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Abstract

Topic models have been successfully applied
to many document analysis tasks to discover
topics embedded in text. However, existing
topic models generally cannot capture the la-
tent topical structures in documents. Since
languages are intrinsically cohesive and coher-
ent, modeling and discovering latent topical
transition structures within documents would
be beneficial for many text analysis tasks.

In this work, we propose a new topic model,
Structural Topic Model, which simultaneously
discovers topics and reveals the latent topi-
cal structures in text through explicitly model-
ing topical transitions with a latent first-order
Markov chain. Experiment results show that
the proposed Structural Topic Model can ef-
fectively discover topical structures in text,
and the identified structures significantly im-
prove the performance of tasks such as sen-
tence annotation and sentence ordering.

1 Introduction

A great amount of effort has recently been made in
applying statistical topic models (Hofmann, 1999;
Blei et al., 2003) to explore word co-occurrence pat-
terns, i.e. topics, embedded in documents. Topic
models have become important building blocks of
many interesting applications (see e.g., (Blei and
Jordan, 2003; Blei and Lafferty, 2007; Mei et al.,
2007; Lu and Zhai, 2008)).

In general, topic models can discover word clus-
tering patterns in documents and project each doc-
ument to a latent topic space formed by such word
clusters. However, the topical structure in a docu-
ment, i.e., the internal dependency between the top-

ics, is generally not captured due to the exchange-
ability assumption (Blei et al., 2003), i.e., the doc-
ument generation probabilities are invariant to con-
tent permutation. In reality, natural language text
rarely consists of isolated, unrelated sentences, but
rather collocated, structured and coherent groups of
sentences (Hovy, 1993). Ignoring such latent topi-
cal structures inside the documents means wasting
valuable clues about topics and thus would lead to
non-optimal topic modeling.

Taking apartment rental advertisements as an ex-
ample, when people write advertisements for their
apartments, it’s natural to first introduce “size” and
“address” of the apartment, and then “rent” and
“contact”. Few people would talk about “restric-
tion” first. If this kind of topical structures are cap-
tured by a topic model, it would not only improve
the topic mining results, but, more importantly, also
help many other document analysis tasks, such as
sentence annotation and sentence ordering.

Nevertheless, very few existing topic models at-
tempted to model such structural dependency among
topics. The Aspect HMM model introduced in
(Blei and Moreno, 2001) combines pLSA (Hof-
mann, 1999) with HMM (Rabiner, 1989) to perform
document segmentation over text streams. However,
Aspect HMM separately estimates the topics in the
training set and depends on heuristics to infer the
transitional relations between topics. The Hidden
Topic Markov Model (HTMM) proposed by (Gru-
ber et al., 2007) extends the traditional topic models
by assuming words in each sentence share the same
topic assignment, and topics transit between adja-
cent sentences. However, the transitional structures
among topics, i.e., how likely one topic would fol-
low another topic, are not captured in this model.
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In this paper, we propose a new topic model,
named Structural Topic Model (strTM) to model and
analyze both latent topics and topical structures in
text documents. To do so, strTM assumes: 1) words
in a document are either drawn from a content topic
or a functional (i.e., background) topic; 2) words in
the same sentence share the same content topic; and
3) content topics in the adjacent sentences follow a
topic transition that satisfies the first order Markov
property. The first assumption distinguishes the se-
mantics of the occurrence of each word in the doc-
ument, the second requirement confines the unreal-
istic “bag-of-word” assumption into a tighter unit,
and the third assumption exploits the connection be-
tween adjacent sentences.

To evaluate the usefulness of the identified top-
ical structures by strTM, we applied strTM to the
tasks of sentence annotation and sentence ordering,
where correctly modeling the document structure
is crucial. On the corpus of 8,031 apartment ad-
vertisements from craiglist (Grenager et al., 2005)
and 1,991 movie reviews from IMDB (Zhuang et
al., 2006), strTM achieved encouraging improve-
ment in both tasks compared with the baseline meth-
ods that don’t explicitly model the topical structure.
The results confirm the necessity of modeling the
latent topical structures inside documents, and also
demonstrate the advantages of the proposed strTM
over existing topic models.

2 Related Work

Topic models have been successfully applied to
many problems, e.g., sentiment analysis (Mei et
al., 2007), document summarization (Lu and Zhai,
2008) and image annotation (Blei and Jordan, 2003).
However, in most existing work, the dependency
among the topics is loosely governed by the prior
topic distribution, e.g., Dirichlet distribution.

Some work has attempted to capture the interre-
lationship among the latent topics. Correlated Topic
Model (Blei and Lafferty, 2007) replaces Dirichlet
prior with logistic Normal prior for topic distribu-
tion in each document in order to capture the cor-
relation between the topics. HMM-LDA (Griffiths
et al., 2005) distinguishes the short-range syntactic
dependencies from long-range semantic dependen-
cies among the words in each document. But in

HMM-LDA, only the latent variables for the syn-
tactic classes are treated as a locally dependent se-
quence, while latent topics are treated the same as in
other topic models. Chen et al. introduced the gen-
eralized Mallows model to constrain the latent topic
assignments (Chen et al., 2009). In their model,
they assume there exists a canonical order among
the topics in the collection of related documents and
the same topics are forced not to appear in discon-
nected portions of the topic sequence in one docu-
ment (sampling without replacement). Our method
relaxes this assumption by only postulating transi-
tional dependency between topics in the adjacent
sentences (sampling with replacement) and thus po-
tentially allows a topic to appear multiple times in
disconnected segments. As discussed in the pre-
vious section, HTMM (Gruber et al., 2007) is the
most similar model to ours. HTMM models the
document structure by assuming words in the same
sentence share the same topic assignment and suc-
cessive sentences are more likely to share the same
topic. However, HTMM only loosely models the
transition between topics as a binary relation: the
same as the previous sentence’s assignment or draw
a new one with a certain probability. This simpli-
fied coarse modeling of dependency could not fully
capture the complex structure across different docu-
ments. In contrast, our strTM model explicitly cap-
tures the regular topic transitions by postulating the
first order Markov property over the topics.

Another line of related work is discourse analysis
in natural language processing: discourse segmen-
tation (Sun et al., 2007; Galley et al., 2003) splits a
document into a linear sequence of multi-paragraph
passages, where lexical cohesion is used to link to-
gether the textual units; discourse parsing (Soricut
and Marcu, 2003; Marcu, 1998) tries to uncover a
more sophisticated hierarchical coherence structure
from text to represent the entire discourse. One work
in this line that shares a similar goal as ours is the
content models (Barzilay and Lee, 2004), where an
HMM is defined over text spans to perform infor-
mation ordering and extractive summarization. A
deficiency of the content models is that the identi-
fication of clusters of text spans is done separately
from transition modeling. Our strTM addresses this
deficiency by defining a generative process to simul-
taneously capture the topics and the transitional re-
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lationship among topics: allowing topic modeling
and transition modeling to reinforce each other in a
principled framework.

3 Structural Topic Model

In this section, we formally define the Structural
Topic Model (strTM) and discuss how it captures the
latent topics and topical structures within the docu-
ments simultaneously. From the theory of linguistic
analysis (Kamp, 1981), we know that document ex-
hibits internal structures, where structural segments
encapsulate semantic units that are closely related.
In strTM, we treat a sentence as the basic structure
unit, and assume all the words in a sentence share the
same topical aspect. Besides, two adjacent segments
are assumed to be highly related (capturing cohesion
in text); specifically, in strTM we pose a strong tran-
sitional dependency assumption among the topics:
the choice of topic for each sentence directly de-
pends on the previous sentence’s topic assignment,
i.e., first order Markov property. Moveover, tak-
ing the insights from HMM-LDA that not all the
words are content conveying (some of them may
just be a result of syntactic requirement), we intro-
duce a dummy functional topic zB for every sen-
tence in the document. We use this functional topic
to capture the document-independent word distribu-
tion, i.e., corpus background (Zhai et al., 2004). As
a result, in strTM, every sentence is treated as a mix-
ture of content and functional topics.

Formally, we assume a corpus consists of D doc-
uments with a vocabulary of size V, and there are
k content topics embedded in the corpus. In a given
document d, there are m sentences and each sentence
i has Ni words. We assume the topic transition prob-
ability p(z|z′) is drawn from a Multinomial distribu-
tion Mul(αz′), and the word emission probability un-
der each topic p(w|z) is drawn from a Multinomial
distribution Mul(βz).

To get a unified description of the generation
process, we add another dummy topic T-START in
strTM, which is the initial topic with position “-1”
for every document but does not emit any words.
In addition, since our functional topic is assumed to
occur in all the sentences, we don’t need to model
its transition with other content topics. We use a
Binomial variable π to control the proportion be-

tween content and functional topics in each sen-
tence. Therefore, there are k+1 topic transitions, one
for T-START and others for k content topics; and k
emission probabilities for the content topics, with an
additional one for the functional topic zB (in total
k+1 emission probability distributions).

Conditioned on the model parameters Θ =
(α, β, π), the generative process of a document in
strTM can be described as follows:

1. For each sentence si in document d:

(a) Draw topic zi from Multinomial distribu-
tion conditioned on the previous sentence
si−1’s topic assignment zi−1:
zi ∼ Mul(αzi−1)

(b) Draw each word wij in sentence si from
the mixture of content topic zi and func-
tional topic zB:
wij ∼ πp(wij |β, zi)+(1−π)p(wij |β, zB)

The joint probability of sentences and topics in
one document defined by strTM is thus given by:

p(S0, S1, . . . , Sm, z|α, β, π) =
m∏

i=1

p(zi|α, zi−1)p(Si|zi)

(1)
where the topic to sentence emission probability is
defined as:

p(Si|zi) =

Ni∏
j=0

[
πp(wij |β, zi) + (1− π)p(wij |β, zB)

]
(2)

This process is graphically illustrated in Figure 1.
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Figure 1: Graphical Representation of strTM.

From the definition of strTM, we can see that the
document structure is characterized by a document-
specific topic chain, and forcing the words in one
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sentence to share the same content topic ensures se-
mantic cohesion of the mined topics. Although we
do not directly model the topic mixture for each doc-
ument as the traditional topic models do, the word
co-occurrence patterns within the same document
are captured by topic propagation through the transi-
tions. This can be easily understood when we write
down the posterior probability of the topic assign-
ment for a particular sentence:

p(zi|S0, S1, . . . , Sm, Θ)

=
p(S0, S1, . . . , Sm|zi, Θ)p(zi)

p(S0, S1, . . . , Sm)

∝ p(S0, S1, . . . , Si, zi)× p(Si+1, Si+2, . . . , Sm|zi)

=
∑
zi−1

p(S0, . . . , Si−1, zi−1)p(zi|zi−1)p(Si|zi)

×
∑
zi+1

p(Si+1, . . . , Sm|zi+1)p(zi+1|zi) (3)

The first part of Eq(3) describes the recursive in-
fluence on the choice of topic for the ith sentence
from its preceding sentences, while the second part
captures how the succeeding sentences affect the
current topic assignment. Intuitively, when we need
to decide a sentence’s topic, we will look “back-
ward” and “forward” over all the sentences in the
document to determine a “suitable” one. In addition,
because of the first order Markov property, the local
topical dependency gets more emphasis, i.e., they
are interacting directly through the transition proba-
bilities p(zi|zi−1) and p(zi+1|zi). And such interac-
tion on sentences farther away would get damped by
the multiplication of such probabilities. This result
is reasonable, especially in a long document, since
neighboring sentences are more likely to cover sim-
ilar topics than two sentences far apart.

4 Posterior Inference and Parameter
Estimation

The chain structure in strTM enables us to perform
exact inference: posterior distribution can be ef-
ficiently calculated by the forward-backward algo-
rithm, the optimal topic sequence can be inferred
using the Viterbi algorithm, and parameter estima-
tion can be solved by the Expectation Maximization
(EM) algorithm. More technical details can be found
in (Rabiner, 1989). In this section, we only discuss
strTM-specific procedures.

In the E-Step of EM algorithm, we need to col-
lect the expected count of a sequential topic pair
(z, z′) and a topic-word pair (z, w) to update the
model parameters α and β in the M-Step. In strTM,
E[c(z, z′)] can be easily calculated by forward-
backward algorithm. But we have to go one step
further to fetch the required sufficient statistics for
E[c(z, w)], because our emission probabilities are
defined over sentences.

Through forward-backward algorithm, we can get
the posterior probability p(si, z|d, Θ). In strTM,
words in one sentence are independently drawn from
either a specific content topic z or functional topic
zB according to the mixture weight π. Therefore,
we can accumulate the expected count of (z, w) over
all the sentences by:

E[c(z, w)] =
∑
d,s∈d

πp(w|z)p(s, z|d, Θ)c(w, s)

πp(w|z) + (1− π)p(w|zB)
(4)

where c(w, s) indicates the frequency of word w in
sentence s.

Eq(4) can be easily explained as follows. Since
we already observe topic z and sentence s co-
occur with probability p(s, z|d,Θ), each word w
in s should share the same probability of be-
ing observed with content topic z. Thus the ex-
pected count of c(z, w) in this sentence would be
p(s, z|d,Θ)c(w, s). However, since each sentence
is also associated with the functional topic zB , the
word w may also be drawn from zB . By applying
the Bayes’ rule, we can properly reallocate the ex-
pected count of c(z, w) by Eq(4). The same strategy
can be applied to obtain E[c(zB, w)].

As discussed in (Johnson, 2007), to avoid the
problem that EM algorithm tends to assign a uni-
form word/state distribution to each hidden state,
which deviates from the heavily skewed word/state
distributions empirically observed, we can apply a
Bayesian estimation approach for strTM. Thus we
introduce prior distributions over the topic transi-
tion Mul(αz′) and emission probabilities Mul(βz),
and use the Variational Bayesian (VB) (Jordan et al.,
1999) estimator to obtain a model with more skewed
word/state distributions.

Since both the topic transition and emission prob-
abilities are Multinomial distributions in strTM,
the conjugate Dirichlet distribution is the natural
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choice for imposing a prior on them (Diaconis and
Ylvisaker, 1979). Thus, we further assume:

αz ∼ Dir(η) (5)

βz ∼ Dir(γ) (6)

where we use exchangeable Dirichlet distributions
to control the sparsity of αz and βz . As η and γ ap-
proach zero, the prior strongly favors the models in
which each hidden state emits as few words/states as
possible. In our experiments, we empirically tuned
η and γ on different training corpus to optimize log-
likelihood.

The resulting VB estimation only requires a mi-
nor modification to the M-Step in the original EM
algorithm:

ᾱz =
Φ(E[c(z′, z)] + η)

Φ(E[c(z)] + kη)
(7)

β̄z =
Φ(E[c(w, z)] + γ)

Φ(E[c(z)] + V γ)
(8)

where Φ(x) is the exponential of the first derivative
of the log-gamma function.

The optimal setting of π for the proportion of con-
tent topics in the documents is empirically tuned by
cross-validation over the training corpus to maxi-
mize the log-likelihood.

5 Experimental Results

In this section, we demonstrate the effectiveness
of strTM in identifying latent topical structures
from documents, and quantitatively evaluate how the
mined topic transitions can help the tasks of sen-
tence annotation and sentence ordering.

5.1 Data Set

We used two different data sets for evaluation: apart-
ment advertisements (Ads) from (Grenager et al.,
2005) and movie reviews (Review) from (Zhuang et
al., 2006).

The Ads data consists of 8,767 advertisements for
apartment rentals crawled from Craigslist website.
302 of them have been labeled with 11 fields, in-
cluding size, feature, address, etc., on the sentence
level. The review data contains 2,000 movie reviews
discussing 11 different movies from IMDB. These
reviews are manually labeled with 12 movie feature

labels (We didn’t use the additional opinion anno-
tations in this data set.) , e.g., VP (vision effects),
MS (music and sound effects), etc., also on the sen-
tences, but the annotations in the review data set is
much sparser than that in the Ads data set (see in Ta-
ble 1). The sentence-level annotations make it pos-
sible to quantitatively evaluate the discovered topic
structures.

We performed simple preprocessing on these
two data sets: 1) removed a standard list of stop
words, terms occurring in less than 2 documents;
2) discarded the documents with less than 2 sen-
tences; 3) aggregated sentence-level annotations
into document-level labels (binary vector) for each
document. Table 1 gives a brief summary on these
two data sets after the processing.

Ads Review
Document Size 8,031 1,991
Vocabulary Size 21,993 14,507

Avg Stn/Doc 8.0 13.9
Avg Labeled Stn/Doc 7.1* 5.1

Avg Token/Stn 14.1 20.0
*Only in 302 labeled ads

Table 1: Summary of evaluation data set

5.2 Topic Transition Modeling

First, we qualitatively demonstrate the topical struc-
ture identified by strTM from Ads data1. We trained
strTM with 11 content topics in Ads data set, used
word distribution under each class (estimated by
maximum likelihood estimator on document-level
labels) as priors to initialize the emission probabil-
ity Mul(βz) in Eq(6), and treated document-level la-
bels as the prior for transition from T-START in each
document, so that the mined topics can be aligned
with the predefined class labels. Figure 2 shows the
identified topics and the transitions among them. To
get a clearer view, we discarded the transitions be-
low a threshold of 0.1 and removed all the isolated
nodes.

From Figure 2, we can find some interesting top-
ical structures. For example, people usually start
with “size”, “features” and “address”, and end
with “contact” information when they post an apart-

1Due to the page limit, we only show the result in Ads data
set.
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Figure 2: Estimated topics and topical transitions in Ads data set

ment ads. Also, we can discover a strong transition
from “size” to “features”. This intuitively makes
sense because people usually write “it’s a two bed-
rooms apartment” first, and then describe other “fea-
tures” about the apartment. The mined topics are
also quite meaningful. For example, “restrictions”
are usually put over pets and smoking, and parking
and laundry are always the major “features” of an
apartment.

To further quantitatively evaluate the estimated
topic transitions, we used Kullback-Leibler (KL) di-
vergency between the estimated transition matrix
and the “ground-truth” transition matrix as the met-
ric. Each element of the “ground-truth” transition
matrix was calculated by Eq(9), where c(z, z′) de-
notes how many sentences annotated by z′ immedi-
ately precede one annotated by z. δ is a smoothing
factor, and we fixed it to 0.01 in the experiment.

p̄(z|z′) =
c(z, z′) + δ

c(z) + kδ
(9)

The KL divergency between two transition matri-
ces is defined in Eq(10). Because we have a k × k
transition matrix (Tstart is not included), we calcu-
lated the average KL divergency against the ground-

truth over all the topics:

avgKL=

∑k
i=1 KL(p(z|z′i)||p̄(z|z′i))+KL(p̄(z|z′i)||p(z|z′i))

2k
(10)

where p̄(z|z′) is the ground-truth transition proba-
bility estimated by Eq(9), and p(z|z′) is the transi-
tion probability given by the model.

We used pLSA (Hofmann, 1999), latent permuta-
tion model (lPerm) (Chen et al., 2009) and HTMM
(Gruber et al., 2007) as the baseline methods for the
comparison. Because none of these three methods
can generate a topic transition matrix directly, we
extended them a little bit to achieve this goal. For
pLSA, we used the document-level labels as priors
for the topic distribution in each document, so that
the estimated topics can be aligned with the prede-
fined class labels. After the topics were estimated,
for each sentence we selected the topic that had
the highest posterior probability to generate the sen-
tence as its class label. For lPerm and HTMM, we
used Kuhn-Munkres algorithm (Lovász and Plum-
mer, 1986) to find the optimal topic-to-class align-
ment based on the sentence-level annotations. Af-
ter the sentences were annotated with class labels,
we estimated the topic transition matrices for all of
these three methods by Eq(9).
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Since only a small portion of sentences are an-
notated in the Review data set, very few neighbor-
ing sentences are annotated at the same time, which
introduces many noisy transitions. As a result, we
only performed the comparison on the Ads data set.
The “ground-truth” transition matrix was estimated
based on all the 302 annotated ads.

pLSA+prior lPerm HTMM strTM

avgKL 0.743 1.101 0.572 0.372
p-value 0.023 1e-4 0.007 –

Table 2: Comparison of estimated topic transitions on
Ads data set

In Table 2, the p-value was calculated based on t-
test of the KL divergency between each topic’s tran-
sition probability against strTM. From the results,
we can see that avgKL of strTM is smaller than the
other three baseline methods, which means the esti-
mated transitional relation by strTM is much closer
to the ground-truth transition. This demonstrates
that strTM captures the topical structure well, com-
pared with other baseline methods.

5.3 Sentence Annotation

In this section, we demonstrate how the identified
topical structure can benefit the task of sentence an-
notation. Sentence annotation is one step beyond the
traditional document classification task: in sentence
annotation, we want to predict the class label for
each sentence in the document, and this will be help-
ful for other problems, including extractive summa-
rization and passage retrieval. However, the lack of
detailed annotations on sentences greatly limits the
effectiveness of the supervised classification meth-
ods, which have been proved successful on docu-
ment classifications.

In this experiment, we propose to use strTM to ad-
dress this annotation task. One advantage of strTM
is that it captures the topic transitions on the sen-
tence level within documents, which provides a reg-
ularization over the adjacent predictions.

To examine the effectiveness of such structural
regularization, we compared strTM with four base-
line methods: pLSA, lPerm, HTMM and Naive
Bayes model. The sentence labeling approaches for
strTM, pLSA, lPerm and HTMM have been dis-

cussed in the previous section. As for Naive Bayes
model, we used EM algorithm 2 with both labeled
and unlabeled data for the training purpose (we used
the same unigram features as in topics models). We
set weights for the unlabeled data to be 10−3 in
Naive Bayes with EM.

The comparison was performed on both data sets.
We set the size of topics in each topic model equal
to the number of classes in each data set accord-
ingly. To tackle the situation where some sentences
in the document are not strictly associated with any
classes, we introduced an additional NULL content
topic in all the topic models. During the training
phase, none of the methods used the sentence-level
annotations in the documents, so that we treated the
whole corpus as the training and testing set.

To evaluate the prediction performance, we cal-
culated accuracy, recall and precision based on the
correct predictions over the sentences, and averaged
over all the classes as the criterion.

Model Accuracy Recall Precison

pLSA+prior 0.432 0.649 0.457
lPerm 0.610 0.514 0.471

HTMM 0.606 0.588 0.443
NB+EM 0.528 0.337 0.612

strTM 0.747 0.674 0.620

Table 3: Sentence annotation performance on Ads data
set

Model Accuracy Recall Precison

pLSA+prior 0.342 0.278 0.250
lPerm 0.286 0.205 0.184

HTMM 0.369 0.131 0.149
NB+EM 0.341 0.354 0.431

strTM 0.541 0.398 0.323

Table 4: Sentence annotation performance on Review
data set

Annotation performance on the two data sets is
shown in Table 3 and Table 4. We can see that strTM
outperformed all the other baseline methods on most
of the metrics: strTM has the best accuracy and re-
call on both of the two data sets. The improvement
confirms our hypothesis that besides solely depend-
ing on the local word patterns to perform predic-

2Mallet package: http://mallet.cs.umass.edu/
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tions, adjacent sentences provide a structural reg-
ularization in strTM (see Eq(3)). Compared with
lPerm, which postulates a strong constrain over the
topic assignment (sampling without replacement),
strTM performed much better on both of these two
data sets. This validates the benefit of modeling lo-
cal transitional relation compared with the global or-
dering. Besides, strTM achieved over 46% accu-
racy improvement compared with the second best
HTMM in the review data set. This result shows
the advantage of explicitly modeling the topic tran-
sitions between neighbor sentences instead of using
a binary relation to do so as in HTMM.

To further testify how the identified topical struc-
ture can help the sentence annotation task, we first
randomly removed 100 annotated ads from the train-
ing corpus and used them as the testing set. Then,
we used the ground-truth topic transition matrix es-
timated from the training data to order those 100 ads
according to their fitness scores under the ground-
truth topic transition matrix, which is defined in
Eq(11). We tested the prediction accuracy of differ-
ent models over two different partitions, top 50 and
bottom 50, according to this order.

fitness(d) =
1

|d|

|d|∑
i=0

log p̄(ti|ti−1) (11)

where ti is the class label for ith sentence in doc-
ument d, |d| is the number of sentences in docu-
ment d, and p̄(ti|ti−1) is the transition probability
estimated by Eq(9).

Top 50 p-value Bot 50 p-value

pLSA+prior 0.496 4e-12 0.542 0.004
lPerm 0.669 0.003 0.505 8e-4

HTMM 0.683 0.004 0.579 0.003
NB + EM 0.492 1e-12 0.539 0.002

strTM 0.752 – 0.644 –

Table 5: Sentence annotation performance according to
structural fitness

The results are shown in Table 5. From this table,
we can find that when the testing documents follow
the regular patterns as in the training data, i.e., top
50 group, strTM performs significantly better than
the other methods; when the testing documents don’t

share such structure, i.e., bottom 50 group, strTM’s
performance drops. This comparison confirms that
when a testing document shares similar topic struc-
ture as the training data, the topical transitions cap-
tured by strTM can help the sentence annotation task
a lot. In contrast, because pLSA and Naive Bayes
don’t depend on the document’s structure, their per-
formance does not change much over these two par-
titions.

5.4 Sentence Ordering

In this experiment, we illustrate how the learned top-
ical structure can help us better arrange sentences in
a document. Sentence ordering, or text planning, is
essential to many text synthesis applications, includ-
ing multi-document summarization (Goldstein et al.,
2000) and concept-to-text generation (Barzilay and
Lapata, 2005).

In strTM, we evaluate all the possible orderings
of the sentences in a given document and selected
the optimal one which gives the highest generation
probability:

σ̄(m) = arg max
σ(m)

∑
z

p(Sσ[0], Sσ[1], . . . , Sσ[m], z|Θ)

(12)
where σ(m) is a permutation of 1 to m, and σ[i] is
the ith element in this permutation.

To quantitatively evaluate the ordering result, we
treated the original sentence order (OSO) as the per-
fect order and used Kendall’s τ(σ) (Lapata, 2006) as
the evaluation metric to compute the divergency be-
tween the optimum ordering given by the model and
OSO. Kendall’s τ(σ) is widely used in information
retrieval domain to measure the correlation between
two ranked lists and it indicates how much an order-
ing differs from OSO, which ranges from 1 (perfect
matching) to -1 (totally mismatching).

Since only the HTMM and lPerm take the order
of sentences in the document into consideration, we
used them as the baselines in this experiment. We
ranked OSO together with candidate permutations
according to the corresponding model’s generation
probability. However, when the size of documents
becomes larger, it’s infeasible to permutate all the
orderings, therefore we randomly permutated 200
possible orderings of sentences as candidates when
there were more than 200 possible candidates. The
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2bedroom 1bath in very nice complex! Pool,
carport, laundry facilities!! Call Don (650)207-
5769 to see! Great location!! Also available,
2bed.2bath for $1275 in same complex.

=⇒
2bedroom 1bath in very nice complex! Pool, car-
port, laundry facilities!! Great location!! Also
available, 2bed.2bath for $1275 in same complex.
Call Don (650)207-5769 to see!

2 bedrooms 1 bath + a famyly room in a cul-de-
sac location. Please drive by and call Marilyn for
appointment 650-652-5806. Address: 517 Price
Way, Vallejo. No Pets Please!

=⇒
2 bedrooms 1 bath + a famyly room in a cul-de-
sac location. Address: 517 Price Way, Vallejo. No
Pets Please! Please drive by and call Marilyn for
appointment 650-652-5806.

Table 6: Sample results for document ordering by strTM

experiment was performed on both data sets with
80% data for training and the other 20% for testing.

We calculated the τ(σ) of all these models for
each document in the two data sets and visualized
the distribution of τ(σ) in each data set with his-
togram in Figure 3. From the results, we could ob-
serve that strTM’s τ(σ) is more skewed towards the
positive range (with mean 0.619 in Ads data set and
0.398 in review data set) than lPerm’s results (with
mean 0.566 in Ads data set and 0.08 in review data
set) and HTMM’s results (with mean 0.332 in Ads
data set and 0.286 in review data set). This indi-
cates that strTM better captures the internal structure
within the documents.
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Figure 3: Document Ordering Performance in τ(σ).

We see that all methods performed better on the
Ads data set than the review data set, suggesting
that the topical structures are more coherent in the
Ads data set than the review data. Indeed, in the
Ads data, strTM perfectly recovered 52.9% of the
original sentence order. When examining some mis-
matched results, we found that some of them were
due to an “outlier” order given by the original docu-
ment (in comparison to the “regular” patterns in the
set). In Table 6, we show two such examples where
we see the learned structure “suggested” to move

the contact information to the end, which intuitively
gives us a more regular organization of the ads. It’s
hard to say that in this case, the system’s ordering is
inferior to that of the original; indeed, the system or-
der is arguably more natural than the original order.

6 Conclusions

In this paper, we proposed a new structural topic
model (strTM) to identify the latent topical struc-
ture in documents. Different from the traditional
topic models, in which exchangeability assumption
precludes them to capture the structure of a docu-
ment, strTM captures the topical structure explicitly
by introducing transitions among the topics. Experi-
ment results show that both the identified topics and
topical structure are intuitive and meaningful, and
they are helpful for improving the performance of
tasks such as sentence annotation and sentence or-
dering, where correctly recognizing the document
structure is crucial. Besides, strTM is shown to out-
perform not only the baseline topic models that fail
to model the dependency between the topics, but
also the semi-supervised Naive Bayes model for the
sentence annotation task.

Our work can be extended by incorporating richer
features, such as named entity and co-reference, to
enhance the model’s capability of structure finding.
Besides, advanced NLP techniques for document
analysis, e.g., shallow parsing, may also be used to
further improve structure finding.
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