
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 402–412,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Incremental Joint Extraction of Entity Mentions and Relations

Qi Li Heng Ji
Computer Science Department

Rensselaer Polytechnic Institute
Troy, NY 12180, USA
{liq7,jih}@rpi.edu

Abstract

We present an incremental joint frame-
work to simultaneously extract entity men-
tions and relations using structured per-
ceptron with efficient beam-search. A
segment-based decoder based on the idea
of semi-Markov chain is adopted to the
new framework as opposed to traditional
token-based tagging. In addition, by virtue
of the inexact search, we developed a num-
ber of new and effective global features
as soft constraints to capture the inter-
dependency among entity mentions and
relations. Experiments on Automatic Con-
tent Extraction (ACE)1 corpora demon-
strate that our joint model significantly
outperforms a strong pipelined baseline,
which attains better performance than the
best-reported end-to-end system.

1 Introduction

The goal of end-to-end entity mention and re-
lation extraction is to discover relational struc-
tures of entity mentions from unstructured texts.
This problem has been artificially broken down
into several components such as entity mention
boundary identification, entity type classification
and relation extraction. Although adopting such
a pipelined approach would make a system com-
paratively easy to assemble, it has some limita-
tions: First, it prohibits the interactions between
components. Errors in the upstream components
are propagated to the downstream components
without any feedback. Second, it over-simplifies
the problem as multiple local classification steps
without modeling long-distance and cross-task de-
pendencies. By contrast, we re-formulate this
task as a structured prediction problem to reveal
the linguistic and logical properties of the hidden

1http://www.itl.nist.gov/iad/mig//tests/ace

structures. For example, in Figure 1, the output
structure of each sentence can be interpreted as a
graph in which entity mentions are nodes and re-
lations are directed arcs with relation types. By
jointly predicting the structures, we aim to address
the aforementioned limitations by capturing: (i)
The interactions between two tasks. For exam-
ple, in Figure 1a, although it may be difficult for
a mention extractor to predict “1,400” as a Per-
son (PER) mention, the context word “employs”
between “tire maker” and “1,400” strongly in-
dicates an Employment-Organization (EMP-ORG)
relation which must involve a PER mention. (ii)
The global features of the hidden structure. Var-
ious entity mentions and relations share linguis-
tic and logical constraints. For example, we
can use the triangle feature in Figure 1b to en-
sure that the relations between “forces”, and each
of the entity mentions “Somalia/GPE”, “Haiti/GPE”
and “Kosovo/GPE”, are of the same type (Physical
(PHYS), in this case).

Following the above intuitions, we introduce
a joint framework based on structured percep-
tron (Collins, 2002; Collins and Roark, 2004) with
beam-search to extract entity mentions and rela-
tions simultaneously. With the benefit of inexact
search, we are also able to use arbitrary global
features with low cost. The underlying learning
algorithm has been successfully applied to some
other Natural Language Processing (NLP) tasks.
Our task differs from dependency parsing (such as
(Huang and Sagae, 2010)) in that relation struc-
tures are more flexible, where each node can have
arbitrary relation arcs. Our previous work (Li et
al., 2013) used perceptron model with token-based
tagging to jointly extract event triggers and argu-
ments. By contrast, we aim to address a more chal-
lenging task: identifying mention boundaries and
types together with relations, which raises the is-
sue that assignments for the same sentence with
different mention boundaries are difficult to syn-
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Figure 1: End-to-End Entity Mention and Relation Extraction.

chronize during search. To tackle this problem,
we adopt a segment-based decoding algorithm de-
rived from (Sarawagi and Cohen, 2004; Zhang and
Clark, 2008) based on the idea of semi-Markov
chain (a.k.a, multiple-beam search algorithm).

Most previous attempts on joint inference of en-
tity mentions and relations (such as (Roth and Yih,
2004; Roth and Yih, 2007)) assumed that entity
mention boundaries were given, and the classifiers
of mentions and relations are separately learned.
As a key difference, we incrementally extract en-
tity mentions together with relations using a single
model. The main contributions of this paper are as
follows:
1. This is the first work to incrementally predict

entity mentions and relations using a single
joint model (Section 3).

2. Predicting mention boundaries in the joint
framework raises the challenge of synchroniz-
ing different assignments in the same beam. We
solve this problem by detecting entity mentions
on segment-level instead of traditional token-
based approaches (Section 3.1.1).

3. We design a set of novel global features based
on soft constraints over the entire output graph
structure with low cost (Section 4).

Experimental results show that the proposed
framework achieves better performance than
pipelined approaches, and global features provide
further significant gains.

2 Background

2.1 Task Definition

The entity mention extraction and relation
extraction tasks we are addressing are those
of the Automatic Content Extraction (ACE)
program2. ACE defined 7 main entity types
including Person (PER), Organization (ORG),
Geographical Entities (GPE), Location (LOC),

2http://www.nist.gov/speech/tests/ace

Facility (FAC), Weapon (WEA) and Vehicle
(VEH). The goal of relation extraction3 is to
extract semantic relations of the targeted types
between a pair of entity mentions which ap-
pear in the same sentence. ACE’04 defined 7
main relation types: Physical (PHYS), Person-
Social (PER-SOC), Employment-Organization
(EMP-ORG), Agent-Artifact (ART), PER/ORG
Affiliation (Other-AFF), GPE-Affiliation
(GPE-AFF) and Discourse (DISC). ACE’05 kept
PER-SOC, ART and GPE-AFF, split PHYS into
PHYS and a new relation type Part-Whole,
removed DISC, and merged EMP-ORG and
Other-AFF into EMP-ORG.

Throughout this paper, we use⊥ to denote non-
entity or non-relation classes. We consider rela-
tion asymmetric. The same relation type with op-
posite directions is considered to be two classes,
which we refer to as directed relation types.

Most previous research on relation extraction
assumed that entity mentions were given In this
work we aim to address the problem of end-to-end
entity mention and relation extraction from raw
texts.

2.2 Baseline System
In order to develop a baseline system repre-
senting state-of-the-art pipelined approaches, we
trained a linear-chain Conditional Random Fields
model (Lafferty et al., 2001) for entity mention ex-
traction and a Maximum Entropy model for rela-
tion extraction.

Entity Mention Extraction Model We re-cast
the problem of entity mention extraction as a se-
quential token tagging task as in the state-of-the-
art system (Florian et al., 2006). We applied the
BILOU scheme, where each tag means a token is
the Beginning, Inside, Last, Outside, and Unit of
an entity mention, respectively. Most of our fea-
tures are similar to the work of (Florian et al.,

3Throughout this paper we refer to relation mention as re-
lation since we do not consider relation mention coreference.
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2004; Florian et al., 2006) except that we do not
have their gazetteers and outputs from other men-
tion detection systems as features. Our additional
features are as follows:

• Governor word of the current token based on de-
pendency parsing (Marneffe et al., 2006).
• Prefix of each word in Brown clusters learned

from TDT5 corpus (Sun et al., 2011).

Relation Extraction Model Given a sentence
with entity mention annotations, the goal of base-
line relation extraction is to classify each mention
pair into one of the pre-defined relation types with
direction or ⊥ (non-relation). Most of our relation
extraction features are based on the previous work
of (Zhou et al., 2005) and (Kambhatla, 2004). We
designed the following additional features:

• The label sequence of phrases covering the two
mentions. For example, for the sentence in Fig-
ure 1a, the sequence is “NP VP NP”. We also
augment it by head words of each phrase.
• Four syntactico - semantic patterns described in

(Chan and Roth, 2010).
• We replicated each lexical feature by replacing

each word with its Brown cluster.

3 Algorithm

3.1 The Model
Our goal is to predict the hidden structure of
each sentence based on arbitrary features and con-
straints. Let x ∈ X be an input sentence, y′ ∈ Y
be a candidate structure, and f(x, y′) be the fea-
ture vector that characterizes the entire structure.
We use the following linear model to predict the
most probable structure ŷ for x:

ŷ = argmax
y′∈Y(x)

f(x, y′) ·w (1)

where the score of each candidate assignment is
defined as the inner product of the feature vector
f(x, y′) and feature weights w.

Since the structures contain both entity men-
tions relations, and we also aim to exploit global
features. There does not exist a polynomial-time
algorithm to find the best structure. In practice
we apply beam-search to expand partial configu-
rations for the input sentence incrementally to find
the structure with the highest score.

3.1.1 Joint Decoding Algorithm
One main challenge to search for entity mentions
and relations incrementally is the alignment of dif-

ferent assignments. Assignments for the same sen-
tence can have different numbers of entity men-
tions and relation arcs. The entity mention ex-
traction task is often re-cast as a token-level se-
quential labeling problem with BIO or BILOU
scheme (Ratinov and Roth, 2009; Florian et al.,
2006). A naive solution to our task is to adopt this
strategy by treating each token as a state. How-
ever, different assignments for the same sentence
can have various mention boundaries. It is un-
fair to compare the model scores of a partial men-
tion and a complete mention. It is also difficult to
synchronize the search process of relations. For
example, consider the two hypotheses ending at
“York” for the same sentence:

AllanU-PER from? NewB-ORG YorkI-ORG Stock Exchange

AllanU-PER from? NewB-GPE YorkL-GPE Stock Exchange

PHYS

PHYS

The model would bias towards the incorrect as-
signment “New/B-GPE York/L-GPE” since it can
have more informative features as a complete
mention (e.g., a binary feature indicating if the
entire mention appears in a GPE gazetter). Fur-
thermore, the predictions of the two PHYS rela-
tions cannot be synchronized since “New/B-FAC
York/I-FAC” is not yet a complete mention.

To tackle these problems, we employ the idea of
semi-Markov chain (Sarawagi and Cohen, 2004),
in which each state corresponds to a segment
of the input sequence. They presented a vari-
ant of Viterbi algorithm for exact inference in
semi-Markov chain. We relax the max operation
by beam-search, resulting in a segment-based de-
coder similar to the multiple-beam algorithm in
(Zhang and Clark, 2008). Let d̂ be the upper bound
of entity mention length. The k-best partial assign-
ments ending at the i-th token can be calculated as:

B[i] = k-BEST
y′∈{y[1..i]|y[1:i−d]∈B[i−d], d=1...d̂}

f(x, y′) ·w

where y[1:i−d] stands for a partial configuration
ending at the (i-d)-th token, and y[i−d+1,i] corre-
sponds to the structure of a new segment (i.e., sub-
sequence of x) x[i−d+1,i]. Our joint decoding algo-
rithm is shown in Figure 2. For each token index
i, it maintains a beam for the partial assignments
whose last segments end at the i-th token. There
are two types of actions during the search:
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Input: input sentence x = (x1, x2, ..., xm).
k: beam size.
T ∪ {⊥}: entity mention type alphabet.
R∪ {⊥}: directed relation type alphabet.4

dt: max length of type-t segment, t ∈ T ∪ {⊥}.
Output: best configuration ŷ for x

1 initialize m empty beams B[1..m]
2 for i← 1...m do
3 for t ∈ T ∪ {⊥} do
4 for d← 1...dt, y

′ ∈ B[i− d] do
5 k ← i− d + 1
6 B[i]← B[i] ∪ APPEND(y′, t, k, i)
7 B[i]← k-BEST(B[i])
8 for j ← (i− 1)...1 do
9 buf← ∅

10 for y′ ∈ B[i] do
11 if HASPAIR(y′, i, j) then
12 for r ∈ R ∪ {⊥} do
13 buf← buf ∪ LINK(y′, r, i, j)
14 else
15 buf← buf ∪ {y′}
16 B[i]← k-BEST(buf)
17 return B[m][0]

Figure 2: Joint Decoding for Entity Men-
tions and Relations. HASPAIR(y′, i, j) checks
if there are two entity mentions in y′ that
end at token xi and token xj , respectively.
APPEND(y′, t, k, i) appends y′ with a type-t
segment spanning from xk to xi. Similarly
LINK(y′, r, i, j) augments y′ by assigning a di-
rected relation r to the pair of entity mentions
ending at xi and xj respectively.

1. APPEND (Lines 3-7). First, the algorithm
enumerates all possible segments (i.e., subse-
quences) of x ending at the current token with
various entity types. A special type of seg-
ment is a single token with non-entity label (⊥).
Each segment is then appended to existing par-
tial assignments in one of the previous beams to
form new assignments. Finally the top k results
are recorded in the current beam.

2. LINK (Lines 8-16). After each step of APPEND,
the algorithm looks backward to link the newly
identified entity mentions and previous ones (if
any) with relation arcs. At the j-th sub-step,
it only considers the previous mention ending
at the j-th previous token. Therefore different
4The same relation type with opposite directions is con-

sidered to be two classes in R.

configurations are guaranteed to have the same
number of sub-steps. Finally, all assignments
are re-ranked with new relation information.

There are m APPEND actions, each is followed by
at most (i−1) LINK actions (line 8). Therefore the
worst-case time complexity is O(d̂ ·k ·m2), where
d̂ is the upper bound of segment length.

3.1.2 Example Demonstration

the tire maker still employs 1,400 .

?

PER

ORG

...

x

y EMP-ORG

Figure 3: Example of decoding steps. x-axis
and y-axis represent the input sentence and en-
tity types, respectively. The rectangles denote seg-
ments with entity types, among which the shaded
ones are three competing hypotheses ending at
“1,400”. The solid lines and arrows indicate cor-
rect APPEND and LINK actions respectively, while
the dashed indicate incorrect actions.

Here we demonstrate a simple but concrete ex-
ample by considering again the sentence described
in Figure 1a. Suppose we are at the token “1,400”.
At this point we can propose multiple entity men-
tions with various lengths. Assuming “1,400/PER”,
“1,400/⊥” and “(employs 1,400)/PER” are possi-
ble assignments, the algorithm appends these new
segments to the partial assignments in the beams
of the tokens “employs” and “still”, respectively.
Figure 3 illustrates this process. For simplicity,
only a small part of the search space is presented.
The algorithm then links the newly identified men-
tions to the previous ones in the same configu-
ration. In this example, the only previous men-
tion is “(tire maker)/ORG”. Finally, “1,400/PER” will
be preferred by the model since there are more
indicative context features for EMP-ORG relation
between “(tire maker)/PER” and “1,400/PER”.
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3.2 Structured-Perceptron Learning

To estimate the feature weights, we use struc-
tured perceptron (Collins, 2002), an extension
of the standard perceptron for structured pre-
diction, as the learning framework. Huang et
al. (2012) proved the convergency of structured
perceptron when inexact search is applied with
violation-fixing update methods such as early-
update (Collins and Roark, 2004). Since we use
beam-search in this work, we apply early-update.
In addition, we use averaged parameters to reduce
overfitting as in (Collins, 2002).

Figure 4 shows the pseudocode for struc-
tured perceptron training with early-update. Here
BEAMSEARCH is identical to the decoding algo-
rithm described in Figure 2 except that if y′, the
prefix of the gold standard y, falls out of the beam
after each execution of the k-BEST function (line 7
and 16), then the top assignment z and y′ are re-
turned for parameter update. It is worth noting that
this can only happen if the gold-standard has a seg-
ment ending at the current token. For instance, in
the example of Figure 1a, B[2] cannot trigger any
early-update since the gold standard does not con-
tain any segment ending at the second token.

Input: training set D = {(x(j), y(j))}Ni=1,
maximum iteration number T

Output: model parameters w
1 initialize w← 0
2 for t← 1...T do
3 foreach (x, y) ∈ D do
4 (x, y′, z)← BEAMSEARCH (x, y,w)
5 if z 6= y then
6 w← w + f(x, y′)− f(x, z)
7 return w

Figure 4: Perceptron algorithm with beam-
search and early-update. y′ is the prefix of the
gold-standard and z is the top assignment.

3.3 Entity Type Constraints

Entity type constraints have been shown effective
in predicting relations (Roth and Yih, 2007; Chan
and Roth, 2010). We automatically collect a map-
ping table of permissible entity types for each rela-
tion type from our training data. Instead of apply-
ing the constraints in post-processing inference,
we prune the branches that violate the type con-
straints during search. This type of pruning can

reduce search space as well as make the input for
parameter update less noisy. In our experiments,
only 7 relation mentions (0.5%) in the dev set and
5 relation mentions (0.3%) in the test set violate
the constraints collected from the training data.

4 Features

An advantage of our framework is that we can
easily exploit arbitrary features across the two
tasks. This section describes the local features
(Section 4.1) and global features (Section 4.2) we
developed in this work.

4.1 Local Features

We design segment-based features to directly eval-
uate the properties of an entity mention instead of
the individual tokens it contains. Let ŷ be a pre-
dicted structure of a sentence x. The entity seg-
ments of ŷ can be expressed as a list of triples
(e1, ..., em), where each segment ei = 〈ui, vi, ti〉
is a triple of start index ui, end index vi, and entity
type ti. The following is an example of segment-
based feature:

f001(x, ŷ, i) =


1 if x[ŷ.ui,ŷ.vi] = tire maker

ŷ.t(i−1), ŷ.ti = ⊥,ORG
0 otherwise

This feature is triggered if the labels of the (i−1)-
th and the i-th segments are “⊥,ORG”, and the text
of the i-th segment is “tire maker”. Our segment-
based features are described as follows:

Gazetteer features Entity type of each segment
based on matching a number of gazetteers includ-
ing persons, countries, cities and organizations.

Case features Whether a segment’s words are
initial-capitalized, all lower cased, or mixture.

Contextual features Unigrams and bigrams of
the text and part-of-speech tags in a segment’s
contextual window of size 2.

Parsing-based features Features derived from
constituent parsing trees, including (a) the phrase
type of the lowest common ancestor of the tokens
contained in the segment, (b) the depth of the low-
est common ancestor, (c) a binary feature indicat-
ing if the segment is a base phrase or a suffix of a
base phrase, and (d) the head words of the segment
and its neighbor phrases.

In addition, we convert each triple 〈ui, vi, ti〉 to
BILOU tags for the tokens it contains to imple-
ment token-based features. The token-based men-
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tion features and local relation features are identi-
cal to those of our pipelined system (Section 2.2).

4.2 Global Entity Mention Features

By virtue of the efficient inexact search, we are
able to use arbitrary features from the entire
structure of ŷ to capture long-distance dependen-
cies. The following features between related entity
mentions are extracted once a new segment is ap-
pended during decoding.

Coreference consistency Coreferential entity
mentions should be assigned the same entity type.
We determine high-recall coreference links be-
tween two segments in the same sentence using
some simple heuristic rules:

• Two segments exactly or partially string match.
• A pronoun (e.g., “their”,“it”) refers to previous

entity mentions. For example, in “they have
no insurance on their cars”, “they” and “their”
should have the same entity type.
• A relative pronoun (e.g., “which”,“that”, and

“who”) refers to the noun phrase it modifies in
the parsing tree. For example, in “the starting
kicker is nikita kargalskiy, who may be 5,000
miles from his hometown”, “nikita kargalskiy”
and “who” should both be labeled as persons.

Then we encode a global feature to check
whether two coreferential segments share the same
entity type. This feature is particularly effective
for pronouns because their contexts alone are of-
ten not informative.

Neighbor coherence Neighboring entity men-
tions tend to have coherent entity types. For ex-
ample, in “Barbara Starr was reporting from the
Pentagon”, “Barbara Starr” and “Pentagon” are
connected by a dependency link prep from and
thus they are unlikely to be a pair of PER men-
tions. Two types of neighbor are considered: (i)
the first entity mention before the current segment,
and (ii) the segment which is connected by a sin-
gle word or a dependency link with the current
segment. We take the entity types of the two seg-
ments and the linkage together as a global feature.
For instance, “PER prep from PER” is a feature
for the above example when “Barbara Starr” and
“Pentagon” are both labeled as PER mentions.

Part-of-whole consistency If an entity men-
tion is semantically part of another mention (con-
nected by a prep of dependency link), they should
be assigned the same entity type. For example,
in “some of Iraq’s exiles”, “some” and “exiles”

are both PER mentions; in “one of the town’s two
meat-packing plants”, “one” and “plants” are both
FACmentions; in “the rest of America”, “rest” and
“America” are both GPE mentions.

4.3 Global Relation Features

Relation arcs can also share inter-dependencies or
obey soft constraints. We extract the following
relation-centric global features when a new rela-
tion hypothesis is made during decoding.

Role coherence If an entity mention is involved
in multiple relations with the same type, then its
roles should be coherent. For example, a PER
mention is unlikely to have more than one em-
ployer. However, a GPE mention can be a physical
location for multiple entity mentions. We combine
the relation type and the entity mention’s argument
roles as a global feature, as shown in Figure 5a.

Triangle constraint Multiple entity mentions
are unlikely to be fully connected with the same
relation type. We use a negative feature to penalize
any configuration that contains this type of struc-
ture. An example is shown in Figure 5b.

Inter-dependent compatibility If two entity
mentions are connected by a dependency link, they
tend to have compatible relations with other enti-
ties. For example, in Figure 5c, the conj and de-
pendency link between “Somalia” and “Kosovo”
indicates they may share the same relation type
with the third entity mention “forces”.

Neighbor coherence Similar to the entity men-
tion neighbor coherence feature, we also combine
the types of two neighbor relations in the same
sentence as a bigram feature.

5 Experiments

5.1 Data and Scoring Metric

Most previous work on ACE relation extraction
has reported results on ACE’04 data set. As
we will show later in our experiments, ACE’05
made significant improvement on both relation
type definition and annotation quality. Therefore
we present the overall performance on ACE’05
data. We removed two small subsets in informal
genres - cts and un, and then randomly split the re-
maining 511 documents into 3 parts: 351 for train-
ing, 80 for development, and the rest 80 for blind
test. In order to compare with state-of-the-art we
also performed the same 5-fold cross-validation on
bnews and nwire subsets of ACE’04 corpus as in
previous work. The statistics of these data sets
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Figure 5: Examples of Global Relation Features.
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Figure 6: Learning Curves on Development Set.

are summarized in Table 1. We ran the Stanford
CoreNLP toolkit5 to automatically recover the true
cases for lowercased documents.

Data Set # sentences # mentions # relations

ACE’05
Train 7,273 26,470 4,779
Dev 1,765 6,421 1,179
Test 1,535 5,476 1,147

ACE’04 6,789 22,740 4,368

Table 1: Data Sets.

We use the standard F1 measure to evaluate the
performance of entity mention extraction and re-
lation extraction. An entity mention is considered
correct if its entity type is correct and the offsets
of its mention head are correct. A relation men-
tion is considered correct if its relation type is
correct, and the head offsets of two entity men-
tion arguments are both correct. As in Chan and

5http://nlp.stanford.edu/software/corenlp.shtml

Roth (2011), we excluded the DISC relation type,
and removed relations in the system output which
are implicitly correct via coreference links for fair
comparison. Furthermore, we combine these two
criteria to evaluate the performance of end-to-end
entity mention and relation extraction.

5.2 Development Results

In general a larger beam size can yield better per-
formance but increase training and decoding time.
As a tradeoff, we set the beam size as 8 through-
out the experiments. Figure 6 shows the learn-
ing curves on the development set, and compares
the performance with and without global features.
From these figures we can clearly see that global
features consistently improve the extraction per-
formance of both tasks. We set the number of
training iterations as 22 based on these curves.

5.3 Overall Performance

Table 2 shows the overall performance of various
methods on the ACE’05 test data. We compare
our proposed method (Joint w/ Global) with the
pipelined system (Pipeline), the joint model with
only local features (Joint w/ Local), and two hu-
man annotators who annotated 73 documents in
ACE’05 corpus.

We can see that our approach significantly out-
performs the pipelined approach for both tasks. As
a real example, for the partial sentence “a marcher
from Florida” from the test data, the pipelined ap-
proach failed to identify “marcher” as a PER men-
tion, and thus missed the GEN-AFF relation be-
tween “marcher” and “Florida”. Our joint model
correctly identified the entity mentions and their
relation. Figure 7 shows the details when the
joint model is applied to this sentence. At the
token “marcher”, the top hypothesis in the beam
is “〈⊥,⊥〉”, while the correct one is ranked sec-
ond best. After the decoder processes the token
“Florida”, the correct hypothesis is promoted to
the top in the beam by the Neighbor Coherence
features for PER-GPE pair. Furthermore, after
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Model Entity Mention (%) Relation (%) Entity Mention + Relation (%)
Score P R F1 P R F1 P R F1

Pipeline 83.2 73.6 78.1 67.5 39.4 49.8 65.1 38.1 48.0
Joint w/ Local 84.5 76.0 80.0 68.4 40.1 50.6 65.3 38.3 48.3
Joint w/ Global 85.2 76.9 80.8 68.9 41.9 52.1 65.4 39.8 49.5
Annotator 1 91.8 89.9 90.9 71.9 69.0 70.4 69.5 66.7 68.1
Annotator 2 88.7 88.3 88.5 65.2 63.6 64.4 61.8 60.2 61.0
Inter-Agreement 85.8 87.3 86.5 55.4 54.7 55.0 52.3 51.6 51.9

Table 2: Overall performance on ACE’05 corpus.

steps hypotheses rank

(a) ha? marcher?i 1

ha? marcherPERi 2

(b) ha? marcher? from?i 1

ha? marcherPER from?i 4

(c) ha? marcherPER from? FloridaGPEi 1

ha? marcher? from? FloridaGPEi 2

(d) ha? marcherPER from? FloridaGPEi
GEN-AFF

1

ha? marcher? from? FloridaGPEi 4

Figure 7: Two competing hypotheses for “a
marcher from Florida” during decoding.

linking the two mentions by GEN-AFF relation,
the ranking of the incorrect hypothesis “〈⊥,⊥〉”
is dropped to the 4-th place in the beam, resulting
in a large margin from the correct hypothesis.

The human F1 score on end-to-end relation ex-
traction is only about 70%, which indicates it is a
very challenging task. Furthermore, the F1 score
of the inter-annotator agreement is 51.9%, which
is only 2.4% above that of our proposed method.

Compared to human annotators, the bottleneck
of automatic approaches is the low recall of rela-
tion extraction. Among the 631 remaining miss-
ing relations, 318 (50.3%) of them were caused
by missing entity mention arguments. A lot of
nominal mention heads rarely appear in the train-
ing data, such as persons (“supremo”, “shep-
herd”, “oligarchs”, “rich”), geo-political entity
mentions (“stateside”), facilities (“roadblocks”,
“cells”), weapons (“sim lant”, “nukes”) and ve-
hicles (“prams”). In addition, relations are often
implicitly expressed in a variety of forms. Some
examples are as follows:

• “Rice has been chosen by President Bush to
become the new Secretary of State” indicates

“Rice” has a PER-SOC relation with “Bush”.
• “U.S. troops are now knocking on the door of

Baghdad” indicates “troops” has a PHYS rela-
tion with “Baghdad”.
• “Russia and France sent planes to Baghdad” in-

dicates “Russia” and “France” are involved in
an ART relation with “planes” as owners.

In addition to contextual features, deeper se-
mantic knowledge is required to capture such im-
plicit semantic relations.

5.4 Comparison with State-of-the-art
Table 3 compares the performance on ACE’04
corpus. For entity mention extraction, our joint
model achieved 79.7% on 5-fold cross-validation,
which is comparable with the best F1 score 79.2%
reported by (Florian et al., 2006) on single-
fold. However, Florian et al. (2006) used some
gazetteers and the output of other Information Ex-
traction (IE) models as additional features, which
provided significant gains ((Florian et al., 2004)).
Since these gazetteers, additional data sets and ex-
ternal IE models are all not publicly available, it is
not fair to directly compare our joint model with
their results.

For end-to-end entity mention and relation ex-
traction, both the joint approach and the pipelined
baseline outperform the best results reported
by (Chan and Roth, 2011) under the same setting.

6 Related Work

Entity mention extraction (e.g., (Florian et al.,
2004; Florian et al., 2006; Florian et al., 2010; Zi-
touni and Florian, 2008; Ohta et al., 2012)) and
relation extraction (e.g., (Reichartz et al., 2009;
Sun et al., 2011; Jiang and Zhai, 2007; Bunescu
and Mooney, 2005; Zhao and Grishman, 2005;
Culotta and Sorensen, 2004; Zhou et al., 2007;
Qian and Zhou, 2010; Qian et al., 2008; Chan
and Roth, 2011; Plank and Moschitti, 2013)) have
drawn much attention in recent years but were
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Model Entity Mention (%) Relation (%) Entity Mention + Relation (%)
Score P R F1 P R F1 P R F1

Chan and Roth (2011) - 42.9 38.9 40.8 -
Pipeline 81.5 74.1 77.6 62.5 36.4 46.0 58.4 33.9 42.9
Joint w/ Local 82.7 75.2 78.8 64.2 37.0 46.9 60.3 34.8 44.1
Joint w/ Global 83.5 76.2 79.7 64.7 38.5 48.3 60.8 36.1 45.3

Table 3: 5-fold cross-validation on ACE’04 corpus. Bolded scores indicate highly statistical significant
improvement as measured by paired t-test (p < 0.01)

usually studied separately. Most relation extrac-
tion work assumed that entity mention boundaries
and/or types were given. Chan and Roth (2011) re-
ported the best results using predicted entity men-
tions.

Some previous work used relations and en-
tity mentions to enhance each other in joint
inference frameworks, including re-ranking (Ji
and Grishman, 2005), Integer Linear Program-
ming (ILP) (Roth and Yih, 2004; Roth and Yih,
2007; Yang and Cardie, 2013), and Card-pyramid
Parsing (Kate and Mooney, 2010). All these
work noted the advantage of exploiting cross-
component interactions and richer knowledge.
However, they relied on models separately learned
for each subtask. As a key difference, our ap-
proach jointly extracts entity mentions and rela-
tions using a single model, in which arbitrary soft
constraints can be easily incorporated. Some other
work applied probabilistic graphical models for
joint extraction (e.g., (Singh et al., 2013; Yu and
Lam, 2010)). By contrast, our work employs an
efficient joint search algorithm without modeling
joint distribution over numerous variables, there-
fore it is more flexible and computationally sim-
pler. In addition, (Singh et al., 2013) used gold-
standard mention boundaries.

Our previous work (Li et al., 2013) used struc-
tured perceptron with token-based decoder to
jointly predict event triggers and arguments based
on the assumption that entity mentions and other
argument candidates are given as part of the in-
put. In this paper, we solve a more challeng-
ing problem: take raw texts as input and identify
the boundaries, types of entity mentions and rela-
tions all together in a single model. Sarawagi and
Cohen (2004) proposed a segment-based CRFs
model for name tagging. Zhang and Clark (2008)
used a segment-based decoder for word segmenta-
tion and pos tagging. We extended the similar idea
to our end-to-end task by incrementally predicting
relations along with entity mention segments.

7 Conclusions and Future Work

In this paper we introduced a new architecture
for more powerful end-to-end entity mention and
relation extraction. For the first time, we ad-
dressed this challenging task by an incremental
beam-search algorithm in conjunction with struc-
tured perceptron. While detecting mention bound-
aries jointly with other components raises the chal-
lenge of synchronizing multiple assignments in
the same beam, a simple yet effective segment-
based decoder is adopted to solve this problem.
More importantly, we exploited a set of global fea-
tures based on linguistic and logical properties of
the two tasks to predict more coherent structures.
Experiments demonstrated our approach signifi-
cantly outperformed pipelined approaches for both
tasks and dramatically advanced state-of-the-art.

In future work, we plan to explore more soft and
hard constraints to reduce search space as well as
improve accuracy. In addition, we aim to incorpo-
rate other IE components such as event extraction
into the joint model.
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