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Abstract

In this paper we address the problem of
grounding distributional representations of
lexical meaning. We introduce a new
model which uses stacked autoencoders to
learn higher-level embeddings from tex-
tual and visual input. The two modali-
ties are encoded as vectors of attributes
and are obtained automatically from text
and images, respectively. We evaluate our
model on its ability to simulate similar-
ity judgments and concept categorization.
On both tasks, our approach outperforms
baselines and related models.

1 Introduction

Recent years have seen a surge of interest in sin-
gle word vector spaces (Turney and Pantel, 2010;
Collobert et al., 2011; Mikolov et al., 2013) and
their successful use in many natural language ap-
plications. Examples include information retrieval
(Manning et al., 2008), search query expansions
(Jones et al., 2006), document classification (Se-
bastiani, 2002), and question answering (Yih et al.,
2013). Vector spaces have been also popular in
cognitive science figuring prominently in simula-
tions of human behavior involving semantic prim-
ing, deep dyslexia, text comprehension, synonym
selection, and similarity judgments (see Griffiths
et al., 2007). In general, these models specify
mechanisms for constructing semantic representa-
tions from text corpora based on the distributional
hypothesis (Harris, 1970): words that appear in
similar linguistic contexts are likely to have related
meanings.

Word meaning, however, is also tied to the
physical world. Words are grounded in the exter-
nal environment and relate to sensorimotor experi-
ence (Regier, 1996; Landau et al., 1998; Barsalou,
2008). To account for this, new types of perceptu-
ally grounded distributional models have emerged.

These models learn the meaning of words based
on textual and perceptual input. The latter is ap-
proximated by feature norms elicited from humans
(Andrews et al., 2009; Steyvers, 2010; Silberer
and Lapata, 2012), visual information extracted
automatically from images, (Feng and Lapata,
2010; Bruni et al., 2012a; Silberer et al., 2013)
or a combination of both (Roller and Schulte im
Walde, 2013). Despite differences in formulation,
most existing models conceptualize the problem
of meaning representation as one of learning from
multiple views corresponding to different modali-
ties. These models still represent words as vectors
resulting from the combination of representations
with different statistical properties that do not nec-
essarily have a natural correspondence (e.g., text
and images).

In this work, we introduce a model, illus-
trated in Figure 1, which learns grounded mean-
ing representations by mapping words and im-
ages into a common embedding space. Our model
uses stacked autoencoders (Bengio et al., 2007)
to induce semantic representations integrating vi-
sual and textual information. The literature de-
scribes several successful approaches to multi-
modal learning using different variants of deep
networks (Ngiam et al., 2011; Srivastava and
Salakhutdinov, 2012) and data sources including
text, images, audio, and video. Unlike most pre-
vious work, our model is defined at a finer level
of granularity — it computes meaning representa-
tions for individual words and is unique in its use
of attributes as a means of representing the textual
and visual modalities. We follow Silberer et al.
(2013) in arguing that an attribute-centric repre-
sentation is expedient for several reasons.

Firstly, attributes provide a natural way of ex-
pressing salient properties of word meaning as
demonstrated in norming studies (e.g., McRae
et al., 2005) where humans often employ attributes
when asked to describe a concept. Secondly, from
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a modeling perspective, attributes allow for eas-
ier integration of different modalities, since these
are rendered in the same medium, namely, lan-
guage. Thirdly, attributes are well-suited to de-
scribing visual phenomena (e.g., objects, scenes,
actions). They allow to generalize to new in-
stances for which there are no training exam-
ples available and to transcend category and task
boundaries whilst offering a generic description of
visual data (Farhadi et al., 2009).

Our model learns multimodal representations
from attributes which are automatically inferred
from text and images. We evaluate the embed-
dings it produces on two tasks, namely word sim-
ilarity and categorization. In the first task, model
estimates of word similarity (e.g., gem–jewel are
similar but glass–magician are not) are compared
against elicited similarity ratings. We performed
a large-scale evaluation on a new dataset consist-
ing of human similarity judgments for 7,576 word
pairs. Unlike previous efforts such as the widely
used WordSim353 collection (Finkelstein et al.,
2002), our dataset contains ratings for visual and
textual similarity, thus allowing to study the two
modalities (and their contribution to meaning rep-
resentation) together and in isolation. We also
assess whether the learnt representations are ap-
propriate for categorization, i.e., grouping a set
of objects into meaningful semantic categories
(e.g., peach and apple are members of FRUIT,
whereas chair and table are FURNITURE). On both
tasks, our model outperforms baselines and related
models.

2 Related Work

The presented model has connections to several
lines of work in NLP, computer vision research,
and more generally multimodal learning. We re-
view related work in these areas below.

Grounded Semantic Spaces Grounded seman-
tic spaces are essentially distributional models
augmented with perceptual information. A model
akin to Latent Semantic Analysis (Landauer and
Dumais, 1997) is proposed in Bruni et al. (2012b)
who concatenate two independently constructed
textual and visual spaces and subsequently project
them onto a lower-dimensional space using Singu-
lar Value Decomposition.

Several other models have been extensions of
Latent Dirichlet Allocation (Blei et al., 2003)
where topic distributions are learned from words

and other perceptual units. Feng and Lapata
(2010) use visual words which they extract from a
corpus of multimodal documents (i.e., BBC news
articles and their associated images), whereas oth-
ers (Steyvers, 2010; Andrews et al., 2009; Silberer
and Lapata, 2012) use feature norms obtained in
longitudinal elicitation studies (see McRae et al.
(2005) for an example) as an approximation of the
visual environment. More recently, topic mod-
els which combine both feature norms and vi-
sual words have also been introduced (Roller and
Schulte im Walde, 2013). Drawing inspiration
from the successful application of attribute clas-
sifiers in object recognition, Silberer et al. (2013)
show that automatically predicted visual attributes
act as substitutes for feature norms without any
critical information loss.

The visual and textual modalities on which our
model is trained are decoupled in that they are not
derived from the same corpus (we would expect
co-occurring images and text to correlate to some
extent) but unified in their representation by natu-
ral language attributes. The use of stacked autoen-
coders to extract a shared lexical meaning repre-
sentation is new to our knowledge, although, as
we explain below related to a large body of work
on deep learning.

Multimodal Deep Learning Our work employs
deep learning (a.k.a deep networks) to project lin-
guistic and visual information onto a unified rep-
resentation that fuses the two modalities together.
The goal of deep learning is to learn multiple lev-
els of representations through a hierarchy of net-
work architectures, where higher-level representa-
tions are expected to help define higher-level con-
cepts.

A large body of work has focused on projecting
words and images into a common space using a va-
riety of deep learning methods ranging from deep
and restricted Boltzman machines (Srivastava and
Salakhutdinov, 2012; Feng et al., 2013), to au-
toencoders (Wu et al., 2013), and recursive neural
networks (Socher et al., 2013b). Similar methods
have been employed to combine other modalities
such as speech and video (Ngiam et al., 2011) or
images (Huang and Kingsbury, 2013). Although
our model is conceptually similar to these studies
(especially those applying stacked autoencoders),
it differs considerably from them in at least two
aspects. Firstly, most of these approaches aim to
learn a shared representation between modalities
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so as to infer some missing modality from others
(e.g., to infer text from images and vice versa); in
contrast, we aim to learn an optimal representa-
tion for each modality and their optimal combi-
nation. Secondly, our problem setting is different
from the former studies, which usually deal with
classification tasks and fine-tune the deep neural
networks using training data with explicit class la-
bels; in contrast we fine-tune our autoencoders us-
ing a semi-supervised criterion. That is, we use
indirect supervision in the form of object classifi-
cation in addition to the objective of reconstruct-
ing the attribute-centric input representation.

3 Autoencoders for Grounded Semantics

3.1 Background
Our model learns higher-level meaning represen-
tations for single words from textual and visual
input in a joint fashion. We first briefly review
autoencoders in Section 3.1 with emphasis on as-
pects relevant to our model which we then de-
scribe in Section 3.2.

Autoencoders An autoencoder is an unsuper-
vised neural network which is trained to recon-
struct a given input from its latent representation
(Bengio, 2009). It consists of an encoder fθ which
maps an input vector x(i) to a latent representa-
tion y(i) = fθ(x(i)) = s(Wx(i) + b), with s being
a non-linear activation function, such as a sig-
moid function. A decoder gθ′ then aims to recon-
struct input x(i) from y(i), i.e., x̂(i) = gθ′(y(i)) =
s(W′y(i) + b′). The training objective is the de-
termination of parameters θ̂ = {W,b} and θ̂′ =
{W′,b′} that minimize the average reconstruction
error over a set of input vectors {x(1), ...,x(n)}:

θ̂, θ̂′ = argmin
θ,θ′

1
n

n

∑
i=1

L(x(i),gθ′( fθ(x(i)))), (1)

where L is a loss function, such as cross-entropy.
Parameters θ and θ′ can be optimized by gradient
descent methods.

Autoencoders are a means to learn representa-
tions of some input by retaining useful features in
the encoding phase which help to reconstruct the
input, whilst discarding useless or noisy ones. To
this end, different strategies have been employed
to guide parameter learning and constrain the hid-
den representation. Examples include imposing
a bottleneck to produce an under-complete rep-
resentation of the input, using sparse representa-
tions, or denoising.

Denoising Autoencoders The training criterion
with denoising autoencoders is the reconstruction
of clean input x(i) given a corrupted version x̃(i)

(Vincent et al., 2010). The underlying idea is that
the learned latent representation is good if the au-
toencoder is capable of reconstructing the actual
input from its corruption. The reconstruction error
for an input x(i) with loss function L then is:

L(x(i),gθ′( fθ(x̃(i)))) (2)

One possible corruption process is masking noise,
where the corrupted version x̃(i) results from ran-
domly setting a fraction v of x(i) to 0.

Stacked Autoencoders Several (denoising) au-
toencoders can be used as building blocks to form
a deep neural network (Bengio et al., 2007; Vin-
cent et al., 2010). For that purpose, the autoen-
coders are pre-trained layer by layer, with the cur-
rent layer being fed the latent representation of the
previous autoencoder as input. Using this unsuper-
vised pre-training procedure, initial parameters are
found which approximate a good solution. Subse-
quently, the original input layer and hidden repre-
sentations of all the autoencoders are stacked and
all network parameters are fine-tuned with back-
propagation.

To further optimize the parameters of the net-
work, a supervised criterion can be imposed on top
of the last hidden layer such as the minimization
of a prediction error on a supervised task (Bengio,
2009). Another approach is to unfold the stacked
autoencoders and fine-tune them with respect to
the minimization of the global reconstruction error
(Hinton and Salakhutdinov, 2006). Alternatively,
a semi-supervised criterion can be used (Ranzato
and Szummer, 2008; Socher et al., 2011) through
combination of the unsupervised training criterion
(global reconstruction) with a supervised criterion
(prediction of some target given the latent repre-
sentation).

3.2 Semantic Representations
To learn meaning representations of single words
from textual and visual input, we employ stacked
(denoising) autoencoders (SAEs). Both input
modalities are vector-based representations of
words, or, more precisely, the objects they refer to
(e.g., canary, trolley). The vector dimensions cor-
respond to textual and visual attributes, examples
of which are shown in Table 1. We explain how
these representations are obtained in more detail
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Figure 1: Stacked autoencoder trained with semi-supervised objective. Input to the model are single-
word vector representations obtained from text and images. Vector dimensions correspond to textual and
visual attributes, respectively (see Table 1).

in Section 4.1. We first train SAEs with two hid-
den layers (codings) for each modality separately.
Then, we join these two SAEs by feeding their re-
spective second coding simultaneously to another
autoencoder, whose hidden layer thus yields the
fused meaning representation. Finally, we stack
all layers and unfold them in order to fine-tune
the SAE. Figure 1 illustrates the model.

Unimodal Autoencoders For both modalities,
we use the hyperbolic tangent function as activa-
tion function for encoder fθ and decoder gθ′ and an
entropic loss function for L. The weights of each
autoencoder are tied, i.e., W′ = WT . We employ
denoising autoencoders (DAEs) for pre-training
the textual modality. Regarding the visual autoen-
coder, we derive a new (‘denoised’) target vector
to be reconstructed for each input vector x(i), and
treat x(i) itself as corrupted input. The unimodal
autoencoder is thus trained to denoise a given in-
put. The target vector is derived as follows: each
object o in our data is represented by multiple im-
ages, and each image is in turn represented by a
visual attribute vector x(i). The target vector is the
sum of x(i) and the centroid x(j) of the remaining
attribute vectors representing object o.

Bimodal Autoencoder The bimodal autoen-
coder is fed with the concatenated final hidden
codings of the visual and textual modalities as in-
put and maps these inputs to a joint hidden layer y̆
with B units. We normalize both unimodal input

codings to unit length. Again, we use tied weights
for the bimodal autoencoder. We also encourage
the autoencoder to detect dependencies between
the two modalities while learning the mapping
to the bimodal hidden layer. We therefore apply
masking noise to one modality with a masking fac-
tor v (see Section 3.1), so that the corrupted modal-
ity optimally has to rely on the other modality in
order to reconstruct its missing input features.

Stacked Bimodal Autoencoder We finally
build a stacked bimodal autoencoder (SAE) with
all pre-trained layers and fine-tune them with re-
spect to a semi-supervised criterion. That is, we
unfold the stacked autoencoder and furthermore
add a softmax output layer on top of the bimodal
layer y̆ that outputs predictions t̂ with respect to
the inputs’ object labels (e.g., boat):

t̂(i) =
exp(W(6)y̆(i) +b(6))

∑O
k=1 exp(W(6)

k. y̆(i) +b(6)
k )

, (3)

with weights W(6) ∈ RO×B, b(6) ∈ RO×1, where O
is the number of unique object labels. The over-
all objective to be minimized is therefore the
weighted sum of the reconstruction error Lr and
the classification error Lc:

L =
1
n

n

∑
i=1

(
δrLr(x(i), x̂(i))+δcLc(t(i), t̂(i))

)
+λR (4)

where δr and δc are weighting parameters that
give different importance to the partial objectives,
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eats seeds has beak has claws has handlebar has wheels has wings is yellow made of wood

canary 0.05 0.24 0.15 0.00 –0.10 0.19 0.34 0.00

V
is

ua
l

trolley 0.00 0.00 0.00 0.30 0.32 0.00 0.00 0.25

bird:n breed:v cage:n chirp:v fly:v track:n ride:v run:v rail:n wheel:n

canary 0.16 0.19 0.39 0.13 0.13 0.00 0.00 0.00 0.00 –0.05

Te
xt

ua
l

trolley –0.40 0.00 0.00 0.00 0.00 0.14 0.16 0.33 0.17 0.20

Table 1: Examples of attribute-based representations provided as input to our autoencoders.

Lc and Lr are entropic loss functions, and R is
a regularization term with R = ∑5

j=1 2||W(j)||2 +
||W(6)||2. Finally, t̂(i) is the object label vector pre-
dicted by the softmax layer for input vector x(i),
and t(i) is the correct object label, represented as a
O-dimensional one-hot vector1.

The additional supervised criterion drives the
learning towards a representation capable of dis-
criminating between different objects. Further-
more, the semi-supervised setting affords flexibil-
ity, allowing to adapt the architecture to specific
tasks. For example, by setting the corruption pa-
rameter v for the textual modality to one and δr

to zero, a standard object classification model for
images can be trained. Setting v close to one for ei-
ther modality enables the model to infer the other
(missing) modality. As our input consists of nat-
ural language attributes, the model would infer
textual attributes given visual attributes and vice
versa.

4 Experimental Setup

In this section we present our experimental setup
for assessing the performance of our model. We
give details on the tasks and datasets used for eval-
uation, we explain how the textual and visual in-
puts were constructed, how the SAE model was
trained, and describe the approaches used for com-
parison with our own work.

4.1 Data

We learn meaning representations for the nouns
contained in McRae et al.’s (2005) feature norms.
These are 541 concrete animate and inanimate ob-
jects (e.g., animals, clothing, vehicles, utensils,
fruits, and vegetables). The norms were elicited
by asking participants to list properties (e.g., barks,
an animal, has legs) describing the nouns they were
presented with.

1In a one-hot vector, the element corresponding to the ob-
ject label is one and the others are zero.

As shown in Figure 1, our model takes as in-
put two (real-valued) vectors representing the vi-
sual and textual modalities. Vector dimensions
correspond to textual and visual attributes, respec-
tively. Textual attributes were extracted by run-
ning Strudel (Baroni et al., 2010) on a 2009 dump
of the English Wikipedia.2 Strudel is a fully
automatic method for extracting weighted word-
attribute pairs (e.g., bat–species:n, bat–bite:v) from
a lemmatized and POS-tagged corpus. Weights
are log-likelihood ratio scores expressing how
strongly an attribute and a word are associated. We
only retained the ten highest scored attributes for
each target word. This returned a total of 2,362
dimensions for the textual vectors. Association
scores were scaled to the [−1,1] range.

To obtain visual vectors, we followed the
methodology put forward in Silberer et al. (2013).
Specifically, we used an updated version of their
dataset to train SVM-based attribute classifiers
that predict visual attributes for images (Farhadi
et al., 2009). The dataset is a taxonomy of 636 vi-
sual attributes (e.g., has wings, made of wood) and
nearly 700K images from ImageNet (Deng et al.,
2009) describing more than 500 of McRae et al.’s
(2005) nouns. The classifiers perform reason-
ably well with an interpolated average precision
of 0.52. We only considered attributes assigned
to at least two nouns in the dataset, obtaining a
414 dimensional vector for each noun. Analo-
gously to the textual representations, visual vec-
tors were scaled to the [−1,1] range.

We follow Silberer et al.’s (2013) partition of the
dataset into training, validation, and test set and
acquire visual vectors for each of the sets. We use
the visual vectors of the training and development
set for training the autoencoders, and the vectors
for the test set for evaluation.

2The corpus is downloadable from http://wacky.
sslmit.unibo.it/doku.php?id=corpora.
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4.2 Model Architecture

Model parameters were optimized on a subset of
the word association norms collected by Nelson
et al. (1998).3 These were established by present-
ing participants with a cue word (e.g., canary) and
asking them to name an associate word in response
(e.g., bird, sing, yellow). For each cue, the norms
provide a set of associates and the frequencies
with which they were named. The dataset con-
tains a very large number of cue-associate pairs
(63,619 in total) some of which luckily are cov-
ered in McRae et al. (2005).4 During training
we used correlation analysis (Spearman’s ρ) to
monitor the degree of linear relationship between
model cue-associate (cosine) similarities and hu-
man probabilities.

The best autoencoder on the word association
task obtained a correlation coefficient of 0.33.
This performance is superior to the results re-
ported in Silberer et al. (2013) (their correlation
coefficients range from 0.16 to 0.28). This model
has the following architecture: the textual autoen-
coder (see Figure 1, left-hand side) consists of 700
hidden units which are then mapped to the sec-
ond hidden layer with 500 units (the corruption
parameter was set to v = 0.1); the visual autoen-
coder (see Figure 1, right-hand side) has 170 and
100 hidden units, in the first and second layer, re-
spectively. The 500 textual and 100 visual hidden
units were fed to a bimodal autoencoder contain-
ing 500 latent units, and masking noise was ap-
plied to the textual modality with v = 0.2. The
weighting parameters for the joint training objec-
tive of the stacked autoencoder were set to δr = 0.8
and δc = 1 (see Equation (4)).

We used the model described above and the
meaning representations obtained from the out-
put of the bimodal latent layer for all the eval-
uation tasks detailed below. Some performance
gains could be expected if parameter optimization
took place separately for each task. However, we
wanted to avoid overfitting, and show that our pa-
rameters are robust across tasks and datasets.

4.3 Evaluation Tasks

Word Similarity We first evaluated how well
our model predicts word similarity ratings. Al-
though several relevant datasets exist, such as

3http://w3.usf.edu/Freeassociation.
4435 word pairs constitute the overlap between Nelson et

al.’s norms (1998) and McRae et al.’s (2005) nouns.

the widely used WordSim353 (Finkelstein et al.,
2002) or the more recent Rel-122 norms (Szum-
lanski et al., 2013), they contain many abstract
words, (e.g., love–sex or arrest–detention) which
are not covered in McRae et al. (2005). This is for
a good reason, as most abstract words do not have
discernible attributes, or at least attributes that par-
ticipants would agree upon. We thus created a
new dataset consisting exclusively of McRae et al.
(2005) nouns which we hope will be useful for the
development and evaluation of grounded semantic
space models.5

Initially, we created all possible pairings over
McRae et al.’s (2005) nouns and computed their
semantic relatedness using Patwardhan and Peder-
sen (2006)’s WordNet-based measure. We opted
for this specific measure as it achieves high corre-
lation with human ratings and has a high coverage
on our nouns. Next, for each word we randomly
selected 30 pairs under the assumption that they
are representative of the full variation of semantic
similarity. This resulted in 7,576 word pairs for
which we obtained similarity ratings using Ama-
zon Mechanical Turk (AMT). Participants were
asked to rate a pair on two dimensions, visual
and semantic similarity using a Likert scale of 1
(highly dissimilar) to 5 (highly similar). Each task
consisted of 32 pairs covering examples of weak
to very strong semantic relatedness. Two con-
trol pairs from Miller and Charles (1991) were in-
cluded in each task to potentially help identify and
eliminate data from participants who assigned ran-
dom scores. Examples of the stimuli and mean
ratings are shown in Table 2.

The elicitation study comprised overall 255
tasks, each task was completed by five volun-
teers. The similarity data was post-processed so
as to identify and remove outliers. We consid-
ered an outlier to be any individual whose mean
pairwise correlation fell outside two standard de-
viations from the mean correlation. 11.5% of
the annotations were detected as outliers and re-
moved. After outlier removal, we further ex-
amined how well the participants agreed in their
similarity judgments. We measured inter-subject
agreement as the average pairwise correlation co-
efficient (Spearman’s ρ) between the ratings of all
annotators for each task. For semantic similarity,
the mean correlation was 0.76 (Min =0.34, Max

5Available from http://homepages.inf.ed.ac.uk/
mlap/index.php?page=resources.
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Word Pairs Semantic Visual
football–pillow 1.0 1.2
dagger–pencil 1.0 2.2
motorcycle–wheel 2.4 1.8
orange–pumpkin 2.5 3.0
cherry–pineapple 3.6 1.2
pickle–zucchini 3.6 4.0
canary–owl 4.0 2.4
jeans–sweater 4.5 2.2
pan–pot 4.7 4.0
hornet–wasp 4.8 4.8
airplane–jet 5.0 5.0

Table 2: Mean semantic and visual similarity rat-
ings for the McRae et al. (2005) nouns using a
scale of 1 (highly dissimilar) to 5 (highly similar).

=0.97, StD =0.11) and for visual similarity 0.63
(Min =0.19, Max =0.90, SD =0.14). These re-
sults indicate that the participants found the task
relatively straightforward and produced similarity
ratings with a reasonable level of consistency. For
comparison, Patwardhan and Pedersen’s (2006)
measure achieved a coefficient of 0.56 on the
dataset for semantic similarity and 0.48 for vi-
sual similarity. The correlation between the aver-
age ratings of the AMT annotators and the Miller
and Charles (1991) dataset was ρ = 0.91. In our
experiments (see Section 5), we correlate model-
based cosine similarities with mean similarity rat-
ings (again using Spearman’s ρ).

Categorization The task of categorization
(i.e., grouping objects into meaningful categories)
is a classic problem in the field of cognitive
science, central to perception, learning, and the
use of language. We evaluated model output
against a gold standard set of categories created
by Fountain and Lapata (2010). The dataset
contains a classification, produced by human
participants, of McRae et al.’s (2005) nouns into
(possibly multiple) semantic categories (40 in
total).6

To obtain a clustering of nouns, we used Chi-
nese Whispers (Biemann, 2006), a randomized
graph-clustering algorithm. In the categorization
setting, Chinese Whispers (CW) produces a hard
clustering over a weighted graph whose nodes cor-

6The dataset can be downloaded from http:
//homepages.inf.ed.ac.uk/s0897549/data/.

respond to words and edges to cosine similarity
scores between vectors representing their mean-
ing. CW is a non-parametric model, it induces the
number of clusters (i.e., categories) from the data
as well as which nouns belong to these clusters.
In our experiments, we initialized Chinese Whis-
pers with different graphs resulting from different
vector-based representations of the McRae et al.
(2005) nouns. We also transformed the dataset
into hard categorizations by assigning each noun
to its most typical category as extrapolated from
human typicality ratings (for details see Foun-
tain and Lapata, 2010). CW can optionally ap-
ply a minimum weight threshold which we opti-
mized using the categorization dataset from Ba-
roni et al. (2010). The latter contains a classifica-
tion of 82 McRae et al. (2005) nouns into 10 cate-
gories. These nouns were excluded from the gold
standard (Fountain and Lapata, 2010) in our final
evaluation.

We evaluated the clusters produced by CW us-
ing the F-score measure introduced in the Se-
mEval 2007 task (Agirre and Soroa, 2007); it is
the harmonic mean of precision and recall defined
as the number of correct members of a cluster di-
vided by the number of items in the cluster and
the number of items in the gold-standard class, re-
spectively.

4.4 Comparison with Other Models

Throughout our experiments we compare a bi-
modal stacked autoencoder against unimodal au-
toencoders based solely on textual and visual in-
put (left- and right-hand sides in Figure 1, respec-
tively). We also compare our model against two
approaches that differ in their fusion mechanisms.
The first one is based on kernelized canonical cor-
relation (kCCA, Hardoon et al., 2004) with a lin-
ear kernel which was the best performing model
in Silberer et al. (2013). The second one emulates
Bruni et al.’s (2014) fusion mechanism. Specifi-
cally, we concatenate the textual and visual vec-
tors and project them onto a lower dimensional la-
tent space using SVD (Golub and Reinsch, 1970).
All these models run on the same datasets/items
and are given input identical to our model, namely
attribute-based textual and visual representations.

We furthermore report results obtained with
Bruni et al.’s (2014) bimodal distributional model,
which employs SVD to integrate co-occurrence-
based textual representations with visual repre-
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Semantic Visual
Models T V T+V T V T+V
McRae 0.71 0.49 0.68 0.58 0.52 0.62
Attributes 0.58 0.61 0.68 0.46 0.56 0.58
SAE 0.65 0.60 0.70 0.52 0.60 0.64
SVD — — 0.67 — — 0.57
kCCA — — 0.57 — — 0.55
Bruni — — 0.52 — — 0.46
RNN-640 0.41 — — 0.34 — —

Table 3: Correlation of model predictions against
similarity ratings for McRae et al. (2005) noun
pairs (using Spearman’s ρ).

sentations constructed from low-level image fea-
tures. In their model, the textual modality is
represented by the 30K-dimensional vectors ex-
tracted from UKWaC and WaCkypedia.7 The
visual modality is represented by bag-of-visual-
words histograms built on the basis of clustered
SIFT features (Lowe, 2004). We rebuilt their
model on the ESP image dataset (von Ahn and
Dabbish, 2004) using Bruni et al.’s (2013) publicly
available system.

Finally, we also compare to the word embed-
dings obtained using Mikolov et al.’s (2011) re-
current neural network based language model.
These were pre-trained on Broadcast news data
(400M words) using the word2vec tool.8 We re-
port results with the 640-dimensional embeddings
as they performed best.

5 Results

Table 3 presents our results on the word simi-
larity task. We report correlation coefficients of
model predictions against similarity ratings. As an
indicator to how well automatically extracted at-
tributes can approach the performance of clean hu-
man generated attributes, we also report results of
a distributional model induced from McRae et al.’s
(2005) norms (see the row labeled McRae in the
table). Each noun is represented as a vector with
dimensions corresponding to attributes elicited by
participants of the norming study. Vector compo-
nents are set to the (normalized) frequency with
which participants generated the corresponding at-
tribute. We show results for three models, using all
attributes except those classified as visual (T), only

7We thank Elia Bruni for providing us with their data.
8Available from http://www.rnnlm.org/.

# Pair # Pair
1 pliers–tongs 11 cello–violin
2 cathedral–church 12 cottage–house
3 cathedral–chapel 13 horse–pony
4 pistol–revolver 14 gun–rifle
5 chapel–church 15 cedar–oak
6 airplane–helicopter 16 bull–ox
7 dagger–sword 17 dress–gown
8 pistol–rifle 18 bolts–screws
9 cloak–robe 19 salmon–trout
10 nylons–trousers 20 oven–stove

Table 4: Word pairs with highest semantic and vi-
sual similarity according to SAE model. Pairs are
ranked from highest to lowest similarity.

visual attributes (V), and all available attributes
(V+T).9 As baselines, we also report the perfor-
mance of a model based solely on textual attributes
(which we obtain from Strudel), visual attributes
(obtained from our classifiers), and their concate-
nation (see row Attributes in Table 3, and columns
T, V, and T+V, respectively). The automatically
obtained textual and visual attribute vectors serve
as input to SVD, kCCA, and our stacked autoen-
coder (SAE). The third row in the table presents
three variants of our model trained on textual and
visual attributes only (T and V, respectively) and
on both modalities jointly (T+V).

Recall that participants were asked to provide
ratings on two dimensions, namely semantic and
visual similarity. We would expect the textual
modality to be more dominant when modeling se-
mantic similarity and conversely the perceptual
modality to be stronger with respect to visual sim-
ilarity. This is borne out in our unimodal SAEs.
The textual SAE correlates better with seman-
tic similarity judgments (ρ = 0.65) than its vi-
sual equivalent (ρ = 0.60). And the visual SAE
correlates better with visual similarity judgments
(ρ = 0.60) compared to the textual SAE (ρ = 0.52).
Interestingly, the bimodal SAE is better than the
unimodal variants on both types of similarity judg-
ments, semantic and visual. This suggests that
both modalities contribute complementary infor-
mation and that the SAE model is able to extract
a shared representation which improves general-
ization performance across tasks by learning them

9Classification of attributes into categories is provided by
McRae et al. (2005) in their dataset.
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Models T V T+V
McRae 0.52 0.31 0.42
Attributes 0.35 0.37 0.33
SAE 0.36 0.35 0.43
SVD — — 0.39
kCCA — — 0.37
Bruni — — 0.34
RNN-640 0.32 — —

Table 5: F-score results on concept categorization.

jointly. The bimodal autoencoder (SAE, T+V)
outperforms all other bimodal models on both sim-
ilarity tasks. It yields a correlation coefficient
of ρ = 0.70 on semantic similarity and ρ = 0.64 on
visual similarity. Human agreement on the former
task is 0.76 and 0.63 on the latter. Table 4 shows
examples of word pairs with highest semantic and
visual similarity according to the SAE model.

We also observe that simply concatenating
textual and visual attributes (Attributes, T+V)
performs competitively with SVD and better
than kCCA. This indicates that the attribute-based
representation is a powerful predictor on its own.
Interestingly, both Bruni et al. (2013) and Mikolov
et al. (2011) which do not make use of attributes
are out-performed by all other attribute-based sys-
tems (see columns T and T+V in Table 3).

Our results on the categorization task are given
in Table 5. In this task, simple concatenation of vi-
sual and textual attributes does not yield improved
performance over the individual modalities (see
row Attributes in Table 5). In contrast, all bimodal
models (SVD, kCCA, and SAE) are better than
their unimodal equivalents and RNN-640. The
SAE outperforms both kCCA and SVD by a large
margin delivering clustering performance similar
to the McRae et al.’s (2005) norms. Table 6 shows
examples of clusters produced by Chinese Whis-
pers when using vector representations provided
by the SAE model.

In sum, our experiments show that the bi-
modal SAE model delivers superior performance
across the board when compared against competi-
tive baselines and related models. It is interesting
to note that the unimodal SAEs are in most cases
better than the raw textual or visual attributes.
This indicates that higher level embeddings may
be beneficial to NLP tasks in general, not only to
those requiring multimodal information.

STICK-LIKE UTENSILS baton, ladle, peg, spatula,
spoon

RELIGIOUS BUILDINGS cathedral, chapel, church
WIND INSTRUMENTS clarinet, flute, saxophone, trom-

bone, trumpet, tuba
AXES axe, hatchet, machete, toma-

hawk
FURNITURE W/ LEGS bed, bench, chair, couch, desk,

rocker, sofa, stool, table
FURNITURE W/O LEGS bookcase, bureau, cabinet,

closet, cupboard, dishwasher,
dresser

LIGHTINGS candle, chandelier, lamp,
lantern

ENTRY POINTS door, elevator, gate
UNGULATES bison, buffalo, bull, calf, camel,

cow, donkey, elephant, goat,
horse, lamb, ox, pig, pony,
sheep

BIRDS crow, dove, eagle, falcon, hawk,
ostrich, owl, penguin, pigeon,
raven, stork, vulture, wood-
pecker

Table 6: Examples of clusters produced by CW
using the representations obtained from the SAE
model.

6 Conclusions

In this paper, we presented a model that uses
stacked autoencoders to learn grounded meaning
representations by simultaneously combining tex-
tual and visual modalities. The two modalities are
encoded as vectors of natural language attributes
and are obtained automatically from decoupled
text and image data. To the best of our knowl-
edge, our model is novel in its use of attribute-
based input in a deep neural network. Experimen-
tal results in two tasks, namely simulation of word
similarity and word categorization, show that our
model outperforms competitive baselines and re-
lated models trained on the same attribute-based
input. Our evaluation also reveals that the bimodal
models are superior to their unimodal counterparts
and that higher-level unimodal representations are
better than the raw input. In the future, we would
like to apply our model to other tasks, such as im-
age and text retrieval (Hodosh et al., 2013; Socher
et al., 2013b), zero-shot learning (Socher et al.,
2013a), and word learning (Yu and Ballard, 2007).
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