
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 583–592,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Real-World Semi-Supervised Learning
of POS-Taggers for Low-Resource Languages

Dan Garrette1 Jason Mielens2

1Department of Computer Science 2Department of Linguistics
The University of Texas at Austin The University of Texas at Austin

dhg@cs.utexas.edu {jmielens,jbaldrid}@utexas.edu

Jason Baldridge2

Abstract

Developing natural language processing
tools for low-resource languages often re-
quires creating resources from scratch.
While a variety of semi-supervised meth-
ods exist for training from incomplete
data, there are open questions regarding
what types of training data should be used
and how much is necessary. We dis-
cuss a series of experiments designed to
shed light on such questions in the con-
text of part-of-speech tagging. We obtain
timed annotations from linguists for the
low-resource languages Kinyarwanda and
Malagasy (as well as English) and eval-
uate how the amounts of various kinds
of data affect performance of a trained
POS-tagger. Our results show that an-
notation of word types is the most im-
portant, provided a sufficiently capable
semi-supervised learning infrastructure is
in place to project type information onto
a raw corpus. We also show that finite-
state morphological analyzers are effective
sources of type information when few la-
beled examples are available.

1 Introduction

Low-resource languages present a particularly dif-
ficult challenge for natural language processing
tasks. For example, supervised learning meth-
ods can provide high accuracy for part-of-speech
(POS) tagging (Manning, 2011), but they per-
form poorly when little supervision is avail-
able. Good results in weakly-supervised tagging
have been obtained by training sequence models
such as hidden Markov models (HMM) using the
Expectation-Maximization algorithm (EM), how-
ever most work in this area has still relied on rel-
atively large amounts of data, both annotated and

unannotated, as well as an assumption that the an-
notations are very clean (Kupiec, 1992; Merialdo,
1994).

The ability to learn taggers using very little data
is enticing: only a tiny fraction of the world’s lan-
guages have enough data for standard supervised
models to work well. The collection or develop-
ment of resources is a time-consuming and expen-
sive process, creating a significant barrier for an
under-studied language where there are few ex-
perts and little funding. It is thus important to
develop approaches that achieve good accuracy
based on the amount of data that can be reasonably
obtained, for example, in just a few hours by a lin-
guist doing fieldwork on a non-native language.

Previous work explored learning taggers from
weak information, but the type, amount, quality,
and sources of data raise questions about the appli-
cability of those results to real-world low-resource
scenarios (Toutanova and Johnson, 2008; Ravi and
Knight, 2009; Hasan and Ng, 2009; Garrette and
Baldridge, 2012). Most research simulated weak
supervision with tag dictionaries extracted from
existing large, expertly-annotated corpora. These
resources have been developed over long periods
of time by trained annotators who collaborate to
produce high-quality analyses. They are also bi-
ased towards including only the most likely tag
for each word type, resulting in a cleaner dictio-
nary than one would find in a real scenario. As
such, these experiments do not reflect real-world
constraints.

One exception to this work is Goldberg et al.
(2008): they use a manually-constructed lexicon
for Hebrew in order to learn an HMM tagger. How-
ever, this lexicon was constructed by trained lexi-
cographers over a long period of time and achieves
very high coverage of the language with very good
quality, much better than could be achieved by
our non-expert linguistics graduate student anno-
tators in just a few hours. Cucerzan and Yarowsky
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(2002) learn a POS-tagger from existing linguis-
tic resources, namely a dictionary and a refer-
ence grammar, but these resources are not avail-
able, much less digitized, for most under-studied
languages. Haghighi and Klein (2006) develop a
model in which a POS-tagger is learned from a list
of POS tags and just three “prototype” word types
for each tag, but their approach requires a vector
space to compute the distributional similarity be-
tween prototypes and other word types in the cor-
pus. Such distributional models are not feasible
for low-resource languages because they require
immense amounts of raw text, much more than is
available in these settings (Abney and Bird, 2010).
Further, they extracted their prototype lists directly
from a labeled corpus, something we are specif-
ically avoiding. Täckström et al. (2013) evalu-
ate the use of mixed type and token constraints
generated by projecting information from a high-
resource language to a low-resource language via
a parallel corpus. However, large parallel corpora
are not available for most low-resource languages.
These are also expensive resources to create and
would take considerably more effort to produce
than the monolingual resources that our annotators
were able to generate in a four-hour timeframe.
Of course, if they are available, such parallel text
links could be incorporated into our approach.

In our previous work, we developed a differ-
ent strategy based on generalizing linguistic input
with a computational model: linguists annotated
either types or tokens for two hours, these anno-
tations are projected onto a corpus of unlabeled
tokens using label propagation and HMMs, and
a final POS-tagger is trained on this larger auto-
labeled corpus (Garrette and Baldridge, 2013).
That approach uses much more realistic types
and quantities of resources than previous work;
nonetheless, it leaves many open questions regard-
ing the effectiveness of incrementally more anno-
tation, the role of unannotated data, and whether
there is a good balance to be found using a combi-
nation of type- and token-supervision. We also did
not consider morphological analyzers as a form
of type supervision, as suggested by Merialdo
(1994).

This paper addresses these questions via a se-
ries of experiments designed to quantify the ef-
fect on performance given by the amount of time
spent finding or annotating training materials. We
specifically look at the impact of four types of data

collection:

1. Time annotating sentences (token supervision)
2. Time creating tag dictionary (type supervision)
3. Time constructing a finite state transducer

(FST) to analyze word-type morphology
4. Amount of raw data available for training

We explore these strategies in the context of POS-
tagging for Kinyarwanda and Malagasy. We also
include experiments for English, pretending as
though it is a low-resource language. The over-
whelming take away from our results is that type
supervision—when backed by an effective semi-
supervised learning approach—is the most impor-
tant source of linguistic information. Also, mor-
phological analyzers help for morphologically rich
languages when there are few labeled types or to-
kens (and, it never hurts to use them). Finally, per-
formance improves with more raw data, though we
see diminishing returns past 400,000 tokens. With
just four hours of type annotation, our system ob-
tains good accuracy across the three languages:
89.8% on English, 81.9% on Kinyarwanda, and
81.2% on Malagasy.

Our results compare favorably with previous
work despite using considerably less supervision
and a more difficult set of tags. For example, Li et
al. (2012) use the entirety of English Wiktionary
directly as a tag dictionary to obtain 87.1% accu-
racy on English, below our result. Täckström et al.
(2013) average 88.8% across 8 major languages,
but for Turkish, a morphologically rich language,
they achieve only 65.2%, significantly below our
81.9% for morphologically-rich Kinyarwanda.

2 Data

Kinyarwanda (KIN) and Malagasy (MLG) are low-
resource, KIN is morphologically rich, and English
(ENG) is used for comparison. For each language,
sentences were divided into four sets: training data
to be labeled by annotators, raw training data, de-
velopment data, and test data.

Data sources The KIN texts are transcripts of
testimonies by survivors of the Rwandan geno-
cide provided by the Kigali Genocide Memorial
Center. The MLG texts are articles from the web-
sites1 Lakroa and La Gazette and Malagasy Global
Voices.2 Texts in both KIN and MLG were tok-

1www.lakroa.mg and www.lagazette-dgi.com
2mg.globalvoicesonline.org/
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KIN MLG ENG - Experienced ENG - Novice
time type token type token type token type token
1:00 801 559 (1093) 660 422 (899) 910 522 (1124) 210 308 (599)
2:00 1814 948 (2093) 1363 785 (1923) 2660 1036 (2375) 631 646 (1429)
3:00 2539 1324 (3176) 2043 1082 (3064) 4561 1314 (3222) 1350 953 (2178)
4:00 3682 1651 (4119) 2773 1378 (4227) 6598 1697 (4376) 2185 1220 (2933)

Table 1: Annotations for each language and annotator as time increases. Shows the number of tag
dictionary entries from type annotation vs. token. (The count of labeled tokens is shown in parentheses).
For brevity, the table only shows hourly progress.

enized and labeled with POS tags by two linguis-
tics graduate students, each of which was studying
one of the languages. The KIN and MLG data have
12 and 23 distinct POS tags, respectively.

The Penn Treebank (PTB) (Marcus et al., 1993)
is used as ENG data. Section 01 was used for
token-supervised annotation, sections 02-14 were
used as raw data, 15-18 for development of the
FST, 19-21 as a dev set and 22-24 as a test set.
The PTB uses 45 distinct POS tags.

Collecting annotations Linguists with non-
native knowledge of KIN and MLG produced anno-
tations for four hours (in 30-minute intervals) for
two tasks. In the first task, type-supervision, the
annotator was given a list of the words in the tar-
get language (ranked from most to least frequent),
and they annotated each word type with its poten-
tial POS tags. The word types and frequencies used
for this task were taken from the raw training data
and did not include the test sets. In the second
task, token-supervision, full sentences were anno-
tated with POS tags. The 30-minute intervals allow
us to investigate the incremental benefit of addi-
tional annotation of each type as well as how both
annotation types might be combined within a fixed
annotation budget.

Baldridge and Palmer (2009) found that anno-
tator expertise greatly influences effectiveness of
active learning for morpheme glossing, a related
task. To see how differences in annotator speed
and quality impact our task, we obtained ENG data
from an experienced annotator and a novice one.

Ngai and Yarowsky (2000) investigated the ef-
fectiveness of rule-writing versus annotation (us-
ing active learning) for chunking, and found the
latter to be far more effective. While we do not
explore a rule-writing approach to POS-tagging,
we do consider the impact of rule-based morpho-
logical analyzers as a component in our semi-
supervised POS-tagging system.

ENG - Exp. ENG - Nov.
time type tok type tok
1:00 0.05 0.03 0.01 0.02
2:00 0.15 0.05 0.03 0.03
3:00 0.24 0.06 0.07 0.05
4:00 0.32 0.08 0.11 0.06

Table 2: Tag dictionary recall against the test set
for ENG annotators on type and token annotations.

Annotations Table 1 gives statistics for all lan-
guages and annotators showing progress during
the 4-hour tasks. With token-annotation, tag
dictionary growth slows because high-frequency
words are repeatedly annotated, producing only
additional frequency and sequence information.
In contrast, every type-annotation label is a new
tag dictionary entry. For types, growth increases
over time, reflecting the fact that high-frequency
words (which are addressed first) tend to be more
ambiguous and thus require more careful thought
than later words. For ENG, we can compare the
tagging speed of the experienced annotator with
the novice: 50% more tokens and 3 times as many
types. The token-tagging speed stayed fairly con-
stant for the experienced annotator, but the novice
increased his rate, showing the result of practice.

Checking the annotators’ output against the
gold tags in the PTB shows that both had good
tagging accuracy on tokens: 94-95%. Comparing
the tag dictionary entries versus the test data, pre-
cision starts in the high 80%s and falls to to the
mid-70%s in all cases. However, the differences
in recall, shown in Table 2, are more interesting.
On types, the experienced annotator maxed out at
32%, but the novice only reaches 11%. More-
over, the maximum for token annotations is much
lower due to high repeat-annotation. The discrep-
ancies between experienced and novice, and be-
tween type and token recall explain a great deal of
the performance disparity seen in the experiments.
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3 Morphological Transducers

Finite-state transducers (FSTs) accept regular lan-
guages and can be constructed easily using regu-
lar expressions, which makes them quite useful for
phonology, morphology and limited areas of syn-
tax (Karttunen, 2001). Past work has used FSTs
for direct POS-tagging (Roche and Schabes, 1995),
but this requires tight coupling between the FST

and target tagset. We use FSTs for morphologi-
cal analysis: the FST accepts a word type and pro-
duces a set of morphological features. If there are
multiple possible analyses for a given word type,
the FST returns them all. For instance the Kin-
yarwanda verb sibatarazuka “he is not yet resur-
rected” is analyzed in several ways:

• +NEG+CL2+1PL+V+arazuk+IMP
• +NEG+CL2+NOT.YET+PRES+zuk+IMP
• +NEG+CL2+NOT.YET+razuk+IMP

FSTs are particularly valuable for their ability
to analyze out-of-vocabulary items. By looking
for known affixes, FSTs can guess the stem of
a word and produce an analysis despite not hav-
ing knowledge of that stem. For morphologically
complex languages like KIN, this ability is espe-
cially useful. Other factors, such as a large num-
ber of morphologically-conditioned phonological
changes (seen in MLG) make out-of-vocabulary
guessing more challenging because of the large
number of potential stems (high ambiguity).

Development of the FSTs for all three languages
was done by iteratively adding rules and lexical
items with the goal of increasing coverage on a
raw dataset. To accomplish this on a fixed time
budget, the most frequently occurring unanalyzed
tokens were examined, and their stems plus any
observable morphological or phonological pat-
terns were added to the transducer. Addition-
ally, developers searched for known morpholog-
ical alternations to locate instances of phonolog-
ical change for inclusion. Coverage was checked
against a raw dataset which did not include the test
data used for the POS experiments.

The KIN and MLG FSTs were created by
English-speaking linguists who were familiar with
their respective language. They also used dictio-
naries and grammars. Each FST was developed
in 10 hours. To evaluate the benefits of more de-
velopment time, a version of the English FST was
saved every 30 minutes, as shown in Table 3.

elapsed
time

tokens types
count pct count pct

2:00 130k 61% 2.1k 12%
4:00 159k 75% 4.1k 24%
6:00 170k 80% 6.7k 39%
8:00 182k 86% 7.7k 44%

10:00 192k 91% 10.7k 62%

Table 3: Coverage of the English morphological
FST during development. For brevity, showing 2-
hour increments instead of 30-minute segments.

tokens types
cov. ambig. cov. ambig.

KIN 86% 2.62 82% 5.31
MLG 78% 2.98 37% 1.13
ENG 91% 1.19 62% 1.97

Table 4: Coverage and ambiguity of the final FST

for each language.

4 Approach

Learning under low-resource conditions is more
difficult than scenarios in most previous POS work
because the vast majority of the word types in the
training and test data are not covered by the an-
notations. When most words are unknown, learn-
ing algorithms such as EM struggle (Garrette and
Baldridge, 2012). Recall that most work on learn-
ing POS-taggers from tag dictionaries used tag dic-
tionaries culled from test sets (even when consid-
ering incomplete dictionaries). We thus build on
our previous approach, which exploits extremely
sparse, human-generated annotations that are pro-
duced without knowledge of which words appear
in the test set (Garrette and Baldridge, 2013).

This approach generalizes a small initial tag dic-
tionary to include unannotated word types appear-
ing in raw data. It estimates word/tag pair and
tag-transition frequency information using model-
minimization, which also reduces noise intro-
duced by automatic tag dictionary expansion. The
approach exploits type annotations effectively to
learn parameters for out-of-vocabulary words and
infer missing frequency and sequence informa-
tion. This pipeline is described in detail in the
previous work, so we give only a brief overview
and describe our additions.

The purpose of tag dictionary expansion is to es-
timate label distributions for tokens in a raw cor-
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pus, including words missing in the annotations.
For this, a graph connecting annotated words to
unannotated words via features is constructed and
POS labels are pushed between these items using
label propagation (LP) (Talukdar and Crammer,
2009). LP has been used successfully for extend-
ing POS labels from high-resource languages to
low via parallel corpora (Das and Petrov, 2011;
Täckström et al., 2013; Ding, 2011) or high- to
low-resource domains (Subramanya et al., 2010),
among other tasks. These works have typically
used n-gram features (capturing basic syntax) and
character affixes (basic morphology).

The character n-gram affix-as-morphology ap-
proach produces many features, but only a fraction
of them represent actual morphemes. Incorrect
features end up pushing noise around the graph,
so affixes can lead to more false labels that drown
out the true labels. While affixes may be suffi-
cient for languages with limited morphology, their
effectiveness diminishes for morphology-rich lan-
guages, which have much higher type-to-token ra-
tios. More types means sparser word frequency
statistics and more out-of-vocabulary items, and
thus problems for EM. Here, we modify the LP

graph by supplementing or replacing generic af-
fix features with a focused set of morphological
features produced by an FST. These targeted mor-
phological features are effective during LP because
words that share them are much more likely to ac-
tually share POS tags.

FSTs produce multiple analyses, which is actu-
ally advantageous for LP. Ambiguities need not be
resolved since we just take the union of all mor-
phological features for all analyses and use them
as features in the graph. Note that each FST pro-
duces its own POS-tags as features, but these do
not correspond to the target POS tagset used by the
tagger. This is important because it decouples FST

development and the final POS task. Thus, any FST

for the language, regardless of its provenance, can
be used with any target POS tagset.

Since the LP graph contains a node for each cor-
pus token, and each node is labeled with a distri-
bution over POS tags, the graph provides a corpus
of sentences labeled with noisy tag distributions
along with an expanded tag dictionary. This out-
put is useful as input to EM because it contains
labels for all seen word types as well as sequence
and frequency information. There is a high degree
of noise in the LP output, so we employ the model

minimization strategy of Ravi et al. (2010), which
finds a minimal set of tag bigrams needed to ex-
plain the sentences in the raw corpus. It outputs
a corpus of tagged sentences, which are used as
a good starting point for EM training of an HMM.
The expanded tag dictionary constrains the EM

search space by providing a limited tagset for each
word type, steering EM towards a desirable result.

Because the HMM trained by EM will con-
tain zero-probabilities for words that did not ap-
pear in the training corpus, we use the “auto-
supervision” step from our previous work: a Max-
imum Entropy Markov Model tagger is trained
on a corpus that is noisily labeled by the HMM

(Garrette and Baldridge, 2012). While training
an HMM before the MEMM is not strictly neces-
sary, our tests have shown that this generative-
then-discriminative combination generally results
in around 3% accuracy improvement.

5 Experiments3

To better understand the effect that each type of
supervision has on tagger accuracy, we perform a
series of experiments, with KIN and MLG as true
low-resource languages. English experiments, for
which we had both experienced and novice an-
notators, allow for further exploration into issues
concerning data collection and preparation.

The overall best accuracies achieved by lan-
guage are 81.9% for KIN using all types, 81.2% for
MLG using half types and half tokens, and 89.8%
for ENG using all types and the maximal amount
of raw data. All of these best values were achieved
using both FST and affix LP features.

All results described in this section are averaged
over five folds of raw data.

5.1 Types versus tokens

Our primary question was the relationship be-
tween annotation type and time. Annotation must
be done by someone familiar with the target lan-
guage, linguistics, and the target POS tagset. For
many low-resource languages, such people, and
the time they have to spend, are likely to be in
short supply. To make the best use of their time,
we need to know which annotations are most use-

3Code and all MLG data available at github.com/
dhgarrette/low-resource-pos-tagging-2013
We are unable to provide the KIN or ENG data for down-
load due to licensing restrictions. However, ENG data may
be shared with those holding a license for the Penn Treebank
and KIN data may be shared on a case-by-case basis.
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Figure 1: Annotation time vs. tagger accuracy for type-only and token-only annotations.
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Figure 2: Annotation time vs. tagger accuracy for
ENG type-only and token-only annotations with
affix and FST LP features.

ful so that efforts can be concentrated there. Ad-
ditionally, it is useful to identify when returns on
annotation effort diminish so that annotators do
not spend time doing work that is unlikely to add
much value.

The annotators produced four hours each of
type and token annotations, each in 30-minute in-
crements. To assess the effects of annotation time,

we trained taggers cumulatively on each increment
and determine the value of each additional half-
hour of effort. Results are shown for KIN and MLG

in Figure 1 and ENG in Figure 2. In all scenarios,
the use of LP (and model minimization) delivers
huge performance gains. Additionally, the use of
FST features, usually along with affixes, yielded
better results than without. This indicates the LP

procedure makes effective use of the morpholog-
ical features produced by the FST and that the af-
fix features are able to capture missing information
without adding too much noise to the LP graph.

Furthermore, performance is considerably bet-
ter when type annotations are used than only to-
kens. Type annotations plateau much faster, so
a shorter amount of time must be spent annotat-
ing types than if token annotations are used. For
KIN it takes approximately 1.5 hours to reach near-
maximum accuracy for types, but 2.5 hours for to-
kens. This difference is due to the fact that the type
annotations started with the most frequent words
whereas the token annotations were on random
sentences. Thus, type annotations quickly cover a
significant portion of the language’s tokens. With
annotations directly on tokens, some of the highest
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(a) KIN − Type/Token Annotation Mixture
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(b) MLG − Type/Token Annotation Mixture
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Figure 3: Annotation mixture vs. tagger accuracy. X-axis labels give annotation proportions, e.g. “t2/s6”
indicates 2/8 of the time (1 hour) was spent annotating types and 6/8 (3 hours), full sentences.
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Figure 4: Annotation mixture vs. tagger accuracy
on ENG using affix and FST LP features for experi-
enced (Exp.) and novice (Nov.) annotators.

frequency types are covered, but annotation time
is also ineffectively used on low-frequency types
that happen to appear in those sentences.

Finally, the use of FST features yields the largest
gains for KIN, but only when small amounts of
annotation are available. This makes sense: KIN

is a morphologically rich language, so sparsity is
greater and crude affixes capture less actual mor-
phology. With little annotated data, LP relies heav-
ily on morphological features to make clean links
between words. But, with more annotations, the
gains of the FST over affix features alone dimin-
ishes: the affix features eventually capture enough
of the morphology to make up the difference.

Figure 2 shows the dramatic differences be-
tween the experienced and novice ENG annota-
tors.4 For the former, results using types and to-

4The ENG graph omits “No LP” results since they fol-
lowed patterns similar to KIN and MLG. Additionally, the
results without FST features are not shown because they were
nearly identical (though slightly lower) than with the FST.

kens were similar after 30 minutes, but type an-
notations proved much more useful beyond that.
In contrast, the novice annotated types much more
slowly, so early on there were not enough anno-
tated types for the training to be as effective. Even
so, after three hours of annotation, type annota-
tions still win with the novice, and even beat the
experienced annotator labeling tokens.

5.2 Mixing type and token annotations

Because type and token annotations are each bet-
ter at providing different information — a tag dic-
tionary of high-frequency words vs. sequence and
frequency information — it is reasonable to ex-
pect that a combination of the two might yield
higher performance by each contributing differ-
ent but complementary information during train-
ing. This matters in low-resource settings because
type or token annotations will likely be produced
by the same people, so there is a tradeoff between
spending resources on one form of annotation over
the other. Understanding the best mixture of an-
notations can inform us on how to maximize the
benefit of a set annotation budget. To this end, we
ran experiments fixing the annotation time to four
hours while varying the mix of type and token an-
notations. Results are shown for KIN and MLG in
Figure 3 and ENG in Figure 4.

For KIN and ENG, tagger accuracy increases as
the proportion of type annotations increases for all
LP feature configurations. For MLG, however, as
the reliance on the FST increases, the optimal mix-
ture shifts toward higher type proportions. When
only affix features are used, the optimal mixture is
1 hour of types and 3 hours of tokens. When FST

and affix features are used, the optimum is 2 hours
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each of types and tokens. When only FST features
are used, it is best to use 3.5 hours of types and
only 30 minutes of tokens. Because the FST op-
erates on word types, it is effective at exploiting
type annotations. Thus, when the LP focuses more
on FST features, it becomes more desirable to have
larger amounts of type annotations.

Types clearly win for ENG. The experienced an-
notator was much faster at annotating types and
the speed difference was less pronounced for to-
kens, so accuracy is most similar when only token
annotations are used. The performance disparity
grows with increasing the type proportion.

Täckström et al. (2013) explore the use of
mixed type and token annotations in which a tag-
ger is learned by projecting information via par-
allel text. In their experiments, they—like us—
found that type information is more valuable than
token information. However, they were able to see
gains through the complementary effects of mix-
ing type and token annotations. It is likely that this
difference in our results is due to the amount of an-
notated data used. It seems that the amount of type
information collected in four hours is not sufficient
to saturate the system, meaning that switching to
annotating tokens tends to hurt performance.

5.3 FST development
The third set of experiments evaluate how the
amount of time spent developing an FST affects
the performance of trained tagger. To do this,
we had our ENG FST developer save progress af-
ter each hour (for ten hours). The results show
that, for ENG, the FST provided no value, regard-
less of how much time was spent on its develop-
ment. Moreover, since large gains in accuracy can
be achieved by spending a small amount of time
just annotating word types with POS tags, we are
led to conclude that time should be spent annotat-
ing types or tokens instead of developing an FST.
While it is likely that FST development time would
have a greater impact for morphologically rich
languages, we suspect that greater gains can still
be obtained by instead annotating types. Nonethe-
less, FSTs never seems to hurt performance, so if
one is readily available, it should be used.

5.4 The effect of more raw data
In addition to annotations, semi-supervised tagger
training requires a corpus of raw text. Raw data
can be easier to acquire since it does not need
the attention of a linguist. Even so, for many
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Figure 5: Amount of raw data vs. tagger accuracy
for ENG using high vs. low amounts of annotation
and using LP vs. no LP., for experienced annotator
(novice results were similar).

low-resource languages, the amount of digitized
text, such as transcripts or websites, is very lim-
ited and may, in fact, require substantial effort
to accumulate, even with assistance from compu-
tational tools (Bird, 2011). Therefore, the col-
lection of raw data can be considered another
time-sensitive task for which the tradeoffs with
previously-discussed annotation efforts must con-
tend.

It could be the case that more raw data for train-
ing could make up for additional annotation and
FST development effort or make the LP proce-
dure unnecessary. Figure 5 shows that that in-
creased raw data does provide increasing gains,
but they diminish after 200k tokens. The best per-
formance is achieved by using more annotation
and LP. Most importantly, however, removing ei-
ther annotations or LP results in a significant de-
cline in accuracy, such that even with 600k train-
ing tokens, we are unable to achieve the results of
high annotation and LP using only 100k tokens.

5.5 Correcting existing annotations

For all of the ENG experiments, we also ran “or-
acle” experiments using gold tags for the same
sentences or a tag dictionary containing the same
number of type/tag entries as the annotator pro-
duced, but containing only the most frequent
entries as determined by the gold-labeled cor-
pus. Using this simulated “perfect annotator” data
shows we lose accuracy due to annotator mistakes:
for our experienced annotator and maximal FST,
using 4 hours of types the oracle accuracy is 90.5
vs. 88.5 while using only tokens we see 83.9 vs.
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81.5. This indicates that there are gains to be made
by correcting mistakes in the annotations. This
is true even after the point of diminishing returns
on the learning curve, meaning that even when
adding more annotations no longer improves per-
formance, progress can still be made by correcting
errors, so it may be reasonable to ask annotators to
attempt to correct errors in their past annotations.
Automated techniques for facilitating error identi-
fication can be employed for this (Dickinson and
Meurers, 2003).

6 Conclusions and Future Work

Care must be taken when drawing conclusions
from small-scale annotation studies such as those
presented in this paper. Nonetheless, we have
explored realistic annotation scenarios for POS-
tagging for low-resource languages and found sev-
eral consistent patterns. Most importantly, it is
clear that type annotations are the most useful in-
put one can obtain from a linguist—provided a
semi-supervised algorithm for projecting that in-
formation reliably onto raw tokens is available. In
a sense, this result validates the research trajectory
of efforts of the past two decades put into learning
taggers from tag dictionaries: papers have succes-
sively removed layers of unrealistic assumptions,
and in doing so have produced pipelines for type-
supervision that easily beat token-supervision pre-
pared in comparable amounts of time.

The result of most immediate practical value is
that we show it is possible to train effective POS-
taggers on actual low-resource languages given
only a relatively small amount of unlabeled text
and a few hours of annotation by a non-native
linguist. Instead of having annotators label full
sentences as one might expect the natural choice
would be, it is much more effective to simply
extract a list of the most frequent word types in
the language and concentrate efforts on annotat-
ing these types with their potential parts of speech.
Furthermore, for languages with rich morphology,
a morphological transducer can yield significant
performance gains when large amounts of other
annotated resources are unavailable. (And it never
hurts performance.)

Finally, additional raw text does improve per-
formance. However, using substantial amounts of
raw text is unlikely to produce gains larger than
only a few hours spent annotating types. Thus,
when deciding whether to spend time locating

larger volumes of digitized text or to spend time
annotating types, choose types.

Despite the consistent superiority of type anno-
tations in our experiments, it of course may be the
case that techniques such as active learning may
better select sentences for token annotation, so this
should be explored in future work.
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