
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 18–23,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Supervised Model Learning with Feature Grouping
based on a Discrete Constraint

Jun Suzuki and Masaaki Nagata
NTT Communication Science Laboratories, NTT Corporation
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237 Japan
{suzuki.jun, nagata.masaaki}@lab.ntt.co.jp

Abstract

This paper proposes a framework of super-
vised model learning that realizes feature
grouping to obtain lower complexity mod-
els. The main idea of our method is to
integrate a discrete constraint into model
learning with the help of the dual decom-
position technique. Experiments on two
well-studied NLP tasks, dependency pars-
ing and NER, demonstrate that our method
can provide state-of-the-art performance
even if the degrees of freedom in trained
models are surprisingly small, i.e., 8 or
even 2. This significant benefit enables us
to provide compact model representation,
which is especially useful in actual use.

1 Introduction

This paper focuses on the topic of supervised
model learning, which is typically represented as
the following form of the optimization problem:

ŵ = arg min
w

{
O(w;D)

}
,

O(w;D) = L(w;D) + Ω(w),
(1)

where D is supervised training data that consists
of the corresponding input x and output y pairs,
that is, (x,y) ∈ D. w is an N -dimensional vector
representation of a set of optimization variables,
which are also interpreted as feature weights.
L(w;D) and Ω(w) represent a loss function and
a regularization term, respectively. Nowadays, we,
in most cases, utilize a supervised learning method
expressed as the above optimization problem to
estimate the feature weights of many natural lan-
guage processing (NLP) tasks, such as text clas-
sification, POS-tagging, named entity recognition,
dependency parsing, and semantic role labeling.

In the last decade, the L1-regularization tech-
nique, which incorporates L1-norm into Ω(w),
has become popular and widely-used in many
NLP tasks (Gao et al., 2007; Tsuruoka et al.,

2009). The reason is that L1-regularizers encour-
age feature weights to be zero as much as pos-
sible in model learning, which makes the resul-
tant model a sparse solution (many zero-weights
exist). We can discard all features whose weight
is zero from the trained model1 without any loss.
Therefore, L1-regularizers have the ability to eas-
ily and automatically yield compact models with-
out strong concern over feature selection.

Compact models generally have significant and
clear advantages in practice: instances are faster
loading speed to memory, less memory occupa-
tion, and even faster decoding is possible if the
model is small enough to be stored in cache mem-
ory. Given this background, our aim is to establish
a model learning framework that can reduce the
model complexity beyond that possible by sim-
ply applying L1-regularizers. To achieve our goal,
we focus on the recently developed concept of au-
tomatic feature grouping (Tibshirani et al., 2005;
Bondell and Reich, 2008). We introduce a model
learning framework that achieves feature group-
ing by incorporating a discrete constraint during
model learning.

2 Feature Grouping Concept

Going beyond L1-regularized sparse modeling,
the idea of ‘automatic feature grouping’ has re-
cently been developed. Examples are fused
lasso (Tibshirani et al., 2005), grouping pur-
suit (Shen and Huang, 2010), and OSCAR (Bon-
dell and Reich, 2008). The concept of automatic
feature grouping is to find accurate models that
have fewer degrees of freedom. This is equiva-
lent to enforce every optimization variables to be
equal as much as possible. A simple example is
that ŵ1 = (0.1, 0.5, 0.1, 0.5, 0.1) is preferred over
ŵ2 = (0.1, 0.3, 0.2, 0.5, 0.3) since ŵ1 and ŵ2

have two and four unique values, respectively.
There are several merits to reducing the degree
1This paper refers to model after completion of (super-

vised) model learning as “trained model”

18

of freedom. For example, previous studies clari-
fied that it can reduce the chance of over-fitting to
the training data (Shen and Huang, 2010). This is
an important property for many NLP tasks since
they are often modeled with a high-dimensional
feature space, and thus, the over-fitting problem is
readily triggered. It has also been reported that it
can improve the stability of selecting non-zero fea-
tures beyond that possible with the standard L1-
regularizer given the existence of many highly cor-
related features (Jörnsten and Yu, 2003; Zou and
Hastie, 2005). Moreover, it can dramatically re-
duce model complexity. This is because we can
merge all features whose feature weight values are
equivalent in the trained model into a single fea-
ture cluster without any loss.

3 Modeling with Feature Grouping

This section describes our proposal for obtaining
a feature grouping solution.

3.1 Integration of a Discrete Constraint
Let S be a finite set of discrete values, i.e., a set
integer from −4 to 4, that is, S={−4,. . . , −1, 0,
1, . . . , 4}. The detailed discussion how we define
S can be found in our experiments section since
it deeply depends on training data. Then, we de-
fine the objective that can simultaneously achieve
a feature grouping and model learning as follows:

O(w;D) =L(w;D) + Ω(w)
s.t. w ∈ SN . (2)

where SN is the cartesian power of a set S . The
only difference with Eq. 1 is the additional dis-
crete constraint, namely, w ∈ SN . This con-
straint means that each variable (feature weight)
in trained models must take a value in S, that is,
ŵn ∈ S , where ŵn is the n-th factor of ŵ, and
n ∈ {1, . . . , N}. As a result, feature weights in
trained models are automatically grouped in terms
of the basis of model learning. This is the basic
idea of feature grouping proposed in this paper.

However, a concern is how we can efficiently
optimize Eq. 2 since it involves a NP-hard combi-
natorial optimization problem. The time complex-
ity of the direct optimization is exponential against
N . Next section introduces a feasible algorithm.

3.2 Dual Decomposition Formulation
Hereafter, we strictly assume that L(w;D) and
Ω(w) are both convex in w. Then, the proper-
ties of our method are unaffected by the selection

of L(w;D) and Ω(w). Thus, we ignore their spe-
cific definition in this section. Typical cases can
be found in the experiments section. Then, we re-
formulate Eq. 2 by using the dual decomposition
technique (Everett, 1963):

O(w,u;D) =L(w;D) + Ω(w) + Υ(u)
s.t. w = u, and u ∈ SN . (3)

Difference from Eq. 2, Eq. 3 has an additional term
Υ(u), which is similar to the regularizer Ω(w),
whose optimization variables w and u are tight-
ened with equality constraint w = u. Here, this
paper only considers the case Υ(u) = λ2

2 ||u||22 +
λ1||u||1, and λ2 ≥ 0 and λ1 ≥ 02. This objec-
tive can also be viewed as the decomposition of
the standard loss minimization problem shown in
Eq. 1 and the additional discrete constraint regu-
larizer by the dual decomposition technique.

To solve the optimization in Eq. 3, we lever-
age the alternating direction method of multiplier
(ADMM) (Gabay and Mercier, 1976; Boyd et al.,
2011). ADMM provides a very efficient optimiza-
tion framework for the problem in the dual decom-
position form. Here, α represents dual variables
for the equivalence constraint w=u. ADMM in-
troduces the augmented Lagrangian term ρ

2 ||w −
u||22 with ρ>0 which ensures strict convexity and
increases robustness3.

Finally, the optimization problem in Eq. 3 can
be converted into a series of iterative optimiza-
tion problems. Detailed derivation in the general
case can be found in (Boyd et al., 2011). Fig. 1
shows the entire model learning framework of our
proposed method. The remarkable point is that
ADMM works by iteratively computing one of the
three optimization variable sets w, u, and α while
holding the other variables fixed in the iterations
t = 1, 2, . . . until convergence.

Step1 (w-update): This part of the optimiza-
tion problem shown in Eq. 4 is essentially Eq. 1
with a ‘biased’ L2-regularizer. ‘bias’ means here
that the direction of regularization is toward point
a instead of the origin. Note that it becomes a
standard L2-regularizer if a = 0. We can select
any learning algorithm that can handle the L2-
regularizer for this part of the optimization.

Step2 (u-update): This part of the optimization
problem shown in Eq. 5 can be rewritten in the

2Note that this setting includes the use of only L1-, L2-,
or without regularizers (L1 only: λ1>0 and λ2=0, L2 only:
λ1=0 and λ2>0, and without regularizer: λ1=0, λ2=0).

3Standard dual decomposition can be viewed as ρ=0

19

Input: Training data:D, parameters:ρ, ξ, εprimal, and εdual

Initialize: w(1) = 0, u(1) = 0, α(1) = 0, and t = 1.
Step1 w-update:
Solve w(t+1) = argminw{O(w;D,u(t),α(t))}.
For our case,

O(w;D,u,α) =O(w;D) + ρ

2
||w − a||22, (4)

where a = u−α.

Step2 u-update:
Solve u(t+1) = argminu{O(u;D,w(t+1),α(t))}.
For our case,

O(u;D,w,α) =
λ2

2
||u||22 + λ1||u||1 + ρ

2
||b− u||22

s.t. u ∈ SN ,
(5)where b = w +α

Step3 α-update:
α(t+1) =α(t) + ξ(w(t+1) − u(t+1)) (6)

Step4 convergence check:
||w(t+1) − u(t+1)||22/N < εprimal

||u(t+1) − u(t)||22/N < εdual
(7)

Break the loop if the above two conditions are reached,
or go back to Step1 with t = t+ 1.

Output: u(t+1)

Figure 1: Entire learning framework of our
method derived from ADMM (Boyd et al., 2011).

following equivalent simple form:

û= arg minu{12 ||u− b′||22 + λ′1||u||1}
s.t. u ∈ SN , (8)

where b′ = ρ
λ2+ρ

b, and λ′1 = λ1
λ2+ρ

. This
optimization is still a combinatorial optimization
problem. However unlike Eq. 2, this optimization
can be efficiently solved.

Fig. 2 shows the procedure to obtain the exact
solution of Eq. 5, namely u(t+1). The remarkable
point is that the costly combinatorial optimization
problem is disappeared, and instead, we are only
required to perform two feature-wise calculations
whose total time complexities isO(N log |S|) and
fully parallelizable. The similar technique has
been introduced in Zhong and Kwok (2011) for
discarding a costly combinatorial problem from
the optimization with OSCAR-regularizers with
the help of proximal gradient methods, i.e., (Beck
and Teboulle, 2009).

We omit to show the detailed derivation of
Fig. 2 because of the space reason. However, this
is easily understandable. The key properties are
the following two folds; (i) The objective shown
in Eq. 8 is a convex and also symmetric function
with respect to û′, where û′ is the optimal solution
of Eq. 8 without the discrete constraint. Therefore,
the optimal solution û is at the point where the

Input: b′ = (b′n)
N
n=1, λ′

1, and S.
1, Find the optimal solution of Eq. 8 without the constraint.

The optimization of mixed L2 and L1-norms is known
to have a closed form solution, i.e., (Beck and Teboulle,
2009), that is;

û′
n = sgn(b′n)max(0, |b′n| − λ′

1),

where (û′
n)

N
n=1 = û′.

2, Find the nearest valid point in SN from û′ in terms of the
L2-distance;

ûn = argmin
u∈S

(û′
n − u)2

where (ûn)
N
n=1 = û. This can be performed by a binary

search, whose time complexity is generally O(log |S|).
Output: û

Figure 2: Procedure for solving Step2

nearest valid point given SN from û′ in terms of
the L2-distance. (ii) The valid points given SN are
always located at the vertexes of axis-aligned or-
thotopes (hyperrectangles) in the parameter space
of feature weights. Thus, the solution û, which is
the nearest valid point from û′, can be obtained by
individually taking the nearest value in S from û′n
for all n.

Step3 (α-update): We perform gradient ascent
on dual variables to tighten the constraint w = u.
Note that ξ is the learning rate; we can simply set
it to 1.0 for every iteration (Boyd et al., 2011).

Step4 (convergence check): It can be evaluated
both primal and dual residuals as defined in Eq. 7
with suitably small εprimal and εdual.

3.3 Online Learning

We can select an online learning algorithm for
Step1 since the ADMM framework does not re-
quire exact minimization of Eq. 4. In this case, we
perform one-pass update through the data in each
ADMM iteration (Duh et al., 2011). Note that the
total calculation cost of our method does not in-
crease much from original online learning algo-
rithm since the calculation cost of Steps 2 through
4 is relatively much smaller than that of Step1.

4 Experiments

We conducted experiments on two well-studied
NLP tasks, namely named entity recognition
(NER) and dependency parsing (DEPAR).

Basic settings: We simply reused the settings
of most previous studies. We used CoNLL’03
data (Tjong Kim Sang and De Meulder, 2003)
for NER, and the Penn Treebank (PTB) III cor-
pus (Marcus et al., 1994) converted to depen-
dency trees for DEPAR (McDonald et al., 2005).

20

Our decoding models are the Viterbi algorithm
on CRF (Lafferty et al., 2001), and the second-
order parsing model proposed by (Carreras, 2007)
for NER and DEPAR, respectively. Features
are automatically generated according to the pre-
defined feature templates widely-used in the pre-
vious studies. We also integrated the cluster fea-
tures obtained by the method explained in (Koo et
al., 2008) as additional features for evaluating our
method in the range of the current best systems.

Evaluation measures: The purpose of our ex-
periments is to investigate the effectiveness of our
proposed method in terms of both its performance
and the complexity of the trained model. There-
fore, our evaluation measures consist of two axes.
Task performance was mainly evaluated in terms
of the complete sentence accuracy (COMP) since
the objective of all model learning methods eval-
uated in our experiments is to maximize COMP.
We also report the Fβ=1 score (F-sc) for NER,
and the unlabeled attachment score (UAS) for DE-
PAR for comparison with previous studies. Model
complexity is evaluated by the number of non-zero
active features (#nzF) and the degree of freedom
(#DoF) (Zhong and Kwok, 2011). #nzF is the
number of features whose corresponding feature
weight is non-zero in the trained model, and #DoF
is the number of unique non-zero feature weights.

Baseline methods: Our main baseline is L1-
regularized sparse modeling. To cover both batch
and online leaning, we selected L1-regularized
CRF (L1CRF) (Lafferty et al., 2001) optimized by
OWL-QN (Andrew and Gao, 2007) for the NER
experiment, and the L1-regularized regularized
dual averaging (L1RDA) method (Xiao, 2010)4

for DEPAR. Additionally, we also evaluated L2-
regularized CRF (L2CRF) with L-BFGS (Liu and
Nocedal, 1989) for NER, and passive-aggressive
algorithm (L2PA) (Crammer et al., 2006)5 for DE-
PAR since L2-regularizer often provides better re-
sults than L1-regularizer (Gao et al., 2007).

For a fair comparison, we applied the proce-
dure of Step2 as a simple quantization method
to trained models obtained from L1-regularized
model learning, which we refer to as (QT).

4RDA provided better results at least in our experiments
than L1-regularized FOBOS (Duchi and Singer, 2009), and
its variant (Tsuruoka et al., 2009), which are more familiar to
the NLP community.

5L2PA is also known as a loss augmented variant of one-
best MIRA, well-known in DEPAR (McDonald et al., 2005).

4.1 Configurations of Our Method
Base learning algorithm: The settings of our
method in our experiments imitate L1-regularized
learning algorithm since the purpose of our
experiments is to investigate the effectiveness
against standard L1-regularized learning algo-
rithms. Then, we have the following two possible
settings; DC-ADMM: we leveraged the baseline
L1-regularized learning algorithm to solve Step1,
and set λ1 = 0 and λ2 = 0 for Step2. DCwL1-
ADMM: we leveraged the baselineL2-regularized
learning algorithm, but without L2-regularizer, to
solve Step1, and set λ1 > 0 and λ2 = 0 for Step2.
The difference can be found in the objective func-
tion O(w,u;D) shown in Eq. 3;

(DC-ADMM) : O(w,u;D)=L(w;D)+λ1||w||1
(DCwL1-ADMM) : O(w,u;D)=L(w;D)+λ1||u||1

In other words, DC-ADMM utilizes L1-
regularizer as a part of base leaning algorithm
Ω(w)=λ1||w||1, while DCwL1-ADMM discards
regularizer of base learning algorithm Ω(w), but
instead introducing Υ(u) = λ1||u||1. Note that
these two configurations are essentially identical
since objectives are identical, even though the
formulation and algorithm is different. We only
report results of DC-ADMM because of the space
reason since the results of DCwL1-ADMM were
nearly equivalent to those of DC-ADMM.

Definition of S: DC-ADMM can utilize any fi-
nite set for S. However, we have to carefully se-
lect it since it deeply affects the performance. Ac-
tually, this is the most considerable point of our
method. We preliminarily investigated the several
settings. Here, we introduce an example of tem-
plate which is suitable for large feature set. Let
η, δ, and κ represent non-negative real-value con-
stants, ζ be a positive integer, σ = {−1, 1}, and
a function fη,δ,κ(x, y) = y(ηκx + δ). Then, we
define a finite set of values S as follows:

Sη,δ,κ,ζ ={fη,δ,κ(x, y)|(x, y) ∈ Sζ×σ} ∪ {0},
where Sζ is a set of non-negative integers from
zero to ζ − 1, that is, Sζ ={m}ζ−1m=0. For example,
if we set η = 0.1, δ = 0.4, κ= 4, and ζ = 3, then
Sη,δ,κ,ζ = {−2.0, −0.8, −0.5, 0, 0.5, 0.8, 2.0}.
The intuition of this template is that the distribu-
tion of the feature weights in trained model often
takes a form a similar to that of the ‘power law’
in the case of the large feature sets. Therefore, us-
ing an exponential function with a scale and bias
seems to be appropriate for fitting them.

21

81.0

83.0

85.0

87.0

89.0

91.0

1.0E+00 1.0E+03 1.0E+06

DC-ADMM

L1CRF (w/ QT)

L1CRF

L2CRF

C
o

m
p

le
te

 S
en

te
n

ce
 A

cc
u

ra
cy

quantized

of degrees of freedom (#DoF) [log-scale]

30.0

35.0

40.0

45.0

50.0

55.0

1.0E+00 1.0E+03 1.0E+06

DC-ADMM

L1RAD (w/ QT)

L1RDA

L2PA

C
o

m
p

le
te

 S
en

te
n

ce
 A

cc
u

ra
cy

quantized

of degrees of freedom (#DoF) [log-scale]

(a) NER (b) DEPAR
Figure 3: Performance vs. degree of freedom in
the trained model for the development data

Note that we can control the upper bound of
#DoF in trained model by ζ, namely if ζ = 4 then
the upper bound of #DoF is 8 (doubled by posi-
tive and negative sides). We fixed ρ = 1, ξ = 1,
λ2 = 0, κ = 4 (or 2 if ζ ≥ 5), δ = η/2 in all ex-
periments. Thus the only tunable parameter in our
experiments is η for each ζ.

4.2 Results and Discussions

Fig. 3 shows the task performance on the develop-
ment data against the model complexities in terms
of the degrees of freedom in the trained models.
Plots are given by changing the ζ value for DC-
ADMM andL1-regularized methods with QT. The
plots of the standard L1-regularized methods are
given by changing the regularization constants λ1.
Moreover, Table 1 shows the final results of our
experiments on the test data. The tunable param-
eters were fixed at values that provided the best
performance on the development data.

According to the figure and table, the most re-
markable point is that DC-ADMM successfully
maintained the task performance even if #DoF (the
degree of freedom) was 8, and the performance
drop-offs were surprisingly limited even if #DoF
was 2, which is the upper bound of feature group-
ing. Moreover, it is worth noting that the DC-
ADMM performance is sometimes improved. The
reason may be that such low degrees of freedom
prevent over-fitting to the training data. Surpris-
ingly, the simple quantization method (QT) pro-
vided fairly good results. However, we empha-
size that the models produced by the QT approach
offer no guarantee as to the optimal solution. In
contrast, DC-ADMM can truly provide the opti-
mal solution of Eq. 3 since the discrete constraint
is also considered during the model learning.

In general, a trained model consists of two parts:

Test Model complex.
NER COMP F-sc #nzF #DoF
L2CRF 84.88 89.97 61.6M 38.6M
L1CRF 84.85 89.99 614K 321K

(w/ QT ζ=4) 78.39 85.33 568K 8
(w/ QT ζ=2) 73.40 81.45 454K 4
(w/ QT ζ=1) 65.53 75.87 454K 2

DC-ADMM (ζ=4) 84.96 89.92 643K 8
(ζ=2) 84.04 89.35 455K 4
(ζ=1) 83.06 88.62 364K 2

Test Model complex.
DEPER COMP UAS #nzF #DoF
L2PA 49.67 93.51 15.5M 5.59M
L1RDA 49.54 93.48 7.76M 3.56M

(w/ QT ζ=4) 38.58 90.85 6.32M 8
(w/ QT ζ=2) 34.19 89.42 3.08M 4
(w/ QT ζ=1) 30.42 88.67 3.08M 2

DC-ADMM (ζ=4) 49.83 93.55 5.81M 8
(ζ=2) 48.97 93.18 4.11M 4
(ζ=1) 46.56 92.86 6.37M 2

Table 1: Comparison results of the methods on test
data (K: thousand, M: million)

feature weights and an indexed structure of fea-
ture strings, which are used as the key for obtain-
ing the corresponding feature weight. This paper
mainly discussed how to reduce the size of the for-
mer part, and described its successful reduction.
We note that it is also possible to reduce the lat-
ter part especially if the feature string structure is
TRIE. We omit the details here since it is not the
main topic of this paper, but by merging feature
strings that have the same feature weights, the size
of entire trained models in our DEPAR case can be
reduced to about 10 times smaller than those ob-
tained by standard L1-regularization, i.e., to 12.2
MB from 124.5 MB.

5 Conclusion

This paper proposed a model learning framework
that can simultaneously realize feature grouping
by the incorporation of a simple discrete con-
straint into model learning optimization. This
paper also introduced a feasible algorithm, DC-
ADMM, which can vanish the infeasible combi-
natorial optimization part from the entire learning
algorithm with the help of the ADMM technique.
Experiments showed that DC-ADMM drastically
reduced model complexity in terms of the degrees
of freedom in trained models while maintaining
the performance. There may exist theoretically
cleverer approaches to feature grouping, but the
performance of DC-ADMM is close to the upper
bound. We believe our method, DC-ADMM, to be
very useful for actual use.

22

References
Galen Andrew and Jianfeng Gao. 2007. Scal-

able Training of L1-regularized Log-linear Models.
In Zoubin Ghahramani, editor, Proceedings of the
24th Annual International Conference on Machine
Learning (ICML 2007), pages 33–40. Omnipress.

Amir Beck and Marc Teboulle. 2009. A Fast Iter-
ative Shrinkage-thresholding Algorithm for Linear
Inverse Problems. SIAM Journal on Imaging Sci-
ences, 2(1):183–202.

Howard D. Bondell and Brian J. Reich. 2008. Simulta-
neous Regression Shrinkage, Variable Selection and
Clustering of Predictors with OSCAR. Biometrics,
64(1):115.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
and Jonathan Eckstein. 2011. Distributed Opti-
mization and Statistical Learning via the Alternat-
ing Direction Method of Multipliers. Foundations
and Trends in Machine Learning.

Xavier Carreras. 2007. Experiments with a Higher-
Order Projective Dependency Parser. In Proceed-
ings of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007, pages 957–961.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. On-
line Passive-Aggressive Algorithms. Journal of Ma-
chine Learning Research, 7:551–585.

John Duchi and Yoram Singer. 2009. Efficient On-
line and Batch Learning Using Forward Backward
Splitting. Journal of Machine Learning Research,
10:2899–2934.

Kevin Duh, Jun Suzuki, and Masaaki Nagata. 2011.
Distributed Learning-to-Rank on Streaming Data
using Alternating Direction Method of Multipliers.
In NIPS’11 Big Learning Workshop.

Hugh Everett. 1963. Generalized Lagrange Multiplier
Method for Solving Problems of Optimum Alloca-
tion of Resources. Operations Research, 11(3):399–
417.

Daniel Gabay and Bertrand Mercier. 1976. A Dual
Algorithm for the Solution of Nonlinear Variational
Problems via Finite Element Approximation. Com-
puters and Mathematics with Applications, 2(1):17
– 40.

Jianfeng Gao, Galen Andrew, Mark Johnson, and
Kristina Toutanova. 2007. A comparative study of
parameter estimation methods for statistical natural
language processing. In Proceedings of the 45th An-
nual Meeting of the Association of Computational
Linguistics, pages 824–831, Prague, Czech Repub-
lic, June. Association for Computational Linguis-
tics.

Rebecka Jörnsten and Bin Yu. 2003. Simulta-
neous Gene Clustering and Subset Selection for

Sample Classification Via MDL. Bioinformatics,
19(9):1100–1109.

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple Semi-supervised Dependency Pars-
ing. In Proceedings of ACL-08: HLT, pages 595–
603.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Se-
quence Data. In Proceedings of the International
Conference on Machine Learning (ICML 2001),
pages 282–289.

Dong C. Liu and Jorge Nocedal. 1989. On the Limited
Memory BFGS Method for Large Scale Optimiza-
tion. Math. Programming, Ser. B, 45(3):503–528.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online Large-margin Training of
Dependency Parsers. In Proceedings of the 43rd An-
nual Meeting on Association for Computational Lin-
guistics, pages 91–98.

Xiaotong Shen and Hsin-Cheng Huang. 2010. Group-
ing Pursuit Through a Regularization Solution Sur-
face. Journal of the American Statistical Associa-
tion, 105(490):727–739.

Robert Tibshirani, Michael Saunders, Saharon Ros-
set, Ji Zhu, and Keith Knight. 2005. Sparsity and
Smoothness via the Fused Lasso. Journal of the
Royal Statistical Society Series B, pages 91–108.

Erik Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition.
In Proceedings of CoNLL-2003, pages 142–147.

Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia Ana-
niadou. 2009. Stochastic Gradient Descent Training
for L1-regularized Log-linear Models with Cumu-
lative Penalty. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 477–485.

Lin Xiao. 2010. Dual Averaging Methods for Regular-
ized Stochastic Learning and Online Optimization.
Journal of Machine Learning Research, 11:2543–
2596.

Leon Wenliang Zhong and James T. Kwok. 2011.
Efficient Sparse Modeling with Automatic Feature
Grouping. In ICML.

Hui Zou and Trevor Hastie. 2005. Regularization and
Variable Selection via the Elastic Net. Journal of the
Royal Statistical Society, Series B, 67:301–320.

23

