
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 1547–1557,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Combining Referring Expression Generation and Surface Realization:
A Corpus-Based Investigation of Architectures

Sina Zarrieß Jonas Kuhn
Institut für maschinelle Sprachverarbeitung

University of Stuttgart, Germany
sina.zarriess,jonas.kuhn@ims.uni-stuttgart.de

Abstract

We suggest a generation task that inte-
grates discourse-level referring expression
generation and sentence-level surface re-
alization. We present a data set of Ger-
man articles annotated with deep syntax
and referents, including some types of im-
plicit referents. Our experiments compare
several architectures varying the order of a
set of trainable modules. The results sug-
gest that a revision-based pipeline, with in-
termediate linearization, significantly out-
performs standard pipelines or a parallel
architecture.

1 Introduction

Generating well-formed linguistic utterances from
an abstract non-linguistic input involves making
a multitude of conceptual, discourse-level as well
as sentence-level, lexical and syntactic decisions.
Work on rule-based natural language generation
(NLG) has explored a number of ways to com-
bine these decisions in an architecture, ranging
from integrated systems where all decisions hap-
pen jointly (Appelt, 1982) to strictly sequential
pipelines (Reiter and Dale, 1997). While inte-
grated or interactive systems typically face issues
with efficiency and scalability, they can directly
account for interactions between discourse-level
planning and linguistic realization. For instance,
Rubinoff (1992) mentions Example (1) where the
sentence planning component needs to have ac-
cess to the lexical knowledge that “order” and not
“home” can be realized as a verb in English.

(1) a. *John homed him with an order.
b. John ordered him home.

In recent data-driven generation research, the
focus has somewhat shifted from full data-to-text
systems to approaches that isolate well-defined

subproblems from the NLG pipeline. In particular,
the tasks of surface realization and referring ex-
pression generation (REG) have received increas-
ing attention using a number of available anno-
tated data sets (Belz and Kow, 2010; Belz et al.,
2011). While these single-task approaches have
given rise to many insights about algorithms and
corpus-based modelling for specific phenomena,
they can hardly deal with aspects of the architec-
ture and interaction between generation levels.

This paper suggests a middle ground between
full data-to-text and single-task generation, com-
bining two well-studied NLG problems. We in-
tegrate a discourse-level approach to REG with
sentence-level surface realization in a data-driven
framework. We address this integrated task with a
set of components that can be trained on flexible
inputs which allows us to systematically explore
different ways of arranging the components in a
generation architecture. Our main goal is to inves-
tigate how different architectural set-ups account
for interactions between generation decisions at
the level of referring expressions (REs), syntax
and word order.

Our basic set-up is inspired from the Generating
Referring Expressions in Context (GREC) tasks,
where candidate REs have to be assigned to in-
stances of a referent in a Wikipedia article (Belz
and Kow, 2010). We have created a dataset of Ger-
man texts with annotations that extend this stan-
dard in three substantial ways: (i) our domain con-
sists of articles about robbery events that mainly
involve two main referents, a victim and a per-
petrator (perp), (ii) annotations include deep and
shallow syntactic relations similar to the repre-
sentations used in (Belz et al., 2011) (iii) anno-
tations include empty referents, as e.g. in passives
and nominalizations directing attention to the phe-
nomenon of implicit reference, which is largely
understudied in NLG. Figure 1 presents an exam-
ple for a deep syntax tree with underspecified RE

1547

(Tree) be

agent
perp

mod
on

pobj
trial

mod
because

sub
attack

agent
perp

theme
victim

perp italians

two

men

the two

they <empty>

victim man

a young

victim

the

he <empty>

Figure 1: Underspecified tree with RE candidates

slots and lists of candidates REs for each referent.
Applying a strictly sequential pipeline on our

data, we observe incoherent system output that
is related to an interaction of generation levels,
very similar to the interleaving between sentence
planning and lexicalization in Example (1). A
pipeline that first inserts REs into the underspec-
ified tree in Figure 1, then generates syntax and fi-
nally linearizes, produces inappropriate sentences
like (2-a).

(2) a. *[The two men]p are on trial because of an attack
by [two italians]p on [a young man]v .

b. [Two italians]p are on trial because of an attack on
[a young man]v .

Sentence (2-a) is incoherent because the syntac-
tic surface obscurs the intended meaning that “two
italians” and “the two men” refer to the same ref-
erent. In order to generate the natural Sentence
(2-b), the RE component needs information about
linear precedence of the two perp instances and the
nominalization of “attack”. These types of inter-
actions between referential and syntactic realiza-
tion have been thoroughly discussed in theoretical
accounts of textual coherence, as e.g. Centering
Theory (Grosz et al., 1995).

The integrated modelling of REG and surface
realization leads to a considerable expansion of
the choice space. In a sentence with 3 referents
that each have 10 RE candidates and can be freely
ordered, the number of surface realizations in-
creases from 6 to 6·103, assuming that the remain-
ing words can not be syntactically varied. Thus,
even when the generation problem is restricted to
these tasks, a fully integrated architecture faces
scalability issues on realistic corpus data.

In this work, we assume a modular set-up of
the generation system that allows for a flexible
ordering of the single components. Our experi-
ments vary 3 parameters of the generation archi-
tecture: 1) the sequential order of the modules,
2) parallelization of modules, 3) joint vs. sepa-
rate modelling of implicit referents. Our results
suggest that the interactions between RE and syn-
tax can be modelled in sequential generation ar-
chitecture where the RE component has access
to information about syntactic realization and an
approximative, intermediate linearization. Such
a system is reminiscent of earlier work in rule-
based generation that implements an interactive or
revision-based feedback between discourse-level
planning and linguistic realisation (Hovy, 1988;
Robin, 1993).

2 Related Work

Despite the common view of NLG as a pipeline
process, it is a well-known problem that high-
level, conceptual knowledge and low-level lin-
guistic knowledge are tightly interleaved (Danlos,
1984; Mellish et al., 2000). In rule-based, strictly
sequential generators these interactions can lead
to a so-called generation gap, where a down-
stream module cannot realize a text or sentence
plan generated by the preceding modules (Meteer,
1991; Wanner, 1994). For this reason, a num-
ber of other architectures has been proposed, see
De Smedt et al. (1996) for an overview. For rea-
sons of tractability and scalability, many prac-
tical NLG systems still have been designed as
sequential pipelines that follow the basic layout
of macroplanning-microplanning-linguistic real-
ization (Reiter, 1994; Cahill et al., 1999; Bateman
and Zock, 2003).

In recent data-driven research on NLG, many
single tasks have been addressed with corpus-
based methods. For surface realization, the stan-
dard set-up is to regenerate from syntactic rep-
resentations that have been produced for realis-
tic corpus sentences. The first widely known sta-
tistical approach by Langkilde and Knight (1998)
used language-model n-gram statistics on a word
lattice of candidate realisations to guide a ranker.
Subsequent work explored ways of exploiting lin-
guistically annotated data for trainable generation
models (Ratnaparkhi, 2000; Belz, 2005). Work on
data-driven approaches has led to insights about
the importance of linguistic features for sentence

1548

linearization decisions (Ringger et al., 2004; Filip-
pova and Strube, 2007; Cahill and Riester, 2009).
(Zarrieß et al., 2012) have recently argued that
the good performance of these linguistically mo-
tivated word order models, which exploit morpho-
syntactic features of noun phrases (i.e. refer-
ents), is related to the fact that these morpho-
syntactic features implicitly encode a lot of knowl-
edge about the underlying discourse or informa-
tion structure.

A considerable body of REG research has been
done in the paradigm established by Dale (1989;
1995). More closely related to our work are ap-
proaches in the line of Siddarthan and Copes-
take (2004) or Belz and Varges (2007) who gener-
ate contextually appropriate REs for instances of a
referent in a text. Belz and Varges (2007)’s GREC
data set includes annotations of implicit subjects
in coordinations. Zarrieß et al. (2011) deal with
implicit subjects in passives, proposing a set of
heuristics for adding these agents to the genera-
tion input. Roth and Frank (2012) acquire au-
tomatic annotations of implicit roles for the pur-
pose of studying coherence patterns in texts. Im-
plicit referents have also received attention for the
analysis of semantic roles (Gerber and Chai, 2010;
Ruppenhofer et al., 2010).

Statistical methods for data-to-text generation
have been explored only recently. Belz (2008)
trains a probabilistic CFG to generate weather
forecasts, Chen et al. (2010) induce a synchronous
grammar to generate sportcaster text. Both ad-
dress a restricted domain where a direct align-
ment between units in the non-linguistic represen-
tation and the linguistic utterance can be learned.
Marciniak and Strube (2005) propose an ILP
model for global optimization in a generation task
that is decomposed into a set of classifiers. Bohnet
et al. (2011) deal with multi-level generation in a
statistical framework and in a less restricted do-
main. They adopt a standard sequential pipeline
approach.

Recent corpus-based generation approaches
faced the problem that existing standard treebank
representations for parsing or other analysis tasks
do not necessarily fit the needs of generation
(Bohnet et al., 2010; Wanner et al., 2012). Zarrieß
et al. (2011) discuss the problem of an input rep-
resentation that is appropriately underspecified for
the realistic generation of voice alternations.

3 The Data Set

The data set for our generation experiments con-
sists of 200 newspaper articles about robbery
events. The articles were extracted from a large
German newspaper corpus. A complete example
text with RE annotations is given in Figure 2, Ta-
ble 1 summarizes some data set statistics.

3.1 RE annotation

The RE annotations mark explicit and implicit
mentions of referents involved in the robbery event
described in an article. Explicit mentions are
marked as spans on the surface sentence, labeled
with the referent’s role and an ID. We annotate the
following referential roles: (i) perpetrator (perp),
(ii) victim, (iii) source, according to the core roles
of the Robbery frame in English FrameNet. We
include source since some texts do not mention a
particular victim, but rather the location of the rob-
bery (e.g. a bank, a service station). The ID distin-
guishes referents that have the same role, e.g. “the
husband” and the “young family” in Sentences
(3-a) and (3-d) in Figure 2. Each RE is linked to
its syntactic head. This complies with the GREC
data sets, and is also useful for further annotation
of the deep syntax level (see Section 3.2).

The RE implicit mentions of victim, perp, and
source are annotated as attributes of their syntac-
tic heads in the surface sentence. We consider the
following types of implicit referents: (i) agents in
passives (e.g. “robbed” in (3-a)), (ii) arguments of
nominalizations (e.g. “resistance” in (3-e)), (iii)
possessives (e.g. “watch” in (3-f)), (iv) missing
subjects in coordinations. (e.g. “flee” in (3-f))

The brat tool (Stenetorp et al., 2012) was used
for annotation. We had 2 annotators with a compu-
tational linguistic background, provided with an-
notation guidelines. They were trained on a set of
20 texts. We measure a good agreement on another
set of 15 texts: the simple pairwise agreement for
explicit mentions is 95.14%-96.53% and 78.94%-
76.92% for implicit mentions.1

3.2 Syntax annotation

The syntactic annotation of our data includes two
layers: shallow and deep, labeled dependencies,
similar to the representation used in surface real-
ization shared tasks (Belz et al., 2011). We use

1Standard measures for the “above chance annotator
agreement” are only defined for task where the set of anno-
tated items is pre-defined.

1549

(3) a.
�� ��Junge Familie v:0�� ��Young family

auf
on

dem
the

Heimwegposs:v

way homeposs:v
ausgeraubtag:p
robbedag:p

b. Die
The

Polizei
police

sucht
looks

nach
for

zwei ungepflegt wirkenden jungen Männern im Alter von etwa 25 Jahren p:0.

two shabby-looking young men of about 25 years .

c. Sie p:0

They
sollen
are said to

am
on

Montag
Monday

gegen
around

20
20

Uhr
o’clock

�� ��eine junge Familie mit ihrem sieben Monate alten Baby v:0�� ��a young family with their seven month old baby

auf
on

dem
the

Heimwegposs:v

way homeposs:v
von
from

einem
a

Einkaufsbummel
shopping tour

überfallen
attacked

und
and

ausgeraubt
robbed

haben.
have.

d. Wie
As

die
the

Polizei
police

berichtet,
reports,

drohten
threatened

die zwei Männer p:0

the two men

�� ��dem Ehemann v:1,�� ��the husband

�� ��ihn v:1�� ��him
zusammenzuschlagen.
beat up.

e.
�� ��Er v:1�� ��He

gab
gave

deshalb
therefore

�� ��seine v:1�� ��his
Brieftasche
wallet

ohne
without

Gegenwehrag:v,the:p
resistanceag:v,the:p

heraus.
out.

f. Anschließend
Afterwards

nahmen
took

�� ��ihm v:1�� ��him
die Räuber p:0

the robbers
noch
also

die
the

Armbanduhrposs:v
watchposs:v

ab
off

und
and

flüchtetenag:p.
fleedag:p.

Figure 2: Example text with RE annotations, oval boxes mark victim mentions, square boxes mark perp
mentions, heads of implicit arguments are underlined

the Bohnet (2010) dependency parser to obtain an
automatic annotation of shallow or surface depen-
dencies for the corpus sentences.

The deep syntactic dependencies are derived
from the shallow layer by a set of hand-written
transformation rules. The goal is to link referents
to their main predicate in a uniform way, indepen-
dently of the surface-syntactic realization of the
verb. We address passives, nominalizations and
possessives corresponding to the contexts where
we annotated implicit referents (see above). The
transformations are defined as follows:

1. remove auxiliary nodes, verb morphology and finite-
ness, a tense feature distinguishes past and present, e.g.
“haben:AUX überfallen:VVINF” (have attacked) maps
to “überfallen:VV:PAST” (attack:PAST)

2. map subjects in actives and oblique agents in passives
to “agents”; objects in actives and subjects in passive to
“themes”, e.g. victim/subj was attacked by perp/obl-ag
maps to perp/agent attack victim/theme

3. attach particles to verb lemma, e.g. “gab” ... “heraus”
in (3-e) is mapped to “herausgeben” (give to)

4. map nominalized to verbal lemmas, their prepositional
and genitive arguments to semantic subjects and ob-
jects, e.g. attack on victim is mapped to attack vic-
tim/theme

5. normalize prenominal and genitive postnominal poses-
sives, e.g. “seine Brieftasche” (his wallet) and “die
Brieftasche des Opfers” (the wallet of the victim) map
to “die Brieftasche POSS victim” (the wallet of victim),
only applies if possessive is an annotated RE

Nominalizations are mapped to their verbal
base forms on the basis of lexicalized rules for the
nominalized lemmas observed in the corpus. The
other transformations are defined on the shallow
dependency annotation.

sentences 2030
explicit REs 3208
implicit REs 1778
passives 383
nominalizations 393
possessives 1150

Table 1: Basic annotation statistics

3.3 Multi-level Representation
In the final representation of our data set, we inte-
grate the RE and deep syntax annotation by replac-
ing subtrees corresponding to an RE span. The RE
slot in the tree of the sentence is labeled with its
referential role and its ID. All RE subtrees for a
referent in a text are collected in a candidate list
which is initialized with three default REs: (i) a
pronoun, (ii) a default nominal (e.g. “the victim”),
(iii) the empty RE. In contrast to the GREC data
sets, our RE candidates are not represented as the
original surface strings, but as non-linearized sub-
trees. The resulting multi-layer representation for
each text is structured as follows:

1. unordered deep trees with RE slots (deepSyn−re)

2. unorderd shallow trees with RE slots
(shallowSyn−re)

3. unordered RE subtrees

4. linearized, fully specified surface trees (linSyn+re)

5. alignments between nodes in 1., 2., 4.

The generation components in Section 4 also
use intermediate layers where REs are inserted
into the deep trees (deepSyn+re) or shallow trees
(shallowSyn+re).

Nodes in unordered trees are deterministically
sorted by their : 1. distance to the root, 2. label,

1550

3. PoS tag, 4. lemma. The generation components
traverse the nodes in this the order.

4 Generation Systems

Our main goal is to investigate different architec-
tures for combined surface realization and refer-
ring expression generation. We assume that this
task is split into three main modules: a syntax gen-
erator, an REG component, and a linearizer. The
components are implemented in a way that they
can be trained and applied on varying inputs, de-
pending on the pipeline. Section 4.1 describes the
basic set-up of our components. Section 4.2 de-
fines the architectures that we will compare in our
experiments (Section 5). Section 4.3 presents the
implementation of the underlying feature models.

4.1 Components

4.1.1 SYN: Deep to Shallow Syntax
For mapping deep to shallow dependency trees,
the syntax generator induces a probabilistic tree
transformation. The transformations are restricted
to verb nodes in the deep tree (possessives are
handled in the RE module) and extracted from
the alignments between the deep and shallow
layer in the training input. As an example, the
deep node “attack:VV” aligns to “have:AUX at-
tacked:VVINF”, “attacks:VVFIN”, “the:ART at-
tack:NN on:PRP”. The learner is implemented
as a ranking component, trained with SVMrank
(Joachims, 2006). During training, each instance
of a verb node has one optimal shallow depen-
dency alignment and a set of distractor candidates.
During testing, the module has to pick the best
shallow candidate according to its feature model.

In our crossvalidation set-up (see Section 5),
we extract, on average, 374 transformations from
the training sets. This set subdivides into non-
lexicalized and lexicalized transformations. The
mapping rule in (4-a) that simply rewrites the verb
underspecified PoS tag to the finite verb tag in the
shallow tree illustrates the non-lexicalized case.
Most transformation rules (335 out of 374 on aver-
age) are lexicalized for a specific verb lemma and
mostly transform nominalizations as in rule (4-b)
and particles (see Section 3.2).
(4) a. (x,lemma,VV,y)→ (x,lemma,VVFIN,y)

b. (x,überfallen/attack,VV,y) → (x,bei/at,PREP,y),
(z,Überfall/attack,NN,x),(q,der/the,ART,z)

The baseline for the verb transformation com-
ponent is a two-step procedure: 1) pick a lexical-

ized rule if available for that verb lemma, 2) pick
the most frequent transformation.

4.1.2 REG: Realizing Referring Expressions
Similar to the syntax component, the REG mod-
ule is implemented as a ranker that selects surface
RE subtrees for a given referential slot in a deep
or shallow dependency tree. The candidates for
the ranking correspond to the entire set of REs
used for that referential role in the original text
(see Section 3.1). The basic RE module is a joint
model of all RE types, i.e. nominal, pronominal
and empty realizations of the referent. For the ex-
periment in Section 5.4, we use an additional sep-
arate classifier for implicit referents, also trained
with SVMrank. It uses the same feature model
as the full ranking component, but learns a binary
distinction for implicit or explicit mentions of a
referent. The explicit mentions will be passed to
the RE ranking component.

The baseline for the REG component is defined
as follows: if the preceding and the current RE
slot are instances of the same referent, realize a
pronoun, else realize the longest nominal RE can-
didate that has not been used in the preceding text.

4.1.3 LIN: Linearization
For linearization, we use the state-of-the-art
dependency linearizer described in Bohnet et
al. (2012). We train the linearizer on an auto-
matically parsed version of the German TIGER
treebank (Brants et al., 2002). This version
was produced with the dependency parser by
Bohnet (2010), trained on the dependency conver-
sion of TIGER by Seeker and Kuhn (2012).

4.2 Architectures

Depending on the way the generation components
are combined in an architecture, they will have ac-
cess to different layers of the input representation.
The following definitions of architectures recur to
the layers introduced in Section 3.3.

4.2.1 First Pipeline
The first pipeline corresponds most closely to a
standard generation pipeline in the sense of (Reiter
and Dale, 1997). REG is carried out prior to sur-
face realization such that the RE component does
not have access to surface syntax or word order
whereas the SYN component has access to fully
specified RE slots.

• training

1551

1. train REG: (deepSyn−re, deepSyn+re)
2. train SYN: (deepSyn+re, shallowSyn+re)

• prediction

1. apply REG: deepSyn−re → deepSyn+re

2. apply SYN: deepSyn+re → shallowSyn+re

3. linearize: shallowSyn+re → linSyn+re

4.2.2 Second Pipeline
In the second pipeline, the order of the RE and
SYN component is switched. In this case, REG
has access to surface syntax without word order
but the surface realization is trained and applied
on trees with underspecified RE slots.
• training

1. train SYN: (deepSyn−re, shallowSyn−re)
2. train REG: (shallowSyn−re, shallowSyn+re)

• prediction

1. apply SYN: deepSyn−re → shallowSyn−re

2. apply REG: shallowSyn−re →
shallowSyn+re

3. linearize: shallowSyn+re → linSyn+re

4.2.3 Parallel System
A well-known problem with pipeline architectures
is the effect of error propagation. In our parallel
system, the components are trained independently
of each other and applied in parallel on the deep
syntactic input with underspecified REs.
• training

1. train SYN: (deepSyn−re, shallowSyn−re)
2. train REG: (deepSyn−re, deepSyn+re)

• prediction

1. apply REG and SYN:
deepSyn−re → shallowSyn+re

2. linearize: shallowSyn+re → linSyn+re

4.2.4 Revision-based System
In the revision-based system, the RE component
has access to surface syntax and a preliminary lin-
earization, called prelinSyn. In this set-up, we ap-
ply the linearizer first on trees with underspeci-
fied RE slots. For this step, we insert the default
REs for the referent into the respective slots. After
REG, the tree is linearized once again.
• training

1. train SYN on gold pairs of
(deepSyn−re, shallowSyn−re)

2. train REG on gold pairs of
(prelinSyn−re, prelinSyn+re)

• prediction

1. apply SYN: deepSyn−re → shallowSyn−re

2. linearize: shallowSyn−re → prelinSyn−re

3. apply REG: prelinSyn−re → prelinSyn+re

4. linearize: prelinSyn+re → linSyn+re

4.3 Feature Models

The implementation of the feature models is based
on a general set of templates for the SYN and REG
component. The exact form of the models depends
on the input layer of a component in a given ar-
chitecture. For instance, when SYN is trained on
deepSyn−re, the properties of the children nodes
are less specific for verbs that have RE slots as
their dependents. When the SYN component is
trained on deepSyn+re, lemma and POS of the
children nodes are always specified.

The feature templates for SYN combine prop-
erties of the shallow candidate nodes (label, PoS
and lemma for top node and its children) with the
properties of the instance in the tree: (i) lemma,
tense, (ii) sentence is a header, (iii) label, PoS,
lemma of mother node, children and grandchil-
dren nodes (iv) number, lemmas of other verbs in
the sentence.

The feature templates for REG combine proper-
ties of the candidate RE (PoS and lemma for top
node and its children, length) with properties of
the RE slot in the tree: lemma, PoS and labels for
the (i) mother node, (ii) grandmother node, (iii)
uncle and sibling nodes. Additionally, we imple-
ment a small set of global properties of a referent
in a text: (i) identity is known, (ii) plural or sin-
gular referent, (iii) age is known, and a number of
contextual properties capturing the previous refer-
ents and their predicted REs: (i) role and realiza-
tion of the preceding referent, (ii) last mention of
the current referent, (iii) realization of the referent
in the header.

5 Experiments

In this experimental section, we provide a corpus-
based evaluation of the generation components
and architectures introduced in Section 4. In the
following, Section 5.1 presents the details of our
evaluation methodology. In Section 5.2, we dis-
cuss the first experiment that evaluates the pipeline
architectures and the single components on oracle
inputs. Section 5.3 describes an experiment which
compares the parallel and the revision-based ar-
chitecture against the pipeline. In Section 5.4, we
compare two methods for dealing with the implicit
referents in our data. Section 5.5 provides some
general discussion of the results.

1552

Sentence overlap SYN Accuracy RE Accuracy
Input System BLEU NIST BLEUr String Type String Type Impl
deepSyn−re Baseline 42.38 9.9 47.94 35.66 44.81 33.3 36.03 50.43
deepSyn−re 1st pipeline 54.65 11.30 59.95 57.09 68.15 54.61 71.51 84.72
deepSyn−re 2nd pipeline 54.28 11.25 59.62 59.14 68.58 52.24 68.2 82
gold deepSyn+re SYN→LIN 63.9 12.7 62.86 60.83 69.74 100 100 100
gold shallowSyn−re REG→LIN 60.57 11.87 68.06 100 100 60.53 75.86 88.86
gold shallowSyn+re LIN 79.17 13.91 72.7 100 100 100 100 100

Table 2: Evaluating pipeline architectures against the baseline and upper bounds

5.1 Evaluation Measures

We split our data set into 10 splits of 20 articles.
We use one split as the development set, and cross-
validate on the remaining splits. In each case,
the downstream modules of the pipeline will be
trained on the jackknifed training set.

Text normalization: We carry out automatic
evaluation calculated on lemmatized text with-
out punctuation, excluding additional effects that
would be introduced from a morphology genera-
tion component.

Measures: First, we use a number of evalua-
tion measures familiar from previous generation
shared tasks:

1. BLEU, sentence-level geometric mean of 1- to 4-gram
precision, as in (Belz et al., 2011)

2. NIST, sentence-level n-gram overlap weighted in
favour of less frequent n-grams, as in (Belz et al., 2011)

3. RE Accuracy on String, proportion of REs selected by
the system with a string identical to the RE string in the
original corpus, as in (Belz and Kow, 2010)

4. RE Accuracy on Type, proportion of REs selected by
the system with an RE type identical to the RE type in
the original corpus, as in (Belz and Kow, 2010)

Second, we define a number of measures moti-
vated by our specific set-up of the task:

1. BLEUr , sentence-level BLEU computed on post-
processed output where predicted referring expressions
for victim and perp are replaced in the sentences (both
gold and predicted) by their original role label, this
score does not penalize lexical mismatches between
corpus and system REs

2. RE Accuracy on Impl, proportion of REs predicted cor-
rectly as implicit/non-implicit

3. SYN Accuracy on String, proportion of shallow verb
candidates selected by the system with a string identical
to the verb string in the original corpus

4. SYN Accuracy on Type, proportion of shallow verb
candidates selected by the system with a syntactic cat-
egory identical to the category in the original corpus

5.2 Pipelines and Upper Bounds

The first experiment addresses the first and sec-
ond pipeline introduced in Section 4.2.1 and 4.2.2.
The baseline combines the baseline version of
the SYN component (Section 4.1.1) and the REG
component (Section 4.1.2) respectively. As we re-
port in Table 2, both pipelines largely outperform
the baseline. Otherwise, they obtain very similar
scores in all measures with a small, weakly signif-
icant tendency for the first pipeline. The only re-
markable difference is that the accuracy of the in-
dividual components is, in each case, lower when
they are applied as the second step in the pipeline.
Thus, the RE accuracy suffers from mistakes from
the predicted syntax in the same way that the qual-
ity of syntax suffers from predicted REs.

The three bottom rows in Table 2 report the per-
formance of the individual components and lin-
earization when they are applied to inputs with an
REG and SYN oracle, providing upper bounds for
the pipelines applied on deepSyn−re. When REG
and linearization are applied on shallowSyn−re

with gold shallow trees, the BLEU score is
lower (60.57) as compared to the system that ap-
plies syntax and linearization on deepSyn+re,
deep trees with gold REs (BLEU score of 63.9).
However, the BLEUr score, which generalizes
over lexical RE mismatches, is higher for the
REG→LIN components than for SYN→LIN.
Moreover, the BLEUr score for the REG→LIN
system comes close to the upper bound that ap-
plies linearization on linSyn+re, gold shallow
trees with gold REs (BLEUr of 72.4), whereas
the difference in standard BLEU and NIST is
high. This effect indicates that the RE predic-
tion mostly decreases BLEU due to lexical mis-
matches, whereas the syntax prediction is more
likely to have a negative impact on final lineariza-
tion.

The error propagation effects that we find in the
first and second pipeline architecture clearly show
that decisions at the levels of syntax, reference
and word order interact, otherwise their predic-

1553

Input System BLEU NIST BLEUr

deepSyn−re 1st pipeline 54.65 11.30 59.95
deepSyn−re Parallel 54.78 11.30 60.05
deepSyn−re Revision 56.31 11.42 61.30

Table 3: Architecture evaluation

tion would not affect each other. In particular, the
REG module seems to be affected more seriously,
the String Accuracy decreases from 60.53 on gold
shallow trees to 52.24 on predicted shallow trees
whereas the Verb String Accuracy decreases from
60.83 on gold REs to 57.04 on predicted REs.

5.3 Revision or parallelism?

The second experiment compares the first pipeline
against the parallel and the revision-based ar-
chitecture introduced in Section 4.2.3 and 4.2.4.
The evaluation in Table 3 shows that the paral-
lel architecture improves only marginally over the
pipeline. By contrast, we obtain a clearly signifi-
cant improvement for the revision-based architec-
ture on all measures. The fact that this architec-
ture significantly improves the BLEU, NIST and
the BLEUr score of the parallel system indicates
that the REG benefits from the predicted syntax
when it is approximatively linearized. The fact
that also the BLEUr score improves shows that a
higher lexical quality of the REs leads to better fi-
nal linearizations.

Table 4 shows the performance of the REG
module on varying input layers, providing a more
detailed analysis of the interaction between RE,
syntax and word order. In order to produce the
deeplinSyn−re layer, deep syntax trees with ap-
proximative linearizations, we preprocessed the
deep trees by inserting a default surface trans-
formation for the verb nodes. We compare this
input for REG against the prelinSyn−re layer
used in the revision-based architecture, and the
deepSyn−re layer used in the pipeline and the par-
allel architecture. The REG module benefits from
the linearization in the case of deeplinSyn−re

and prelinSyn−re, outperforming the compo-
nent trained applied on the non-linearized deep
syntax trees. However, the REG module ap-
plied on prelinSyn−re, predicted shallow and lin-
earized trees, clearly outperforms the module ap-
plied on deeplinSyn−re. This shows that the
RE prediction can actually benefit from the pre-
dicted shallow syntax, but only when the predicted
trees are approximatively linearized. As an up-
per bound, we report the performance obtained on

RE Accuracy
Input System String Type Impl
deepSyn−re RE 54.61 71.51 84.72
deeplinSyn−re RE 56.78 72.23 84.71
prelinSyn−re RE 58.81 74.34 86.37
gold linSyn−re RE 68.63 83.63 94.74

Table 4: RE generation from different input layers

linSyn−re, gold shallow trees with gold lineariza-
tions. This set-up corresponds to the GREC tasks.
The gold syntax leads to a huge increase in perfor-
mance.

These results strengthen the evidence from the
previous experiment that decisions at the level of
syntax, reference and word order are interleaved.
A parallel architecture that simply “circumvents”
error propagation effects by making decisions in-
dependent of each other is not optimal. Instead,
the automatic prediction of shallow syntax can
positively impact on RE generation if these shal-
low trees are additionally processed with an ap-
proximative linearization step.

5.4 A joint treatment of implicit referents?
The previous experiments have pursued a joint
approach for modeling implicit referents. The
hypothesis for this experiment is that the SYN
component and the intermediate linearization in
a revision-based architecture could benefit from a
separate treatment of implicit referents since verb
alternations like passive or nominalization often
involve referent deletions.

The evaluation in Table 5 provides contradic-
tory results depending on the evaluation measure.
For the first pipeline, the system with a separate
treatment of implicit referents significantly outper-
forms the joint system in terms of BLEU. How-
ever, the BLEUr score does not improve. In the
revision-based architecture, we do not find a clear
result for or against a joint modelling approach.
The revision-based system with disjoint modelling
of implicits shows a slight, non-significant in-
crease in BLEU score. By contrast, the BLEUr

score is signficantly better for the joint approach.
We experimented with parallelization of syntax
generation and prediction of implicit referents in
a revision-based system. This has a small positive
effect on the BLEUr score and a small negative
effect on the plain BLEU and NIST score. These
contradictory scores might indicate that the auto-
matic evaluation measures cannot capture all as-
pects of text quality, an issue that we discuss in
the following.

1554

(5) Generated by sequential system:

a. Deshalb
Therefore

gab
gave

dem Täter
to the robber

�� ��seine�� ��his
Brieftasche
wallet

ohne
without

daß
that

�� ��das Opfer�� ��the victim

Widerstand
resistance

leistet
shows

heraus.
out.

b. Er
He

nahm
takes

anschließend
afterwards

�� ��dem Opfer�� ��the victim

die
the

Armbanduhr
watch

ab
off

und
and

der Täter
the robber

flüchtete.
fleed.

(6) Generated by revision-based system:

a.
�� ��Das Opfer�� ��The victim

gibt
gave

deshalb
therefore

�� ��seine�� ��his
Brieftasche
wallet

ohne
without

Widerstand
resistance

zu
to

leisten
show

heraus.
out.

b. Anschließend
Afterwards

nahm
took

der Täter
the robber

�� ��dem Opfer�� ��the victim

die
the

Armbanduhr
watch

ab
off

und
and

flüchtete.
fleed.

Figure 3: Two automatically generated outputs for the Sentences (3e-f) in Figure 2.

Joint System BLEU NIST BLEUr

+ 1st pipeline 54.65 11.30 59.95
- 1st pipeline 55.38 11.48 59.52
+ Revision 56.31 11.42 61.30
- Revision 56.42 11.54 60.52
- Parallel+Revision 56.29 11.51 60.63

Table 5: Implicit reference and architectures

5.5 Discussion

The results presented in the preceding evaluations
consistenly show the tight connections between
decisions at the level of reference, syntax and word
order. These interactions entail highly interde-
pendent modelling steps: Although there is a di-
rect error propagation effect from predicted verb
transformation on RE accuracy, predicted syntax
still leads to informative intermediate lineariza-
tions that improve the RE prediction. Our optimal
generation architecture thus has a sequential set-
up, where the first linearization step can be seen
as an intermediate feedback that is revised in the
final linearization. This connects to work in, e.g.
(Hovy, 1988; Robin, 1993).

In Figure 3, we compare two system outputs for
the last two sentences of the text in Figure 2. The
output of the sequential system is severely inco-
herent and would probably be rejected by a hu-
man reader: In sentence (5a) the victim subject of
an active verb is deleted, and the relation between
the possessive and the embedded victim RE is not
clear. In sentence (5b) the first conjunct realizes
a pronominal perp RE and the second conjunct a
nominal perp RE. The output of the revision-based
system reads much more natural. This example
shows that the extension of the REG problem to
texts with more than one main referent (as in the
GREC data set) yields interesting inter-sentential
interactions that affect textual coherence.

We are aware of the fact that our automatic eval-

uation might only partially render certain effects,
especially with respect to textual coherence. It
is likely that the BLEU scores do not capture the
magnitude of the differences in text quality illus-
trated by the Examples (5-6). Ultimately, a hu-
man evaluation for this task is highly desirable.
We leave this for future work since our integrated
set-up rises a number of questions with respect to
evaluation design. In a preliminary analysis, we
noticed the problem that human readers find it dif-
ficult to judge discourse-level properties of a text
like coherence or naturalness when the generation
output is not perfectly grammatical or fluent at the
sentence level.

6 Conclusion

We have presented a data-driven approach for in-
vestigating generation architectures that address
discourse-level reference and sentence-level syn-
tax and word order. The data set we created for our
experiments basically integrates standards from
previous research on REG and surface realization
and extends the annotations to further types of im-
plicit referents. Our results show that interactions
between the different generation levels are best
captured in a sequential, revision-based pipeline
where the REG component has access to predic-
tions from the syntax and the linearization mod-
ule. These empirical findings obtained from ex-
periments with generation architectures have clear
connections to theoretical accounts of textual co-
herence.

Acknowledgements

This work was supported by the Deutsche
Forschungsgemeinschaft (German Research
Foundation) in SFB 732 Incremental Specification
in Context, project D2.

1555

References
Douglas Edmund Appelt. 1982. Planning natural lan-

guage utterances to satisfy multiple goals. Ph.D.
thesis, Stanford, CA, USA.

John Bateman and Michael Zock. 2003. Natural
Language Generation. In Ruslan Mitkov, editor,
The Oxford Handbook of Computational Linguis-
tics. Oxford University Press.

Anja Belz and Eric Kow. 2010. The GREC Challenges
2010: overview and evaluation results. In Proc. of
the 6th International Natural Language Generation
Conference, INLG ’10, pages 219–229, Strouds-
burg, PA, USA.

Anja Belz and Sebastian Varges. 2007. Generation of
repeated references to discourse entities. In Proc. of
the 11th European Workshop on Natural Language
Generation, ENLG ’07, pages 9–16, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Anja Belz, Mike White, Dominic Espinosa, Eric Kow,
Deirdre Hogan, and Amanda Stent. 2011. The first
surface realisation shared task: Overview and evalu-
ation results. In Proc. of the Generation Challenges
Session at the 13th European Workshop on Natu-
ral Language Generation, pages 217–226, Nancy,
France, September. Association for Computational
Linguistics.

Anja Belz. 2005. Statistical generation: Three meth-
ods compared and evaluated. In Proc. of the 10th
European Workshop on Natural Language Genera-
tion, pages 15–23.

Anja Belz. 2008. Automatic generation of
weather forecast texts using comprehensive proba-
bilistic generation-space models. Nat. Lang. Eng.,
14(4):431–455, October.

Bernd Bohnet, Leo Wanner, Simon Milles, and Ali-
cia Burga. 2010. Broad coverage multilingual deep
sentence generation with a stochastic multi-level re-
alizer. In Proc. of the 23rd International Conference
on Computational Linguistics, Beijing, China.

Bernd Bohnet, Simon Mille, Benoı̂t Favre, and Leo
Wanner. 2011. <stumaba >: From deep repre-
sentation to surface. In Proc. of the Generation
Challenges Session at the 13th European Workshop
on Natural Language Generation, pages 232–235,
Nancy, France, September.

Bernd Bohnet, Anders Björkelund, Jonas Kuhn, Wolf-
gang Seeker, and Sina Zarriess. 2012. Generating
non-projective word order in statistical linearization.
In Proc. of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 928–
939, Jeju Island, Korea, July.

Bernd Bohnet. 2010. Top accuracy and fast de-
pendency parsing is not a contradiction. In Proc.

of the 23rd International Conference on Computa-
tional Linguistics, pages 89–97, Beijing, China, Au-
gust.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolf-
gang Lezius, and George Smith. 2002. The TIGER
Treebank. In Proc. of the Workshop on Treebanks
and Linguistic Theories.

Aoife Cahill and Arndt Riester. 2009. Incorporat-
ing Information Status into Generation Ranking. In
Proc. of the 47th Annual Meeting of the ACL, pages
817–825, Suntec, Singapore, August.

Lynne Cahill, Christy Doran, Roger Evans, Chris Mel-
lish, Daniel Paiva, Mike Reape, Donia Scott, and
Neil Tipper. 1999. In search of a reference architec-
ture for nlg systems. In Proc. of the European Work-
shop on Natural Language Generation (EWNLG),
pages 77–85.

David L. Chen, Joohyun Kim, and Raymond J.
Mooney. 2010. Training a multilingual sportscaster:
Using perceptual context to learn language. Journal
of Artificial Intelligence Research, 37:397–435.

Robert Dale and Ehud Reiter. 1995. Computational
interpretations of the gricean maxims in the gener-
ation of referring expressions. Cognitive Science,
19(2):233–263.

Robert Dale. 1989. Cooking up referring expressions.
In Proc. of the 27th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 68–75,
Vancouver, British Columbia, Canada, June.

Laurence Danlos. 1984. Conceptual and linguistic de-
cisions in generation. In Proc. of the 10th Interna-
tional Conference on Computational Linguistics and
22nd Annual Meeting of the Association for Compu-
tational Linguistics, pages 501–504, Stanford, Cali-
fornia, USA, July.

Koenraad De Smedt, Helmut Horacek, and Michael
Zock. 1996. Architectures for natural language gen-
eration: Problems and perspectives. In Trends In
Natural Language Generation: An Artifical Intelli-
gence Perspective, pages 17–46. Springer-Verlag.

Katja Filippova and Michael Strube. 2007. Generating
constituent order in german clauses. In Proc. of the
45th Annual Meeting of the Association for Compu-
tational Linguistics, Prague, Czech Republic.

Matthew Gerber and Joyce Chai. 2010. Beyond nom-
bank: A study of implicit arguments for nominal
predicates. In Proc. of the 48th Annual Meeting
of the Association for Computational Linguistics,
pages 1583–1592, Uppsala, Sweden, July.

Barbara J. Grosz, Aravind Joshi, and Scott Weinstein.
1995. Centering: A framework for modeling the lo-
cal coherence of discourse. Computational Linguis-
tics, 21(2):203–225.

1556

Eduard H. Hovy. 1988. Planning coherent multisen-
tential text. In Proc. of the 26th Annual Meeting
of the Association for Computational Linguistics,
pages 163–169, Buffalo, New York, USA, June.

Thorsten Joachims. 2006. Training linear SVMs
in linear time. In Proc. of the ACM Conference
on Knowledge Discovery and Data Mining (KDD),
pages 217–226.

Irene Langkilde and Kevin Knight. 1998. Gener-
ation that exploits corpus-based statistical knowl-
edge. In Proc. of the 36th Annual Meeting of
the Association for Computational Linguistics and
17th International Conference on Computational
Linguistics, Volume 1, pages 704–710, Montreal,
Quebec, Canada, August. Association for Compu-
tational Linguistics.

Tomasz Marciniak and Michael Strube. 2005. Be-
yond the pipeline: discrete optimization in nlp. In
Proc. of the 9th Conference on Computational Nat-
ural Language Learning, CONLL ’05, pages 136–
143, Stroudsburg, PA, USA.

Chris Mellish, Roger Evans, Lynne Cahill, Christy Do-
ran, Daniel Paiva, Mike Reape, Donia Scott, and
Neil Tipper. 2000. A representation for complex
and evolving data dependencies in generation. In
Proc. of the 6th Conference on Applied Natural Lan-
guage Processing, pages 119–126, Seattle, Wash-
ington, USA, April.

Marie Meteer. 1991. Bridging the generation gap be-
tween text planning and linguistic realization. In
Computational Intelligence, volume 7 (4).

Adwait Ratnaparkhi. 2000. Trainable methods for
surface natural language generation. In Proc. of
the 1st North American chapter of the Association
for Computational Linguistics conference, NAACL
2000, pages 194–201, Stroudsburg, PA, USA.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Nat. Lang.
Eng., 3(1):57–87, March.

Ehud Reiter. 1994. Has a Consensus NL Genera-
tion Architecture Appeared, and is it Psycholinguis-
tically Plausible? pages 163–170.

Eric K. Ringger, Michael Gamon, Robert C. Moore,
David Rojas, Martine Smets, and Simon Corston-
Oliver. 2004. Linguistically Informed Statisti-
cal Models of Constituent Structure for Ordering in
Sentence Realization. In Proc. of the 2004 Inter-
national Conference on Computational Linguistics,
Geneva, Switzerland.

Jacques Robin. 1993. A revision-based generation ar-
chitecture for reporting facts in their historical con-
text. In New Concepts in Natural Language Gener-
ation: Planning, Realization and Systems. Frances
Pinter, London and, pages 238–265. Pinter Publish-
ers.

Michael Roth and Anette Frank. 2012. Aligning predi-
cate argument structures in monolingual comparable
texts: A new corpus for a new task. In Proc. of the
1st Joint Conference on Lexical and Computational
Semantics (*SEM), Montreal, Canada.

Robert Rubinoff. 1992. Integrating text planning and
linguistic choice by annotating linguistic structures.
In Robert Dale, Eduard H. Hovy, Dietmar Rösner,
and Oliviero Stock, editors, NLG, volume 587 of
Lecture Notes in Computer Science, pages 45–56.
Springer.

Josef Ruppenhofer, Caroline Sporleder, Roser
Morante, Collin Baker, and Martha Palmer. 2010.
Semeval-2010 task 10: Linking events and their
participants in discourse. In Proc. of the 5th
International Workshop on Semantic Evaluation,
pages 45–50, Uppsala, Sweden, July.

Wolfgang Seeker and Jonas Kuhn. 2012. Making El-
lipses Explicit in Dependency Conversion for a Ger-
man Treebank. In Proc. of the 8th conference on
International Language Resources and Evaluation,
Istanbul, Turkey, May.

Advaith Siddharthan and Ann Copestake. 2004. Gen-
erating referring expressions in open domains. In
Proceedings of the 42nd Meeting of the Association
for Computational Linguistics (ACL’04), Main Vol-
ume, pages 407–414, Barcelona, Spain, July.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for nlp-assisted text
annotation. In Proc. of the Demonstrations at the
13th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 102–
107, Avignon, France, April.

Leo Wanner, Simon Mille, and Bernd Bohnet. 2012.
Towards a surface realization-oriented corpus anno-
tation. In Proc. of the 7th International Natural Lan-
guage Generation Conference, pages 22–30, Utica,
IL, May.

Leo Wanner. 1994. Building another bridge over the
generation gap. In Proc. of the 7th International
Workshop on Natural Language Generation, INLG
’94, pages 137–144, Stroudsburg, PA, USA.

Sina Zarrieß, Aoife Cahill, and Jonas Kuhn. 2011. Un-
derspecifying and predicting voice for surface real-
isation ranking. In Proc. of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies, pages 1007–
1017, Portland, Oregon, USA, June.

Sina Zarrieß, Aoife Cahill, and Jonas Kuhn. 2012.
To what extent does sentence-internal realisation re-
flect discourse context? a study on word order. In
Proc. of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 767–776, Avignon, France, April.

1557

