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Abstract

A system making optimal use of available in-
formation in incremental language compre-
hension might be expected to use linguistic
knowledge together with current input to re-
vise beliefs about previous input. Under some
circumstances, such an error-correction capa-
bility might induce comprehenders to adopt
grammatical analyses that are inconsistent
with the true input. Here we present a for-
mal model of how such input-unfaithful gar-
den paths may be adopted and the difficulty
incurred by their subsequent disconfirmation,
combining a rational noisy-channel model of
syntactic comprehension under uncertain in-
put with the surprisal theory of incremental
processing difficulty. We also present a behav-
ioral experiment confirming the key empirical
predictions of the theory.

1 Introduction

In most formal theories of human sentence compre-
hension, input recognition and syntactic analysis are
taken to be distinct processes, with the only feed-
back from syntax to recognition being prospective
prediction of likely upcoming input (Jurafsky, 1996;
Narayanan and Jurafsky, 1998, 2002; Hale, 2001,
2006; Levy, 2008a). Yet a system making optimal
use of all available information might be expected
to perform fully joint inference on sentence identity
and structure given perceptual input, using linguistic
knowledge both prospectivelyand retrospectively in
drawing inferences as to how raw input should be
segmented and recognized as a sequence of linguis-
tic tokens, and about the degree to which each input

token should be trusted during grammatical analysis.
Formal models of such joint inference over uncer-
tain input have been proposed (Levy, 2008b), and
corroborative empirical evidence exists that strong
coherence of current input with a perceptual neigh-
bor of previous input may induce confusion in com-
prehenders as to the identity of that previous input
(Connine et al., 1991; Levy et al., 2009).

In this paper we explore a more dramatic predic-
tion of such an uncertain-input theory: that, when
faced with sufficiently biasing input, comprehen-
ders might under some circumstances adopt a gram-
matical analysis inconsistent with the true raw in-
put comprising a sentence they are presented with,
but consistent with a slightly perturbed version of
the input that has higher prior probability. If this is
the case, then subsequent input strongly disconfirm-
ing this “hallucinated” garden-path analysis might
be expected to induce the same effects as seen in
classic cases of garden-path disambiguation tradi-
tionally studied in the psycholinguistic literature.
We explore this prediction by extending the ratio-
nal uncertain-input model of Levy (2008b), integrat-
ing it with SURPRISAL THEORY(Hale, 2001; Levy,
2008a), which successfully accounts for and quan-
tifies traditional garden-path disambiguation effects;
and by testing predictions of the extended model in a
self-paced reading study. Section 2 reviews surprisal
theory and how it accounts for traditional garden-
path effects. Section 3 provides background infor-
mation on garden-path effects relevant to the current
study, describes how we might hope to reveal com-
prehenders’ use of grammatical knowledge to revise
beliefs about the identity of previous linguistic sur-
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face input and adopt grammatical analyses incon-
sistent with true input through a controlled experi-
ment, and informally outlines how such belief revi-
sions might arise as a side effect in a general the-
ory of rational comprehension under uncertain in-
put. Section 4 defines and estimates parameters for a
model instantiating the general theory, and describes
the predictions of the model for the experiment de-
scribed in Section 3 (along with the inference proce-
dures required to determine those predictions). Sec-
tion 5 reports the results of the experiment. Section 6
concludes.

2 Garden-path disambiguation under
surprisal

The SURPRISAL THEORYof incremental sentence-
processing difficulty (Hale, 2001; Levy, 2008a)
posits that the cognitive effort required to process a
given wordwi of a sentence in its context is given by
the simple information-theoretic measure of the log
of the inverse of the word’s conditional probability
(also called its “surprisal” or “Shannon information
content”) in its intra-sentential contextw1,...,i−1 and
extra-sentential contextCtxt:

Effort(wi) ∝ log
1

P (wi|w1...i−1, Ctxt)

(In the rest of this paper, we consider isolated-
sentence comprehension and ignoreCtxt.) The the-
ory derives empirical support not only from con-
trolled experiments manipulating grammatical con-
text but also from broad-coverage studies of read-
ing times for naturalistic text (Demberg and Keller,
2008; Boston et al., 2008; Frank, 2009; Roark et al.,
2009), including demonstration that the shape of the
relationship between word probability and reading
time is indeed log-linear (Smith and Levy, 2008).

Surprisal has had considerable success in ac-
counting for one of the best-known phenomena in
psycholinguistics, theGARDEN-PATH SENTENCE

(Frazier, 1979), in which a local ambiguity biases
the comprehender’s incremental syntactic interpre-
tation so strongly that upon encountering disam-
biguating input the correct interpretation can only
be recovered with great effort, if at all. The most
famous example is (1) below (Bever, 1970):

(1) The horse raced past the barn fell.

where the context before the final word is strongly
biased toward an interpretation whereraced is the
main verb of the sentence (MV ; Figure 1a), the in-
tended interpretation, whereraced begins a reduced
relative clause (RR; Figure 1b) andfell is the main
verb, is extremely difficult to recover. LettingTj

range over the possible incremental syntactic analy-
ses of wordsw1...6 precedingfell, under surprisal the
conditional probability of the disambiguating con-
tinuationfell can be approximated as

P (fell|w1...6) =
∑

j

P (fell|Tj , w1...6)P (Tj |w1...6)

(I)

For all possible predisambiguation analysesTj ,
either the analysis is disfavored by the context
(P (Tj |w1...6) is low) or the analysis makes the
disambiguating word unlikely (P (fell|Tj , w1...6) is
low). Since every summand in the marginalization
of Equation (I) has a very small term in it, the total
marginal probability is thus small and the surprisal
is high. Hale (2001) demonstrated that surprisal thus
predicts strong garden-pathing effects in the classic
sentenceThe horse raced past the barn fell on ba-
sis of the overall rarity of reduced relative clauses
alone. More generally, Jurafsky (1996) used a com-
bination of syntactic probabilities (reduced RCs are
rare) and argument-structure probabilities (raced is
usually intransitive) to estimate the probability ratio
of the two analyses of pre-disambiguation context
in Figure 1 as roughly 82:1, putting a lower bound
on the additional surprisal incurred atfell for the
reduced-RC variant over the unreduced variant (The
horse that was raced past the barn fell) of 6.4 bits.1

3 Garden-pathing and input uncertainty

We now move on to cases where garden-pathing can
apparently be blocked by only small changes to the
surface input, which we will take as a starting point
for developing an integrated theory of uncertain-
input inference and surprisal. The backdrop is what
is known in the psycholinguistic literature as the
NP/Z ambiguity, exemplified in (2) below:

1We say that this is a “lower bound” because incorporat-
ing even finer-grained information—such as the fact thathorse
is a canonical subject for intransitiveraced—into the estimate
would almost certainly push the probability ratio even farther in
favor of the main-clause analysis.
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Figure 1: Classic garden pathing

(2) While Mary was mending the socks fell off her lap.

In incremental comprehension, the phrasethe socks
is ambiguous between being theNP object of the
preceding subordinate-clause verbmending versus
being the subject of the main clause (in which
casemending has aZero object); in sentences like
(2) the initial bias is toward theNP interpreta-
tion. The main-clause verbfell disambiguates, rul-
ing out the initially favoredNP analysis. It has
been known since Frazier and Rayner (1982) that
this effect of garden-path disambiguation can be
measured in reading times on the main-clause verb
(see also Mitchell, 1987; Ferreira and Henderson,
1993; Adams et al., 1998; Sturt et al., 1999; Hill
and Murray, 2000; Christianson et al., 2001; van
Gompel and Pickering, 2001; Tabor and Hutchins,
2004; Staub, 2007). Small changes to the context
can have huge effects on comprehenders’ initial in-
terpretations, however. It is unusual for sentence-
initial subordinate clauses not to end with a comma
or some other type of punctuation (searches in the
parsed Brown corpus put the rate at about 18%); em-
pirically it has consistently been found that a comma
eliminates the garden-path effect in NP/Z sentences:

(3) While Mary was mending, the socks fell off her lap.

Understanding sentences like (3) is intuitively much
easier, and reading times at the disambiguating verb
are reliably lower when compared with (2). Fodor
(2002) summarized the power of this effect suc-
cinctly:

[w]ith a comma aftermending, there
would be no syntactic garden path left to
be studied. (Fodor, 2002)

In a surprisal model with clean, veridical input,
Fodor’s conclusion is exactly what is predicted: sep-
arating a verb from its direct object with a comma
effectively never happens in edited, published writ-
ten English, so the conditional probability of the
NP analysis should be close to zero.2 When uncer-
tainty about surface input is introduced, however—
due to visual noise, imperfect memory representa-
tions, and/or beliefs about possible speaker error—
analyses come into play in which some parts of the
true string are treated as if they were absent. In
particular, because the two sentences are perceptual
neighbors, the pre-disambiguation garden-path anal-
ysis of (2) may be entertained in (3).

We can get a tighter handle on the effect of input
uncertainty by extending Levy (2008b)’s analysis of
theexpected beliefs of a comprehender about the se-
quence of words constituting an input sentence to
joint inference over both sentence identity and sen-
tence structure. For a true sentencew

∗ which yields
perceptual inputI, joint inference on sentence iden-
tity w and structureT marginalizing overI yields:

PC(T,w|w∗) =

∫

I

PC(T,w|I,w∗)PT (I|w
∗) dI

wherePT (I|w
∗) is the true model of noise (percep-

tual inputs derived from the true sentence) andPC(·)
terms reflect the comprehender’s linguistic knowl-
edge and beliefs about the noise processes interven-
ing between intended sentences and perceptual in-
put. w

∗ andw must be conditionally independent
givenI sincew∗ is not observed by the comprehen-
der, giving us (through Bayes’ Rule):

P (T,w|w∗) =

∫

I

PC(I|T,w)PC(T,w)

PC(I)
PT (I|w

∗) dI

For present purposes we constrain the comprehen-
der’s model of noise so thatT andI are condition-
ally independent givenw, an assumption that can be
relaxed in future work.3 This allows us the further

2A handful of VP -> V , NP ... rules can be found
in the Penn Treebank, but they all involve appositives (It [VP
ran, this apocalyptic beast . . . ]), vocatives (You should [VP un-
derstand, Jack, . . . ]), cognate objects (She [VP smiled, a smile
without humor]), or indirect speech (I [VP thought, you nasty
brute. . . ]); none involve true direct objects of the type in (3).

3This assumption is effectively saying that noise processes
are syntax-insensitive, which is clearly sensible for environmen-
tal noise but would need to be relaxed for some types of speaker
error.
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simplification to

P (T,w|w∗) =

(i)
︷ ︸︸ ︷

PC(T,w)

(ii)
︷ ︸︸ ︷
∫

I

PC(I|w)PT (I|w
∗)

PC(I)
dI

(II)

That is, a comprehender’s average inferences about
sentence identity and structure involve a tradeoff
between (i) the prior probability of a grammati-
cal derivation given a speaker’s linguistic knowl-
edge and (ii) the fidelity of the derivation’s yield to
the true sentence, as measured by a combination of
true noise processes and the comprehender’s beliefs
about those processes.

3.1 Inducing hallucinated garden paths
through manipulating prior grammatical
probabilities

Returning to our discussion of the NP/Z ambigu-
ity, the relative ease of comprehending (3) entails
an interpretation in the uncertain-input model that
the cost of infidelity to surface input is sufficient to
prevent comprehenders from deriving strong belief
in a hallucinated garden-path analysis of (3) pre-
disambiguation in which the comma is ignored. At
the same time, the uncertain-input theory predicts
that if we manipulate the balance of prior grammat-
ical probabilitiesPC(T,w) strongly enough (term
(i) in Equation (II)), it may shift the comprehender’s
beliefs toward a garden-path interpretation. This ob-
servation sets the stage for our experimental manip-
ulation, illustrated below:

(4) As the soldiers marched, toward the tank lurched an
injured enemy combatant.

Example (4) is qualitatively similar to (3), but with
two crucial differences. First, there has beenLOCA-
TIVE INVERSION (Bolinger, 1971; Bresnan, 1994)
in the main clause: a locative PP has been fronted
before the verb, and the subject NP is realized
postverbally. Locative inversion is a low-frequency
construction, hence it is crucially disfavored by
the comprehender’s prior over possible grammatical
structures. Second, the subordinate-clause verb is
no longer transitive, as in (3); instead it is intran-
sitive but could itself take the main-clause fronted
PP as a dependent. Taken together, these prop-
erties should shift comprehenders’ posterior infer-

ences given prior grammatical knowledge and pre-
disambiguation input more sharply than in (3) to-
ward the input-unfaithful interpretation in which the
immediately preverbal main-clause constituent (to-
ward the tank in (4)) is interpreted as a dependent of
the subordinate-clause verb, as if the comma were
absent.

If comprehenders do indeed seriously entertain
such interpretations, then we should be able to
find the empirical hallmarks (e.g., elevated reading
times) of garden-path disambiguation at the main-
clause verblurched, which is incompatible with the
“hallucinated” garden-path interpretation. Empiri-
cally, however, it is important to disentangle these
empirical hallmarks of garden-path disambiguation
from more general disruption that may be induced
by encountering locative inversion itself. We ad-
dress this issue by introducing a control condition
in which a postverbal PP is placed within the subor-
dinate clause:

(5) As the soldiers marchedinto the bunker, toward the
tank lurched an injured enemy combatant. [+PP]

Crucially, this PP fills a similar thematic role
for the subordinate-clause verbmarched as the
main-clause fronted PP would, reducing the ex-
tent to which the comprehender’s prior favors the
input-unfaithful interpretation (that is, the prior ra-
tio P (marched into the bunker toward the tank|VP)

P (marched into the bunker|VP) for (5) is
much lower than the corresponding prior ratio
P (marched toward the tank|VP)

P (marched|VP) for (4)), while leaving
locative inversion present. Finally, to ensure that
sentence length itself does not create a confound
driving any observed processing-time difference, we
cross presence/absence of the subordinate-clause PP
with inversion in the main clause:

(6)

a. As the soldiers marched, the tank lurched toward
an injured enemy combatant.[Uninverted,−PP]

b. As the soldiers marched into the bunker, the
tank lurched toward an injured enemy combatant.
[Uninverted,+PP]

4 Model instantiation and predictions

To determine the predictions of our uncertain-
input/surprisal model for the above sentence types,
we extracted a small grammar from the parsed
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TOP → S . 1.000000
S → INVERTED NP 0.003257
S → SBAR S 0.012289
S → SBAR , S 0.041753
S → NP VP 0.942701
INVERTED→ PP VBD 1.000000
SBAR → INSBAR S 1.000000
VP → VBD RB 0.002149
VP → VBD PP 0.202024
VP → VBD NP 0.393660
VP → VBD PP PP 0.028029
VP → VBD RP 0.005731
VP → VBD 0.222441
VP → VBD JJ 0.145966
PP → IN NP 1.000000
NP → DT NN 0.274566
NP → NNS 0.047505
NP → NNP 0.101198
NP → DT NNS 0.045082
NP → PRP 0.412192
NP → NN 0.119456

Table 1: A small PCFG (lexical rewrite rules omit-
ted) covering the constructions used in (4)–(6), with
probabilities estimated from the parsed Brown cor-
pus.

Brown corpus (Kǔcera and Francis, 1967; Marcus
et al., 1994), covering sentence-initial subordinate
clause and locative-inversion constructions.4,5 The
non-terminal rewrite rules are shown in Table 1,
along with their probabilities; of terminal rewrite
rules for all words which either appear in the sen-
tences to be parsed or appeared at least five times in
the corpus, with probabilities estimated by relative
frequency.

As we describe in the following two sections, un-

4Rule counts were obtained usingtgrep2/Tregex pat-
terns (Rohde, 2005; Levy and Andrew, 2006); the probabilities
given are relative frequency estimates. The patterns used can be
found athttp://idiom.ucsd.edu/ ˜ rlevy/papers/
acl2011/tregex_patterns.txt .

5Similar to the case noted in Footnote 2, a small number of
VP -> V , PP ... rules can be found in the parsed Brown
corpus. However, the PPs involved are overwhelmingly (i) set
expressions, such asfor example, in essence, andof course, or
(ii) manner or temporal adjuncts. The handful of true loca-
tive PPs (5 in total) are all parentheticals intervening between
the verb and a complement strongly selected by the verb (e.g.,
[VP means, in my country, homosexual]); none fulfill one of the
verb’s thematic requirements.

certain input is represented as a weighted finite-state
automaton (WFSA), allowing us to represent the in-
cremental inferences of the comprehender through
intersection of the input WFSA with the PCFG
above (Bar-Hillel et al., 1964; Nederhof and Satta,
2003, 2008).

4.1 Uncertain-input representations

Levy (2008a) introduced the LEVENSHTEIN-
DISTANCE KERNEL as a model of the average effect
of noise in uncertain-input probabilistic sentence
comprehension; this corresponds to term (ii) in
our Equation (II). This kernel had a single noise
parameter governing scaling of the cost of consid-
ering word substitutions, insertions, and deletions
are considered, with the cost of a word substitution
falling off exponentially with Levenshtein distance
between the true word and the substituted word,
and the cost of word insertion or deletion falling off
exponentially with word length. The distribution
over the infinite set of stringsw can be encoded
in a weighted finite-state automaton, facilitating
efficient inference.

We use the Levenshtein-distance kernel here to
capture the effects of perceptual noise, but make two
modifications necessary for incremental inference
and for the correct computation of surprisal values
for new input: the distribution over already-seen in-
put must beproper, and possible future inputs must
becostless. The resulting weighted finite-state rep-
resentation of noisy input for a true sentence prefix
w

∗ = w1...j is aj + 1-state automaton with arcs as
follows:
• For eachi ∈ 1, . . . , j:

– A substitution arc fromi−1 to i with cost
proportional toexp[−LD(w′, wi) γ] for
each wordw′ in the lexicon, whereγ > 0
is a noise parameter and LD(w′, wi) is the
Levenshtein distance betweenw′ andwi

(whenw′ = wi there is no change to the
word);

– A deletion arc fromi−1 to i labeledǫ with
cost proportional toexp[−len(wi)/γ];

– An insertion loop arc from i − 1
to i − 1 with cost proportional to
exp[−len(w′)/γ] for every wordw′ in the
lexicon;

• A loop arc from j to j for each wordw′ in
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Figure 2: Noisy WFSA for partial inputit hit. . .
with lexicon{it,hit,him}, noise parameterγ=1

the lexicon, with zero cost (value 1 in the real
semiring);

• Statej is a zero-cost final state; no other states
are final.

The addition of loop arcs at staten allows mod-
eling of incremental comprehension through the au-
tomaton/grammar intersection (see also Hale, 2006);
and the fact that these arcs are costless ensures that
the partition function of the intersection reflects only
the grammatical prior plus the costs of input already
seen. In order to ensure that the distribution over
already-seen input is proper, we normalize the costs
on outgoing arcs from all states butj.6 Figure 2
gives an example of a simple WFSA representation
for a short partial input with a small lexicon.

4.2 Inference

Computing the surprisal incurred by the disam-
biguating element given an uncertain-input repre-
sentation of the sentence involves a standard appli-
cation of the definition of conditional probability
(Hale, 2001):

log
1

P (I1...i|I1...i−1)
= log

P (I1...i−1)

P (I1...i)
(III)

Since our uncertain inputsI1...k are encoded by a
WFSA, the probabilityP (I1...k) is equal to the par-
tition function of the intersection of this WFSA with
the PCFG given in Table 1.7 PCFGs are a special
class of weighted context-free grammars (WCFGs),

6If a state’s total unnormalized cost of insertion arcs isα and
that of deletion and insertion arcs isβ, its normalizing constant
is β

1−α
. Note that we must haveα < 1, placing a constraint on

the value thatγ can take (above which the normalizing constant
diverges).

7Using the WFSA representation of average noise effects
here actually involves one simplifying assumption, that the av-

which are closed under intersection with WFSAs; a
constructive procedure exists for finding the inter-
section (Bar-Hillel et al., 1964; Nederhof and Satta,
2003). Hence we are left with finding the partition
function of a WCFG, which cannot be computed ex-
actly, but a number of approximation methods are
known (Stolcke, 1995; Smith and Johnson, 2007;
Nederhof and Satta, 2008). In practice, the com-
putation required to compute the partition function
under any of these methods increases with the size
of the WCFG resulting from the intersection, which
for a binarized PCFG withR rules and ann-state
WFSA is Rn2. To increase efficiency we imple-
mented what is to our knowledge a novel method
for finding the minimal grammar including all rules
that will have non-zero probability in the intersec-
tion. We first parse the WFSA bottom-up with
the item-based method of Goodman (1999) in the
Boolean semiring, storing partial results in a chart.
After completion of this bottom-up parse, every rule
that will have non-zero probability in the intersec-
tion PCFG will be identifiable with a set of entries
in the chart, but not all entries in this chart will
have non-zero probability, since some are not con-
nected to the root. Hence we perform a second, top-
down Boolean-semiring parsing pass on the bottom-
up chart, throwing out entries that cannot be derived
from the root. We can then include in the intersec-
tion grammar only those rules from the classic con-
struction that can be identified with a set of surviv-
ing entries in the final parse chart.8 The partition
functions for each category in this intersection gram-
mar can then be computed; we used a fixed-point
method preceded by a topological sort on the gram-
mar’s ruleset, as described by Nederhof and Satta
(2008). To obtain the surprisal of the input deriv-
ing from a wordwi in its context, we can thus com-

erage surprisal ofIi, or EPT

[

log 1
PC(Ii|I1...i−1)

]

, is well ap-

proximated by the log of the ratio of the expected probabilities
of the noisy inputsI1...i−1 andI1...i, since as discussed in Sec-
tion 3 the quantitiesP (I1...i−1) andP (I1...i) are expectations
under the true noise distribution. This simplifying assumption
has the advantage of bypassing commitment to a specific repre-
sentation of perceptual input and should be justifiable for rea-
sonable noise functions, but the issue is worth further scrutiny.

8Note that a standard top-down algorithm such as Earley
parsing cannot be used to avoid the need for both bottom-up
and top-down passes, since the presence of loops in the WFSA
breaks the ability to operate strictly left-to-right.
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Figure 3: Model predictions for (4)–(6)

pute the partition functions for noisy inputsI1...i−1

andI1...i corresponding to wordsw1...i−1 and words
w1...i respectively, and take the log of their ratio as
in Equation (III).

4.3 Predictions

The noise levelγ is a free parameter in this model, so
we plot model predictions—the expected surprisal
of input from the main-clause verb for each vari-
ant of the target sentence in (4)–(6)—over a wide
range of its possible values (Figure 3). The far left of
the graph asymptotes toward the predictions ofclean
surprisal, or noise-free input. With little to no input
uncertainty, the presence of the comma rules out the
garden-path analysis of the fronted PPtoward the
tank, and the surprisal at the main-clause verb is the
same across condition (here reflecting only the un-
certainty of verb identity for this small grammar).
As input uncertainty increases, however, surprisal
in the [Inverted, −PP] condition increases, reflect-
ing the stronger belief given preceding context in an
input-unfaithful interpretation.

5 Empirical results

To test these predictions we conducted a word-by-
word self-paced reading study, in which partici-
pants read by pressing a button to reveal each suc-
cessive word in a sentence; times between but-
ton presses are recorded and analyzed as an in-
dex of incremental processing difficulty (Mitchell,
1984). Forty monolingual native-English speaker
participants read twenty-four sentence quadruplets
(“items”) on the pattern of (4)–(6), with a Latin-
square design so that each participant saw an equal

Inverted Uninverted
-PP 0.76 0.93
+PP 0.85 0.92

Table 2: Question-answering accuracy

number of sentences in each condition and saw each
item only once. Experimental items were pseudo-
randomly interspersed with 62 filler sentences; no
two experimental items were ever adjacent. Punctu-
ation was presented with the word to its left, so that
for (4) the four and fifth button presses would yield

--------------- marched, ---------------

and

------------------------ toward --------

respectively (right-truncated here for reasons of
space). Every sentence was followed by a yes/no
comprehension question (e.g.,Did the tank lurch to-
ward an injured enemy combatant?); participants re-
ceived feedback whenever they answered a question
incorrectly.

Reading-time results are shown in Figure 4. As
can be seen, the model’s predictions are matched
at the main-clause verb: reading times are highest
in the [Inverted, −PP] condition, and there is an
interaction between main-clause inversion and pres-
ence of a subordinate-clause PP such that presence
of the latter reduces reading times more for inverted
than for uninverted main clauses. This interaction
is significant in both by-participants and by-items
ANOVAs (both p < 0.05) and in a linear mixed-
effects analysis with participants- and item-specific
random interactions (t > 2; see Baayen et al., 2008).
The same pattern persists and remains significant
through to the end of the sentence, indicating con-
siderable processing disruption, and is also observed
in question-answering accuracies for experimental
sentences, which are superadditively lowest in the
[Inverted, −PP] condition (Table 2).

The inflated reading times for the[Inverted,
−PP] condition beginning at the main-clause
verb confirm the predictions of the uncertain-
input/surprisal theory. Crucially, the input that
would on our theory induce the comprehender to
question the comma (the fronted main-clause PP)
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is not seen until after the comma is no longer visi-
ble (and presumably has been integrated into beliefs
about syntactic analysis on veridical-input theories).
This empirical result is hence difficult to accommo-
date in accounts which do not share our theory’s cru-
cial property that comprehenders can revise their be-
lief in previous input on the basis of current input.

6 Conclusion

Language is redundant: the content of one part of a
sentence carries predictive value both for what will
precede and what will follow it. For this reason, and
because the path from a speaker’s intended utterance
to a comprehender’s perceived input is noisy and
error-prone, a comprehension system making opti-
mal use of available information would use current
input not only for forward prediction but also to as-
sess the veracity of previously encountered input.
Here we have developed a theory of how such an
adaptive error-correcting capacity is a consequence
of noisy-channel inference, with a comprehender’s
beliefs regarding sentence form and structure at any
moment in incremental comprehension reflecting a
balance between fidelity to perceptual input and a
preference for structures with higher prior proba-
bility. As a consequence of this theory, certain
types of sentence contexts will cause the drive to-
ward higher prior-probability analyses to overcome
the drive to maintain fidelity to input, undermin-
ing the comprehender’s belief in an earlier part of
the input actually perceived in favor of an analy-
sis unfaithful to part of the true input. If subse-
quent input strongly disconfirms this incorrect in-

terpretation, we should see behavioral signatures of
classic garden-path disambiguation. Within the the-
ory, the size of this “hallucinated” garden-path ef-
fect is indexed by the surprisal value under uncer-
tain input, marginalizing over the actual sentence
observed. Based on a model implementing the-
ory we designed a controlled psycholinguistic ex-
periment making specific predictions regarding the
role of fine-grained grammatical context in modu-
lating comprehenders’ strength of belief in a highly
specific bit of linguistic input—a comma marking
the end of a sentence-initial subordinate clause—
and tested those predictions in a self-paced read-
ing experiment. As predicted by the theory, read-
ing times at the word disambiguating the “halluci-
nated” garden-path were inflated relative to control
conditions. These results contribute to the theory of
uncertain-input effects in online sentence process-
ing by suggesting that comprehenders may be in-
duced not only to entertain but to adopt relatively
strong beliefs in grammatical analyses that require
modification of the surface input itself. Our results
also bring a new degree of nuance to surprisal the-
ory, demonstrating that perceptual neighbors of true
preceding input may need to be taken into account
in order to estimate how surprising a comprehender
will find subsequent input to be.

Beyond the domain of psycholinguistics, the
methods employed here might also be usefully ap-
plied to practical problems such as parsing of de-
graded or fragmentary sentence input, allowing joint
constraint derived from grammar and available input
to fill in gaps (Lang, 1988). Of course, practical ap-
plications of this sort would raise challenges of their
own, such as extending the grammar to broader cov-
erage, which is delicate here since the surface in-
put places a weaker check on overgeneration from
the grammar than in traditional probabilistic pars-
ing. Larger grammars also impose a technical bur-
den since parsing uncertain input is in practice more
computationally intensive than parsing clean input,
raising the question of what approximate-inference
algorithms might be well-suited to processing un-
certain input with grammatical knowledge. Answers
to this question might in turn be of interest for sen-
tence processing, since the exhaustive-parsing ideal-
ization employed here is not psychologically plausi-
ble. It seems likely that human comprehension in-
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volves approximate inference with severely limited
memory that is nonetheless highly optimized to re-
cover something close to the intended meaning of
an utterance, even when the recovered meaning is
not completely faithful to the input itself. Arriving at
models that closely approximate this capacity would
be of both theoretical and practical value.
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