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Abstract

This paper describes a new approach to
predicting the aspectual class of verbs in
context, i.e., whether a verb is used in a
stative or dynamic sense. We identify two
challenging cases of this problem: when
the verb is unseen in training data, and
when the verb is ambiguous for aspec-
tual class. A semi-supervised approach us-
ing linguistically-motivated features and a
novel set of distributional features based
on representative verb types allows us to
predict classes accurately, even for unseen
verbs. Many frequent verbs can be either
stative or dynamic in different contexts,
which has not been modeled by previous
work; we use contextual features to re-
solve this ambiguity. In addition, we intro-
duce two new datasets of clauses marked
for aspectual class.

1 Introduction

In this work, we focus on the automatic prediction
of whether a verb in context is used in a stative or
in a dynamic sense, the most fundamental distinc-
tion in all taxonomies of aspectual class. The as-
pectual class of a discourse’s finite verbs is an im-
portant factor in conveying and interpreting tem-
poral structure (Moens and Steedman, 1988; Dorr,
1992; Klavans and Chodorow, 1992); others are
tense, grammatical aspect, mood and whether the
utterance represents an event as completed. More
accurate temporal information processing is ex-
pected to be beneficial for a variety of natural lan-
guage processing tasks (Costa and Branco, 2012;
UzZaman et al., 2013).

While most verbs have one predominant inter-
pretation, others are more flexible for aspectual
class and can occur as either stative (1) or dynamic
(2) depending on the context. There are also cases
that allow for both readings, such as (3).

(1) The liquid fills the container. (stative)

(2) The pool slowly filled with water. (dynamic)

(3) Your soul was made to be filled with God
Himself. (both) (Brown corpus, religion)

Cases like (3) do not imply that there is a third
class, but rather that two interpretations are avail-
able for the sentence, of which usually one will be
chosen by a reader.

Following Siegel and McKeown (2000), we aim
to automatically classify clauses for fundamental
aspectual class, a function of the main verb and
a select group of complements, which may dif-
fer per verb (Siegel and McKeown, 2000; Siegel,
1998b). This corresponds to the aspectual class
of the clause’s main verb when ignoring any as-
pectual markers or transformations. For exam-
ple, English sentences with perfect tense are usu-
ally considered to introduce states to the discourse
(Smith, 1991; Katz, 2003), but we are interested in
the aspectual class before this transformation takes
place. The clause John has kissed Mary introduces
a state, but the fundamental aspectual class of the
‘tenseless’ clause John kiss Mary is dynamic.

In contrast to Siegel and McKeown (2000), we
do not conduct the task of predicting aspectual
class solely at the type level, as such an approach
ignores the minority class of ambiguous verbs. In-
stead we predict the aspectual class of verbs in
the context of their arguments and modifiers. We
show that this method works better than using only
type-based features, especially for verbs with am-
biguous aspectual class. In addition, we show
that type-based features, including novel distribu-
tional features based on representative verbs, accu-
rately predict predominant aspectual class for un-
seen verb types. Our work differs from prior work
in that we treat the problem as a three-way clas-
sification task, predicting DYNAMIC, STATIVE or
BOTH as the aspectual class of a verb in context.
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2 Related work

Aspectual class is well treated in the linguistic lit-
erature (Vendler, 1957; Dowty, 1979; Smith, 1991,
for example). Our notion of the stative/dynamic
distinction corresponds to Bach’s (1986) distinc-
tion between states and non-states; to states ver-
sus occurrences (events and processes) according
to Mourelatos (1978); and to Vendler’s (1957) dis-
tinction between states and the other three classes
(activities, achievements, accomplishments).

Early studies on the computational modeling
of aspectual class (Nakhimovsky, 1988; Passon-
neau, 1988; Brent, 1991; Klavans and Chodorow,
1992) laid foundations for a cluster of papers pub-
lished over a decade ago (Siegel and McKeown,
2000; Siegel, 1998b; Siegel, 1998a). Since then,
it has mostly been treated as a subtask within
temporal reasoning, such as in efforts related to
TimeBank (Pustejovsky et al., 2003) and the Tem-
pEval challenges (Verhagen et al., 2007; Verha-
gen et al., 2010; UzZaman et al., 2013), where
top-performing systems (Jung and Stent, 2013;
Bethard, 2013; Chambers, 2013) use corpus-based
features, WordNet synsets, parse paths and fea-
tures from typed dependencies to classify events
as a joint task with determining the event’s span.
Costa and Branco (2012) explore the usefulness of
a wider range of explicitly aspectual features for
temporal relation classification.

Siegel and McKeown (2000) present the most
extensive study of predicting aspectual class,
which is the main inspiration for this work. While
all of their linguistically motivated features (see
section 4.1) are type-based, they train on and eval-
uate over labeled verbs in context. Their data
set taken from medical discharge summaries com-
prises 1500 clauses containing main verbs other
than be and have which are marked for aspectual
class. Their model fails to outperform a baseline
of memorizing the most frequent class of a verb
type, and they present an experiment testing on un-
seen verb types only for the related task of classi-
fying completedness of events. We replicate their
method using publicly available software, create
a similar but larger corpus,1 and show that it is
indeed possible to predict the aspectual class of
unseen verbs. Siegel (1998a) investigates a classi-
fication method for the verb have in context; in-

1Direct comparison on their data is not possible; feature
values for the verbs studied are available, but full texts and
the English Slot Grammar parser (McCord, 1990) are not.

COMPLETE W/O have/be/none
genre clauses κ clauses κ

jokes 3462 0.85 2660 0.77
letters 1848 0.71 1444 0.62
news 2565 0.79 2075 0.69
all 7875 0.80 6161 0.70

Table 1: Asp-MASC: Cohen’s observed un-
weighted κ.

DYNAMIC STATIVE BOTH

DYNAMIC 4464 164 9
STATIVE 434 1056 29
BOTH 5 0 0

Table 2: Asp-MASC: confusion matrix for two
annotators, without have/be/none clauses, κ is 0.7.

spired by this work, our present work goes one
step further and uses a larger set of instance-based
contextual features to perform experiments on a
set of 20 verbs. To the best of our knowledge, there
is no previous work comprehensively addressing
aspectual classification of verbs in context.

3 Data

Verb type seed sets Using the LCS Database
(Dorr, 2001), we identify sets of verb types whose
senses are only stative (188 verbs, e.g. belong,
cost, possess), only dynamic (3760 verbs, e.g. al-
ter, knock, resign), or mixed (215 verbs, e.g. fill,
stand, take), following a procedure described by
Dorr and Olsen (1997).

Asp-MASC The Asp-MASC corpus consists of
7875 clauses from the letters, news and jokes sec-
tions of MASC (Ide et al., 2010), each labeled
by two annotators for the aspectual class of the
main verb.2 Texts were segmented into clauses us-
ing SPADE (Soricut and Marcu, 2003) with some
heuristic post-processing. We parse the corpus us-
ing the Stanford dependency parser (De Marneffe
et al., 2006) and extract the main verb of each seg-
ment. We use 6161 clauses for the classification
task, omitting clauses with have or be as the main
verb and those where no main verb could be iden-
tified due to parsing errors (none). Table 1 shows
inter-annotator agreement; Table 2 shows the con-
fusion matrix for the two annotators. Our two an-
notators exhibit different preferences on the 598
cases where they disagree between DYNAMIC and
STATIVE. Such differences in annotation prefer-

2Corpus freely available from
www.coli.uni-saarland.de/˜afried.
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DYNAMIC STATIVE BOTH

DYNAMIC 1444 201 54
STATIVE 168 697 20
BOTH 44 31 8

Table 3: Asp-Ambig: confusion matrix for two
annotators. Cohen’s κ is 0.6.

ences are not uncommon (Beigman Klebanov et
al., 2008). We observe higher agreement in the
jokes and news subcorpora than for letters; texts
in the letters subcorpora are largely argumentative
and thus have a different rhetorical style than the
more straightforward narratives and reports found
in jokes. Overall, we find substantial agreement.

The data for our experiments uses the label DY-
NAMIC or STATIVE whenever annotators agree,
and BOTH whenever they disagree or when at least
one annotator marked the clause as BOTH, assum-
ing that both readings are possible in such cases.
Because we don’t want to model the authors’ per-
sonal view of the theory, we refrain from applying
an adjudication step and model the data as is.

Asp-Ambig: (Brown) In order to facilitate a
first study on ambiguous verbs, we select 20 fre-
quent verbs from the list of ‘mixed’ verbs (see
section 3) and for each mark 138 sentences. Sen-
tences are extracted randomly from the Brown cor-
pus, such that the distribution of stative/dynamic
usages is expected to be natural. We present
entire sentences to the annotators who mark the
aspectual class of the verb in question as high-
lighted in the sentence. The data is processed in
the same way as Asp-MASC, discarding instances
with parsing problems. This results in 2667 in-
stances. κ is 0.6, the confusion matrix is shown in
Table 3. Details are listed in Table 10.

4 Model and Features

For predicting the aspectual class of verbs in con-
text (STATIVE, DYNAMIC, BOTH), we assume a
supervised learning setting and explore features
mined from a large background corpus, distribu-
tional features, and instance-based features. If not
indicated otherwise, experiments use a Random
Forest classifier (Breiman, 2001) trained with the
implementation and standard parameter settings
from Weka (Hall et al., 2009).

4.1 Linguistic indicator features (LingInd)
This set of corpus-based features is a reimple-
mentation of the linguistic indicators of Siegel

FEATURE EXAMPLE FEATURE EXAMPLE
frequency - continuous continually
present says adverb endlessly
past said evaluation better
future will say adverb horribly
perfect had won manner furiously
progressive is winning adverb patiently
negated not/never temporal again
particle up/in/... adverb finally
no subject - in-PP in an hour

for-PP for an hour

Table 4: LingInd feature set and examples for lex-
ical items associated with each indicator.

FEATURE VALUES

part-of-speech tag of the verb VB, VBG, VBN, ...
tense present, past, future
progressive true/false
perfect true/false
voice active/passive
grammatical dependents WordNet lexname/POS

Table 5: Instance-based (Inst) features

and McKeown (2000), who show that (some of)
these features correlate with either stative or dy-
namic verb types. We parse the AFE and XIE sec-
tions of Gigaword (Graff and Cieri, 2003) with
the Stanford dependency parser. For each verb
type, we obtain a normalized count showing how
often it occurs with each of the indicators in Ta-
ble 4, resulting in one value per feature per verb.
For example, for the verb fill, the value of the
feature temporal-adverb is 0.0085, meaning
that 0.85% of the occurrences of fill in the corpus
are modified by one of the temporal adverbs on the
list compiled by Siegel (1998b). Tense, progres-
sive, perfect and voice are extracted using a set of
rules following Loaiciga et al. (2014).3

4.2 Distributional Features (Dist)

We aim to leverage existing, possibly noisy sets
of representative stative, dynamic or mixed verb
types extracted from LCS (see section 3), mak-
ing up for unseen verbs and noise by averaging
over distributional similarities. Using an exist-
ing large distributional model (Thater et al., 2011)
estimated over the set of Gigaword documents
marked as stories, for each verb type, we build
a syntactically informed vector representing the
contexts in which the verb occurs. We compute
three numeric feature values per verb type, which
correspond to the average cosine similarities with
the verb types in each of the three seed sets.

3We thank the authors for providing us their code.
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FEATURES ACCURACY (%)
Baseline (Lemma) 83.6

LingInd 83.8
Inst 70.8
Inst+Lemma 83.7
Dist 83.4
LingInd+Inst+Dist+Lemma 84.1

Table 6: Experiment 1: SEEN verbs, using Asp-
MASC. Baseline memorizes most frequent class
per verb type in training folds.

4.3 Instance-based features (Inst)
Table 5 shows our set of instance-based syntac-
tic and semantic features. In contrast to the above
described type-based features, these features do
not rely on a background corpus, but are ex-
tracted from the clause being classified. Tense,
progressive, perfect and voice are extracted from
dependency parses as described above. For fea-
tures encoding grammatical dependents, we focus
on a subset of grammatical relations. The fea-
ture value is either the WordNet lexical filename
(e.g. noun.person) of the given relation’s argu-
ment or its POS tag, if the former is not avail-
able. We simply use the most frequent sense for
the dependent’s lemma. We also include features
that indicate, if there are any, the particle of the
verb and its prepositional dependents. For the
sentence A little girl had just finished her first
week of school, the instance-based feature values
would include tense:past, subj:noun.person,
dobj:noun.time or particle:none.

5 Experiments

The experiments presented in this section aim to
evaluate the effectiveness of the feature sets de-
scribed in the previous section, focusing on the
challenging cases of verb types unseen in the train-
ing data and highly ambiguous verbs. The feature
Lemma indicates that the verb’s lemma is used as
an additional feature.

Experiment 1: SEEN verbs
The setting of our first experiment follows Siegel
and McKeown (2000). Table 6 reports results for
10-fold cross-validation, with occurrences of all
verbs distributed evenly over the folds. No feature
combination significantly4 outperforms the base-
line of simply memorizing the most frequent class

4According to McNemar’s test with Yates’ correction for
continuity, p < 0.01.

FEATURES ACCURACY (%)

1 Baseline 72.5
2 Dist 78.3∗
3 LingInd 80.4∗
4 LingInd+Dist 81.9*†

Table 7: Experiment 2: UNSEEN verb types, Lo-
gistic regression, Asp-MASC. Baseline labels ev-
erything with the most frequent class in the train-
ing set (DYNAMIC). *Significantly4 different from
line 1. †Significantly4 different from line 3.

DATA FEATURES ACC. (%)

one-label Baseline 92.8
verbs LingInd 92.8

Dist 92.6
(1966 inst.) Inst+Lemma 91.4∗

LingInd+Inst+Lemma 92.4

multi-label Baseline 78.9
verbs LingInd 79.0

Dist 79.0
(4195 inst.) Inst 67.4∗

Inst+Lemma 79.9
LingInd+Inst+Lemma 80.9*
LingInd+Inst+Lemma+Dist 80.2*

Table 8: Experiment 3: ‘ONE- VS. MULTI-
LABEL’ verbs, Asp-MASC. Baseline as in Table
6. *Indicates that result is significantly4 different
from the respective baseline.

of a verb type in the respective training folds.

Experiment 2: UNSEEN verbs
This experiment shows a successful case of semi-
supervised learning: while type-based feature val-
ues can be estimated from large corpora in an un-
supervised way, some labeled training data is nec-
essary to learn their best combination. This exper-
iment specifically examines performance on verbs
not seen in labeled training data. We use 10-fold
cross validation but ensure that all occurrences of
a verb type appear in the same fold: verb types
in each test fold have not been seen in the re-
spective training data, ruling out the Lemma fea-
ture. A Logistic regression classifier (Hall et al.,
2009) works better here (using only numeric fea-
tures), and we present results in Table 7. Both the
LingInd and Dist features generalize across verb
types, and their combination works best.

Experiment 3: ONE- vs. MULTI-LABEL verbs

For this experiment, we compute results sepa-
rately for one-label verbs (those for which all in-
stances in Asp-MASC have the same label) and
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SYSTEM CLASS ACC. P R F

baseline micro-avg. 78.9 0.75 0.79 0.76

LingInd DYNAMIC 0.84 0.95 0.89
+Inst STATIVE 0.76 0.69 0.72
+Lemma BOTH 0.51 0.24 0.33

micro-avg. 80.9* 0.78 0.81 0.79

Table 9: Experiment 3: ‘MULTI-LABEL’, preci-
sion, recall and F-measure, detailed class statistics
for the best-performing system from Table 8.

for multi-label verbs (instances have differing la-
bels in Asp-MASC). We expect one-label verbs
to have a strong predominant aspectual class, and
multi-label verbs to be more flexible. Otherwise,
the experimental setup is as in experiment 1. Re-
sults appear in Table 8. In each case, the linguistic
indicator features again perform on par with the
baseline. For multi-label verbs, the feature combi-
nation Lemma+LingInd+Inst leads to significant4

improvement of 2% gain in accuracy over the
baseline; Table 9 reports detailed class statistics
and reveals a gain in F-measure of 3 points over
the baseline. To sum up, Inst features are essential
for classifying multi-label verbs, and the LingInd
features provide some useful prior. These results
motivate the need for an instance-based approach.

Experiment 4: INSTANCE-BASED classification
For verbs with ambiguous aspectual class, type-
based classification is not sufficient, as this ap-
proach selects a dominant sense for any given verb
and then always assigns that. Therefore we pro-
pose handling ambiguous verbs separately. As
Asp-MASC contains only few instances of each of
the ambiguous verbs, we turn to the Asp-Ambig
dataset. We perform a Leave-One-Out (LOO)
cross validation evaluation, with results reported
in Table 10.5 Using the Inst features alone (not
shown in Table 10) results in a micro-average ac-
curacy of only 58.1%: these features are only use-
ful when combined with the feature Lemma. For
classifying verbs whose most frequent class oc-
curs less than 56% of the time, Lemma+Inst fea-
tures are essential. Whether or not performance
is improved by adding LingInd/Dist features, with
their bias towards one aspectual class, depends
on the verb type. It is an open research question
which verb types should be treated in which way.

5 The third column also shows the outcome of using ei-
ther only the Lemma, only LingInd or only Dist in LOO; all
have almost the same outcome as using the majority class,
numbers differ only after the decimal point.
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t# OF MAJORITY
VERB INST. CLASS5

feel 128 96.1 STAT 93.0 93.8
say 138 94.9 DYN 93.5 93.5
make 136 91.9 DYN 91.9 91.2
come 133 88.0 DYN 87.2 87.2
take 137 85.4 DYN 85.4 85.4
meet 130 83.9 DYN 86.2 87.7
stand 130 80.0 STAT 79.2 83.1
find 137 74.5 DYN 69.3 68.8
accept 134 70.9 DYN 64.9 65.7
hold 134 56.0 BOTH 43.3 49.3
carry 136 55.9 DYN 55.9 58.1
look 138 55.8 DYN 72.5 74.6
show 133 54.9 DYN 69.2 68.4
appear 136 52.2 STAT 64.7 61.0
follow 122 51.6 BOTH 69.7 65.6
consider 138 50.7 DYN 61.6 70.3
cover 123 50.4 STAT 46.3 54.5
fill 134 47.8 DYN 66.4 62.7
bear 135 47.4 DYN 70.4 67.4
allow 135 37.8 DYN 48.9 51.9
micro-avg. 2667 66.3 71.0* 72.0*

Table 10: Experiment 4: INSTANCE-BASED.
Accuracy (in %) on Asp-Ambig. *Differs
significantly4 from the majority class baseline.

6 Discussion and conclusions

We have described a new, context-aware approach
to automatically predicting aspectual class, includ-
ing a new set of distributional features. We have
also introduced two new data sets of clauses la-
beled for aspectual class. Our experiments show
that in any setting where labeled training data
is available, improvement over the most frequent
class baseline can only be reached by integrating
instance-based features, though type-based fea-
tures (LingInd, Dist) may provide useful priors
for some verbs and successfully predict predom-
inant aspectual class for unseen verb types. In or-
der to arrive at a globally well-performing system,
we envision a multi-stage approach, treating verbs
differently according to whether training data is
available and whether or not the verb’s aspectual
class distribution is highly skewed.
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