candidates. Using this strategy, we evaluate the
embeddings from all of our objectives and mea-
sure which embedding most accurately selected
the true correct word.

Table 3 shows MRR results for both PPDB
and WordNet dev and test datasets for all models.
All of our methods improve over the baselines in
nearly every test set result. In nearly every case,
Joint→RCM obtained the largest improvements.
Clearly, our embeddings are much more effective
at capturing semantic similarity.

4.3 Human Judgements
Our final evaluation is to predict human judge-
ments of semantic relatedness. We have pairs of
words from PPDB scored by annotators on a scale
of 1 to 5 for quality of similarity. Our data are
the judgements used by Ganitkevitch et al. (2013),
which we filtered to include only those pairs for
which we learned embeddings, yielding 868 pairs.

We assign a score using the dot product between
the output embeddings of each word in the pair,
then order all 868 pairs according to this score.
Using the human judgements, we compute the
swapped pairs rate: the ratio between the number
of swapped pairs and the number of all pairs. For
pair p scored yp by the embeddings and judged ŷp

by an annotator, the swapped pair rate is:∑
p1,p2∈D I[(yp1 − yp2) (ŷp2 − ŷp1) < 0]∑

p1,p2∈D I[yp1 6= yp2 ]
(4)

where I[x] is 1 when x is true.
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PPDB WordNet

Model Dev Test Dev Test
10k 30k 100k 10k 30k 100k 10k 30k 100k 10k 30k 100k

word2vec (cbow) 49.68 39.26 29.15 49.31 42.53 30.28 10.24 8.64 5.14 10.04 7.90 4.97
word2vec (skip-gram) 48.70 37.14 26.20 - - - 8.61 8.10 4.62 - - -
RCM-r 55.03 42.52 26.05 - - - 13.33 9.05 5.29 - - -
RCM-p 61.79 53.83 40.95 65.42 55.82 41.20 15.25 12.13 7.46 14.13 11.23 7.39
Joint-r 59.91 50.87 36.81 - - - 15.73 11.36 7.14 13.97 10.51 7.44
Joint-p 59.75 50.93 37.73 64.30 53.27 38.97 15.61 11.20 6.96 - - -
Joint→RCM 64.22 54.99 41.34 68.20 57.87 42.64 16.81 11.67 7.55 16.16 11.21 7.56

Table 3: MRR for semantic similarity on PPDB and WordNet dev and test data. Higher is better. All
RCM objectives are trained with PPDB XXL. To preserve test data integrity, only the best performing
setting of each model is evaluated on the test data.

Model Swapped Pairs Rate
word2vec (cbow) 17.81
RCM-p 16.66
Joint-r 16.85
Joint-p 16.96
Joint→RCM 16.62

Table 4: Results for ranking the quality of PPDB
pairs as compared to human judgements.

PPDB Dev
Model Relations 10k 30k 100k
RCM-r XL 24.02 15.26 9.55
RCM-p XL 54.97 45.35 32.95
RCM-r XXL 55.03 42.52 26.05
RCM-p XXL 61.79 53.83 40.95
RCM-r XXXL 51.00 44.61 28.42
RCM-p XXXL 53.01 46.35 34.19

Table 5: MRR on PPDB dev data for training on
an increasing number of relations.

Table 4 shows that all of our models obtain
reductions in error as compared to the baseline
(cbow), with Joint→RCM obtaining the largest re-
duction. This suggests that our embeddings are
better suited for semantic tasks, in this case judged
by human annotations.

PPDB Dev
Model αRCM 10k 30k 100k
Joint-p 1× 10−1 47.17 36.74 24.50

5× 10−2 54.31 44.52 33.07
1× 10−2 59.75 50.93 37.73
1× 10−3 57.00 46.84 34.45

Table 6: Effect of learning rate αRCM on MRR for
the RCM objective in Joint models.

4.4 Analysis
We conclude our experiments with an analysis of
modeling choices. First, pre-training RCM models
gives significant improvements in both measuring
semantic similarity and capturing human judge-
ments (compare “p” vs. “r” results.) Second, the
number of relations used for RCM training is an

important factor. Table 5 shows the effect on dev
data of using various numbers of relations. While
we see improvements from XL to XXL (5 times as
many relations), we get worse results on XXXL,
likely because this set contains the lowest quality
relations in PPDB. Finally, Table 6 shows different
learning rates αRCM for the RCM objective.

The baseline word2vec and the joint model have
nearly the same averaged running times (2,577s
and 2,644s respectively), since they have same
number of threads for the CBOW objective and the
joint model uses additional threads for the RCM
objective. The RCM models are trained with sin-
gle thread for 100 epochs. When trained on the
PPDB-XXL data, it spends 2,931s on average.

5 Conclusion

We have presented a new learning objective for
neural language models that incorporates prior
knowledge contained in resources to improve
learned word embeddings. We demonstrated that
the Relation Constrained Model can lead to better
semantic embeddings by incorporating resources
like PPDB, leading to better language modeling,
semantic similarity metrics, and predicting hu-
man semantic judgements. Our implementation is
based on the word2vec package and we made it
available for general use 2.

We believe that our techniques have implica-
tions beyond those considered in this work. We
plan to explore the embeddings suitability for
other semantics tasks, including the use of re-
sources with both typed and scored relations. Ad-
ditionally, we see opportunities for jointly learn-
ing embeddings across many tasks with many re-
sources, and plan to extend our model accordingly.

Acknowledgements Yu is supported by China
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2https://github.com/Gorov/JointRCM

549



References
Yoshua Bengio, Holger Schwenk, Jean-Sébastien
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